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Abstract Aromatase inhibitors are the most important

targets in treatment of estrogen-dependent cancers. In order

to search for potent non-steroidal aromatase inhibitors

(NSAIs) with lower side effects and overcome cellular

resistance, Genetic Algorithm with Linear Assignment of

Hypermolecular Alignment of Database was used to derive

3D pharmacophore models. The obtained best pharmaco-

phore model contains one acceptor atom, one donor atom,

and two hydrophobes, which was used in effective align-

ment of dataset. In succession, comparative molecular field

analysis (CoMFA) and comparative molecular similarity

indices analysis (CoMSIA) were performed on 84 struc-

turally diverse NSAIs to build 3D-QSAR models based on

both pharmacophore and docking alignments. The CoMFA

and CoMSIA models based on the pharmacophore align-

ment show better statistical results (CoMFA: q2 = 0.634,

rncv
2 = 0.986, rpred

2 = 0.737; CoMSIA: q2 = 0.668,

rncv
2 = 0.926, rpred

2 = 0.708). This 3D-QSAR approach

provides significant insights that can be used to develop

novel and potent NSAIs. In addition, the best pharmaco-

phore model was used as a 3D query for virtual screening

against NCI2000 database. The hit compounds were further

filtered by docking, and their biological activities were

predicted by the CoMFA and CoMSIA models, and six

structurally diverse compounds with good predicted pIC50

values were obtained, which are expected to design novel

NSAIs with new skeletons.
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Introduction

Aromatase is a cytochrome P-450 dependent enzyme that

catalyzes the aromatization of androgens to estrogens.

Aromatase inhibitors (AIs) reduce the synthesis of estro-

gens and offer a therapeutic alternative for the treatment of

estrogen-dependent cancers such as breast cancer (Winer

et al., 2005; Perez, 2006; Jordan and Brodie, 2007). There

are two classes of AIs, steroidal and non-steroidal com-

pounds, which cause potent estrogen suppression (Brueg-

gemeier et al., 2005). The non-steroidal aromatase

inhibitors (NSAIs) are mostly azole type compounds such

as the clinically used anastrozole and letrozole, which

compete with the substrate for binding to the enzyme active

site (Recanatini et al., 2002). Among steroidal aromatase

inhibitors (SAIs), formestane was widely used during the

early 1990s, but it is not used nowadays because of the

need to administer it by intramuscular injection. Therefore,

the orally active exemestane is the main steroidal inhibitor

(Seralini and Moslemi, 2001). These SAIs mimic the nat-

ural substrate androstenedione and are converted by the

enzyme to reactive intermediates, which bind irreversibly

to the enzyme active site, resulting in inactivation of aro-

matase (Hong et al., 2011). Despite the success of the third-

generation NSAIs (anastrozole and letrozole) and SAIs
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(exemestane), they still have some major side effects, such

as increase of bone loss, joint pain, and heart problems

(Dutta and Pant, 2008). In addition, after some years of

usage they can develop cellular resistance. For these rea-

sons, it is important to search for other potent and specific

molecules with lower side effects and which can overcome

the resistance phenomena.

Pharmacophore searches are the best option to find a

range of chemical structures with viable features. A phar-

macophore model can be considered as the ensemble of

steric and electrostatic features of different compounds

which are necessary to ensure optimal supramolecular

interactions with a specific biological target structure and

to trigger or to block its biological response. Thus, phar-

macophore modeling is the method of choice for the first

round of compound selection. This ability of a pharmaco-

phore model is used to find new classes of inhibitors when

one class is known. This is known as ‘scaffold hopping’

(Bhatt and Patel, 2012).

Three-dimensional quantitative structure–activity rela-

tionship (3D-QSAR) methods have been successfully

employed to assist the design of new small molecule drug

candidates (Honorio et al., 2007; Salum et al., 2007).

Comparative molecular field analysis (CoMFA) and com-

parative molecular similarity indices analysis (CoMSIA)

are two of the most widely used 3D-QSAR methodologies.

CoMFA calculates the energies of steric and electrostatic

interactions between the compound and the probe atom at

various intersections of a regular 3D lattice according to

Lennard-Jones and Coulomb potentials. The resulting

energies derived from these two potential functions can be

contoured to offer a quantitative spatial description of the

molecular properties (Cramer et al., 1988). CoMSIA

introduces the Gaussian function for the distance depen-

dence between the molecular atoms and the probe atom in

order to avoid some inherent deficiencies arising from the

Lennard-Jones and Coulomb potential functional forms.

CoMSIA is applied to gain an insight into how steric fields,

electrostatic fields, hydrophobic fields, hydrogen bond

donor (HBD), and hydrogen bond acceptor (HBA) influ-

ence the activity of inhibitors (Klebe et al., 1994).

Several structurally diverse NSAIs such as resveratrol ana-

logs, isoflavanonederivatives, and tetrahydropyrroloquinolinone

type compounds (Table 1), have been reported in the recent

literatures (Sun et al., 2010;Bonfield et al., 2012;Hu et al., 2012;

Yin et al., 2013). To understand the structural basis for inhibitory

activity and design more potent agents, pharmacophore models

were created and 3D-QSAR studies were performed for the fist

time for these structurally diverse NSAIs using CoMFA and

CoMSIAbasedonbothpharmacophoreanddockingalignments.

In addition, the obtained best pharmacophoremodelwas used as

a 3D query for virtual screening against NCI2000 database. The

hit compounds were further filtered by docking, and their

biological activities were predicted using CoMFA and CoMSIA

models.

