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Abstract An efficient synthetic approach for 2,5-disub-

stituted pyrimidines has been reported. The desired 2,5-

substituted pyrimidines were obtained by Suzuki coupling

of 2-substituted benzyloxy-5-bromopyrimidines with vari-

ous aryl boronic acids in the presence catalytic amount of

PdCl2(PPh3)2 with 0.5 M aqueous Na2CO3 in water at

80 �C. 2-Benzyloxy-5-bromopyrimidines were synthe-

sized, in turn by the reaction of 2-chloro-5-bromopyrimi-

dine with substituted benzyl alcohols in the presence of

Cs2CO3 in CH3CN:DMF (1:1). Some of the 2,5-disubsti-

tuted pyrimidines have shown moderate in vitro cytotoxic

activity against HeLa cell line.

Keywords 2-Chloro-5-bromopyrimidine �
Cesium carbonate � Green synthesis � HeLa cell line �
PdCl2(PPh3)2

Introduction

Nitrogen-containing heterocycles are widely found in nat-

ure and are integral part of several biologically active

compounds (Garcı́a-Valverde and Torroba, 2005) (Fig. 1).

Many biologically active compounds including nucleic

acids, nucleotides, and corresponding nucleosides have

pyrimidine as a core unit (Lagoja, 2005). It was reported

that pyrimidines and their derivatives exhibited significant

in vitro activity against DNA and RNA (Kappe, 1993). In

addition, pyrimidine derivatives were found to possess

inhibition properties against polio herpes viruses and as

diuretics, antitumor agents, anti HIV agents, and for car-

diovascular diseases (Kappe, 1993). Further, pyrimidines

substituted with nitro group acted as novel allosteric

enhancer of c-amino butyric acid receptor function (Ur-

wyler et al., 2003). Moreover, heterocyclic compounds

containing a CF3 group exhibit wide range of biological

activities (Berber et al., 2002; Jain et al., 2006). Boyd et al.

(2001) utilized 2-methoxy bromopyrimidine for the syn-

theses of 5-substituted pyrimidones as inhibitors for lipo-

protein-associated phospholipase A. Recently, Xie et al.

(2011) reported that 2,4,5-trisubstituted pyrimidines as a

new class of tubulin polymerization inhibitors and

5-substituted-6-chloro uracils have been reported (Nencka

et al., 2007) as efficient inhibitors of human thymidine

phosphorylase which plays an important role in angiogen-

esis. Conventional syntheses of pyrimidines are well doc-

umented in the literature, those methods involve double

condensation with elimination of water, alcohol, or hydro-

gen halide between amino and carboxylic acid, acid chlo-

ride or condensation of amino to CN groups or to polarized

double bonds without elimination (Lagoja, 2005; Herrera

et al., 2002). In view of aryl-substituted pyrimidines having

great potential for anticancer activity, we have designed
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2,5-disubstituted pyrimidines that are not reported so far.

The palladium-catalyzed Suzuki coupling (Miyaura and

Suzuki, 1995) is an important and versatile method for

carbon–carbon bond formation. It has been extensively

explored for synthesis of unsymmetrical biaryls, as well as

aryl pyrimidines (Schomaker and Delia, 2001; Leadbeater

and Marco, 2002; Liu et al., 2005; Li et al., 2007; Bardhan

et al., 2009). Herein, we report palladium-catalyzed Suzuki

coupling for the synthesis of some new 2,5-disubstituted

pyrimidines from 2-benzyloxy-5-bromopyrimidines, aryl-

boronic acids, and water, utilizing the approaches described

earlier (Saygili et al., 2004; Parry et al., 2002; Isley et al.,

2013; Lipshutz and Abela, 2008).

Results and discussion

The present synthesis begins with commercially available

2-chloro-5-bromopyrimidine 1 as a starting material. We

selected 1 as starting material on the basis of the following

reasons: 1.The chloro group of compound 1 can easily be

displaced with appropriately substituted benzyl alcohols in

the presence of a base. This is possible because of the

electronegative nitrogen atoms induced polarization in the

sigma bond frame work of pyrimidine ring (Joule and

Mills, 2010; Brown, 1962). The enhanced electron defi-

ciency at the 2, 4, and 6 positions makes these positions

more susceptible for the nucleophilic attack. This nucleo-

philic attack is especially feasible when the substituent is a

chloro or bromo (Joule and Mills, 2010; Brown, 1962). 2.

The bromopyrimidines (3) could serve as suitable candi-

dates for palladium-catalyzed Suzuki coupling.

As shown in Scheme 1, treatment of 2-chloro-5-bro-

mopyrimidine (1) with 2,4-diflouro benzyl alcohol (2a) in

the presence of cesium carbonate in CH3CN and DMF at

room temperature for 12 h afforded the desired

2-(benzyloxy)-5-bromopyrimidine (3a) in quantitative

yield. Similarly, compound 1 was reacted with differently

substituted benzyl alcohols (2b–i; e.g., OMe, F, Cl, OCF3)

and thiophenylmethanol to give the corresponding 2-ben-

zyloxy-5-bromopyrimidines (i.e., 3b–i) in good yields. The

new compounds (i.e., 3a–i) thus obtained were character-

ized well by 1H NMR, 13C NMR, and mass spectral data

(See experimental section).

With these intermediates (i.e., 3a–i) in hand, our next aim

was to use these bromopyrimidines for the syntheses of 2,5-

disubstituted pyrimidines through Suzuki coupling. As such,

we have planned to develop a general synthetic route for

synthesis of various 2,5-disubstituted pyrimidines using

Suzuki coupling inwater as a key step as shown in Scheme 2.

The optimization of suitable coupling conditions for the

formation of carbon–carbon bond between 2-(substituted

benzyloxy)-5-bromopyrimidine (3a) and 3-(methylsulfo-

nyl) phenylboronic acid by evaluation of various Pd cata-

lysts, solvents, and bases was undertaken (See Table 1).

Then, coupling of compound 3a with PdCl2(PPh3)2 with

tetrahydrofuran as solvent at 80 �C afforded the coupling

product 4a with only 50 % yield. Performance of this

reaction at[80 �C caused decomposition of the methane-

sulfonyl group in the target molecule. On the other hand,

when the solvent was replaced with water under the same

conditions produced the desired product 4a with 67 %

yield and[90 % purity. Therefore, replacement of organic

solvent with water allowed us to improve the yields of

Suzuki coupling. Similar conditions have been adopted for

the synthesis of various 2,5-disubstituted pyrimidines (i.e.,

4b–i) as shown in Scheme 2.

In order to establish the generality of reaction conditions

developed with other boronic acids of interest, coupling of

bromopyrimidines (i.e., 3a–i) using similar conditions with

the appropriately substituted phenylboronic acids containing

OMe, CF3, and NO2 groups on aromatic system was carried
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Fig. 1 Representative

examples of pyrimidine

containing biologically active

compounds
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out and the reactions yielded the desired titled compounds in

good yields (Scheme 3). On the other hand, the substituted

2-(benzyloxy) group in 2,5-disubstituted pyrimidines (i.e.,

4a–i, 5a–g, i, 6b, d–g, and 7b, f–h) was found to be cleaved

under standard hydrogenolysis (Morgentin et al., 2009)

conditions to yield 2-hydroxy-5-substituted pyrimidines.

