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Abstract Activation of Takeda G-protein receptor 5

(TGR5) plays a key role in pathways associated with dia-

betes, metabolic syndrome, and autoimmune disease.

Pharmacophore and 3D-quantitative structure–activity

relationship modeling were applied to study the structure–

activity relationship of TGR5 agonists. The best HypoGen

pharmacophore hypothesis Hypo1 with a correlation

coefficient of 0.93 consists of one hydrogen-bond acceptor,

one aromatic ring and three hydrophobic features, whereas

the best phase hypothesis AHHRR.1321 with favorable

statistics (q2 = 0.7613, r2 = 0.927) has one hydrogen-

bond acceptor, two hydrophobic features and two ring

aromatic features. Furthermore, comparing those two

models, the preferable AHHRR.1321 was employed as a

novel searching tool for chemical databases to conduct

virtual screening for new potential lead candidates. Con-

sequently, refined Lipinski ‘rule of five’ and ADME

properties were utilized as a filter to reduce less drug-like

molecules. Among the hits, 10 non-steroidal compounds

with good fitness score and physicochemical properties

were identified.

Keywords TGR5 agonist � Non-steroidal �
Virtual screening � Pharmacophore � ADME

Introduction

The Takeda G-protein receptor 5 (TGR5) also known as

G-protein bile acid receptor 1 (GPBAR1), belonging to the

G-protein coupled receptor (GPCR) family, is a plasma

membrane-bound bile acid receptor (Kawamata et al.,

2003) found in many human and animal tissues, including

liver, intestine, and brain (Kawamata et al., 2003; Vassil-

eva et al., 2006). Some non-genomic actions of bile acid

(BA) are mediated through the formation of cAMP as the

activation of TGR5 (Maruyama et al., 2002). An accu-

mulating body of evidence now demonstrates that TGR5

also acts in a number of processes important in inflam-

mation (Wang et al., 2011). Moreover, the recent obser-

vations have revealed an unexpected role for GPBA in the

nervous system, and it is a newly identified liver tumor

suppressor in carcinogenesis (Duboc et al., 2014). In cell

culture models, TGR5 has been linked to signaling path-

ways involved in metabolism, cell survival, proliferation,

and apoptosis, suggesting a possible role of TGR5 in

cancer development (Feng et al., 2007). Thus, its phar-

macological modulation may furnish alternative therapeu-

tic strategies to treat diabetes, obesity, other metabolic

syndromes, inflammation, and so on (Gioiello et al., 2012).

The recent studies also suggested that the activation of

TGR5 in macrophages may be of utility in atherosclerosis

(Pols, 2014).

Depending on the chemical characteristics, TGR5

ligands can be classified into two types: steroidal and non-

steroidal agents. The Pellicciari group reported their

research for potent and selective TGR5 agonists based on

C. Zhou � F. Zou � Y. Xu (&) � L. Zhang � X. Zha (&)

State Key Laboratory of Natural Medicines, China

Pharmaceutical University, Nanjing 210009,

People’s Republic of China

e-mail: xyg@cpu.edu.cn

X. Zha

e-mail: xmzha@cpu.edu.cn

C. Zhou � F. Zou � L. Zhang � X. Zha

Jiangsu Center for Drug Screening, China Pharmaceutical

University, Nanjing 210009, People’s Republic of China

C. Zhou � Y. Xu

Department of Medicinal Chemistry, China Pharmaceutical

University, Nanjing 210009, People’s Republic of China

123

Med Chem Res (2015) 24:2561–2572

DOI 10.1007/s00044-014-1310-8

MEDICINAL
CHEMISTRY
RESEARCH

http://crossmark.crossref.org/dialog/?doi=10.1007/s00044-014-1310-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00044-014-1310-8&amp;domain=pdf