Materials and methods

Dataset

Compounds 1–26 (resveratrol analogs) (Sun et al., 2010),

compounds 27–45, (isoflavanone derivatives) (Bonfield

et al., 2012), compounds 46–61 (Hu et al., 2012), and

compounds 62–84 (tetrahydropyrroloquinolinone type)

(Yin et al., 2013) were used for this analysis, and their

structures and bioactivity values are presented in Table 1.

The pIC50 (-log IC50) values were used to derive 3D-

QSAR models. The whole dataset of 84 compounds was

divided into two groups in the ratio of 4:1:a training set

with 63 compounds, a test set with 21 compounds

(Table 1). The selection of the training and test sets was

done manually such that low, moderate, and high activity

compounds were present in roughly equal proportions in

both sets. The training set was used to build predictive

models, while the test set was used to validate the pre-

dictive ability of the models.

Computational approach

The 3D-QSAR modeling analyses, calculations, and visu-

alizations were performed using the SYBYL 7.3 molecular

modeling package from Tripos Inc., St. Louis, Mo, USA,

installed on Red Hat Linux workstations. All the structures

were built, and energy was minimized with the following

steps: (i) optimization by Steepest Descent with initial

optimization of 200 simplex iterations using Tripos force

field and Gasteiger–Marsili charges; (ii) optimization by

conjugate gradient; and (iii) optimization by BFGS (Hu

et al., 2009).

Pharmacophore hypothesis

The pharmacophore hypothesis was generated using

Genetic Algorithm with Linear Assignment of Hypermo-

lecular Alignment of Database (GALAHAD) module of

SYBYL, which operates in two main stages: the ligands are

aligned to each other in internal coordinate space, and then

the conformations produced are aligned in Cartesian space.

The feature considered in developing the pharmacophore

model includes HBD atoms, HBA atoms, and hydrophobic

and charged centers (Richmond et al., 2006; Shepphird and

Clark, 2006; Andrade et al., 2008). In our study, twelve

compounds shown in Table 1 were selected to carry out the

pharmacophore hypothesis, and the genetic algorithm was

used to create conformers for all molecules. The
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Table 1 Chemical structures and bioactivity values of the non-steroidal aromatase inhibitors in current study

Compound General structure Substituents IC50 (lM)

1b

R1R2

R3

R4

R5

R6

R7

1,3,5,7-H; 2,4-OCH3; 6-NH2 0.59

2 2,4,5,7-H; 1,3-OCH3; 6-NH2 0.76

3 2,4,6,7-H; 1,3-OCH3; 5-NH2 11.14

4 2,3,5,7-H; 1,4-OCH3; 6-NH2 1.82

5a 3,4,5,7-H; 1,2-OCH3; 6-NH2 0.98

6 1,4,5,7-H; 2,3-OCH3; 6-NH2 14.51

7a 1,6,7-H; 2,3,4-OCH3; 5-NH2 16.42

8b 1,5,7-H; 2,3,4-OCH3; 6-NH2 0.90

9 4,5,7-H; 1,2,3-OCH3; 6-NH2 3.57

10 3,5,7-H; 1,2,4-OCH3; 6-NH2 2.28

11 1,4,6,7-H; 2,3-OCH2O–; 5-NH2 21.86

12 1,4,5,7-H; 2,3-OCH2O–; 6-NH2 8.49

13a 1,2,4,6,7-H; 3,5-NO2 8.33

14 1,3,4,5,7-H; 2-OCH3; 6-NH2 3.08

15 1,3,4,5,7-H; 2,6-NH2 7.46

16 1,3,5,7-H; 2,4,6-NH2 8.51

17a 1,3,5,7-H; 2,4-OAc; 6-NH2 2.94

18 1,3,5,7-H; 2,4-OH; 6-NH2 5.0

19
R1

R2

R3

R4

2-H; 1,3-OCH3; 4-NH2 2.76

20 3-H; 1,2-OCH3; 4-NH2 0.67

21a 1,2,3-OCH3; 4-NH2 2.79

22 2,3-H; 1,4-NH2 3.21

23

N

N

R

O
–NO2 0.19

24 –NH2 1.84

25a

N

N

R

OCH3

OCH3

–NO2 0.07

26b –NH2 0.036
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Table 1 continued

Compound General structure Substituents IC50 (lM)

