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Abstract GPR35, an orphan G protein-coupled receptor,

has attracted much attention as a novel therapeutic target for

the treatment of diabetes, hypertension, etc. Recently,

8-substituted chromen-4-one-2-carboxylic acid derivatives

were identified as potent and selective agonists for human

GPR35. In the present study, the three-dimensional quantita-

tive structure–activity relationship (3D-QSAR) models were

developed for a series of 8-substituted chromen-4-one-2-car-

boxylic acid derivatives using comparative molecular field

analysis (CoMFA), comparative molecular similarity indices

analysis (CoMSIA), and Topomer CoMFA techniques

implemented in the SYBYL software packages. The statisti-

cally significant models were obtained with 30 compounds in

training set by ligand-based atom-by-atom matching align-

ment, which were further validated by a test set of eight

compounds. The CoMFA model resulted in cross-validated

coefficient (q2) value of 0.610 using 4 components, non-cross-

validated coefficient (r2) value of 0.918 with estimated

F value of 69.917, and standard error of estimate (SEE) of

0.352. While the CoMSIA model combined with steric,

electrostatic and hydrophobic fields were finally selected

(q2 = 0.646, r2 = 0.800, F = 53.852, SEE = 0.489,

N = 2). For the Topomer CoMFAmodel, the better statistics

were obtained based on fragment units (q2 = 0.746,

r2 = 0.979, F = 146.294, SEE = 0.175, N = 7). Further-

more, the contourmaps obtained from3D-QSARstudieswere

appraised for activity trends for the compounds analyzed. The

results indicate that steric, electrostatic, and hydrophobic

substituents play a significant role in the agonist activity. The

data generated from the present study will further help design

novel, potent, and selective agonists for GPR35.
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Abbreviations

3D-QSAR Three-dimensional quantitative structure–

activity relationship methods

CoMFA Comparative molecular field analysis

CoMSIA Comparative molecular similarity indices

analysis

GPCRs G protein-coupled receptors

GPR35 G protein-coupled receptor 35

LOO Leave-one-out procedure

L5O Leave-five-out procedure

N Optimal number of components

PLS Partial least square method

PRESS Predictive sum of squares

q2 The cross-validated correlation coefficient

qL5O
2 Cross-validated correlation coefficient for

leave-five-out

r2 Non-cross-validated correlation coefficient

SEE Standard error of estimate
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Introduction

The G protein-coupled receptors (GPCRs) constitute a

large family whose members are involved in numerous

physiological functions and represent more than 30 % of

all pharmaceutical drug targets (Pal et al., 2012). While the

sequencing of human genome has led to the discovery of

novel GPCRs, many of them are orphan receptors for

which the natural ligands remain undefined (Milligan,

2002). As one of the orphan GPCRs, GPR35 was initially

described in 1998 sharing homology with GPR55, the

lysophosphatidic acid receptors LPAR4, LPAR5, and

LPAR6, and the nicotinic acid receptor HM74 (Mackenzie

et al., 2011). GPR35 has been found to be expressed in

various tissues, especially in gastrointestinal, immune, and

nervous systems (Cosi et al., 2011; Ohshiro et al., 2008;

Taniguchi et al., 2006). Meanwhile, accumulated evidence

has confirmed that the activation of GPR35 plays a key role

in some physiological and pathological progresses (Mac-

kenzie et al., 2011). For example, GPR35 agonists can

regulate insulin release (Jenkins et al., 2011), lower blood

pressure and modulate immune responses (Min et al., 2010;

Wang et al., 2006). Thus, GPR35 has been recognized as a

novel therapeutic target in conditions that range from

diabetes and hypertension to asthma. In the process of

searching for GPR35 agonists, kynurenic acid, a tryptophan

metabolite, was firstly described to be a possible endoge-

nous ligand (Wang et al., 2006). However, because of its

low potency, more and more attentions have been focused

on synthetic agonists. In the past decade, several synthetic

GPR35 agonists have been reported in the literature such as

the antiallergic drug cromolyn (Taniguchi et al., 2006),

zaprinast (Yang et al., 2010), thiazolidinylidene-

methylbenzoic acid derivatives (Neetoo-Isseljee et al.,

2013), and so on. Unfortunately, most of these existing

GPR35 agonists still have some major drawbacks including

low potency and limited selectivity. It is noteworthy that

most recently a series of 8-substituted chromen-4-one-2-

carboxylic acid derivatives, which shared a substructure

with cromolyn, have been identified as potent and selective

GPR35 agonists (Funke et al., 2013; Thimm et al., 2013).