These hydroxy intermediates are useful scaffolds for the

synthesis of diverse functionalized pyrimidines.

Conclusions

In conclusion, we have found that 2-(benzyloxy)-5-

bromopyrimidines as suitable coupling partners for the

green aqueous Suzuki coupling. The desired 2-(benzyl-

oxy)-5-bromopyrimidines were prepared by the treatment

of 2-chloro-5-bromopyrimidine with substituted benzyl

alcohols in the presence of CS2CO3 in CH3CN: DMF. As

such, we have developed an efficient methodology for the

synthesis of various 2,5-disubstituted pyrimidines by cou-

pling of 2-benzyloxy-5-bromopyrimidines with arylboronic

acids in the presence 10 mol% of PdCl2(PPh3)2 in water at

80 �C. In addition, this catalytic system tolerated broad

range of functional groups under mild reaction conditions.

The synthetic methodology developed is general and total

of 26 new 2,5-substituted pyrimidines could be prepared in

high yields and under mild reaction conditions.

Cytotoxic evaluation of 2,5-disubstituted pyrimidines

compounds (4a–7h)

The compounds (4a–7h) were tested on Human cervical

cancer cell line (HeLa) using MTT cell proliferation assay.

The compounds were screened for anticancer activity at

100 lg/mL and compounds which showed more than 50 %

cell growth inhibition were selected for dose response study

using different concentrations (0–100 lg/mL). IC50 values

were calculated and are presented in Table 2. The compound

4i showed more potent anticancer activity among the com-

pounds 4a–7h and followed by 5g, 5i, 5e, and 5b.

Experimental

General

All reactions were carried out in oven-dried glassware

(120 �C) under an atmosphere of nitrogen unless as indi-

cated otherwise. Ethyl acetate and hexanes from Mal-

linckrodt Chemical Co. were dried and distilled from

CaH2. Tetrahydrofuran from Chemlabs Chemicals were

dried by distillation from sodium and benzophenone under

an atmosphere of nitrogen. Acetonitrile was purchased

from Qualigens Chemical Co, and dimethylformamide was

purchased from Merck.
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Scheme 1 Synthesis of 2-benzyloxy-5-bromopyrimidines (3)
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Thin layer chromatography (TLC) was performed on

percolated plates (silica gel 60 F254), which were purchased

from Merck Inc. Purification by gravity column chroma-

tography was carried out by use of Silicycle ultra-pure

silica gel (particle size 40–63 lm, 100–200 mesh). Purity

of products was checked by High-resolution mass spectra

(HRMS) obtained by means of Q-TOF micro mass spec-

trometer and HPLC (Waters 2695). Proton NMR spectra

were obtained on a MR (400 MHz) and Vnmrs (300 MHz)

spectrometer by use of dimethylsulfoxide-d6 (DMSO) as

solvent and TMS as internal standard. Proton NMR

chemical shifts were referenced to residual protonated

solvents (d 2.5 ppm for dimethylsulfoxide), and carbon-13

NMR spectra were obtained on a MR (100 MHz) and

Vnmrs (75 MHz) spectrometer by use of dimethylsulfoxide

as the solvent and TMS as internal standard. Carbon-13

chemical shifts are referenced to the center of the DMSO

septet (d 39.5 ppm). Multiplicities are recorded by the

following abbreviations: s, singlet; d, doublet; t, triplet; q,

quartet; m, multiplet; bs broad singlet; bd, broad doublet;

and J, coupling constant (hertz). Melting points were

obtained with a Buchi MP-B540 melting point apparatus.

General procedure for the synthesis of substituted

benzyloxy halo pyrimidines (3a–3i, Scheme 1)

2-(Benzyloxy)-5-bromopyrimidine (3a)

In portion wise, Cesium carbonate (6.78 g, 20.6 mmol) was

added to a stirred solution of benzyl alcohol (2.25 g,

20.6 mmol) in acetonitrile and dimethylformamide (1:1,

40 mL) under nitrogen atmosphere at room temperature. After

10 min, 5-bromo-2-chloropyrimidine (2.0 g, 10.3 mmol) was

added and the mixture was stirred at the same temperature for

overnight. The reaction was monitored by TLC; after com-

pletion of the reaction, reaction mixture was poured into ice-

cold water; the resultant solid was filtered; solid was washed

with water (3 9 10 mL) followed by n-pentane (2 9 10 mL)

andair dried and recrystallized frombenzenegave3a (2.675 g)

as white solid in 97 % yield, mp 102.9–105.6 �C, TLC Rf 0.34

(10 % EtOAc in hexanes as the eluent); 1H NMR (DMSO,

300 MHz); d 8.78 (s, 2H, Pyrimidine H), 7.34–7.47 (m, 5H,

ArH), 5.38 (s, 2H, ArCH2);
13CNMR (DMSO, 100 MHz) d

163.16,159.83, 136.15, 128.39,128.02,127.95, 111.91, 68.95;

IR (KBr) 1271(C–O), 1179 (C–N), 525 (C–Br) cm-1; HRMS

(ES?) exact mass calculated for [M?H]? (C11H9BrN2O)

requires m/z 264.989, found m/z 265.091, 267.301.

5-Bromo-2-(4-methoxybenzyloxy) pyrimidine (3b)

71 % yield as brown solid, mp (recrystallized from ben-

zene)119.5–124.3 �C, TLC Rf 0.27 (10 % EtOAc in

hexanes as the eluent); 1H NMR (DMSO, 300 MHz) d 8.75
(s, 2H, pyrimidine H), 7.39 (d, J = 8.4 Hz, 2H, ArH), 6.94

(d, J = 6.3 Hz, 2H, ArH), 5.29 (s, 2H, ArCH2), 3.75 (s,

3H, OMe); 13C NMR (DMSO, 100 MHz) d 163.19,

159.75, 159.15, 129.94, 127.97, 113.74, 111.75, 68.83,

55.05; IR (KBr) 1242 (C–O), 1210 (C–N),530 (C–Br)

cm-1; HRMS (ES?) exact mass calculated for [M?H]?

(C12H11BrN2O2) requires m/z 295.000, found m/z 295.101,

297.100.

5-Bromo-2-(2, 3, 4-trimethoxybenzyloxy) pyrimidine

(3c)

61 % yield as brown solid, mp (recrystallized from ben-

zene) 105.4–107 �C, TLC Rf 0.18 (10 % EtOAc in hexanes

as the eluent); 1H NMR (DMSO, 300 MHz) d 8.77 (s, 2H,

pyrimidine H), 7.13 (d, J = 8.45 Hz, 1H, ArH), 6.81 (d,

J = 8.4 Hz, 1H, ArH), 5.28 (s, 2H, ArCH2), 3.76–3.80 (d,

J = 12.9 Hz, 9H, OMe). 13C NMR (DMSO, 75 MHz) d
163.23, 159.89, 153.94, 151.98, 141.71, 124.88, 121.62,

111.83, 107.63, 64.88, 61.16, 60.37, 55.87; IR (KBr) 1276

(C–O), 1263 (C–N), 528 (C–Br) cm-1; HRMS (ES?) exact

mass calculated for [M?H]? (C14H15BrN2O4) requires m/z

355.021, found m/z 355.015, 357.030.