27

O

OR1

R3

R4

R9

R8

R7

R6

R5

R2

1,2,3,4,5,6,7,8,9-H 29

28 1,3,4,5,6,7,8,9-H; 2-CH3 44

29 1,2,4,5,6,7,8,9-H; 3-CH3 18

30a 1,2,3,4,5,7,8,9-H; 6-CH3 20

31 1,2,3,4,5,6,7,9-H; 8-CH3 41

32 3,4,5,6,7,8,9-H; 1,2-Benzo 20

33 1,2,3,4,5,6,8,9-H; 7-OPh 2.4

34b 1,3,4,5,6,7,8,9-H; 2-OCH3 0.26

35 1,2,4,5,6,7,8,9-H; 3-OCH3 41

36a 1,2,3,4,6,7,8,9-H; 5-OCH3 97

37 1,2,3,4,5,7,8,9-H; 6-OCH3 99

38 1,2,3,4,5,6,8,9-H; 7-OCH3 24

39a 1,2,3,4,5,7,9-H; 6,8-OCH3 11

40 1,3,4,5,6,7,8,9-H; 2-F 32

41 1,3,4,5,6,7,8,9-H; 2-Cl 5.1

42a 1,3,4,5,6,7,8,9-H; 2-Br 29

43 1,3,4,5,6,7,8,9-H; 2-t Bu 61

44

O

R

O 3-Thiophene 30

45a 3-Pyridyl 5.8

46

N

N

O

R3

R1

R2

1,2-H; 3-Me 0.426

47a 1-OH; 2,3-H 3.073

48a 1-OMe; 2,3-H 0.447

49 1-OMe; 2-H; 3-Me 0.049

50 1-OEt; 2,3-H 0.488

51a 1-OEt; 2-H; 3-Me 0.048

52 1-O-c-Pent; 2,3-H 0.162

53b 1-O-c-Pent; 2-H; 3-Me 0.022

54 1-OBz; 2,3-H 0.035

55b 1-OBz; 2-H; 3-Me 0.011

56 1,3-H; 2-Br 2.901

57a 1,3-H; 2-Ph 0.394

58 1,3-H; 2-(30-Py) 0.954

59 1,3-H; 2-(30-Thienyl) 0.275

60b N

HO

O

0.038
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Table 1 continued

Compound General structure Substituents IC50 (lM)

61b

N

N
NC

0.052

62

N N

R

O

H 3.34

63 Ph 2.13

64a 2-MeOPh 3.66

65 3-ClPh 1.35

66b 4-FPh 0.14

67

N
N

O

R OH 2.13

68 =CH2 0.565

69 Me 1.50

70 i-Pr 0.889

71 c-Hex 0.074

72 Ph 0.105

73a Ph, OH 0.88

74a 2-MeOPh 0.081

75b 3-MeOPh 0.059

76 4-MeOPh 0.124

77 3-FPh 0.074

78a 4-FPh 0.116

79b 3-ClPh 0.019

80 4-ClPh 0.055

81a 3-CH3Ph 0.032

82 3,5-diCF3Ph 0.246

83a

NO

N
N

0.228

84b

N

NN

CN

NC

0.036

a Test-set compounds
b Compounds used to generate pharmacophore models
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compounds selected to generate the pharmacophore

hypothesis are highly active and structurally diverse.

Molecular docking

The crystal structure of aromatase complexed with NSAIs

in present study has not yet been reported. Therefore, the

crystal structure of aromatase complexed with ASD (PDB

code: 3S79) from the RCSB Protein Data Bank was used

(Ghosh et al., 2012). The molecular docking was per-

formed using the Surflex-Dock module of SYBYL. All

parameters were set with default values in the whole pro-

cess. Before docking, the ligand was extracted, all the

water molecules were removed, and hydrogen atoms were

added to the receptor. The protomol was produced using

docking-based method: ligand location in the same coor-

dinate space in the receptor. In our study, each conformer

of all 84 inhibitors was docked into the binding site ten

times, and the docking score values were used to evaluate

the docking analysis. The top ranked conformations for

each molecule were extracted and aligned together for the

subsequent CoMFA and CoMSIA modeling (Wang et al.,

2012). The Surflex-Dock was also used to filter the hit

compounds in the virtual screening.

Molecular alignment

The 3D structural alignment is a crucial component in 3D-

QSA studies, and affects the outcome of the CoMFA and

CoMSIA statistical analysis. There are three main different

procedures proposed for aligning molecules for 3D-QSAR:

maximum common substructures overlap, pharmacophore

overlap and docking-based alignment (Hu et al., 2009).

Both of pharmacophore- and docking-based alignment

procedures were performed in the present study because of

structural diversity of the studied compounds. Pharmaco-

phore-based alignment was done using GALAHAD and

docking-based alignment was done using Surlflex-Dock.

CoMFA and CoMSIA models

In CoMFA, the steric fields were calculated using a Len-

nard-Jones potential, while the electrostatic fields were

calculated using a Coulombic potential. To calculate the

CoMFA fields, a 3D-cubic lattice with grid spacing of

2.0 Å in X, Y, and Z directions was created automatically

by SYBYL. The grid pattern extended 4.0 Å units in all

directions beyond the dimensions of each molecule. The

steric and electrostatic probe-ligand interaction energies

were calculated using a sp3 carbon probe atom and a ?1.0

charge with a distance-dependent dielectric function at

each lattice point. The cut-off for energies was set to

±30 kcal/mol, and the electrostatic contributions were

ignored at lattice points with maximal steric interactions

(Cramer et al., 1988). In CoMSIA, five different similarity

fields (steric, electrostatic, hydrophobic, HBD, and HBA)

were calculated. CoMSIA models were also derived with

the same lattice box, and all five fields were calculated

using a probe of charge ?1, a radius of 1, hydrophobicity

and hydrogen bonding properties of ?1, and an attenuation

factor of 0.3 for the Gaussian distance-dependent function

(Klebe et al., 1994).