Nowadays, various computational tools have been

increasingly employed in rational drug discovery process to

design new molecules and to optimize structure (Heikamp

and Bajorath, 2013). Commonly used computer modeling

techniques mainly include structure-based drug design and

ligand-based drug design. Structure-based drug design relies

on knowledge of the three-dimensional structure of the bio-

logical target obtained through methods such as x-ray crys-

tallography or NMR spectroscopy. In the absence of detailed

structural information about the receptor, ligand-based

approaches such as three-dimensional quantitative structure–

activity relationship (3D-QSAR) methods could be more

effective (Wilson and Lill, 2011). 3D-QSAR methods can

facilitate the correlation of the three-dimensional structures

of potential drug molecules with their biological activity and

in turn help to predict the activity of new molecules prior to

synthesis (Chandrasekaran et al., 2004). Until now, the three-

dimensional structure of GPR35 is not available. In the

present paper, a series of 8-substituted chromen-4-one-2-

carboxylic acid derivatives were used to develop 3D-QSAR

models using comparative molecular field analysis (CoM-

FA), comparative molecular similarity indices analysis

(CoMSIA), and Topomer CoMFA methods. The obtained

models can be used to identify the structural features essen-

tial for enhancing their activities and subsequently can enable

the design of the new more potent GPR35 agonists.

Materials and methods

Dataset

In the present work, thirty-eight 8-substituted chromen-4-

one-2-carboxylic acid derivatives were taken from the

published work of Funke et al. (2013). The human GPR35

agonist activities were tested by a b-arrestin recruitment

assay, the most commonly used assay system to pharma-

cologically characterize GPR35 ligands. In this assay, stock

solutions of the compounds were prepared in DMSO and

further diluted in cell plating medium or phosphate buffered

saline. So compounds could be regarded to exert their

activities in neutral forms. Subsequently, the EC50 values

were converted into the corresponding pEC50 values by the

formula pEC50 = -logEC50. The pEC50 values have a span

of three log units providing a broad and homogenous dataset

for 3D-QSAR study. The structures of the compounds and

their biological data are given in Table 1. The test set of

eight compounds is chosen at random from the original

dataset, which is used to determine the external predictivity

of the resulting 3D-QSAR models. The remaining 30 com-

pounds are treated as a training set and used to derive the

3D-QSAR models (Table 1).

Molecular modeling and alignment

The molecular modeling and calculations were performed

using SYBYL program (SYBYL- X2.0, Tripos Inc., St.

Louis, MO, USA) on windows operating system. All the

molecular structures were built in SYBYL and then the

energy minimization was performed using Tripos force

field with a distance-dependent dielectric function and

Powell conjugate gradient algorithm with a convergence

criterion of 0.01 kcal/mol Å using 1,000 iterations. Partial

atomic charges were calculated using the Gasteiger-Huckel

method (Clark et al. 1989).
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Table 1 Structures and biological activities of the training and test sets of compounds

O

O

OH

ONH

R2

O

R1
3

1
2

45
6

7
89

10

1-8

Compound R1 R2 EC50 (lM) pEC50

1 H Methyl 24.1 4.618

2a H Ethyl 13.4 4.873

3 H 2-Methoxy-2-oxoethyl 20.2 4.695

4 H Cyclohexyl 4.20 5.377

5 H Phenyl 4,91 5.309

6 H Benzyl 8.96 5.048

7a H 2-Naphthyl 4.67 5.331

8 H 2-Quinoliny 1.34 5.873

O

O

OH

ONHO

R1

R2

1
2

3
45
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910
11
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O

O

OH

ONHO

Br

X
Y

1
2

3
45

6
7

8

910
11

12

13
14

15

16

OCH3

9-36 37 (X=N, Y=CH)
38 (X=CH, Y=N)