5-Bromo-2-(4-fluorobenzyloxy) pyrimidine (3d)

94 % yield as white solid, mp (recrystallized from ben-

zene) 103.2–106.1 �C; TLC Rf 0.38 (10 % EtOAc in

hexanes as the eluent); 1H NMR (DMSO, 300 MHz) d 8.78
(s, 2H, pyrimidine H), 7.51 (m, 2H, ArH), 7.22 (m, 2H,

ArH), 5.36 (s, 2H, ArCH2).
13C NMR (DMSO, 100 MHz)

d 163.08, 160.65, 159.84, 132.42, 130.38, 115.32, 111.95,

68.26; IR (KBr) 1270 (C–O), 1270 (C–N), 1338 (C–F), 533

(C–Br) cm-1; HRMS (ES?) exact mass calculated for

[M?H]? (C11H8BrFN2O) requires m/z 282.980, found m/z

283.100, 285.130.

5-Bromo-2-(3-fluorobenzyloxy) pyrimidine (3e)

97 % yield as white solid, mp (recrystallized from ben-

zene) 92–94 �C, TLC Rf 0.38 (10 % EtOAc in hexanes as

the eluent); 1H NMR (DMSO, 400 MHz) d 8.79 (s, 2 H,

pyrimidine H), 7.44 (m, 1 H, ArH), 7.28 (m, 2 H, ArH),

7.17 (td, J = 2.4 Hz, 1 H, ArH), 5.40 (s, 2 H, ArCH2);
13C

NMR (DMSO, 100 MHz) d 163.02, 162.02, 159.89,

139.08, 130.46, 123.74, 114.65, 112.09, 68.08; IR (KBr)

1282 (C–O), 1240 (C–N),1338 (C–F), 525 (C–Br) cm-1;

HRMS (ES?) exact mass calculated for [M?H]?

(C11H8BrFN2O) requires m/z 282.980, found m/z 283.050,

285.023.
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5-Bromo-2-(4-Chlorobenzyloxy) pyrimidine (3f)

98 % yield as white solid, mp (recrystallized from benzene)

115.7–116.9 �C,TLCRf 0.37 (10 %EtOAc in hexanes as the

eluent); 1H NMR (DMSO, 300 MHz) d 8.78 (s, 2H, pyrim-

idine H), 7.46 (m, 4H, ArH), 5.37 (s, 2H, ArCH2);
13C NMR

(DMSO, 100 MHz) d 163.02, 159.83, 135.24, 132.61,

129.74, 128.37, 112.02, 68.09; IR (KBr) 1247 (C–O), 1207

(C–N), 790 (C–Cl), 525 (C–Br) cm-1; HRMS (ES?) exact

mass calculated for [M?H]? (C11H8BrClN2O) requires m/z

298.950, found m/z 299.120, 301.200.

5-Bromo-2-(2,4-difluorobenzyloxy) pyrimidine (3g)

99 % yield as pale white solid, mp (recrystallized from

benzene) 85.3–87.6 �C, TLC Rf 0.36 (10 % EtOAc in

hexanes as the eluent); 1H NMR (DMSO, 300 MHz) d 8.79
(s, 2H, pyrimidine H), 7.62 (q, J = 9 Hz, 1H, ArH), 7.31

(td, J = 8.1 Hz, 1H, ArH), 7.13 (td, J = 2.1 Hz, 1H, ArH),

5.39 (s, 2H, ArCH2); 13C NMR (DMSO, 100 MHz) d
163.70, 162.89, 160.40, 159.91, 132.37, 119.59, 112.15,

111.64, 104.04, 62.70; IR(KBr) 1279 (C–O), 1268 (C–N),

1324 (C–F), 520 (C–Br) cm-1; HRMS (ES?) exact mass

calculated for [M?H]? (C11H8BrF2N2O) requires m/z

300.97, found m/z 301.09, 303.20.

5-Bromo-2-(4(trifluoromethoxy) benzyloxy)

pyrimidine (3h)

94 %, yield as white solid, mp (recrystallized from ben-

zene) 91.7–93.6 �C, TLC Rf 0.27 (10 % EtOAc in hexanes

as the eluent); 1H NMR (DMSO, 300 MHz) d 8.79 (s, 2H,

pyrimidine H), 7.59 (d, J = 8.4 Hz, 2H, ArH), 7.39 (d,

J = 8.4 Hz, 2H, ArH),5.41(s, 2H, ArCH2);
13C

NMR(DMSO, 100 MHz) d 163.04, 159.89, 147.96, 135.72,
129.83, 120.99, 112.07, 68.00; IR (KBr) 1271 (C–O), 1216

(C–N), 1340 (C–F), 534 (C–Br) cm-1; HRMS (ES?) exact

mass calculated for [M?H]? (C12H8BrF3N2O) requires m/z

348.972, found m/z 349.102, 351.081.

5-Bromo-2-((5-methylthiophen-2-yl) methoxy)

pyrimidine (3i)

90 % yield as brown solid, mp (recrystallized from ben-

zene) 86–86.8 �C, TLC Rf 0.4 (10 % EtOAc in hexanes as

the eluent); 1H NMR(DMSO, 400 MHz) d 8.79 (s, 2H,

pyrimidine H), 7.03(d, J = 3.6 Hz, 1H, thiophene H),6.70

(d, J = 2.8 Hz, 1H, thiophene H) 6.46 (s, 2H, thiophene

CH2),2.41(s, 3H, Me); 13C NMR (DMSO, 100 MHz) d
162.81, 159.81, 140.99, 135.33, 128.84, 124.91, 111.96,

63.66, 14.94; IR (KBr) 1282 (C–O), 1210 (C–N), 609 (C–

S), 516 (C–Br) cm-1; HRMS (ES?) exact mass calculated

for [M ? H]? (C10H9BrN2OS) requires m/z 284.961, found

m/z 285.130, 287.090.

General procedure for the preparation (benzyloxy)-5-

(3-(methylsulfonyl) phenyl) pyrimidine (4a)

To a oven dried 25 mL round bottom flask were added

2-(benzyloxy)-5-bromopyrimidine (0.15 g, 0.568 mmol),

3-(methylsulfonyl) phenylboronic acid (0.125 g,

0.625 mmol), and 0.5 N aqueous sodium carbonate

(0.240 g, 2.27 mmol in 4.52 mL water) followed by 5 mL

water and were degassed by bubbling with nitrogen gas for

15 min. PdCl2(PPh3)2 (0.039 g, 0.0056 mmol) was added

to the above reaction mixture and then heated to 80 �C for

30 min. The reaction mixture was cooled to room temper-

ature, the resultant solid was filtered and solid was washed

with water and air dried. The crude product was recrystal-

lized from dichloromethane in petroleum ether to give 4a

(131 mg) in 67 % yield as off-white solid, mp (recrystal-

lized from dichloromethane in petroleum ether)