natural bile acid. Among them, INT-777, one of the

semisynthetic BA derivatives, exhibited good properties

in vitro and in vivo and was considered as a promising anti-

diabetic drug candidate in the preclinical study (Pellicciari

et al., 2009). In addition, a number of pharmaceutical and

biotech companies including Takeda Pharmaceuticals (2004),

Kalypsys (Herbert et al., 2010a, b), GSK (SmithKline

Beecham Corp., 2007), Hoffmann-La (2010), SIMM (Duan

et al., 2012), Pfizer (Futatsugi et al., 2013), and Novartis

have focused their efforts toward finding structurally

diverse non-steroidal TGR5 agonists. Some representative

structures are shown in Fig. 1. These agonists offer the

potential to enable delivery of a tool compound with higher

selectivity against other bile acid-mediated pathways, such

as FXR, and lead to a wide range of small molecules, after

all BAs derivatives vary a little (Jansen, 2010; Lavoie

et al., 2010).

As an important method for drug discovery, computer-

aided techniques have been applied in the identification of

TGR5 agonists. Macchiarulo et al. (2008) developed a

molecular interaction field analysis (MFA) and a 3D-

quantitative structure–activity relationship study (3D-

QSAR) of TGR5 agonists using a training set of 43 bile

acid derivatives. Martin et al. (2013) constructed their

homology model using bovine rhodopsin as template and

then carried out the docking procedure. As the pharmaco-

phore model of non-steroidal ligands has not been pub-

lished, herein we focus on the uncovered area.

At first, we planned to generate a common pharmaco-

phore model on the basis of TGR5 agonists containing

BAs, terpenes, and non-steroidal molecules. However, the

obtained model turned out to be too simple to differentiate

TGR5 agonists from negative ones, it only has four com-

mon features: two hydrophobic spheres, one aromatic ring

features, and one hydrogen-bond acceptor (HBA) (Fig. 2).

The decoy set validation came to a bad result with EF value

less than 1. Although the cost and correlation value of this

number of false pharmacophore model were reasonable

enough, the model obviously lacked specific information

and might lead to an increasing uncredible virtual screen-

ing results. Furthermore, SAR studies have shown that

BAs, terpenes, and non-steroidal are characterized with

different pharmacophoric elements for TGR5 activation.

Steroidal and non-steroidal ligands may bind to a common

orthosteric site involving different interacting residues, or

they may interact with different regions of the TGR5

binding pockets. Therefore, it was not proper for the further

study. Due to those deficiencies, we aimed at the non-

steroidal ligands for constructing the pharmacophore,

which has been attracting more medicinal chemists.

In this work, we combined two 3D-quantitative SAR

(QSAR) modeling tools to investigate key pharmacophoric

features. We carry out both HypoGen and Phase in the

Fig. 1 Reported representative TGR5 agonists

Fig. 2 Hypo1 geometric constraint generated by steroidal and non-

steroidal compounds consists of one aromatic rings (R), two

hydrophobic (H) features, and one hydrogen-bond acceptor (HBA).

Pharmacophore features are color represented as blue for hydropho-

bic, green for hydrogen-bond acceptor, and yellow for ring aromatic

feature (Color figure online)
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generation of pharmacophore models to obtain the most

significant features by comparison of both models (Zhang

et al., 2009). These two kinds of models were further

validated by various approaches to justify its qualification.

Furthermore, we employed the preferable Phase pharma-

cophore model as a novel searching tool for chemical

databases to conduct virtual screening for new potential

lead candidates, with due cognizance of the refined Li-

pinski ‘rule of five’ and absorption, distribution, metabo-

lism, excretion (ADME) properties. This information is

relevant to extend, on a quantitative basis, the current

structure–activity relationships of non-steroidal compounds

as TGR5 modulators and will be beneficial to design new

potent and selective agonists of the receptor.

Results and discussion

HypoGen pharmacophore study

A data-set of 29 TGR5 agonists belonging to several

structural classes (Fig. 3) was collected and randomly divi-

ded in 17 training set and 10 test set compounds (Gioiello

et al., 2012; Herbert et al., 2010a, b; Duan et al., 2012; Zhu

et al., 2013a, b). Top 10 pharmacophore hypotheses were

exported based on the activity values of the training set

molecules. Hypogen produces three cost values: fixed cost,

total cost, and null cost. The cost difference between null

cost and fixed cost was found to be 106.81, and it was more

than 70 bits. Configuration cost should be smaller than 17

for a good pharmacophore hypotheses since it represents the

complexity of the hypotheses (Bharatham et al., 2006).