R1 R2 EC50 (lM) pEC50

ortho meta para

9 H H CH3 H 5.44 5.264

10 H H NO2 H 6.79 5.157

11a H H H CH3 1.38 5.860

12 H H H CF3 15.5 4.810

13 H H H OCH3 0.346 6.461

14 H H H Br 0.804 6.095

15a F Cl Cl H 0.382 6.418

16 F Cl H Cl 0.017 7.770

17 F H Cl Cl 0.117 6.932

18 F H H OCH3 0.112 6.951

19a Cl H H H 0.430 6.367
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The alignment of the compound structures is a critical

step in 3D-QSAR methodologies, such as CoMFA/CoM-

SIA. The accuracy of the prediction of CoMFA and

CoMSIA models and the reliability of the contour models

depend strongly on the structural alignment of the com-

pounds (Cho and Tropsha, 1995). In the present study, the

most potent compound 34 was employed as a template, and

the rest of the compounds in the training set were aligned to

it using the common substructure. Figure 1 describes the

common substructure for the alignment which is marked in

bold red and the aligned compounds are displayed in

Fig. 2.

CoMFA studies

All the aligned compounds were placed in a 3D cubic

lattice with a grid spacing of 2 Å which was generated

automatically by the sybyl program. CoMFA descriptors

were calculated using Tripos force field taking a sp3 carbon

probe atom with a Van der Waals radius of 1.52 Å and a

positive charge ?1 to generate steric (Lennarde-Jones 6-12

potential) field energies and electrostatic (Coulombic

potential) fields with a distance-dependent dielectric at

each lattice point. Values of the steric and electrostatic

fields were truncated at 30.0 kcal/mol.

CoMSIA studies

CoMSIA similarity index descriptors were derived

according to Klebe et al. (1994) using the same lattice box

as that used in CoMFA calculations. Five different simi-

larity fields including steric, electrostatic, hydrophobic,

hydrogen bond donor, and hydrogen bond acceptor

Table 1 continued

R1 R2 EC50 (lM) pEC50

ortho meta para

20 Cl H CH3 H 1.22 5.914

21 Cl H H NO2 1.71 5.767

22a Cl H H OCH3 0.0168 7.775

23 Br H H H 0.303 6.519

24 Br H CH3 H 0.842 6.075

25 Br H H Cl 0.0251 7.600

26a Br Cl H Cl 0.0164 7.785

27 Br H Cl Cl 0.0154 7.812

28 Br H H CN 0.399 6.399

29 Br H H OCH3 0.0121 7.917

30 Br H H Ethoxy 0.634 6.198

31a Br OCH3 H H 1.66 5.780

32 Br H OCH3 OCH3 0.425 6.372

33 Br H OCH2O 0.0599 7.223

34 Br Cl H OCH3 0.0111 7.955

35 H H H Cyclopropylmethoxy 10.0 5.000

36 H H H Propoxy 4.0 5.398

37 0.144 6.842

38 0.0305 7.516

a Test set

O

O

OH

ONH
C

O

Br

Cl

OCH3

1
2

3
45

6

7
8

910
11

12

13
14

15
16

Fig. 1 Chemical structure of compound 34 used as template com-

pound in 3D-QSAR modeling. The common substructure used for

compound alignments is represented in bold red (Color figure online)
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interactions were calculated using the sp3 atom with charge

?1 and radius of 1 Å. CoMSIA similarity indices (AF.k) for

the molecule j and the atom i at grid point q were calcu-

lated as follows:

A
q
F:KðjÞ ¼ �

Xn

i¼1

xprobe;kxi;ke
�ar2iq

where xi,k is the actual value of the physicochemical pro-

priety k of atom i; xprobe;k indicates the probe atom with

charge ?1, radius 1 Å, hydrophobicity ?1, hydrogen bond

donor and acceptor property ?1; a is the attenuation factor;

riq is the mutual distance between the probe atom at grid

point q and atom i of the test compound. In this paper,

steric indices are related to the third power of the atomic

radii, electrostatic descriptors are derived from partial

atomic charges, hydrophobic descriptors are derived from

atom-based parameters, and H-bond donor and acceptor

indices are obtained by a rule-based method based on

experimental results. The default value of 0.3 was used as

the attenuation factor (a) for the Gaussian-type distance riq.