180.1–184.4 �C; TLC Rf 0.25 (40 % EtOAc in hexanes as

the eluent); 1H NMR (DMSO, 300 MHz) d 9.06 (s, 2H,

pyrimidine H), 8.26 (s, 1H, ArH), 8.10 (d, J = 7.8 Hz, 1H,

ArH), 7.95 (d, J = 7.8 Hz, 1H, ArH), 7.78 (t, J = 7.5 Hz,

1H, ArH), 7.49 (d, J = 6.9 Hz, 2H, ArH), 7.44–7.34 (m, 3

H, ArH), 5.48 (s, 2H, ArCH2), 3.30 (s, 3H, SO2Me); 13C

Table 1 Exploration of various Pd catalysts, solvents, and bases for the Suzuki coupling

Pd catalyst Ligand Bases Solvent Cosolvent Temp (�C) Time(h) Yield (%)

Pd(PPh3)4 – K2CO3 Benzene – 70 12 8

Pd(dppf)Cl2 – Na2CO3 DME H2O 80 6 22

Pd(OAc)2 TBAB K2CO3 PEG-400 – 110 8 0

Pd(PPh3)4 – Na2CO3 DME H2O 80 – 30

Pd2(dba)3 PPh3 Cs2CO3 Dioxane – 80 5 15

Pd2(dba)3 P(t-Bu)3 Cs2CO3 Dioxane – 80 5 20

PdCl2(dppf) – K3PO4 DMF 60 – 5

PdCl2(PPh3)2 – Na2CO3 H2O – 80 0.5 67

PdCl2(PPh3)2 – Na2CO3 THF H2O 80 2 50
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NMR (DMSO, 100 MHz) d 164.32, 157.85, 141.84, 136.49,
135.20, 131.40, 130.19, 128.41, 127.95, 126.20, 126.13,

124.72, 68.62, 43.31; IR (KBr) 1149 (C–O),1298 (SO2),

1186 (C–N) cm-1; HRMS (ES?) exact mass calculated for

[M?H]? (C18H16N2O3S) requires m/z 341.088, found m/z

341.080.

2-(4-Methoxybenzyloxy)-5-(3-(methylsulfonyl)

phenyl) pyrimidine (4b)

48 % yield as pale yellow solids, mp (recrystallized from

dichloromethane in petroleum ether) 155.5–157.0 �C; TLC
Rf 0.25 (40 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 300 MHz) d 9.05 (s, 2 H, pyrimidine H), 8.25 (s,

1H, ArH), 8.10 (d, J = 7.8 Hz, 1H, ArH), 7.95 (d,

J = 8.1 Hz, 1H, ArH), 7.79 (t, J = 7.8 Hz, 1H, ArH), 7.43

(d, J = 8.7 Hz, 2H, ArH), 6.96 (d, J = 8.7 Hz, 2H, ArH),

5.39 (s, 2H, ArCH2), 3.76 (s, 3H, OMe), 3.30 (s, 3H,

SO2Me); 13C NMR (DMSO, 100 MHz) d 164.36, 159.13,

157.78, 141.04, 135.23, 131.37, 130.18, 129.94, 128.31,

126.069, 124.69, 113.78, 68.47, 55.08, 43.31; IR (KBr)

1250 (C–O), 1294 (SO2), 1176 (C–N) cm-1; HRMS (ES?)

exact mass calculated for [M?H]? (C19H18N2O4S)

requires m/z 371.098, found m/z 371.067.

5-(3-(Methylsulfonyl) phenyl)-2-(3,4,5-

trimethoxybenzyloxy) pyrimidine (4c)

43 % yield as pale yellow solids, mp (recrystallized from

dichloromethane in petroleum ether) 97.9–102.1 �C; TLC
Rf 0.14 (40 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 400 MHz) d 9.02 (s, 2H, pyrimidine H),8.24 (s,

1H, ArH), 8.06 (bd, J = 6.4 Hz, 1H, ArH), 7.93 (bd,

J = 6.8 Hz, 1H, ArH), 7.75 (bd, J = 6.4 Hz, 1H, ArH),

7.14 (d, J = 8 Hz, 1H, ArH), 6.79 (d, J = 8 Hz, 1H, ArH),

5.34 (s, 2 H, ArCH2), 3.81–3.74 (t, J = 14.8 Hz, 9H,

OMe), 3.28 (s, 3H, SO2Me); 13C NMR (DMSO, 100 MHz)

d 164.36, 157.80, 153.83, 151.94, 141.84, 135.27, 131.37,

130.18, 126.11, 124.74, 121.91, 107.64, 64.45, 61.11,

60.32, 55.84, 43.32; IR (KBr) 1201 (C–O), 1289 (SO2),

N N

O

Br

4d, 79%

N

O

F
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Scheme 2 Green aqueous Suzuki coupling of 2-(substituted benzyloxy)-5-bromopyrimidines with 3-(methylsulfonyl) phenylboronic acid
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1184 (C–N) cm-1; HRMS (ES?)exact mass calculated for

[M?H]? (C21H22N2O6S) requires m/z 431.119, found m/z

431.089.

2-(4-Fluorobenzyloxy)-5-(3-(methylsulfonyl) phenyl)

pyrimidine (4d)

79 % yield as off white solids, mp (recrystallized from

dichloromethane in petroleum ether) 174.3–179.2 �C; TLC
Rf 0.27 (40 % EtOAc in hexanes as the eluent);1H NMR

(DMSO, 400 MHz) d 9.06 (s, 2H, pyrimidine H), 8.25 (S,

1H, ArH), 8.10 (d, J = 7.6 Hz, 1H, ArH), 7.95 (d,

J = 8.0 Hz, 1H, ArH), 7.78 (t, J = 8.0 Hz, 1H, ArH), 7.56

(q, J = 5.2 Hz, 2H, ArH), 7.23 (t, J = 8.8 Hz, 2H, ArH),

5.45 (s, 2H, ArCH2), 3.30 (s, 3H, SO2Me); 13C NMR

Table 2 Selected compounds studied for IC50 by using different

concentrations (0–100 lg/mL)

Compounds 4d 4i 5b 5e

IC50 (lg/mL) 96.1 82.7 89.2 86.2

Compounds 5g 5i 6b –

IC50 (lg/mL) 83.1 84.3 95.9 –
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Scheme 3 Syntheses of diversely substituted 2,5-disubstituted pyrimidines use of green aqueous Suzuki coupling
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(DMSO, 75 MHz) d 164.22, 163.46, 157.85, 141.84,

135.18, 132.71, 131.41, 130.27, 126.24, 126.15, 124.72,

115.37, 67.93, 43.31; IR (KBr) 1218 (C–O), 1295 (C–F),

1309 (SO2), 1186 (C–N) cm-1; HRMS (ES?) exact mass

calculated for [M?H]? (C18H15FN2O3S) requires m/z

359.078, found m/z 359.090.