Various cost values, correlation coefficient, RMS deviation,

and pharmacophore features of 10 hypotheses are summa-

rized in Table 1. Hypo1 consists of one HBA, three

hydrophobic features (H), and one aromatic ring (R), which

establishes the highest cost difference (88.05), best correla-

tion coefficient (0.93), maximum fit value (13.54), and

lowest root mean square (RMS) of 1.37. The fixed and the

null cost values for the 10 hypotheses were 67.1629 and

173.97, respectively. Higher cost difference and correlation

value with low RMS and error values have been observed

for Hypo1 when compared with other hypotheses. Hence,

Hypo1 was selected as a best hypothesis and employed for

further analyses. Figure 4 shows the Hypo1 chemical fea-

tures. Figure 5a and b represents the best pharmacophore

model aligned with the most active and inactive molecules 6

and 23 with EC50 of 0.3 and 5,100 nm, respectively. The

pharmacophore features are mapped well to the active

molecule in the Fig. 5a. On the other hand, the feature of

HBA in Fig. 5b could not fit well since it is a low active

molecule. Our results indicated that the HBA moiety seemed

to be essential for TGR5 agonists.

Random hypotheses built by Fischer validation (confi-

dence of level of 95 %) are illustrated in Fig. 6. None of

the exported pharmacophores had lower cost than the ori-

ginal hypotheses. It clearly showed that the Hypo1

hypothesis was not generated by chance, because its sta-

tistics were superior to all random hypotheses. Moreover,

decoy set was generated to ensure whether Hypo1 could

pick out active molecules from inactive compounds. EF

and GH were calculated to evaluate the hypotheses. Decoy

set contains active and inactive compounds of TGR5

agonists. Parameters such as total number of compounds in

the hit list (Ht), number of active percent of yields (%Y),

percent ratio of actives in the hit list (%A), EF, false neg-

atives, false positives, and GF were calculated (Nagarajan

et al., 2011). The false positives and false negatives are 357

and 2, respectively. The EF and GF are calculated to be

3.784 and 0.25, respectively, which are very good indica-

tions of the high efficiency of the screening (Table 2).

According to all the validations, we drew the conclusion

that Hypo1 can be taken as further analyses such as virtual

screening.

Phase pharmacophore study

As a first step, common features of pharmacophore

hypotheses were generated, scored, and ranked by Phase.

Four highly active compounds of the set (6, 9, 3, and 10 in

Fig. 3) were selected, aiming at the definition of a reliable

and not subjective alignment rule for the subsequent 3D-

QSAR development. The top-ranked hypothesis (AHHRR.

1321) was formed by five features: one hydrogen-bond

acceptors (A), two aromatic rings (R), and two hydropho-

bic features (H) (Fig. 7). Pharmacophore AHHRR.1321

(shown in Fig. 8 superimposed to the compound 6 and the

compound 23) was allowed to confirm the perfect and

worse match, related to the corresponding TGR5 activity.

Taking into account this and comparation of the above

SAR studies, it could be assumed that pharmacophore

AHHRR.1321 actually accounts for relevant interactions

between agonists and TGR5. Consequently, it is not arbi-

trary to state that matching the pharmacophore may indi-

cate binding to this receptor.

