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Abstract Dyrk family enzymes are essential components

of important signaling casades in the pathophysiology of

cancer and Alzheimer’s disease. Especially, Dyrk2 bio-

logical expression levels regulate key signaling processes

in these diseases. In the present work, a pharmacophore-

based 3D-QSAR model was generated for a series of leu-

cettine analogs possessing Dyrk2 inhibitory activity.

Developed pharmacophore model contains four hydrogen

bond acceptors (A) and one hydrophobic aromatic ring (R).

These are crucial molecular fingerprints which predict

binding efficacy of high affinity and low affinity ligands to

the Dyrk2 enzyme. These pharmacophoric features point

toward key structural requirements of leucettines for potent

Dyrk2 inhibition. Furthermore, a biological correlation

between pharmacophore hypothesis-based 3D-QSAR

variables and functional fingerprints of leucettines

responsible for the receptor binding was observed. Align-

ment of the developed model with Dyrk2 crystal structure

indicated importance of A3 and A4 H-bond accetor sites,

which are involved in the important interactions with

Leu231A and Lys178A residues of the active site. Excel-

lent statistical results of QSAR model such as good cor-

relation coefficient (r2 [ 0.95), higher F value (F [ 106),

and excellent predictive power (Q2 [ 0.7) with low stan-

dard deviation (SD \ 0.2) strongly suggest that the

developed model is good for the future prediction of Dyrk2

inhibitory activity of new leucettine analogs.

Keywords Anti-Alzheimer � Pharmacophore model �
QSAR � Dyrk2 � Partial least square analysis � Leucettines

Abbreviations

3D-QSAR 3-Dimensional quantitative structure–activity

relationship

Dyrk1A Dual-specificity tyrosine-phosphorylated and

regulated kinase 1a

Dyrk2 Dual-specificity tyrosine-phosphorylated and

regulated kinase 2

PLS Partial least square

RMSD Relative mean square deviation

RMSE Root-mean-square error

SD Standard deviation

r2 Correlation coefficient

Q2 Correlation coefficient for test set

Introduction

Dual-specificity tyrosine-phosphorylation-regulated kinase

(Dyrk) belongs to an evolutionarily conserved family of

proteins known as Dyrk’s involved in functions generally

related with cellular growth and development (Laguna

et al., 2008). These kinases are over-expressed in neuro-

degenerative diseases such as Alzheimer’s disease, Par-

kinson’s disease, Huntington’s disease, and Pick disease

(Park et al., 2009; Ferrer et al., 2005). Dyrk’s were well

known as dual-specificity kinases because of their capac-

ity to catalyze self-activation process through auto-
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phosphorylation of a single tyrosine residue in their acti-

vation loop (for example, Tyr321 in Dyrk1A) as well as the

phosphorylation of serine and threonine residues in exog-

enous protein substrates (Lochhead et al., 2005). Dyrk2

plays important role during development of human adult

testis. Dyrk2 is also over-expressed in adenocarcinomas of

the esophagus and lung (Miller et al., 2003). Interestingly,

in recurrent non-small cell lung cancer patients, high Dyrk2

expression is positive indicator of chemotherapy response

(Yamashita et al., 2009). The precise role of Dyrk2 in

cancer, however, needs further systematic experimentation.

Dyrk2 was also implicated in developmental and cellular

processes such as cellular proliferation, cytokinesis, regu-

lation of protein and glycogen synthesis, and cellular dif-

ferentiation (Yoshida, 2008). Dyrk2 also regulates p53

gene to induce apoptosis pathways in response to DNA

damage or mutation (Taira et al., 2007). More recently

Dyrk2’s role as a scaffold for an E3 ubiquitin ligase

complex has been revealed. The scaffolding function is

independent of its kinase activity, but the subsequent

phosphorylation and degradation of the substrate katanin

p60 is dependent on the catalytic activity of Dyrk2

(Maddika and Chen, 2009). Over the ensuing years, studies

established the central role of Dyrk2 in regulation of body

growth and normal brain development by phosphorylating

numerous protein substrates including other kinases, as

well as splicing, transcription, and translation factors.

However, history of drug-discovery aiming Dyrk2 is very

small. Extensive drug discovery efforts in last 3 years led

to the development of novel Dyrk-2 inhibitors like in-

dirubin-30-monooxime derivative 1 (Filippakopoulos et al.,

2010), harmine 2 (Cuny et al., 2012), acridine 3 (Cuny

et al., 2010), and leucettine 4 (Debdab et al., 2011)

(Fig. 1).