2-(3-Fluorobenzyloxy)-5-(3-(methylsulfonyl) phenyl)

pyrimidine (4e)

76 % yield as brown solids, mp (recrystallized from

dichloromethane in petroleum ether)132.4–135.2 �C; TLC
Rf 0.4 (50 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 300 MHz) d 9.09 (s, 2H, pyrimidine H), 8.33 (d,

J = 8.7 Hz, 2H, ArH), 8.06 (d, J = 8.7 Hz, 2H, ArH),

7.43 (d, J = 8.7 Hz, 2H, ArH), 6.96 (d, J = 8.4 Hz, 2H,

ArH), 5.40 (s, 2H, ArCH2), 3.76 (s, 3H, SO2Me); 13C NMR

(DMSO, 100 MHz) d 164.16, 163,32, 157.89, 141.84,

139.46, 135.15, 131.42, 130.507, 130.19, 126.35, 124.76,

123.76, 123.73, 114.59, 67.76, 43.31; IR (KBr) 1254 (C–

O), 1339 (C–F), 1291 (SO2), 1183 (C–N) cm-1; HRMS

(ES?) exact mass calculated for [M?H]? (C18H15FN2O3S)

requires m/z 359.078, found m/z 358.898.

2-(4-Chlorobenzyloxy)-5-(-3(methylsulfonyl) phenyl)

pyrimidine (4f)

77 % yield as off white solids, mp (recrystallized from

dichloromethane in petroleum ether) 159.9–162.2 �C; TLC
Rf 0.26 (40 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 400 MHz) d 9.06 (s, 2 H,pyrimidine H), 8.25 (t,

J = 1.6 Hz, 1H, ArH), 8.10 (d, J = 8.4 Hz, 1H, ArH),

7.95 (d, J = 8.4 Hz, 1H, ArH), 7.78 (t, J = 7.6 Hz, 1H,

ArH), 7.52 (d, J = 8.4 Hz, 2H, ArH), 7.47 (dd,

J = 2.0 Hz, 2H, ArH), 5.47 (s, 2H, ArCH2), 3.30 (s, 3H,

SO2Me); 13C NMR (DMSO, 75 MHz) d 164.18, 157.86,

141.84, 135.58, 135.15, 132.54, 131.41, 130.19, 129.78,

128.406, 126.30, 126.16, 124.74, 67.78, 43.31; IR (KBr)

1146 (C–O), 1299 (SO2), 1181 (C–N), 800 (C–Cl) cm-1;

HRMS (ES?) exact mass calculated for [M?H]?

(C18H15ClN2O3S) requires m/z 375.049, found m/z

374.975.

2-(2,4-Difluorobenzyloxy)-5-(3-(methylsulfonyl)

phenyl) pyrimidine (4g)

65 % yield as pale yellow solid, mp(recrystallized from

dichloromethane in petroleum ether) 97.9–102.1 �C; TLC
Rf 0.27 (40 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 300 MHz) d 9.07 (s, 2 H, pyrimidine H), 8.26 (s,

1H, ArH), 8.10 (d, J = 7.8 Hz, 1H, ArH), 7.95 (d,

J = 8.1 Hz, 1H, ArH), 7.78 (t, J = 7.8 Hz, 1H, ArH), 7.65

(q, J = 8.4 Hz, 1H, ArH), 7.33 (td, J = 2.4 Hz, 1H, ArH),

7.15 (td, J = 1.5 Hz, 1H, ArH), 5.48 (s, 2H, ArCH2), 3.30

(s, 3H, SO2Me); 13C NMR (DMSO, 100 MHz) d 164.03,

163.66, 161.08, 157.90, 141.84, 135.12, 132.32, 131.43,

130.19, 126.40, 126.18, 124.76, 119.89, 111.68, 104.04,

62.37, 43.31; HRMS (ES?) exact mass calculated for

[M?H]? (C18H14F2N2O3S) requires m/z 377.069, found

m/z 396.989.

5-(3-(Methylsulfonyl) phenyl)-2-(4-(trifluoromethoxy)

benzyloxy) pyrimidine (4h)

80 % yield as brown solids, (recrystallized from dichloro-

methane in petroleum ether)149.0–151.1 �C; TLC Rf 0.31

(40 % EtOAc in hexanes as the eluent); 1H NMR (DMSO,

300 MHz) d 9.07 (s, 2H, pyrimidine H), 8.26 (s, 1H, ArH),

8.10(d, J = 8.1 Hz, 1H, ArH), 7.95 (d, J = 8.1 Hz, 1H,

ArH), 7.78 (t, J = 7.8 Hz, 1H, ArH), 7.63 (d, J = 8.7 Hz,

2H, ArH), 7.40 (d, J = 8.4 Hz, 2H, ArH), 5.51 (s, 2H,

ArCH2), 3.31 (s, 3H, SO2Me); 13C NMR (DMSO,

100 MHz) d 164.17, 157.88, 147.92, 141.84, 136.05,

135.14, 131.42, 130.19, 129.81, 126.34, 126.17, 124.74,

121.02, 118.76, 67.68, 43.31; IR (KBr) 1217 (C–O), 1342

(C–F), 1291 (SO2), 1217 (C–N) cm-1; HRMS (ES?) exact

mass calculated for [M?H]? (C19H15F3N2O4S) requires

m/z 425.070, found m/z 425.063.

2-((5-methylthiophen-2-yl) methoxy)-5-(3-

(methylsulfonyl) phenyl) pyrimidine (4i)

75 % yield as pale yellow solids, mp (recrystallized from

dichloromethane in petroleum ether)72.0–76.0 �C; TLC Rf

0.4 (40 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 300 MHz) d 9.07 (s, 2H, pyrimidine H), 8.26 (s,

1H, ArH), 8.11 (d, J = 2.81 Hz, 1H, ArH), 7.95 (d,

J = 8.1 Hz, 1H, ArH), 7.78 (t, J = 7.8 Hz, 1H, ArH), 7.06

(bd, J = 3.6 Hz, 1H, thiophene H), 6.72 (bd, J = 2.4 Hz,

1H, thiophene H), 5.55 s, 2H, ArCH2), 3.31 (s, 3H, OMe),

2.42 (s, 3H, Me); 13C NMR (DMSO,100 MHz) d 163.97,

157.80, 141.84, 140.89, 135.71,135.16, 131.40, 130.19,

128.73, 126.15, 124.90, 63.35, 43.31, 14.96; IR (KBr) 1294

(C–O), 694 (C–S), 1149 (SO2), 1211 (C–N) cm-1; HRMS

(ES?) exact mass calculated for [M?H]? (C17H16N2O3S2)

requires m/z 361.060, found m/z 361.083.

2-(Benzyloxy)-5-(6-methoxypyridin-3-yl) pyrimidine

(5a)

66 % yield as brown solids, mp (recrystallized from

dichloromethane in petroleum ether) 140–142 �C; TLC Rf

0.28 (20 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 400 MHz) d 8.94 (s, 2H, pyrimidine H), 8.54 (d,

J = 2.4 Hz, 1H, PyH), 8.08 (dd, J = 2.4 Hz, 1H, PyH),

7.48 (d, J = 7.2 Hz, 2H, ArH), 7.42–7.32 (m, 3H, ArH),
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6.94 (d, J = 8.8 Hz, 1H, PyH), 5.45 (s, 2H, ArCH2), 3.90

(s, 3H, OMe); 13C NMR (DMSO, 100 MHz) d 163.88,

163.40, 156.99, 144.53, 137.21, 136.60, 128.40, 127.86,

124.84, 123.22, 110.77, 68.44, 53.29; IR (KBr) 1291 (C–

O), 1251 (C–N) cm-1; HRMS (ES?) exact mass calculated

for [M?H]? (C17H15N3O2) requires m/z 294.116, found

m/z 294.069.