Topomer CoMFA studies

The Topomer CoMFA descriptors were calculated using

sybyl-X2.0 software package. Topomer CoMFA is an

alignment-independent 3D-QSAR that combines the to-

pomer search technology with the conventional CoMFA

method (Cramer, 2012). The Topomer CoMFA model can

be generated by splitting the compounds into fragments,

topomerically aligning each fragment, and calculating

steric and electrostatic field descriptor values for the to-

pomerically aligned fragments to create a CoMFA table

with the field descriptor values. Identifying the R-groups

for the training set compounds was the important step for

Topomer CoMFA. In this study, all compounds of dataset

were splitted into two fragments by cutting a single bond,

shown as R1 (red) and R2 (blue) groups in Fig. 3.

Partial least square (PLS) analysis

Partial least squares (PLS) approach, an extension of the

multiple regression analysis, was used to derive the 3D-

QSAR models. Column filtering was set to 2.0 kcal/mol to

improve the analysis and reduce the noise. In PLS regres-

sion analysis, the CoMFA, CoMSIA, and Topomer CoM-

FA descriptors were used as independent variables and

biological activity (pEC50) as dependent variables.

To check statistical significance of the models, cross-

validation analysis performed by the leave-one-out (LOO)

procedure was carried out to identify optimum number of

components (N), subsequently used to generate the final

QSAR models. The optimal numbers of components were

selected on the basis of the highest cross-validated corre-

lation coefficient (q2), which is defined as follows:

q2 ¼ 1�
P

ðYprep � YexpÞ2P
ðYexp � YmeanÞ2

;

where Ypred, Yexp, and Ymean are the values (pEC50) for the

predicted activity, experimental activity, and mean activity,

respectively.
P

ðYprep � YexpÞ2 is the predictive sum of

squares (PRESS).All the results were graphically repre-

sented by field contour maps, where the coefficients were

generated using the StDev*Coeff field type.

To further assess the robustness and statistical confi-

dence of the derived 3D-models, the leave-five-out (L5O)

procedure was also utilized by deleting five compounds

from the training set and the corresponding q2ðq2L5OÞ was

reported.

Fig. 2 Alignment of 30 compounds of training set for 3D-QSAR

studies

O

O

OH

ONHO

Br

Cl

OCH3

R2

R1

Fig. 3 Fragmentation pattern (R1 and R2) for all compounds of

dataset in Topomer CoMFA analysis. R1 fragment is represented by

the red color and R2 fragment is denoted by the blue color (Color

figure online)
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Predictive ability of the 3D-QSAR models

The predictive ability of 3D-QSAR model was determined

from test set of eight compounds not included in the model

generation. The predictive correlation coefficient (r2pred)

based on the test set compounds is defined as

r2pred ¼
SD� PRESSð Þ

SD
;

where SD is the sum of the squared deviations between the

biological activity of compounds in the test set and the mean

biological activity of the training set compounds, and PRESS

is the sum of the squared deviations between predicted and

actual activity values for every compound in the test set.

Results and discussion

CoMFA statistical results

The statistical results obtained from standard CoMFA

models constructed with steric and electrostatic fields are

summarized in Table 2. The LOO cross-validated q2 is

0.610 with an optimum number of components is 4. The

non-cross-validated PLS analysis produced a conventional

r2 of 0.918 with estimated F value of 69.917 and standard

error (SEE) of 0.325. These statistical indexes indicated

that the CoMFA model has a good internal predictivity.

CoMSIA statistical results

CoMSIA models can be constructed by five different fields

including steric, electrostatic, hydrophobic, hydrogen bond

donor, and hydrogen bond acceptor. After testing the every

single field, CoMSIA models with hydrogen bond donor,

hydrogen bond acceptor, and electrostatic fields were sta-

tistically poor (q2\ 0.1, data not shown), whereas both

electrostatic and hydrophobic fields play an important role.

Furthermore, to generate a reliable model, all possible

combinations of fields were examined (Table 3). Among

these models, the combination of electrostatic and hydro-

phobic fields derived the highest q2 (0.649) using 2 com-

ponents, with an r2 value of 0.788, a SEE value of 0.502,

and an F value of 50.307. However, considering steric field

as a key factor, model including electrostatic, hydrophobic,

and steric fields was finally selected, which gave similar q2

(0.646) with 2 components, relative higher r2 of 0.800 and

F (53.852), as well as small SEE (0.489) (bold in the

Table 3), suggesting that the CoMSIA model is also a

reliable predictor.