Pharmacophore AHHRR.1321 was then used to align

the molecules for the development of an atom-based 3D-

QSAR analysis. Models containing one to three PLS

factors were generated, whose statistical parameters are

reported in Table 3. The model with three PLS factors

was preferred and selected, since it performed better on

the whole than those with fewer factors. The high cor-

relation and cross-validated correlation coefficients

(R2 = 0.927 and Q2 = 0.7613, respectively) together

with the high Pearson R value (R-Pearson = 0.8704)

suggested a close correspondence between predicted and
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actual EC50 activity values, indicative of a model with

strong predictive power and significance. A scatter plot

of experimental against predicted activities was created

to assess the results (see Fig. 9), which showed that

EC50 values were effectively predicted for both training

and test set molecules. These features, along with the

Fig. 3 2D chemical structure of reported TGR5 agonists in the training set and test set together with their biological activity values (EC50)
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small number of PLS factors, the large F value supported

the reliability of the approach. It is significant to mention

that, all the test set compounds, the differences between

experimental and calculated EC50 values were within one

order of magnitude for all the compounds, demonstrating

that the 3D-QSAR model was reasonably efficient in the

estimation of TGR5 activity.

The 3D-QSAR model represents 3D characteristics as

cubes that signify the model and color according to the

positive or negative coefficients. The 3D-QSAR results

were visualized using 3D plots of the crucial volume

elements occupied by ligands. The 3D plot representation

of the model as a whole, superimposed to derivatives 6

and 23, is shown in Fig. 8. In this representation, blue

and red cubes indicate positive and negative coefficients,

respectively, that is volumes in which the occupying

atoms of the ligands cause an increase or a decrease of

activity. Cubes having small positive and negative

coefficients, which therefore did not greatly affect

activity, were filtered out by setting a 1.7e-02 coeffi-

cient threshold. Notably, compound 6, showing the most

potent inhibition against TGR5, mainly occupies blue

regions (Fig. 10a), while the less active compound 23

occupies mainly the red regions (Fig. 10b). Figure 11a

shows that electron-withdrawing favorable effects (blue

cubes) are present close to carbonyl. A few electron-

withdrawing unfavorable effects (pink cubes) were found

to be distributed in a discrete fashion, and these are not

quite reliable for any prediction. Figure 11b depicts that

hydrophobic favorable effects (blue cubes) are located

adjacent to three aromatic rings.

After the generation of the 3D-QSAR model and in

order to perform its validation, a decoy set which was the

same as the Hypo1 validation was selected from the liter-

ature. Forty-five active TGR5 agonists were also included

in the decoy set to calculate the statistical parameters such

as goodness of hit score (GH) and enrichment factor (EF).

GH and EF are the two main parameters which play an

important role in predicting the capability of the pharma-

cophore hypothesis. The EF and GF are calculated to be

33.48 and 0.95, respectively, which are very good indica-

tions of the high efficiency of the screening (Table 4).This

result provided further evidence that the correlation shown

by the model was not accidental.

Comparison of the pharmacophore models

Both HypoGen and Phase would contain a workflow of

selecting a training set, generating conformers, finding

hypotheses from actives, and scoring hypotheses. Nev-

ertheless, there are also some differences between these

Table 1 Characteristics of ten hypotheses for training set inhibitors

generated by the HypoGen algorithm

Hypo

no.

Total

cost

Cost

differencea
RMS

deviation

Correlation Features Max.

fit

1 85.92 88.05 1.37 0.93 HBA, H,

H, H, R

13.54

2 87.81 86.16 1.46 0.92 HBA,

HBA,

H, R

10.70

3 91.32 82.65 1.67 0.90 HBA, H,

R, R

8.97

4 92.49 81.48 1.72 0.89 HBA, H,

H, H, R

9.29

5 92.92 81.05 1.74 0.89 HBA, H,

R, R

8.47

6 93.18 80.79 1.66 0.90 HBA, H,

R, R

10.80

7 93.42 80.55 1.69 0.90 HBA, H,

R, R

10.35

8 93.90 80.07 1.67 0.90 HBA, H,

H, R

11.03

9 95.66 78.31 1.78 0.89 HBA, H,

H, R

10.18

10 96.68 77.29 1.80 0.88 HBA, H,

R, R

10.46

HBA hydrogen-bond acceptor, H hydrophobic, R ring aromatic
a (null—total cost). The null cost, the fixed cost and the configuration

cost are 173.97, 67.1629, and 16.6862, respectively

Fig. 4 Hypo1 geometric constraint generated by non-steroidal com-

pounds consists of one hydrogen-bond acceptor (HBA), one ring aromatic

(R), and three hydrophobic (H) features. Pharmacophore features are color

represented as blue for hydrophobic, green for hydrogen-bond acceptor,

and yellow for ring aromatic feature (Color figure online)
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two methodologies, for instance rejecting hypotheses

using inactives and building QSAR models would be the

specific steps in HypoGen and Phase, respectively (Zask

et al., 2009). Fewer features would be generated by

HypoGen, attributing to the rejection of inactives.