In recent years, structure-based drug design and molec-

ular docking are widely used tools in the drug discovery and

development process. However, pharmacophore-based drug

design has proved to be more efficient technique for iden-

tification of potential new drug-like candidates, as this

method provides the information about key structural fea-

tures in the form of an active pharmacophore which are

essential for biological activity. In addition, the generated

pharmacophore model could be employed as a novel

searching tool for chemical databases to find potential lead

candidates. As a part of our on-going drug discovery pro-

gram based on marine scaffolds for cancer and Alzheimer

(Bharate et al., 2012a, b, c; 2013a, b), in the present study,

pharmacophore-based 3D-QSAR was carried out on a set of

Dyrk2 inhibitory leucettines using pharmacophore align-

ment and scoring engine (PHASE) module of Schrodinger

program to understand the relationship between biological

activity and 3-dimensional molecular fingerprints of leu-

cettines (Debdab et al., 2011).

Methods

Dataset

The biological data used in the present study was imported

from the published literature on Dyrk2 inhibitory leucet-

tines L0–L41 (Debdab et al., 2011) (Table 1). The Dyrk2

inhibitory activity (IC50) values were converted to molar

units and further to the negative logarithmic unit

[pIC50 ¼ � log IC50ð Þ]. Compounds lacking well defined

activity data were removed from the study. The data set of

36 compounds was then divided randomly into training and

test set, respectively in such a way that both sets consisted

of highly active, medium active and least active com-

pounds. Training and test sets consisted of 26 and 10

compounds, respectively.

Pharmacophore-based QSAR study

A pharmacophore-based 3D-QSAR study was carried out

using PHASE version 3.0.110 implemented in the Maestro

8.5.111 modeling package (Schrodinger, Inc., LLC, New

York, USA) installed on a Intel Xenon processor-based HP

xw6600 work station with Linux operating software.

Structures of molecules were sketched, cleaned, prepared

(using ligprep), minimized (using macromodel), and
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Fig. 1 Chemical structures of known Dyrk2 enzyme inhibitors 1–4
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Table 1 Chemical structures, experimental and predicted Dyrk2 inhibitory activities of leucettines
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Entrya R1, R2, or R3 pIC50

(exp.)

pIC50

(pred.)b
Set Fitness Entrya R1, R2, R3, or R4 pIC50

(exp.)

pIC50

(pred.)b
Set Fitness

L0 (I) –H 6.84 6.76 Training 2.91 L18 (I) –CO–COOEt 6.18 6.14 Training 2.78

L1 (I) –Me 6.65 7.16 Test 2.26 L19 (I) –CH2Ph 7.25 7.16 Training 2.78

L2 (I) –Et 7.19 6.95 Training 2.92 L20 (I)

O

O 6.48 6.4 Training 2.68

L3 (I) –n-Propyl 7.26 6.99 Test 2.85 L21 (I) –Ph 7.33 7.43 Training 2.83

L4 (I) –CH(Me2) 7.27 7.2 Training 2.89 L22 (I) –Ph (4–OH) 6.95 7.09 Training 2.71

L5 (I) –n–Butyl 7.21 7.01 Test 2.89 L23 (I) –Ph (4–OMe) 7.29 7.58 Training 2.77

L6 (I) –CH2CH(Me)2 7.67 7.62 Training 2.85 L24 (I)

O

O 8 8 Training 2.72

L7 (I) –(CH2)2CH(Me)2 7.25 7.29 Training 2.79 L25 (I)

O

O 7.92 7.93 Training 2.63

L8 (I) –allyl 7.20 7.03 Training 2.86 L31 (II) –H 7.92 7.66 Training 2.28

L9 (I) 7.46 7.26 Test 2.87 L32 (II) –n-Propyl 6.67 6.73 Training 2.82

L10 (I) 6.22 6.58 Training 2.8 L34 (III) –Et 7.79 7.89 Training 3

L11 (I) –(CH2)2OH 6 6.09 Training 2.93 L35 (III) 8.32 8.35 Training 2.88

L12 (I) –(CH2)2OCH3 7.11 7.11 Training 2.87 L36 (III) 8.21 8.18 Training 2.73
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conformers were generated (using confogen) in Maestro

under default settings. The active and inactive (-log IC50)

threshold of C7.4 and\6.8, were applied to the training set

and test set, respectively, which sorted 13 actives and 9

inactives. Redundancy was avoided in data set in terms of

structural cluster or bioactivity (Dixon et al., 2006a, b;