Topomer CoMFA statistical results

The topomer CoMFA technique provides a means for an

alignment-independent 3D-QSAR approach which is

advantageous in not just being alignment-independent, but

also in providing the means for automated search for

Table 2 PLS statistical results of CoMFA, CoMSIA, and Topomer

CoMFA models

Parameters CoMFA CoMSIA Topomer CoMFA

q2a 0.610 0.646 0.746

r2b 0.918 0.800 0.979

Nc 4 2 7

Fd 69.917 53.852 146.294

SEEe 0.325 0.489 0.175

r2pred
f 0.892 0.473 0.722

q2L5O
g 0.574 0.535- –

a Cross-validated correlation coefficient
b Non-cross-validated correlation coefficient
c Optimal number of components
d F test value
e Standard error of estimate
f The predictive correlation coefficient
g Cross-validated correlation coefficient for leave-five-out

Table 3 The results of CoMSIA models based on different field

combinations (final CoMSIA model in bold)

Descriptors q2 r2 N F SEE

E 0.471 0.649 2 24.994 0.646

H 0.524 0.827 5 22.957 0.481

S?E 0.561 0.793 3 33.272 0.506

S?H 0.519 0.882 6 28.558 0.407

E?H 0.649 0.788 2 50.307 0.502

E?D 0.467 0.649 2 24.975 0.647

E?A 0.457 0.665 2 26.766 0.632

H?D 0.508 0.830 5 23.387 0.478

H?A 0.471 0.635 2 23.489 0.659

S1E1H 0.646 0.800 2 53.852 0.489

S?E?D 0.557 0.794 3 33.392 0.505

S?E?A 0.533 0.847 4 34.576 0.444

S?H?D 0.505 0.883 6 28.810 0.405

S?H?A 0.495 0.932 8 35.866 0.323

E?H?D 0.646 0.791 2 51.239 0.499

E?H?A 0.646 0.783 2 48.844 0.508

H?D?A 0.508 0.852 5 27.557 0.446

S?E?H?D 0.643 0.802 2 54.845 0.485

S?E?H?A 0.640 0.793 2 51.700 0.497

S?E?D?A 0.530 0.848 4 35.000 0.442

S?H?D?A 0.499 0.899 6 33.955 0.377

E?H?D?A 0.642 0.787 2 49.771 0.504

S?E?H?D?A 0.637 0.796 2 52.665 0.493
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activity in fragment libraries. In this study, the Topomer

CoMFA model was generated based upon split-in-two

strategy (Fig. 3), which gave better statistics (q2 = 0.746,

r2 = 0.979, F = 146.294, SEE = 0.175, N = 7) compared

with CoMFA and CoMSIA models.

Validation of 3D-QSAR models

Generally, cross-validation is used to assess internal pre-

dictive power of models. In this study, the indices q2 and

q2L5O ([0.5) have accounted for internal robustness of these

Table 4 Experimental activities, predicted activities, and residual values of 38 compounds were shown in CoMFA, CoMSIA, and Topomer