2-(4-Methoxybenzyloxy)-5-(6-methoxypyridin-3-yl)

pyrimidine (5b)

60 % yield as off white solids, mp (recrystallized from

dichloromethane in petroleum ether) 140.1–141.3 �C; TLC
Rf 0.4 (30 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 400 MHz) d 8.94 (s, 2H, pyrimidine H), 8.54 (d,

J = 2.4 Hz,1H, PyH), 8.08 (dd, J = 2.4 Hz, 1H, PyH),

7.42 (d, J = 8.8 Hz, 2H, ArH), 6.96-6.93 (m, 3H, ArH&-

PyH), 5.36 (s, 2H, ArCH2), 3.90 (s, 3H, OMe), 3.76 (s, 3H,

OMe), 13C NMR (DMSO, 100 MHz) d 163.92, 163.38,

159.097, 156.95, 144.51, 137.21, 129.85, 128.43, 124.71,

123.26, 113.77, 110.78, 68.30, 55.06, 53.28; IR (KBr) 1293

(C–O), 1245 (C–N) cm-1; HRMS (ES?) exact mass cal-

culated for [M?H]? (C18H17N3O3) requires m/z 324.126,

found m/z 324.095.

5-(6-Methoxypyridin-3-yl)-2-(3,4,5-

trimethoxybenzyloxy) pyrimidine (5c)

54.87 % yield as yellow solids, mp (recrystallized from

dichloromethane in petroleum ether) 139.3–144.4 �C; TLC
Rf 0.35 (30 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 400 MHz) d 8.94 (s, 2H, pyrimidine H), 8.54 (d,

J = 2.4 Hz, 1H, PyH), 8.08 (dd, J = 2.4 Hz, 1H, PyH),

7.16 (d, J = 8.8 Hz, J = 1H, ArH), 6.95 (d, J = 8.8 Hz,

1H, ArH), 6.82 (d, J = 8.0 Hz, 1H, PyH), 5.34 (s, 2H,

ArCH2), 3.89 (s, 3H, OMe), 3.83 (s, 3H, OMe), 3.80 (s, 3H,

OMe), 3.77 (s, 3H, OMe. 13C NMR (DMSO, 75 MHz) d
163.93, 163.38, 156.97, 153.79, 151.90, 144.53, 141.74,

137.22, 124.65, 123.30, 122.02, 110.77, 109.53, 107.65,

64.28, 61.09, 60.31, 55.84, 53.29; IR (KBr) 1282 (C–O),

1261(C–N) cm-1; HRMS (ES?) exact mass calculated for

[M?H]? (C20H21N3O5) requires m/z 384.148, found m/z

384.115.

2-(4-Fluorobenzyloxy)-5-(6-methoxypyridin-3-yl)

pyrimidine (5d)

98 % yield as Pale yellow solids, mp (recrystallized from

dichloromethane in petroleum ether) 159.6–163.3 �C; TLC
Rf 0.44 (30 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 400 MHz) d 8.95 (s, 2H, pyrimidine H), 8.54 (s,

1H, PyH), 8.08 (dd, J = 2.4 Hz, 1H, PyH), 7.53 (t,

J = 7.6 Hz, 2H, ArH), 7.23 (t, J = 8.8 Hz, 2H, ArH), 6.95

(d, J = 9.2 Hz, 1H, PyH), 5.42 (s, 2H, ArCH2), 3.90 (s,

3H, OMe); 13C NMR (DMSO, 100 MHz) d 163.79,

163.41, 163.03, 157.00, 144.554, 137.23, 132.83, 130.27,

124.89, 123.21, 115.32, 110.78, 67.75, 53.30; IR (KBr)

1222 (C–O), 1316 (C–F), 1247 (C–N) cm-1; HRMS (ES?)

exact mass calculated for [M?H]? (C17H14FN3O2)

requires m/z 312.107, found m/z 312.069.

2-(3-Fluorobenzyloxy)-5-(6-methoxypyridin-3-yl)

pyrimidine (5e)

90 % yield as pale yellow solid, mp (recrystallized from

dichloromethane in petroleum ether) 152–154 �C; TLC Rf

0.20 (20 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 400 MHz) d 8.95 (s, 2 H, pyrimidine H), 8.55 (d,

J = 2.4 Hz, 1H, PyH), 8.09 (dd, J = 2.4 Hz, 1H, PyH),

7.44 (q, J = 5.6 Hz, 1H, ArH), 7.31 (t, J = 8.8 Hz, 2 H,

ArH), 7.17 (t, J = 2.4 Hz, 1 H, ArH), 6.95 (d, J = 8.4 Hz,

1H, PyH), 5.47 (s, 2H, ArCH2), 3.90 (s, 3H, OMe); 13C

NMR (DMSO, 75 MHz) d 163.53, 163.41, 156.94, 148.59,

144.54, 140.80, 137.22, 135.87, 128.57, 124.89, 123.17,

110.79, 63.21, 53.29; IR (KBr) 1295 (C–O), 1352 (C–F),

1259 (C–N) cm-1; HRMS (ES?) exact mass calculated for

[M?H]? (C17H14FN3O2) requires m/z 312.107, found m/z

312.086.

2-(4-Chlorobenzyloxy)-5-(6-methoxypyridin-3-yl)

pyrimidine (5f)

97 % yield as pale yellow solids, mp (recrystallized from

dichloromethane in petroleum ether) 155.9–158.5 �C; TLC
Rf 0.45 (30 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 400 MHz) d 8.95 (s, 2H, pyrimidine H), 8.54 (d,

J = 2.8 Hz, 1H, PyH), 8.09 (dd, J = 2.4 Hz, 1H, PyH),

7.48 (q, J = 8.4 Hz, 4H, ArH), 6.95 (d, J = 9.2 Hz, 1H,

PyH), 5.44 (s, 2H, ArCH2), 3.89 (s, 3H, OMe); 13C NMR

(DMSO, 75 MHz) d 163.73,163.43, 157.04, 144.57,

137.25, 135.70, 132.28, 129.69, 128.40, 124.97, 123.17,

110.79, 67.62, 53.31; IR (KBr) 1282 (C–O), 1246 (C–N)

807 (C–Cl) cm-1; HRMS(ES?) exact mass calculated for

[M?H]? (C17H14ClN3O2) requires m/z 328.077, found m/z

327.965.

2-(2,4-Difluorobenzyloxy)-5-(6-methoxypyridin-3-yl)

pyrimidine (5g)

92 % yield as off white solids, mp (recrystallized from

dichloromethane in petroleum ether) 142.6–144.2 �C; TLC
Rf 0.29 (20 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 400 MHz) d 8.96 (s, 2H, pyrimidine H), 8.53 (d,

J = 1.6 Hz, 1H, PyH), 8.09 (dd, J = 2.4 Hz, 1H, PyH),

7.64 (q, J = 8.0 Hz, 1H, ArH), 7.33 (td, J = 2.4 Hz, 1H,

ArH), 7.15 (td, J = 4.0 Hz, 1H, ArH), 6.95 (d, J = 8.8 Hz,
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1H, PyH), 5.45 (s, 2H, ArCH2), 3.90 (s, 3H OMe); 13C

NMR (DMSO, 100 MHz) d 163.44, 162.75, 160.301,

157.06, 144.60, 137.25, 132.23, 125.06, 123.16, 119.94,

111.56, 110.79, 110.41, 104.04, 62.22, 53.30; IR (KBr)

1277 (C–O), 1337 (C–F), 1183 (C–N) cm-1; HRMS (ES?)

exact mass calculated for [M?H]? (C17H13F2N3O2)

requires m/z 330.097, found m/z 330.079.