Bharate et al., 2012c). The important steps of common

pharmacophore hypothesis development and 3D-QSAR

model development using PHASE module were carried out

in a default sequential order. Atom-based QSAR models

were generated on the principle of identification and

alignment of pharmacophoric features of the chemical

structures, for all 16 generated hypotheses using the

26-member training set and a grid spacing of 1.0�A. The

grid divides space into uniformly sized cubes (range

0.5–2.0�A), which are occupied by the atoms or pharma-

cophore sites that define each molecule. QSAR models

containing one to four PLS factors were generated. Best

3D-QSAR model was selected based on the correlation

coefficient values in training set molecules, which was

further validated by predicting activities of 10 test set

molecules. Three external test set predictors, namely Q2,

Pearson r, and RMSE were used to validate the developed

model (Bharate et al., 2013b).

Structure-based validation of 3D-pharmacophore model

To validate the pharmacophore model using X-ray crystal

structure-guided binding pattarn, the X-ray crystal structure

of leucettine L41 bound to Dyrk2 was retrieved from

RCSB (PDB: 4AZF), and minimized in Schrodinger pro-

tein preparation wizard and was compared to the developed

pharmacophore hypothesis (Fig. 3).

Results and discussion

Pharmacophore-based 3D-QSAR study

A 3D-pharmacophore model for the set of 36 leucettines

was developed using PHASE module of Schrodinger

molecular modeling package. This 3D-QSAR approach

involves the generation of a common pharmacophore

hypothesis built feature definitions and creating sites to

generate 28 variant combinations among given set of leu-

cettines. These variants upon perceiving common phar-

macophore generated 16 hypotheses. All hypotheses were

scored for actives, inactives, volume, selectivity, and

energy terms. Then the selection of best hypotheses was

Table 1 continued

Entrya R1, R2, or R3 pIC50

(exp.)

pIC50

(pred.)b
Set Fitness Entrya R1, R2, R3, or R4 pIC50

(exp.)

pIC50

(pred.)b
Set Fitness

L13 (I) –(CH2)3OH 7.32 7.27 Training 2.85 L37 (III) OH 8.22 8.27 Training 2.82

L14 (I) –(CH2)5OH 6.69 6.81 Test 2.82 L38 (III) OMe 8.09 8 Test 2.7

L15 (I)
N O

6.79 6.81 Training 2.72 L39 (III)

O

O 8.39 7.92 Test 2.74

L16 (I) –CH2CH2NH2 7.14 6.94 Test 2.91 L40 (III)

O

O 7.95 7.92 Test 2.72

L17 (I) –COCH3 6.29 6.8 Test 2.89 L41 (III) –Ph 8.45 8.32 Training 2.85

a Respective scaffold numbers are shown in the parentheses
b Calculated by hypothesis AAAAR.29 (Model 1)
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primarily dependent on best post-hoc survival score, which

is a combination of active and inactive survival scores.

Scores of different scoring parameters for best hypothesis

AAAAR.29 are given in Table 2. Higher scoring hypoth-

esis was further subjected to 3 and 4 factor PLS QSAR

model development based on the alignment of the phar-

macophoric features to the chemical fingerprints of leu-

cettines. The validity of each model was predicted from

calculated external (test set) correlation coefficient (Q2).

Among the two best models common pharmacophore

hypothesis AAAAR.29 was considered optimal due to the

superior correlation coefficient, cross correlation coeffi-

cient, stability, and F value of the hypothesis over

AAAPR.23, and therefore selected for the 3D-QSAR

model development. The stability of the model reflects the

changes in the training set composition. The maximum

Table 2 Scores of different parameters of hypothesis AAAAR.29

Scoring parameters Hypothesis AAAAR.29 Hypothesis AAAPR.23 Range

Post-hoc survival scorea 3.73 3.39 0 upward

Site scoreb 0.96 0.75 0–1

Vector scoreb 0.99 0.93 0–1

Volume scoreb 0.77 0.7 0–1

Selectivityc 2.3 2.07 0 upward

No. of active matches to hypothesisd 13 11 0–13d

Conformational energye 1.97 0.21 0 upward

Activite scoref 7.79 8.32 0 upward

Inactive scoreg 1.5 1.59 1–8g

a This score is the result of rescoring and is the combination of active and inactive survival score
b Vector, site and volume score of 1.0 is considered as perfect alignment
c The possible range is 0 upward. A score of 2 means 1 in 100 molecules would match the hypothesis. Higher the selectivity score, better is the

selected hypothesis
d Possible range is 0 to the number of ligands in the active set. Our active set consisted of 13 ligands
e The possible range is 0 upward. Energy of 0 kcal/mol means that the reference ligand is the lowest energy conformation
f Active score provides an overall ranking of the hypotheses; however, it do not imply that top scoring hypotheses are more correct than others.