CoMFA models

Training set Actual pEC50 CoMFA CoMSIA Topomer CoMFA

Predicted pEC50 Residues Predicted pEC50 Residues Predicted pEC50 Residues

1 4.618 4.671 -0.053 5.071 -0.453 4.617 0.001

3 4.695 5.063 -0.368 4.552 0.143 4.68 0.015

4 5.377 5.505 -0.128 5.333 0.044 5.462 -0.085

5 5.309 5.486 -0.177 5.096 0.213 5.343 -0.034

6 5.048 5.084 -0.036 5.024 0.024 5.06 -0.012

7 5.331 5.490 -0.159 5.289 0.042 5.229 0.102

9 5.264 4.870 0.394 5.063 0.201 5.136 0.128

10 5.157 4.944 0.213 5.016 0.141 5.067 0.090

12 4.810 4.771 0.039 5.173 -0.363 4.779 0.031

13 6.461 6.527 -0.066 5.903 0.558 6.546 -0.085

14 6.095 5.601 0.494 5.551 0.544 6.33 -0.235

16 7.770 7.460 0.310 7.011 0.759 7.574 0.196

17 6.932 7.279 -0.347 7.039 -0.107 7.094 -0.162

18 6.951 6.996 -0.045 7.188 -0.237 7.075 -0.124

20 5.914 6.068 -0.154 6.188 -0.274 5.952 -0.038

21 5.767 5.951 -0.184 5.790 -0.023 6.009 -0.242

23 6.519 6.761 -0.242 6.392 0.127 6.463 0.056

24 6.075 6.100 -0.025 6.362 -0.287 6.164 -0.089

25 7.600 6.939 0.661 6.854 0.746 7.407 0.193

27 7.812 7.168 0.644 7.331 0.481 7.593 0.219

28 6.399 6.746 -0.347 6.952 -0.553 6.449 -0.050

29 7.917 7.784 0.133 7.212 0.705 7.575 0.342

30 6.198 6.921 -0.723 7.133 -0.935 6.361 -0.163

32 6.372 6.485 -0.113 7.261 -0.889 6.492 -0.120

33 7.223 7.079 0.144 7.222 0.001 7.271 -0.048

34 7.955 7.937 0.018 7.268 0.687 8.236 -0.281

35 5.000 5.045 -0.045 5.646 -0.646 4.902 0.098

36 5.398 5.185 0.213 5.686 -0.288 5.263 0.135

37 6.842 6.713 0.129 7.383 -0.541 6.627 0.215

38 7.516 7.688 -0.172 7.332 0.184 7.474 0.042

Test set

2 4.873 5.111 -0.238 5.28 -0.407 4.771 0.102

8 5.873 5.842 0.031 5.354 0.519 5.128 0.745

11 5.86 5.736 0.124 5.158 0.702 5.807 0.053

15 6.418 6.777 -0.359 6.28 0.138 7.087 -0.669

19 6.367 6.801 -0.434 6.525 -0.158 6.251 0.116

22 7.775 7.931 -0.156 6.912 0.863 7.363 0.412

26 7.785 7.433 0.352 7.236 0.549 8.073 -0.288

31 5.780 6.211 -0.431 6.639 -0.859 6.947 -1.167

Residues = Actual pEC50-Predicted pEC50
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models. However, models with high values of cross-vali-

dated coefficient are not always predictive. For this reason,

it is necessary to have an external set for validation. In this

work, the external test set of 8 compounds was used to

evaluate the predictive ability of the constructed CoMFA,

CoMSIA, and Topomer CoMFA models. As shown in

Table 2, the r2pred values of test set for CoMFA, CoMSIA,

and Topomer CoMFA models were 0.892, 0.473, and

0.722, respectively. Obviously, CoMFA and Topomer

CoMFA may be capable of obtaining more predictable

models, compared with CoMSIA studies. The observed

activities, the predicted activities using the constructed

models, and the residual values for the training set and the

test set are listed in Table 4. In all three 3D-QSAR models,

the predicted values fell close to the observed values,

deviating by not more than 1.0 logarithmic unit except for

one of the test set compounds (31) in case of Topomer

CoMFA. Compound 31 is an outlier (residual more than

1.0) for Topomer CoMFA, whereas in CoMSIA, the

residual value is also quite high (0.859). There are several

reasons for the presence of outliers including incorrect

biological measurement, incorrect parameter value, meta-

bolic inactivation/activation, etc. (Wang et al., 2014). In

the present study, since the assay was carried out under the

same conditions by Funke et al., this outlier might be due to

experimental error. Figure 4 shows the plots of experi-

mental versus predicted activities for both training set and

test set of the three constructed models. In summary, the

CoMFA and Topomer CoMFA in comparison with CoM-

SIA can lead to more robust and predictable model.

CoMFA contour maps

In the CoMFA study, the steric fields and electrostatic

fields nearly gave the same contribution, accounting for

52.8 and 47.2 %, respectively, which suggests that both

fields are critical in explaining the variations of these

compounds for GPR35 agonists.

Figure 5a shows the steric contour map for the CoMFA

model with the most active compound 34 as a reference. The

green contours indicate areas where sterically bulky substit-

uents increase the potency, whereas the yellow contours

indicate areaswhere sterically bulky groups are detrimental to

the activity. There is one green contour around 6-position,

which can explain well that most of the compounds with

bromine in this position have better activity than those of

containing only hydrogen atom. Similarly, increasing the size

of the substituent from fluorine (compound 18, pEC50 =

6.951) to chlorine (compound 22, pEC50 = 7.775) to bromine

(compound 29, pEC50 = 7.917) at 6-position enhances the

activity gradually. There is another small green region located

near the 14-position of compound 34. This is a possible reason

why compounds 1, 2, and 3 lacking bulky group at this

position have poor activities (pEC50 values are 4.671, 4.873,

and 4.695, respectively). R2 of compounds 1, 2, and 3 are

small alkyl groups, and introduction of bulkier cyclohexyl

substituent can improve potency (compound 4,

pEC50 = 5.377). In contrast, all the other compounds have an
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Fig. 4 Plots of the experimental versus predicted pEC50 for CoMFA