Statistical analysis

In order to derive 3D-QSAR models, CoMFA and CoM-

SIA descriptors were used as independent variables and the

pIC50 values as the dependent variables. PLS method with

cross-validation (leave-one-out) was used in SYBYL to

determine the optimal numbers of components using cross-

validated coefficient q2 (rcv
2 ). After obtaining the optimal

numbers of components, a PLS analysis was performed

with no validation and column filtering 2.0 to generate the

final model with the training set. The obtained final non-

cross-validated correlation coefficient (rncv
2 ) is a measure of

the quality of the model. The predictive capability of the

3D-QSAR models was determined from the predictive

Table 2 The selected models and their statistical values after GALAHAD run

No. Specificity N_hits Features Pareto rank Energy Sterics H-bond Mol_Qry

Model_01 3.25 12 4 0 20.71 227.90 34.70 8.86

Model_03 3.20 11 4 0 39.46 250.20 32.10 5.33

Model_07 1.98 8 5 0 44.13 197.60 33.00 11.35

Model_08 1.89 12 4 0 28.18 206.80 32.30 15.77

Model_14 3.08 10 4 0 18.02 233.40 30.20 9.13

Model_18 3.12 9 5 0 12.62 150.70 32.70 5.14

Mina 1.89 6 2 0 12.62 150.70 30.20 0.00

Maxa 4.22 12 7 0 2 9 107 268.00 36.90 15.77

a Minimum and maximum values between all the obtained 20 models
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correlation (rpred
2 ). The predicted activities for the test set

were obtained from the model produced by the training set.

Results and discussion

Pharmacophore generation

Twenty pharmacophore models were generated with default

parameters after GALAHAD run. Each of the obtained models

represents a different tradeoff among the conflicting demands

of maximizing steric consensus, maximizing pharmacophore

consensus, and minimizing energy. All the twenty models had

Pareto rank 0, which means no one model is superior to any

other one. Some models had very high energy, which is rec-

ognized that high energy values are due to steric clashes

(Dorfman et al., 2008). Small value of energy and high values

of N_hits, Sterics, and Mol_Qry are desired for the best model

(Caballero, 2010), so six models were chosen for the analysis,

and their statistical values are shown in Table 2. All the

selected models were used for the molecular alignment to

produce CoMFA and CoMSIA models. Model_08 was con-

sidered to be the best model as the best CoMFA and CoMSIA

results were obtained when Model_08 was used to align the

dataset. This model contains one acceptor atom, one donor

atom, and two hydrophobes, which is shown in Fig. 1. The

acceptor atom and donor atom are very close to each other. In

addition, this model was further converted into aUNITY query

for virtual screening studies.

CoMFA and CoMSIA statistical results

The structural alignment of compounds plays a very important

role in the development of successful 3D-QSARmodels, so all

Fig. 1 The best GALAHAD model includes one acceptor atom

(green), one donor atom (magenta), and two hydrophobes (cyan). The

sphere sizes indicate query tolerances (Color figure online)

Fig. 2 a pharmacophore-based alignment of NSAIs in the training

set. b docking-based alignment of NSAIs in the training set

Table 3 Summary of CoMFA and CoMSIA results

Components Pharmacophore-

based model

Docking-based

model

CoMFA CoMSIA CoMFA CoMSIA

q2(rcv
2 ) 0.634 0.668 0.563 0.469

rncv
2 0.986 0.962 0.824 0.761

SEE 0.131 0.215 0.448 0.522

F value 564.951 236.690 140.290 95.754

rpred
2 0.737 0.708 0.532 0.618

No. of compounds 63 63 63 63

No. of optimal components 7 6 2 2

Contribution

Steric 0.354 0.130 0.277 0.092

Electrostatic 0.646 0.319 0.723 0.287

Hydrophobic – 0.200 0.158

H-bond donor – 0.128 0.165

H-bond acceptor – 0.224 0.298
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compounds of the dataset were aligned according to both

pharmacophore and docking to derive the CoMFA and CoM-

SIA models in the present study. Figure 2a, b show pharma-

cophore-based and docking-based alignments of training set

molecules used in 3D-QSAR models, respectively.

To obtain an effective 3D-QSAR model, a number of

statistical parameters, q2(rcv
2 ), rncv

2 , standard error estimate

Table 4 Observed and predicted pIC50 of the training and test sets

using CoMFA and CoMSIA models

Compound Observed pIC50 CoMFA CoMSIA

Pred. Res. Pred. Res.