This score is calculated by combining reference score, site score, vector score, volume score and
g This score is used as a penalty to the survival scores (number of total inactives included = 8). Lower value is better for hypothesis (minimum

value can be 1 as minimum one inactive must be included in the hypothesis development)

Fig. 2 Correlation graph between experimental and predicted Dyrk2 inhibitory activity of leucettines using pharmacophore-based QSAR model.

a Training set. b Test set

Med Chem Res (2014) 23:1925–1933 1929
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value for stability can be 1; and the acceptable stability is

[0.3. The stability statistics is often used to compare

models generated through different hypotheses.

The robustness and reliability of the selected optimal

model is justified by the fact that all statistical measures are

significant. The model expresses 99 % variance exhibited

by leucettines L0–L41, which is near to one and signifies a

close agreement of fitting points on the regression line for

the observed experimental and PHASE predicted activity,

as depicted in Fig. 2.

As shown in Table 3, the large value of F (F = 106.7)

indicates a statistically significant regression model, which

is also supported by the small value of statistical signifi-

cance (P), an indication of a high degree of confidence.

Further small value of standard deviation (SD = 0.16) of

the regression and root-mean-square error (RMSE = 0.34)

and higher value of the QSAR model stability (stabil-

ity = 0.378) makes an obvious implication that the data

used for model generation are best for the QSAR analysis.

The Q2 is more reliable and robust statistical parameter

than r2 because it is obtained by same set of test set mol-

ecules that were not involved in the model development.

Therefore, validity of the developed model is expressed by

higher correlation coefficient (Q2 = 0.71) value, which

was determined by multivariate method (PHASE User

Manual, version 3.1). Figure 3a–c illustrates the compar-

ative alignment of crystal structure of Dyrk2 (containing

leucettine L41; Fig. 3a, c) (Tahtouh et al., 2012) with the

pharmacophore model (Fig. 3b), which further validates

our developed model. Upon visual overlay comparison of

the pharmacophore model to the X-ray crystal structure of

the leucettine series ligand L41 bound Dyrk2, it was

Table 3 Summary of PHASE 3D-QSAR statistical results

Pharmacophore Model 1 Model 2

Hypothesis AAAAR.29 AAAPR.23

r2 0.95 0.91

SD 0.16 0.19

F 106.7 79.5

P 1.222 9 10-13 2.92 9 10-11

Stability 0.37 0.47

Number of PLS factors 4 3

Q2 (r2
pred) 0.71 0.69

rp (Pearson r) 0.86 0.81

RMSE 0.34 0.35

Training set (N = 26) and test set (N = 10)

r2 a coefficient of determination, SD the standard deviation of regression, F the ratio of the model variance to the observed activity variance, P

significance level of F when treated as a ratio of Chi squared distributions, stability, stability of the model predictions to changes in the training

set composition, Q2 directly analogous to r2 but based on the test set predictions and can be better referred as r2
pred, rp Pearson r value for the

correlation between the predicted and observed activity for the test set, RMSE the RMS error in the test set predictions

Fig. 3 Comparative alignment of the developed pharmacophore

model (AAAAR.29) with the Dyrk2 X-ray crystal structure (4AZF).

a The structure-based interactions of the co-crystal ligand L41 with

Dyrk2 enzyme; b developed pharmacophore PHASE hypothesis

(AAAAR.29) superimposed on ligand L41 (in this figure LHS

indicates left hand side; and RHS as right hand side of the

pharmacophore); c molecular representation of the interactions of

co-crystal ligand L41 with Dyrk2 active site residues

1930 Med Chem Res (2014) 23:1925–1933

123



observed that the H-bond acceptor feature of pharmaco-

phore model, particularly the site A3 interacts with the NH

of Leu-231A residue and site A4 interacts with the pro-

tonated amino group (NH3?) of Lys178A flanked side

chain by strong H-bonding. The other two acceptor sites

A1 and A2 were not clearly interacting with the receptor,

and probably may not necessary; however, these sites were

part of several active as well as inactive molecules and

therefore these sites provides the opportunity to optimize

the lead by lead-trimming process. Thus, the presence of

multiple H-bond acceptor sites due to functionalities such

as 1,3-dioxole, hydroxy, or methoxy (sites A2 and A3),

lactam carbonyl (Site A4), and NH group of imidazolin-4-

one scaffold (site A1) were identified to be important for

Dyrk2 inhibition.