(a), CoMSIA (b), and Topomer CoMFA (c) analysis
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aromatic group at this position, and the majority of these

aromatic-substituted compounds displayed the higher effica-

cies except for compound 12 (pEC50\5.0), which means the

existence of an aromatic group at the 10-position is important

for activity. Moreover, two sterically unfavored yellow con-

tours were found surrounding the outer sphere of 14-position

where too large substituents like cyclopropylmethoxy and

propoxy groups (compounds 35 and 36) decreased the activ-

ity. These observations are in agreement with previous SAR

studies, and the rank order of potency among compoundswith

varying substituents in 14-position was as follows: methoxy

(13)[ bromo (14)[methyl (11)[hydrogen (5)[ trifluo-

romethyl (12)[ propoxy (36) & cyclopropylmethoxy (35)

(Funke et al., 2013).

The CoMFA electrostatic contour map is shown in

Fig. 5b with compound 34. A favorable negative red con-

tour region is found around the 6-position. This region

indicates that electronegative groups could have a positive

influence on the activity. It can explain well that this

position is occupied by the electron-rich halogen sub-

stituent in most of the highly active compounds. In addi-

tion, two large blue regions near the 13- and 14-position

suggest that electronegative substituent would decrease the

activity. This is in agreement with the fact that the activi-

ties of compounds 10, 12, 21, and 28 bearing electroneg-

ative substituents such as –NO2, –CF3, and CN are

relatively lower. Conversely, electron density was

decreased due to ‘‘p-p’’ conjugation, then compounds 34

Fig. 5 CoMFA stdev*coeff contour plots for steric (a) and electrostatic
(a) fields. Compound 34was displayed as reference. Sterically favored/
disfavored areas are shown in green/yellow, while the blue/red

polyhedra depict the favorable site for positively/negatively charged

groups. Favored and disfavored levels of these displayed interaction

fields were fixed at 80 and 20 %, respectively (Color figure online)

Fig. 6 CoMSIA stdev*coeff contour plots for steric along with

electrostatic fields (a) and hydrophobic fields (b). Compound 34 was

embedded into the contour maps as reference. Sterically favored/

disfavored areas are shown in green/yellow, while the blue/red

polyhedra depict favorable sites for positively/negatively charged

groups. Yellow/white contours indicate the regions where hydropho-

bic/hydrophilic groups would enhance the activity. Favored and

disfavored levels of these displayed interaction fields were fixed at 80

and 20 %, respectively (Color figure online)
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and 29 with methoxy group at para position of benzoyl

ring display potent activity.

CoMSIA contour maps

The CoMSIA three contributors, namely steric, electro-

static, and hydrophobic fields, based on the PLS analyses

are presented as 3D contour plots in Fig. 6. The CoMSIA

steric, electrostatic, and hydrophobic fields explain vari-

ance of 6.9, 42.8, and 50.3 %, respectively. This demon-

strated that hydrophobic interactions took an important role

in describing the field properties of GPR35 agonists. Fig-

ure 6a illustrates the CoMSIA contour maps of steric and

electrostatic fields, which give the similar conclusions as

the field distribution of the CoMFA model (Fig. 5).

The hydrophobic contour map of the CoMSIA model in

the presence of compound 34 is displayed in Fig. 6b. The

white and yellow contour maps highlight areas where

hydrophilic and hydrophobic properties are preferred. A

yellow polyhedron was found around the 6-position, which

can explain the fact that the bromine substituent is necessary

to enhance the biological activity due to the increasing

hydrophobicity. There is another large white contour sur-

rounding the benzene ring. This is consistent with the

observation that compounds 32–34with polar substituents in

this region display potent activity, whereas compounds 35–

36with more hydrophobic groups (cyclopropylmethoxy and

propoxy) exhibit low activity. Moreover, compounds 37 and

38 in which the phenyl ring has been replaced by a pyridine

ring have shown better potency comparedwith compound 29

due to increased hydrophilicity

Topomer CoMFA contour maps

Topomer CoMFA interaction maps (steric and electrostatic

interactions) for both fragments (R1 and R2) using

Fig. 7 Topomer CoMFA stdev*coeff contour plots for steric and

electrostatic fields. Compound 34 was displayed as reference. Steric

contour map for the R1fragment (a); Electrostatic contour map for the

R1fragment (b); Steric contour map for the R2 fragment (c);