Meanwhile, maximum features and minimum interfeature

distance would make the same point. Contrarily, less

essential character may be summarized by Phase, so that

the selection of candidates and validation of the chosen

hypotheses are extremely significant. However, different

generations of conformers and scoring algorithm would

lead to different hypotheses. Therefore, it seems more

accurate by utilizing models and screening queries when

analogical conclusion restricted by various approaches

(Evans et al., 2008). The difference between those two

models is obvious. Comparing the superposition of

Fig. 5 Best pharmacophore

model Hypo1 aligned with

training set compounds. a With

most active compound 6
(EC50 = 0.3 nM). b With least

active compound 23 (EC50 = 5

100 nM). Pharmacophore

features are color represented as

blue for hydrophobic, green for

hydrogen-bond acceptor, and

yellow for ring aromatic feature

(Color figure online)

Fig. 6 Fisher’s randomization

test results

Table 2 Statistical parameters of Hypo1 from screening the Decoy

set

No. Parameter Values

1 Total number of molecules in database (D) 1,584

2 Total number of actives in database (A) 45

3 Total number of hit molecules from the database (Ht) 400

4 Total number of active molecules in hit list (Ha) 43

5 %Yield of actives [(Ha/Ht) 9 100] 10.75

6 %Ratio of actives [(Ha/A) 9 100] 95.56

7 Enrichment factor (EF)a 3.784

8 False negatives [A - Ha] 2

9 False positives [Ht - Ha] 357

10 Goodness of hit scoreb (GH) 0.25

a [(Ha/Ht)/(A/D)]
b {[[Ha 9 (3A ? Ht)]/(4HtA)]} 9 [1 - (Ht - Ha)/(D - A)]
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Hypo1, AHHRR.1321, and most active compound 1,

only H5 and R11 of AHHRR.1321 are located in the

same site as the features in Hypo1. One hydrophobic

feature is substituted by R12. As we all know, the ring

aromatic feature is a particular case of hydrophobic

feature. In short, the R12 in AHHRR.1321 was more

specific than Hypo1 with regard to TGR5. With regard

to the decoy set validation, the EF value of AH-

HRR.1321 is 33.48, which is almost tenfold than that of

Hypo1. We can conclude that AHHRR.1321 is more

effective to identify active compounds from inactive

ones. Thus, AHHRR1321 was used as the protocol for

virtual screening.

Database screening

Pharmacophore screening

Virtual screening is valuable for discovering lead com-

pounds in a more cost-efficient, less resource-intensive

manner compared with experimental methods (Marcu

et al., 2000). By employing this pharmacophore model as a

search template, we have performed a database search for

potential TGR5 agonists from Specs database of over

200,000 compounds. Totally, compounds satisfied all the

critical features in AHHRR.1321 and 932 compounds were

considered for further analyses based on the cut-off fitness

value of 1.00.

Drug-like filter

Drug-likeness properties are an important indicator for

selecting the compounds for in vitro studies, which

includes molecular or physicochemical properties that

contribute to favorable Lipinski’s rule of five. Hence, we

further sorted these 932 compounds using the refined Li-

pinski’s rule of five and finally 301 compounds were fur-

ther considered for ADME studies. The percentage of the

human oral absorption of published compounds was found

to be 68–100 %. Through calculating the QPlog Po/w,

QPlog S, and human oral absorption, 10 hits were retrieved

in the end (Fig. 12). For selected lead compounds, the

partition coefficient (QPlog Po/w) and water solubility

(QPlog S) was within the permissible range of 4.47–5.95

and -5.06 to -8.04, respectively, and the human oral

absorption was 100 %.