Similarly combined 3D-QSAR can be visualized from

the Fig. 4. The blue/green and purple cubes in 3D-plots of

the 3D-pharmacophore regions refer to ligand regions in

which the specific feature is important for better activity,

whereas the red cubes demonstrates that particular struc-

tural feature or functional group which is not essential for

the activity or likely a reason for decreased activity. From

3D-QSAR model analysis (Fig. 4), it is observed that the

plethora of the orange cubes near and around H-bond

acceptor sites (A1–A4) positively contribute to Dyrk2

inhibition (Fig. 4b). The second significant factor which

contributes to the Dyrk2 enzyme inhibition is the hydro-

phobic character, as visualized in Fig. 4c showing presence

of large number of green cubes due to the presence of

number of hydrophobic saturated alkyl (compounds L2, L3

and L4), cyclic alkyl (compounds L9 and L35), and aro-

matic phenyl rings (compounds L39 and L41). In the

present study, it was observed that the 1,3-benzodioxole

ring is an important feature of the pharmacophore

hypothesis, which is also in agreement with the previously

published SAR (Debdab et al., 2011). The 1,3-benzodi-

oxole ring or its mimicry is crucial and optimal to interact

with the Dyrk2 hinge region hydrophobic residues leucine

residues (Leu230, Leu231, and Leu282) and Isoleucine

residues (Ile155, Ile294, and Ile212). Replacement of the

1,3-benzodioxole ring causes complete loss of activity. For

example, the most active ligand structure L41 carries 1,3-

Fig. 4 3D-Pharmacophore regions around developed QSAR model

with most active ligand. a Combined effect (blue cubes are favored

areas contributing for increase in activity, whereas red cubes indicate

unfavorable areas contributing for decrease in activity); b hydrogen-

bond donor (orange cubes are favored areas contributing for increase

in activity, whereas red cubes indicate unfavorable areas contributing

for decrease in activity); c hydrophobic region (green cubes are

favored areas contributing for increase in activity, whereas red cubes

indicate unfavorable areas contributing for decrease in activity);

d electron-withdrawing effects (blue cubes are favored areas contrib-

uting for increase in activity, whereas red cubes indicate unfavorable

areas contributing for decrease in activity) (Color figure online)
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benzodioxole ring which fits complementary into the

enzyme pocket and exhibits favorable interactions with

Val222, Met240, Leu282A, Ala176A, and Ile294 residues.

There exist few other hydrophobic interactions on the LHS

(Fig. 3b) of the pharmacophore, which is not part of the

pharmacophore hypothesis (e.g., electron-rich aromatic

rings in case of compounds L36–L41). Although analogs

L36–L41 possessing such interactions exhibited higher

biological activity in the series, but in the structure-based

interaction map (Fig. 3a, c), it is clear that this hydrophobic

portion lies away from the active site residues, exhibiting

minimal interactions.

Conclusion

A atom-based pharmacophoric 3D-QSAR model was suc-

cessfully developed for a set of Dyrk2 inhibitory leucettine

class of compounds. The derived model exhibits good fit-

ness with the experimental data, with a maximum corre-

lation coefficient of 0.95 and having hydrophobic and

H-bond acceptor features as crucial parameters for enzyme

inhibition. Furthermore, external validation coefficient also

known as Q2 [ 0.7, reflects good predictive power of the

model. Robustness of the model was indicated by the

higher degree of closeness between experimental and pre-

dicted activity. Developed pharmacophore model was

efficiently compared to the reference molecule L41 crystal

structure bound to Dyrk2 and importance of pharmaco-

phoric features in hypothesis discussed in contrast to

crystal structure, which validates the hypothesis. Therefore,

the developed 3D-QSAR model could be employed to

predict Dyrk2 inhibitory activity of natural and synthetic

leucettines. This developed model will be useful to identify

new potent Dyrk2 inhibitors by virtual screening of com-

pound libraries. This will further add in designing better

molecules with enhanced Dyrk2 inhibitory activity.
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