1 6.229 6.201 0.028 6.111 0.118

2 6.119 6.120 -0.001 6.029 0.090

3 4.953 5.084 -0.131 4.943 0.010

4 5.740 5.586 0.154 5.911 -0.171

5a 6.009 6.164 -0.155 5.965 0.044

6 4.838 5.003 -0.165 5.486 -0.648

7a 4.785 4.643 0.142 5.169 -0.384

8 6.046 6.085 -0.039 6.124 -0.078

9 5.447 5.525 -0.078 5.277 0.170

10 5.642 5.560 0.082 5.730 -0.088

11 4.660 4.474 0.186 4.695 -0.035

12 5.071 5.039 0.032 5.184 -0.113

13a 5.079 5.497 -0.418 5.646 -0.567

14 5.511 5.555 -0.044 5.335 0.176

15 5.127 5.134 -0.007 5.055 0.072

16 5.070 5.021 0.049 4.921 0.149

17a 5.532 5.322 0.210 5.609 -0.077

18 5.301 5.387 -0.086 5.320 -0.019

19 5.559 5.536 0.023 5.613 -0.054

20 6.174 6.107 0.067 5.838 0.336

21a 5.554 5.056 0.498 5.394 0.160

22 5.493 5.342 0.151 5.402 0.091

23 6.721 6.690 0.031 6.561 0.160

24 5.735 5.775 -0.040 5.693 0.042

25a 7.155 7.378 -0.223 6.157 0.998

26 7.444 7.430 0.014 7.619 -0.175

27 4.538 4.600 -0.062 4.486 0.052

28 4.357 4.518 -0.161 4.581 -0.224

29 4.745 4.753 -0.008 4.807 -0.062

30a 4.699 4.744 -0.045 4.784 -0.085

31 4.387 4.452 -0.065 4.574 -0.187

32 4.699 4.735 -0.036 4.628 0.071

33 5.620 5.630 -0.010 5.696 -0.076

34 6.585 6.637 -0.052 6.638 -0.053

35 4.387 4.345 0.042 4.231 0.156

36a 4.013 5.072 -1.059 4.522 -0.509

37 4.004 4.037 -0.033 3.904 0.097

38 4.620 4.581 0.039 4.569 0.051

39a 4.959 4.142 0.817 4.030 0.929

40 4.495 4.849 -0.354 4.696 -0.201

41 5.292 4.832 0.460 4.718 0.574

42a 4.538 4.897 -0.359 4.825 -0.287

43 4.215 4.106 0.109 4.128 0.087

44 4.523 4.495 0.028 4.835 -0.312

45a 5.237 6.379 -1.142 6.607 -1.370

46 6.371 6.344 0.027 6.576 -0.205

Table 4 continued

Compound Observed pIC50 CoMFA CoMSIA

Pred. Res. Pred. Res.

47a 5.512 5.592 -0.080 5.154 0.358

48a 6.350 6.040 0.310 6.246 0.104

49 7.310 7.283 0.027 7.053 0.257

50 6.312 6.317 -0.005 6.398 -0.086

51a 7.319 6.809 0.510 6.829 0.490

52 6.790 6.698 0.092 6.655 0.135

53 7.658 7.624 0.034 7.603 0.055

54 7.456 7.689 -0.233 7.534 -0.078

55 7.959 7.844 0.115 7.676 0.283

56 5.537 5.731 -0.194 5.625 -0.088

57a 6.405 6.111 0.294 6.345 0.060

58 6.020 5.939 0.081 5.872 0.148

59 6.561 6.526 0.035 6.403 0.158

60 7.420 7.421 -0.001 7.690 -0.270

61 7.284 7.212 0.072 6.908 0.376

62 5.476 5.470 0.006 5.622 -0.146

63 5.672 5.703 -0.031 5.967 -0.295

64a 5.437 6.051 -0.614 6.131 -0.694

65 5.870 6.051 -0.181 5.965 -0.095

66 6.854 6.770 0.084 6.816 0.038

67 5.672 5.636 0.036 5.637 0.035

68 6.248 6.311 -0.063 6.113 0.135

69 5.824 5.894 -0.070 6.190 -0.366

70 6.051 6.012 0.039 6.212 -0.161

71 7.131 7.042 0.089 7.052 0.079

72 6.979 7.211 -0.232 7.088 -0.109

73a 6.056 6.191 -0.135 6.240 -0.184

74a 7.092 6.503 0.589 6.747 0.345

75 7.229 7.417 -0.188 6.980 0.249

76 6.907 6.981 -0.074 7.244 -0.337

77 7.131 6.917 0.214 6.910 0.221

78a 6.936 6.807 0.129 6.943 -0.007

79 7.721 7.506 0.215 7.361 0.360

80 7.260 7.172 0.088 7.356 -0.096

81a 7.495 6.912 0.583 6.907 0.588

82 6.609 6.597 0.012 6.599 0.010

83a 6.642 6.480 0.162 6.539 0.103

84 7.444 7.556 -0.112 7.660 -0.216

a Test-set compounds
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(SEE), and F-statistic values (F) were computed as defined

in SYBYL. The CoMFA and CoMSIA results obtained

from both pharmacophore- and docking-based alignments

are shown in Table 3, which show that the pharmacophore-

based CoMFA and CoMSIA models exhibit better statis-

tical results than the docking-based CoMFA and CoMSIA

models, where the pharmacophore-based modeling yielded

q2(rcv
2 ) = 0.634, rncv

2 = 0.986 for CoMFA model and

q2(rcv
2 ) = 0.668, rncv

2 = 0.962 for CoMSIA model, while

the docking-based modeling gave q2(rcv
2 ) = 0.563,

rncv
2 = 0.824 for CoMFA model, q2(rcv

2 ) = 0.469, rncv
2 =

0.761 for CoMSIA model, respectively.

We mainly focus on the CoMFA and CoMSIA

obtained from pharmacophore-based alignment due to its

more satisfactory statistical results. As shown in Table 3,

the CoMFA model has a high q2 (rcv
2 ) of 0.634 with seven

optimal components. This CoMFA model has rncv
2 of

0.986, SEE of 0.131 and F value of 564.951. The cor-

responding field contributions of steric and electrostatic

are 0.354 and 0.646, respectively, which means the

electrostatic field gives more contribution to activity than

the steric field. The CoMSIA model (q2 = 0.668,

rncv
2 = 0.962, F = 236.690, SEE = 0.215) was obtained

using the combination of steric, electrostatic, hydropho-

bic, HBD, and HBA fields with six optimal components.

The corresponding field contributions are 0.130, 0.319,

0.200, 0.128, and 0.224, respectively. Both CoMFA and

CoMSIA models obtained from pharmacophore-based

Fig. 3 Plots of observed versus predicted activities of the training set and test set molecules from CoMFA analysis

Fig. 4 Plots of observed versus predicted activities of the training set and test set molecules from CoMSIA analysis
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alignment are fairly good as their q2 values are more than

0.6.