Fig. 7 AHHRR. 1321 consists of one hydrogen-bond acceptor

(HBA), two ring aromatic (R), and two hydrophobic (H) features.

Pharmacophore features are color represented as blue for hydropho-

bic, red for hydrogen-bond acceptor, and yellow for ring aromatic

feature (Color figure online)

Fig. 8 Pharmacophoric features aligned to the (a) highest active ligand (b) least active. Pharmacophore features are color represented as blue for

hydrophobic, red for hydrogen acceptor donor, and yellow for ring aromatic feature (Color figure online)
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Conclusion

In summary, we built two different pharmacophore

models by Phase and HypoGen separately using the

same training set and test set of TGR5 non-steroidal

agonists. It was the first time that a typical pharmaco-

phore hypothesis of TGR5 agonists belonging to the

class of bile acid derivatives was reported. Hypo1

Table 3 Results of selected pharmacophore hypothesis generated by Phase

ID Survival Survival inactive Post hoc Site Vector Volume Selectivity Matches

(A)

AHHRR.1321 3.521 2.219 3.521 0.78 0.930 0.808 1.912 4

Option Factors SD R2 F P RMSE Q2 Pearson R

(B)

A–B 1 0.5518 0.7975 59.1 1.403e-006 0.3873 0.5615 0.7715

2 0.3431 0.927 88.8 1.11e-008 0.3143 0.7613 0.8704

3 0.2352 0.9681 131.6 5.607e-010 0.3615 0.6179 0.8311

(A) Survival score of hypotheses; survival inactive, score for inactives; post hoc, score of rescoring; site, site score; vector, vector alignment

score; volume, average volume score; selectivity, unique for actives of hypothesis; matches, number of actives matching the hypothesis. (B) A–B

atom-based mode; SD, standard deviation of the regression; R2 value of R2 for the regression, F variance ratio, P significance level of variance

ratio, RMSE root-mean-square error, Q2 value of Q2 for the predicted activities, Pearson R correlation between the predicted and observed

activity for the test set

Fig. 9 Correlation graph

between experimental and

predicted TGR5 activity using

pharmacophore-based QSAR

model. a Training set. b Test set

Fig. 10 Atom-based 3D-QSAR model visualized in the context of the most active ligand (a) and least active ligand (b) in the training set
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indicated that one HBA, three HY, and one R feature

would be the common features of potential TGR5 ago-

nists. Meanwhile, features required by Phase hypothesis

AHHRR.1321 is different, one HBA, two HY, and two

ring aromatic features. Moreover, a number of approa-

ches could be applied for validating each hypothesis.

Fischer validation and decoy set validation suggest that

both pharmacophore hypotheses were reliable for the

discovery of novel TGR5 agonists. Comparing the two

results, the AHHRR.1321 was applied for further

screening and a different filter strategy was endeavored.

Finally, 10 non-steroidal compounds were identified

which deserved further study. It is our hope that the

pharmacophore generated will be valuable for research-

ers seeking to develop novel TGR5 agonists. Interest-

ingly, three compounds 34, 35, and 39 bear the same

skeleton benzopyrimidine. Given that the reported TGR5

agonists do not hold this moiety, it may be promising to

lead to a new series of TGR5 modulators.

Materials and methods

Collection of data-set

TGR5 agonists were gained from reported paper with EC50

ranging from 0.3 nM to 5.1 lM. Prior to the establishment

of the models, all molecules were minimized and modified

by ChemBio 3D elementarily. The data-set of 29 com-

pounds was then divided randomly into training and test

set, respectively in such a way that both sets consisted of

highly active, medium active, and least active compounds.

Training and test sets consisted of 17 and 10 compounds,

respectively. The in vitro inhibitory activity data are

reported as EC50.