5-(6-Methoxypyridin-3-yl)-2-((5-methylthiophen-2-yl)

methoxy) pyrimidine (5i)

60 % yield as brown solid, mp (recrystallized from

dichloromethane in petroleum ether) 109–111.5 �C; TLC
Rf 0.24 (20 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 400 MHz) d 9.01 (s, 2H, pyrimidine H), 8.61 (d,

J = 2.0 Hz, 1H, PyH), 8.15 (dd, J = 2.4 Hz, 1H, PyH),

7.10 (d, J = 3.2 Hz, thiophene H), 7.00 (bd, J = 8.4 Hz,

1H, thiophene H), 6.77 (bd, J = 2.4 Hz, 1H, PyH), 5.58 (s,

2H, ArCH2), 3.95 (s, 3H, OMe), 2.47 (s, 3H, Me); 13C

NMR (DMSO, 75 MHz) d 163.53, 163.41, 156.94, 144.54,

140.80, 137.22, 135.87, 128.57, 124.89, 123.17, 110.79,

63.21, 53.29, 14.95; IR (KBr) 1295 (C–O), 656 (C–S),

1261(C–N) cm-1; HRMS (ES?) exact mass calculated for

[M?H]? (C16H15N3O2S) requires m/z 314.088, found m/z

314.047.

2-(4-Methoxybenzyloxy)-5-(2-(trifluoromethyl)

phenyl) pyrimidine (6b)

87 % yield as pale yellow solid, mp (recrystallized from

dichloromethane in petroleum ether) 67–70 �C; TLC Rf

0.25 (20 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 300 MHz) d 8.61 (s, 2H, pyrimidine H), 7.90 (d,

J = 7.8 Hz, 1H, ArH), 7.79 (t, J = 7.5 Hz, 1H, ArH), 7.69

(t, J = 7.8 Hz, 1 H, ArH), 7.53 (d, J = 7.8 Hz, 1H, ArH),

7.45 (d, J = 9.0 Hz, 2H, ArH), 6.97 (d, J = 8.4 Hz, 2H,

ArH), 5.38 (s, 2H, ArCH2), 3.77 (s, 3H, OMe); 13C NMR

(DMSO, 75 MHz) d 164.07, 159.18, 158.54, 133.52,

132.79, 130.03, 129.06, 128.23, 127.77, 126.81, 126.18,

125.80, 113.79, 68.53, 55.07; IR (KBr) 1254 (C–O), 1323

(C–F), 1267(C–N) cm-1; HRMS (ES?) exact mass calcu-

lated for [M?H]? (C19H15F3N2O2) requires m/z 361.108,

found m/z 361.110.

2-(4-Fluorobenzyloxy)-5-(2-(trifluoromethyl) phenyl)

pyrimidine (6d)

81 % yield as pale yellow liquid, TLC Rf 0.23 (20 %

EtOAc in hexanes as the eluent); 1H NMR (DMSO,

300 MHz) d 8.63 (s, 2H, pyrimidine H), 7.906 (d,

J = 7.5 Hz, 1H, ArH), 7.80 (t, J = 7.2 Hz, 1H, ArH), 7.70

(t, J = 7.5 Hz, 1H, ArH), 7.56 (m, 3H, ArH), 7.24 (t,

J = 6.3 Hz, 2H, ArH), 5.44 (s, 2H, ArCH2). 13C NMR

(DMSO, 75 MHz) d 163.95, 160.27, 158.588, 133.44,

132.77, 130.49, 129.08, 127.77, 126.98, 126.26, 122.15,

115.37, 67.98; IR (KBr) 1224 (C–O), 1317 (C–F), 1264

(C–N) cm-1; HRMS (ES?) exact mass calculated for

[M?H]? (C18H12F4N2O) requires m/z 349.088, found m/z

349.057.

2-(3-Fluorobenzyloxy)-5-(2-(trifluoromethyl) phenyl)

pyrimidine (6e)

86 % yield as pale yellow liquid, TLC Rf 0.23 (20 %

EtOAc in hexanes as the eluent); 1H NMR (DMSO,

300 MHz) d 8.38 (s, 2H, pyrimidine H), 7.90 (d,

J = 7.5 Hz, 1H, ArH), 7.79 (t, J = 7.5 Hz, 1H, ArH), 7.72

(t, J = 7.5 Hz, 1H, ArH), 7.54 (d, J = 7.2 Hz, 1 H, ArH),

7.45 (m, 1H, ArH), 7.34 (m, 2H, ArH), 7.19 (m, 1H, ArH),

5.40 (s, 2H, ArCH2); 13C NMR (DMSO, 75 MHz) d
164.35, 160.98, 159.11, 139.86, 133.89, 133.26, 131.00,

129.59, 128.25, 127.56, 126.73, 124.34, 122.63, 115.21,

68.30; IR (KBr) 1259 (C–O), 1328 (C–F), 1220 (C–N)

cm-1; HRMS (ES?) exact mass calculated for [M?H]?

(C18H12F4N2O) requires m/z 349.088, found m/z 349.038.

2-(4-Chlorobenzyloxy)-5-(2-(trifluoromethyl) phenyl)

pyrimidine (6f)

87 % yield as pale yellow solid, mp (recrystallized from

dichloromethane in petroleum ether) 76–79 �C; TLCRf 0.28

(20 % EtOAc in hexanes as the eluent); 1H NMR (DMSO,

300 MHz) d 8.62 (s, 2H, pyrimidineH), 7.90 (d, J = 8.1 Hz,

1H, ArH), 7.79 (t, J = 7.5 Hz, 1H, ArH), 7.69 (t,

J = 7.5 Hz, 1H, ArH), 7.49 (m, 5H, ArH), 5.46 (s, 2H,

ArCH2);
13C NMR (DMSO, 75 MHz) d 163.89, 158.63,

135.48, 133.41, 132.77, 132.65, 129.87, 129.09, 128.42,

127.76, 127.04, 126.18, 122.15, 67.82; IR (KBr) 1261 (C–

O), 1317 (C–F), 805 (C–Cl), 1171 (C–N) cm-1; HRMS

(ES?) exact mass calculated for [M?H]? (C18H12ClF3N2O)

requires m/z 365.059, found m/z 364.969.