In order to validate the 3D-QSAR models, rpred
2 was used

to determine the predictive abilities of the CoMFA and

CoMSIA models from the 21 compounds (test set) which

were not included in the generation of the models. The

obtained rpred
2 of the test set is 0.737 and 0.708 for the

CoMFA and CoMSIA model, respectively, which indicates

that both models have high predictive ability. The observed

and predicted pIC50 by the CoMFA and CoMSIA model of

the training and test sets are given in Table 4, and the

correlations between the observed and predicted pIC50 of

training and test sets are depicted in Fig. 3 for CoMFA

model, Fig. 4 for CoMSIA model, respectively.

CoMFA contour maps

The steric contour maps for the CoMFA model with two

most active inhibitor compounds 55 and 79 are shown in

Fig. 5a, b, respectively. In these figures, the green contours

represent regions of high steric tolerance (80 % contribu-

tion), while the yellow contours represent regions of low

steric bulk tolerance (20 % contribution). Figure 5a com-

bined with compound 55 shows that a large green contour

near the –OBz group attached to the 2-position of benzene

ring indicates that a bulky group in this position is favor-

able to bioactivity. It is confirmed by the fact that com-

pounds 52–55 and 60 with bulky substitution in that

position have higher bioactivity while compounds 56–59

Fig. 5 CoMFA contour maps (standard deviation 9 coefficient) in

combination with compounds 55 and 79. a, b Steric contour maps:

green contours (80 % contribution) refer to sterically favored regions;

yellow contours (20 % contribution) indicate sterically disfavored

regions. c, d Electrostatic contour maps: blue contours (80 %

contribution) refer to regions where positively charged substituents

are favored; red contours (20 % contribution) indicate regions where

negatively charged substituents are favored (Color figure online)
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Fig. 6 CoMSIA contour maps (standard deviation 9 coefficient). a,
b Hydrophobic contour maps in combination with compounds 73 and

79: white contours refer to regions where hydrophilic substituents are

favored; yellow contours indicate regions where hydrophobic sub-

stituents are favored. c HBD contour map in combination with

compound 1: cyan contours indicate HBD substituents in this region

are favorable to activity; purple contours represent that HBD groups

in this area are unfavorable. d, e HBA contour maps in combination

with compounds 55 and 79: magenta contours show regions where

HBA substituents are expected; red contours refer to areas where

HBA substituents are unexpected (Color figure online)
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with no substitution in that position have lower bioactivity.

A large green contour near the 3-ClPh group can also be

observed in Fig. 5b combined with compound 79, which

suggests that a bulky group in this region will increase

inhibitory activity. This is supported by the higher activity

of compounds 74–82, which have large substituents in that

position, compared with the lower activity of compounds

68–70, which have small substituents in that position.

The CoMFA electrostatic contour maps in combination

with compounds 55 and 79 are shown in Fig. 5c, d,

respectively. The red areas are the regions where a negative

potential is favorable to activity, while a negative potential

is unfavorable in the blue areas. Figure 5c combined with

compound 55 displays a red contour near the nitrogen atom

of the pyridine ring, which indicates that the bioactivity can

be enhanced if an electronegative atom is present. It is clear

that most of the compounds 46–60 with a nitrogen atom in

that position have high inhibitory activity. Similarly,

Fig. 5d combined with compound 79 also shows a red

contour near the nitrogen atom of the pyridine ring, which

means that an electronegative atom in this position can

increase the bioactivity. This can be confirmed by the

higher activity of compounds 72, 74, and79, compared with

the lower activity of compounds 63, 64 and 65,

respectively.

CoMSIA contour maps

CoMSIA not only calculates steric and electrostatic fields

as in CoMFA, but also additionally computes hydrophobic,

HBD, and HBA fields. The steric and electrostatic contour

maps of CoMSIA are consistent with those of CoMFA. The

contour maps of CoMSIA hydrophobic, HBD, and HBA

fields are presented in Fig. 6. For each field, the favorable

and disfavored contours represent 80 and 20 % level con-

tributions, respectively. The hydrophobic contour maps in

combination with compounds 73 and 79 are shown in

Fig. 6a, b, respectively, in which yellow contours indicate

regions where hydrophobic groups are favorable to bioac-

tivity while white contours represent areas where hydro-

philic groups are favorable. Figure 6a combined with

compound 73 shows that Ph group is near the white region

and –OH group is near the yellow region, while Fig. 6b

combined with compound 79 shows that –ClPh group is

near the yellow region. This is supported by the case that

the activity of compound 73 is much lower than that of

compound 79.

The HBD contour map in combination with compound 1

is present in Fig. 6c, in which cyan contours indicate that

HBD substituents in this region are favorable to activity

while purple contours represent that HBD groups in this area

are unfavorable. Two cyan contours are shown near the

–NH2 group of the compound 1, which indicates the

necessity of the hydrogen atoms at this position for high

bioactivity. It is confirmed by the fact that the compounds 2,

8, and 12 with –NH2 group at 6-position have higher bioac-

tivity compared with the compounds 3, 7, and 11 with –NH2

group at 5-position have lower bioactivity, respectively.