HypoGen pharmacophore model

Pharmacophore modeling is one of the most potent and

rapid method to discover a novel scaffold. The automatic

generation procedure using the HypoGen module was

adopted for generation of the hypotheses. HypoGen uses

the activity values of the small compounds in the training

set to generate the hypothesis. The hypothesis may reveal

the critical features for binding. Considering the chemical

features of the compounds included in the training set, four

features were selected: HBA, hydrogen-bond donor

(HBD), hydrophobic (HY), and ring aromatic (RA).

The training set of 17 compounds was used to construct

HypoGen pharmacophores. The best mode of conformation

generation algorithm was used for generating conforma-

tions. The related parameters which were chosen for gen-

erating conformations were as follows: energy threshold:

20 kcal/mol and maximum conformations: 255. The min-

imum and maximum features in the hypothesis run were

sets 1 and 5, respectively. The default Uncertainty value 3

had been changed to 2 for effectively correlating the

training set with their activity.

In terms of validation, firstly Fischer’s randomization

method was used to measure the statistical significance of

our model. In this model, 19 random spreadsheets were

generated to obtain the 95 % of confidence level. Secondly,

decoy set was used. In the decoy set method, a database of

1,539 decoys was obtained from a collection offered by

DrugBank (subset of random FDA-approved small mole-

cule drug structures without TGR5 reported). Forty-five

active TGR5 agonists were also included in the decoy set to

calculate the statistical parameters such as goodness of hit

score (GH) and enrichment factor (EF). GH and EF are the

two main parameters which play an important role in

predicting the capability of the pharmacophore hypothesis.

Fig. 11 3D pictorial representation of the cubes generated using the

QSAR model. Blue cubes indicate favorable regions and red cubes

indicate unfavorable region for the activity. Atom-based 3D-QSAR

model visualized in context of the ligand 6 (a) cubes for electron-

withdrawing groups (b) cubes for hydrophobic regions (Color figure

online)
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All queries were performed using the Ligand Pharmaco-

phore Mapping protocol. Fast and flexible approach was

used.

Phase pharmacophore model

A pharmacophore-based 3D-QSAR study was carried out

using PHASE implemented in the Maestro 9.4 modeling

package (Schrodinger, Inc., LLC, New York, USA). Like

HypoGen, Phase could be utilized for pharmacophore

hypothesis generation, activity estimate, and virtual screen-

ing. As for the development of Phase pharmacophore and

3D-QSAR models, a total of 29 ligands were adopted.

Several sets of pharmacophore sites for all ligands were then

created using a set of available pharmacophore features

(hydrogen bond acceptor (A), hydrogen bond donor (D),

hydrophobe (H), negative ionizable (N), positive ionizable

(P), and aromatic ring (R)). Retain specified chiralities of

stereoisomers and neutralize of ionization were set in

beginning preparation. Conformations search was carried

out by ConfGen and a thorough sampling method applied

MMFFs force field. The number of 100 conformers per

rotatable bond and maximum number of 1,000 conformers

per structure were set. Preprocess and postprocess minimi-

zation steps were 1,000 and 500, respectively. For each

molecule, a maximum of 1,000 conformers was generated

with a relative energy difference of 20 kcal/mol, the

redundant conformers being removed after setting the root-

mean-square deviation (RMSD) value at 1 Å. Four highly

active compounds were used to build the pharmacophores.

In this study, compounds with pEC50 above 8.50 were

defined as ‘active’, while below 6.5 as ‘inactive’, which

sorted 4 actives and 5 inactives. While finding the common

pharmacophore, Nsites was set as the available maximum to

be five, and all the four active compounds were required to

find and score hypotheses (Zhang et al., 2009). Scoring of

pharmacophore with respect to activity of ligand was con-

ducted using default parameters for site, vector, and volume

terms. The selected of hypotheses focused on both survival

score and the alignment of indispensable sites (Almerico

et al., 2010). Common pharmacophore hypotheses were

identified, scored, and ranked using conformational analysis

and a tree-based partitioning technique.