Electrostatics contour map for R2 fragment (d). Sterically favored/

unfavored areas are shown in green/yellow contour, while the blue/

red polyhedra depict the favorable sites for the positively/negatively

charged groups (Color figure online)
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compound 34 as a reference structure are shown in Fig. 7.

In the steric contour map, green color denotes sterically

bulky groups favored for activity, and the yellow color

indicates sterically bulky groups unfavored for activity. In

the electrostatics contour map, red indicates electronega-

tive favored groups and blue indicates electropositive

favored group.

As shown in Fig. 7a, there is a blue region near the

6-position of the R1 fragment which means sterically bulky

group such as bromine is favorable and increase the

activity. For the R2 fragment, green contour (Fig. 7c) sur-

rounding the phenyl ring demonstrated that the introduc-

tion of a moderately bulky group into the benzene ring can

improve the agonist effects. Meanwhile, two small yellow

contours were found outside of the 14-position of R2

fragment, which can explain well that compounds 35 and

36 containing larger substituents at this position have rel-

atively lower activity.

The electrostatic contour map of the R1 fragment

(Fig. 7b) revealed that electron-withdrawing nature of

bromine group substituted at 6-position on the chromone

ring was favored for activity. On the other hand, the blue

area was found outside of the hydrogen of carboxyl group,

which means that this electropositive hydrogen could retain

molecular activity. Figure 7d shows two regions of red

polyhedral space, indicating that the strong electron-with-

drawing group at R2 resulted in high activity (compounds

26 and 27). Additionally, the blue polyhedron in the

Fig. 7d suggested that electron-rich substituent will reduce

the biological activity, which is similar to CoMFA elec-

trostatic contour maps.

Comparison of the CoMFA, CoMSIA, and Topomer

CoMFA models

The CoMFA and CoMSIA models were developed based

on the alignment of common substructure. Both CoMFA

and CoMSIA models have provided the significant corre-

lations of biological activities with structural descriptors. In

comparison, the CoMSIA model yielded slightly lower

statistical values than the CoMFA model. However,

CoMSIA model can give more information because steric,

electrostatic, and hydrophobic fields were considered. The

CoMFA steric map indicated that a bulkier group around 6

and 14-position will be favorable for higher activity, while

the CoMFA electrostatic contour map highlights the

importance of the negative substituents at 6-position and

positive groups at 14-position for improved potency. The

CoMSIA hydrophobic map points out hydrophobic groups

at 6-position can enhance the biological activity, whereas

the relative hydrophilic substituent around the benzene ring

is required for high activity. Topomer CoMFA, the com-

bination of the universal ‘‘Topomer’’ methodology and

CoMFA technologies, belongs to one of the fragment-

based 3D-QSAR methods (Ding et al., 2013). In the To-

pomer CoMFA, fragments can automatically generate

based on molecular 3D-pose, and experientially complete

identification and alignment of pose of the fragments. The

Topomer CoMFA displayed the best statistical parameters

in terms of q2 and r2 values among these three models. In

addition, the contour maps obtained from the Topomer

CoMFA model further confirmed the role of steric and

electrostatic effects in the agonist activities.

Conclusions

In this study, CoMFA, CoMSIA, and Topomer CoMFA

3D-QSAR models were developed for a series of

8-substituted chromen-4-one-2-carboxylic acid derivatives

as GPR35 agonists. All the three models had good statis-

tical results in terms of q2 and r2 values, and CoMFA

together with Topomer CoMFA models had better pre-

dictive ability than CoMSIA model. Furthermore, CoMFA,

CoMSIA, and Topomer CoMFA contour maps offered

enough information for us to understand 3D-QSAR rela-

tionship between structures and their biological activities,

which may be considered as a powerful tool in designing

and forecasting more efficacious analogs.
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