Figure 6d, e show the HBA contour maps in combination

with compounds 55 and 79, respectively, where magenta

and red contours represent areas where HBA substituents

are favored and disfavored, respectively. Figure 6d com-

bined with compound 55 displays that one magenta contour

is near the carbonyl group, and the other magenta contour is

near the nitrogen atom of the pyridine ring, which indicates

that the activity can be enhanced if the electronegative

Fig. 7 Plots of C_score values

versus biological activity (pIC50

values) of 84 inhibitors
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Table 5 Chemical structures and their predicted activity values of screened hit compounds

Hit compound Structure pIC50 (predicted

by CoMFA)

pIC50 (predicted

by CoMSIA)

NCI 170394

O

N
N

Cl

Cl

O

7.748 7.619

NCI 150322

N

O

NO2 7.277 6.880

NCI 617389

Si O O
O

6.743 7.669

NCI 60353

N
N

O

O

O

6.987 6.731

NCI 4048

O

O

OO O

O

6.400 6.833

NCI 170454

O
O

O N
H

O

N
H

O
6.540 6.401
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atoms are in these two positions. It is supported by the case

that most of the compounds 46–60,which have nitrogen and

oxygen atoms in these two positions, show high bioactivity.

Similarly, Fig. 6e combined with compound 79 also shows

that one magenta contour is near the carbonyl group, and the

other magenta contour is near the nitrogen atom of the

pyridine ring, which represents that the electronegative

atoms in these two positions can increase the bioactivity.

This is confirmed by the higher activity of compounds 72,

74, and 79 compared with the lower activity of compounds

63, 64, and 65, respectively.

Docking analysis

In order to validate the docking model in the virtual

screening, the C_score values of all 84 inhibitors were

tested using Surflex-Dock, and the correlations between the

C_score values and pIC50 values are depicted in Fig. 7. It

can be seen that 75 of 84 inhibitors have positive C_score

values, so the hit compounds should have positive C_score

values in the virtual screening.

Virtual screening

The obtained best GALAHAD model (Fig. 1) was con-

verted into a UNITY query, which was screened against

NCI2000 database. The ‘‘flexible database search’’ option

was implemented to perform virtual screening. Primary

filters such as Lipinski’s rule of five, Van der Waals

bumps, and QFIT (pharmacophoric match between query

and the hit compound) were applied to reduce the dataset

(Kothandan et al., 2013). The screening of the pharma-

cophore query yielded 336 hits that met the specific

requirements. The 336 hit compounds were further sub-

jected to molecular docking using the Sulflex-Dock

module of SYBYL. 174 compounds were selected based

on the docking score values (C_score value[ 0). The

pIC50 values of the selected 174 compounds were pre-

dicted using CoMFA and CoMSIA models generated on

the basis of pharmacophore alignment. Finally, six

structurally diverse compounds with good pIC50 values

predicted by both CoMFA and CoMSIA models (both

pIC50[ 6.40) are listed in Table 5. Thus, these potential

hit compounds are expected to design novel NSAIs with

new skeleton.

Conclusion

Aromatase inhibitors have proven to be the most important

targets for treatment of estrogen-dependent cancers. In

order to search for more potent NSAIs with lower side

effects and overcome the drug resistance, pharmacophore

modeling, virtual screening, and 3D-QSAR studies were

performed. Pharmacophore model was derived from twelve

highly active and structurally diverse compounds using

GALAHAD. The best pharmacophore model includes one

acceptor atom, one donor atom, and two hydrophobes,

which was used as a query to search NCI2000 database.

336 hit compounds were obtained after the screening of the

pharmacophore query, and 90 compounds were selected by

molecular docking. Finally, six structurally diverse com-

pounds with good predicted pIC50 values were obtained,

which are expected to design novel NSAIs with new

skeletons. The 3D-QSAR techniques based on both phar-

macophore and docking alignments, CoMFA and CoM-

SIA, were applied to 84 NSAIs with different skeletons.

The CoMFA and CoMSIA models obtained from phar-

macophore-based alignment shows better statistical results,

q2 = 0.634, rncv
2 = 0.986, rpred

2 = 0.737 for CoMFA and

q2 = 0.668, rncv
2 = 0.962, rpred

2 = 0.708 for CoMSIA,

which indicate that these structurally diverse NSAIs must

bind to the same active site of aromatase, and it is feasible

to drive CoMFA and CoMSIA models based on structur-

ally diverse compounds. The present pharmacophore

modeling, virtual screening, and 3D-QSAR approach pro-

vides useful information to design and synthesize novel

NSAIs.

Acknowledgments This work was financially supported by the

Science and Technology Planning Project of Yunnan Province (No.

2011FZ096).

References

Andrade CH, Salum LB, Pasqualoto KFM, Ferreira EI, Andricopulo

AD (2008) Three-dimensional quantitative structure-activity

relationships for a large series of potent antitubercular agents.