Atom-based QSAR models were generated for TGR5

hypothesis using the 17-member training set and a grid

spacing of 1.0 Å. QSAR models containing one to three

PLS factors were generated. Best 3D-QSAR model was

selected based on the correlation coefficient values in

training set molecules, which was further validated by

predicting activities of 10 test set molecules. Three external

test set predictors, namely Q2, Pearson R, and RMSE, were

used to validate the developed model. The same training

set and test set were used for the construction and valida-

tion of the Phase pharmacophore study. The generated

hypotheses were assessed by statistical parameters and

correlated with the observed and estimated activity for the

Table 4 Statistical parameters of AHHRR.1321 from screening the

Decoy set

No. Parameter Values

1 Total number of molecules in database (D) 1,584

2 Total number of actives in database (A) 45

3 Total number of hit molecules from the database (Ht) 41

4 Total number of active molecules in hit list (Ha) 39

5 %Yield of actives [(Ha/Ht) 9 100] 95.12

6 %Ratio of actives [(Ha/A) 9 100] 86.67

7 Enrichment factora (EF) 33.48

8 False negatives [A - Ha] 6

9 False positives [Ht - Ha] 2

10 Goodness of hit scoreb (GH) 0.95

a [(Ha/Ht)/(A/D)]
b {[[Ha 9 (3A ? Ht)]/(4HtA)]} 9 [1 - (Ht - Ha)/(D - A)]

Fig. 12 2D chemical structure of 10 retrieved compounds
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training set of 17 compounds and test set of 10 compounds.

The best hypothesis was chosen for the alignment of

compounds for further 3D-QSAR study. To validate the

hypothesis, decoy set method was used as the same as

Hypogen, a database of 1,539 decoys was obtained from a

collection offered by DrugBank (subset of random FDA-

approved small molecule drug structures without TGR5

agonists reported). Forty-five active TGR5 agonists were

also included in the decoy set to calculate the statistical

parameters such as goodness of hit score (GH) and

enrichment factor (EF). All queries were performed using

the Advanced Pharmacophore Screening protocol in Mae-

stro 9.4.

Virtual screening protocol

The validated QSAR model was used as a 3D structural

query for retrieving potential inhibitors from Specs data-

base of 207,018 molecules. The Specs databases were

downloaded from their official website. Multiple confor-

mations of the databases were generated using Schrö-

dinger. The Specs database was then screened with the

pharmacophore models in Phase module using the fol-

lowing running conditions: (a) generated conformers dur-

ing search by a rapid sampling method. (b) The maximum

number of conformers was set as 50 and retained up to 5

conformers per rotatable bond. (c) returned at most 1 hit

per molecule, 10,000 hits total. (d) must match on all five

site points. The rest of options and parameter were set as

default.

Drug-like analysis

At a glance, the inspection of some physicochemical

properties (lipophilicity (clog P), molecular weight (MW),

HBAs, and hydrogen-bond donors (HBD)) of these three

structural classes of TGR5 ligands reveals that all of them

are characterized by relatively high MW and lipophilicity.

Indeed, 90 % of non-steroidal ligands fall in a shorter HBA

between 1 and 12, with an average value of 6.02 ± 2.80.

The combination of the above properties results in different

compliance of each structural class of TGR5 ligands to

Lipinski’s ‘rule of five’. Therefore, refined Lipinski’s ‘rule

of five’ filter [(1) hydrogen-bond donors should be less than

2, (2) HBAs should be more than 1 and less than 6, (3)

molecular weight should be less than 550 Da, and (4) log P

should be more than 3 and less than 6] was utilized to

exclude false-positive drug-like compounds. As oral

absorbability is a significant factor, the ADME proper-

ties were calculated by QikProp which predicts required

principle and physiochemical descriptors of possible

drug compounds. The program was processed in normal

mode-predicted principle descriptors and physiochemical

properties for all known and screened compounds with

detailed analysis of the log P (octanol/water), QPlog

S (predicted aqueous solubility), QPlog BB (predicted

brain/blood barrier partition co efficient), and percentage

human oral absorption.
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