2-(2,4-Difluorobenzyloxy)-5-(2-(trifluoromethyl)

phenyl) pyrimidine (6g)

82 % yield as pale yellow liquid, TLC Rf 0.27 (20 %

EtOAc in hexanes as the eluent); 1H NMR (DMSO,

300 MHz) d 8.64 (s, 2H, pyrimidine H), 7.90 (d,

J = 7.8 Hz, 1H, ArH), 7.80 (t, J = 7.2 Hz, 1H, ArH), 7.68

(q, J = 8.4 Hz, J = 2H, 2H, ArH), 7.54 (d, J = 7.2 Hz,

1H, ArH), 7.33 (td, J = 2.4 Hz, 1H, ArH), 7.15 (td,

J = 1.5 Hz, 1H, ArH), 5.47 (s, 2H, ArCH2);
13C NMR

(DMSO, 75 MHz) d 163.75, 163.35, 160.70, 158.64,

133.38, 132.65, 129.11, 127.76, 127.13, 126.18, 122.15,

119.82, 111.69, 104.06,62.41; IR (KBr) 1286 (C–O), 1286

(C–F), 1175 (C–N) cm-1; HRMS (ES?) exact mass
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calculated for [M?H]? (C18H11F5N2O) requires m/z

367.079, found m/z 367.044.

2-(4-Methoxybenzyloxy)-5-(4-nitrophenyl) pyrimidine

(7b)

50 % yield as pale yellow solid, mp (recrystallized from

dichloromethane in petroleum ether) 168.5–173.1 �C; TLC
Rf 0.17 (20 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 300 MHz) d 9.07(s, 2H, pyrimidine H), 8.26 (bt,

J = 8.8 Hz, 1H, ArH), 8.11 (d, J = 8.1 Hz, 1H, ArH),

7.95 (d, J = 9.6 Hz, 1H, ArH), 7.78 (t, J = 7.8 Hz, 1H,

ArH), 7.46 (m, 1H, ArH), 7.32 (m, 2H, ArH), 7.183 (td,

J = 2.1 Hz, 1H, ArH), 5.50 (s, 2H, ArCH2), 3.30 (s, 3H,

OMe); 13C NMR (DMSO, 100 MHz) d 164.63, 159.15,

158.04, 146.97, 140.53, 129.94, 128.21, 127.37, 125.39,

124.14, 113.78, 68.60, 55.08; IR (KBr) 1174 (C–O), 1343

(NO2), 1249 (C–N) cm-1; HRMS (ES?) exact mass Cal-

culate for [M?H]? (C18H15N3O4) requires m/z 338.106,

found m/z 337.953.

2-(4-Chlorobenzyloxy)-5-(4-nitrophenyl) pyrimidine

(7f)

73 % yield as brown solid, mp (recrystallized from dichlo-

romethane in petroleum ether) 213.6–219.6 �C; TLC Rf 0.2

(20 % EtOAc in hexanes as the eluent); 1H NMR (DMSO,

400 MHz) d 9.10 (s, 2H, pyrimidineH), 8.33 (d, J = 8.8 Hz,

2H, ArH), 8.06 (d, J = 8.0 Hz, 2H, ArH), 7.53–7.46 (m, 4H,

ArH), 5.50 (s, 2H, ArCH2); 13C NMR (DMSO, 100 MHz) d
164.46, 158.13, 147.03, 140.45, 135.49, 132.59, 129.77,

128.43, 127.46, 125.65, 124.15, 67.88; IR (KBr) 1103 (C–

O), 1309 (NO2), 1274 (C–N), 802 (C–Cl) cm-1; HRMS

(ES?) exact mass calculated for [M?H]? (C17H12ClN3O3)

requires m/z 342.056, found m/z 342.110.

2-(2,4-Difluorobenzyloxy)-5-(4-nitrophenyl)

pyrimidine (7g)

68 % yield as brown solid, mp (recrystallized from

dichloromethane in petroleum ether) 140.1–144.5 �C; TLC
Rf 0.22 (20 % EtOAc in hexanes as the eluent); 1H NMR

(DMSO, 400 MHz) d 9.10 (s, 2H, pyrimidine H), 8.32 (d,

J = 8.0 Hz, 2H, ArH), 8.06 (d, J = 8.8 Hz, 2H, ArH),

7.66 (q, J = 8.0 Hz, 1H, ArH), 7.33 (t, J = 1.6 Hz, 1H,

ArH), 7.14 (td, J = 1.6 Hz, 1H, ArH), 5.50 (s, 2H,

ArCH2);
13C NMR (DMSO, 100 MHz) d 164.30, 163.86,

162.81, 160.34, 158.13, 147.02, 140.41, 132.31, 127.46,

126.13, 125.73, 124.13, 119.74, 115.73, 111.57, 104.04,

62.48; IR (KBr) 1280 (C–O), 1303 (C–F), 1343 (NO2),

1225 (C–N) cm-1; HRMS (ES?) exact mass calculated for

[M?H]? (C17H11F2N3O3) requires m/z 344.076, found m/z

343.948.

5-(4-Nitrophenyl)-2-(4-(trifluoromethoxy) benzyloxy)

pyrimidine (7h)

62 % yield as pale yellow solid, mp (recrystalised from

DCM in hexane) 164.8–166.2 �C; TLC Rf 0.31 (20 %

EtOAc in hexanes as the eluent); 1H NMR (DMSO,

400 MHz) d 9.10 (s, 2H, pyrimidineH), 8.33 (d,

J = 8.8 Hz, 2H, ArH), 8.06 (d, J = 8.8 Hz, 2H, ArH),

7.63 (d, J = 8.4 Hz, 2H, ArH), 7.40 (d, J = 8.8 Hz, 2H,

ArH), 5.51(s, 2H, ArCH2); 3.30 (s, 3H, OMe); 13C NMR

(DMSO, 100 MHz) d 164.45, 158.14, 147.96, 147.03,

140.44, 135.96, 129.93, 127.45, 125.68, 124.14, 121.02,

118.76, 67.78; IR (KBr) 1223 (C–O), 1345 (NO2), 1199

(C–N), 1251 (C–F) cm-1; HRMS (ES?) exact mass cal-

culated for [M?H]? (C18H12F3N3O4) requires m/z

392.077, found m/z 392.120.

Cytotoxic evaluation of 2,5-disubstituted pyrimidines

compounds (4a–7h)

The compounds were tested on HeLa cells using MTT cell

proliferation assay (Plumb et al., 1989). HeLa cell line was

obtained from National Centre for Cell Science (NCCS),

Pune (India) and cultivated in Dulbecco’s modified Eagle’s

medium (DMEM) (Sigma Life Science, USA) containing

10 % fetal bovine serum (FBS). The cells (2,000 cells per

well) were seeded in a 96-well microplate containing

100 lL of DMEM complete medium per well and incu-

bated at 37 �C with 5 % CO2.

The cells were treated different concentrations of com-

pounds up to 72 h for every 24 h interval. Controls were

maintained with 0.5 % DMSO. After 72 h treatment, 5 lL
of MTT (3-(4,5-dimethyl- thiazol-2-yl)-2,5-diphenyltet-

razolium bromide) reagent (R&D Systems, USA) along

with 45 lL of phenol red free DMEM (Sigma Life Science,

USA) without FBS was added to each well and plates were

incubated at 37 �C with 5 % CO2 for 4 h. Thereafter,

50 lL of solubilization buffer (R&D Systems, USA) was

added to each well to dissolve the colored formazan crys-

tals produced by the reduction of MTT. After 24 h, the

optical density was measured at 550 nm using microplate

reader (Bio-Rad, USA).
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