Lett Drug Des Discov 5:377–387

Bhatt HG, Patel PK (2012) Pharmacophore modeling, virtual

screening and 3D-QSAR studies of 5-tetrahydroquinolinylidine

aminoguanidine derivatives as sodium hydrogen exchanger

inhibitors. Bioorg Med Chem Lett 22:3758–3765

Bonfield K, Amato E, Bankemper T, Agard H, Steller J, Keeler JM,

Roy D, McCallum A, Paula S, Ma L (2012) Development of a

new class of aromatase inhibitors: Design, synthesis and

inhibitory activity of 3-phenylchroman-4-one (isoflavanone)

derivatives. Bioorg Med Chem 20:2603–2613

Brueggemeier RW, Hackett JC, Diaz-Cruz ES (2005) Aromatase

inhibitors in the treatment of breast cancer. EndocrRev 26:331–345

Caballero J (2010) 3D-QSAR (CoMFA and CoMSIA) and pharma-

cophore (GALAHAD) studies on the differential inhibition of

aldose reductase by flavonoid compounds. J Mol Graph Model

29:363–371

Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular

field analysis (CoMFA). 1. Effect of shape on binding of steroids

to carrier proteins. J Am Chem Soc 110:5959–5967

Dorfman RJ, Smith KM, Masek BB, Clark RD (2008) A knowledge-

based approach to generating diverse but energetically

1914 Med Chem Res (2015) 24:1901–1915

123



representative ensembles of ligand conformers. J Comput Aided

Mol Des 22:681–691

Dutta U, Pant K (2008) Aromatase inhibitors: past, present and future

in breast cancer therapy. Med Oncol 25:113–124

Ghosh D, Lo J,MortonD,Valette D, Xi J, Griswold J, Hubbell S, Egbuta

C, JiangW,An J,DaviesHM(2012)NovelAromatase Inhibitors by

Structure-Guided Design. J Med Chem 55:8464–8476

Hong Y, Rashid R, Chen S (2011) Binding features of steroidal and

nonsteroidal inhibitors. Steroids 76:802–806

Honorio KM, Garratt RC, Polikatpov I, Andricopulo AD (2007) 3D

QSAR comparative molecular field analysis on nonsteroidal

farnesoid X receptor activators. J Mol Graph Model

25:921–927

Hu RJ, Barbault F, Delamar M, Zhang RS (2009) Receptor- and

ligand-based 3D-QSAR study for a series of non-nucleoside

HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem

17:2400–2409

Hu QZ, Yin L, Hartmann RW (2012) Selective dual inhibitors of

CYP19 and CYP11B2: targeting cardiovascular diseases hiding

in the shadow of breast cancer. J Med Chem 55:7080–7089

Jordan VC, Brodie AMH (2007) Development and evolution of

therapies targeted to the estrogen receptor for the treatment and

prevention of breast cancer. Steroids 72:7–25

Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices

in a comparative analysis (CoMSIA) of drug molecules to

correlate and predict their biological activity. J Med Chem

37:4130–4146

Kothandan G, Madhavan T, Gadhe CG, Cho SJ (2013) A combined

3D QSAR and pharmacophore-based virtual screening for the

identification of potent p38 MAP kinase inhibitors: an in silico

approach. Med Chem Res 22:1773–1787

Perez EA (2006) Appraising adjuvant aromatase inhibitor therapy.

Oncologist 11:1058–1069

Recanatini M, Cavalli A, Valenti P (2002) Nonsteroidal aromatase

inhibitors: recent advances. Med Res Rev 22:282–304

Richmond NJ, Abrams CA, Wolohan PRN, Abrahamian E, Willett P,

Clark RD (2006) GALAHAD: 1. Pharmacophore identification

by hypermolecular alignment of ligands in 3D. J Comput Aided

Mol Des 20:567–587

Salum LD, Polikarpov I, Andricopulo AD (2007) Structural and

chemical basis for enhanced affinity and potency for a large

series of estrogen receptor ligands: 2D and 3D QSAR studies.

J Mol Graph Model 26:434–442

Seralini GE, Moslemi S (2001) Aromatase inhibitors: past, present

and future. Mol Cell Endocrinol 178:117–131

Shepphird JK, Clark RD (2006) A marriage made in torsional space:

using GALAHAD models to drive pharmacophore multiplet

searches. J Comput Aided Mol Des 20:763–771

Sun B, Hoshino J, Jermihov K, Marler L, Pezzuto JM, Mesecar AD,

Cushman M (2010) Design, synthesis, and biological evaluation

of resveratrol analogues as aromatase and quinone reductase 2

inhibitors for chemoprevention of cancer. Bioorg Med Chem

18:5352–5366

Wang JN, Wang FF, Xiao ZT, Sheng GW, Li Y, Wang YH (2012)

Molecular simulation of a series of benzothiazole PI3 K alpha

inhibitors: probing the relationship between structural features,

anti-tumor potency and selectivity. J Mol Model 18:2943–2958

Winer EP, Hudis C, Burstein HJ et al (2005) American society of

clinical oncology technology assessment on the use of aromatase

inhibitors as adjuvant therapy for postmenopausal women with

hormone receptor-positive breast cancer: status report 2004.

J Clin Oncol 23:619–629

Yin L, Hu QZ, Hartmann RW (2013) Tetrahydropyrroloquinolinone

type dual inhibitors of aromatase/aldosterone synthase as a novel

strategy for breast cancer patients with elevated cardiovascular

risks. J Med Chem 56:460–470

Med Chem Res (2015) 24:1901–1915 1915

123


	Pharmacophore modeling, virtual screening, and 3D-QSAR studies on a series of non-steroidal aromatase inhibitors
	Abstract
	Introduction
	Materials and methods
	Dataset
	Computational approach
	Pharmacophore hypothesis
	Molecular docking
	Molecular alignment
	CoMFA and CoMSIA models
	Statistical analysis

	Results and discussion
	Pharmacophore generation
	CoMFA and CoMSIA statistical results
	CoMFA contour maps
	CoMSIA contour maps
	Docking analysis

	Virtual screening
	Conclusion
	Acknowledgments
	References




