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Abstract A series of structurally related indole-5-car-

boxylic acids as potent inhibitors against human cytosolic

phospholipase A2a (cPLA2a) were subjected to hologram

quantative structure–activity relationship (HQSAR) analy-

sis. A training set containing 23 compounds served to

establish the HQSAR model. The best HQSAR model was

generated using atoms, bond, connectivity, donor and

acceptor as fragment distinction, and 3–6 as fragment size

with five components showing cross-validated q2 value of

0.790 and conventional r2 value of 0.961. The model was

then employed to predict the potency of five test set

compounds that were excluded in the training set, and a

good agreement between the experimental and predicted

values was observed exhibiting the powerful predictable

capability of this model (r2
pred ¼ 0:605). Contribution maps

indicated that the carboxylic acid moiety in position 5 of

the indole scaffold and the electron-withdrawing effects

contributed to the inhibitory activity. Based upon some key

structural features derived from HQSAR 2D contribution

maps, we have designed novel inhibitors of cPLA2a pos-

sessing better inhibitory activity.

Keywords cPLA2a inhibitors � HQSAR � Fragment size �
Hologram length

Introduction

Cytosolic phospholipase A2a (cPLA2a) is an esterase that

selectively catalyzes the hydrolysis of the sn-2 ester of

arachidonate-containing membrane phospholipids to gen-

erate free arachidonic acid and lysophospholipids (Ghosh

et al., 2006; Kita et al., 2006). The freed arachidonic acid is

rapidly oxidized via cyclooxygenase (COX) and lipoxy-

genase (LO) pathways to eicosanoids such as prostaglan-

dins, which play a major part in the inflammatory response,

and leukotrienes, which play a main role in the pathogen-

esis of asthma. Remaining lysophospholipids with an alkyl

ether moiety at the sn-1 position can be acetylated to

platelet-activating factor (PAF), another mediator of

inflammation. Although several other phospholipases A2

are present in the mammalian organism, the predominance

of cPLA2a for lipid mediator generation was demonstrated

especially by studies with cPLA2a-deficient mice (Bonv-

entre et al., 1997; Hegen et al., 2003; Miyaura et al., 2003;

Nagase et al., 2000; Sapirstein and Bonventre, 2000;

Uozumi et al., 1997). These animals, which show a

reduced eicosanoid production, are immune to disease in a

variety of models of inflammation, including collagen-

induced arthritis. Therefore, this enzyme (cPLA2a) can be

regarded as a target for inflammatory diseases (Bonventre,

2004).

Despite the fact that there have been intense efforts for

developing inhibitors of cPLA2a (Clark and Tam, 2004;

Connolly and Robinson, 1995; Lehr, 2006; Magrioti and

Kokotos, 2010), only a few substances with high in vitro

potency have been found so far, such as the thiazolidin-

edione (Seno et al., 2000, 2001), the benzhydrylindole

(efipladib) (Lehr, 2006; Lee et al., 2007, 2008; McKew

et al., 2008), and the 1,3-diaryloxypropan-2-one (AR-

C70484XX) (Chen et al., 2009). A common deficiency of
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these inhibitors is their high lipophilicity, which leads to low

aqueous solubility and as a result of this to poor bioavail-

ability. For this reason, efforts have been started to reduce the

lipophilicity of such cPLA2a inhibitors. Recently, a series of

structurally related indole-5-carboxylic acids with low

lipophilicity were reported to be potent inhibitors of human

cPLA2a (Drews et al., 2010). Structure–activity relationship

studies on these inhibitors were investigated by the modifi-

cation of the electrophilic ketone group in the middle part of

the molecule, only to find that all derivatives were less active

than the lead compound (Kaptur et al., 2011). A 3D-QSAR

pharmacophore model consisting of hydrogen bond accep-

tors, negative, and aromatic rings was developed, giving

some ideas about possible interactions (Jain et al., 2013).

However, these SAR and quantative structure–activity

relationship (QSAR) studies failed to synthesize or design

more potent cPLA2a inhibitors based on the 1-(5-carbo-

xyindol-1-yl)propan-2-one scaffold. The necessity of

developing more potent QSARs with good predictive insight

into the structure requirement for cPLA2a-binding affinity is

urgently needed, which can facilitate the discovery of

cPLA2a inhibitors with improved biological activity. Due to

its effectiveness, fastness, and high predictive power, holo-

graphic QSAR is becoming increasingly an important drug

design tool that encodes fragment-based information of

molecular structures. Therefore, as part of this research

program aimed at discovering more potent cPLA2a inhibi-

tors with appropriate lipophilicity, we have employed the

hologram QSAR (HQSAR) method to generate predictive

2D QSAR models, which has rarely been reported before. On

the basis of the established HQSAR model, we attempted to

elucidate a structure–activity relationship to provide useful

guidelines for the design of more potent cPLA2a inhibitors.

Experiment and computation

Datasets and molecular modeling

In vitro inhibitory activity of the 1-(5-carboxyindol-1-

yl)propan-2-one inhibitors of human cPLA2a, which has

been reported (Drews et al., 2010), was taken for the study

(Table 1). The biological data taken from the literature as

IC50 value of cPLA2a inhibition was converted to the

corresponding pIC50 (-log IC50) and used as dependent

variables in HQSAR analysis. The pIC50 values span a

range of 3 log units, providing a broad and homogenous

dataset for the HQSAR study. Taking the structural

diversities and wide range of activity into account, the

compounds were divided randomly into training and test

set. Meanwhile, a little care was taken in the selection of

test sets, so that representatives of all compounds were

included for prediction. 23 out of total 28 compounds were

included in the training set to derive the HQSAR model

while the remaining five were used as test set to validate

the external predictability of model. Molecular modeling

studies were performed using the SYBYL 8.1.1 software

package (Tripos, L.P., St. Louis, MO, USA) running on a

HP Z600 workstation.

HQSAR analysis

HQSAR is a modern QSAR technique developed from unity

hashed fingerprint concept, which employs specialized

fragment fingerprints as predictive variables of biological

activity (Heritage Trevor and Lowis David, 1999). Com-

pared with other existing QSAR methods, HQSAR not only

avoids the need for 3D structure, putative binding confor-

mations, and molecular alignment in CoMFA (Cramer et al.,

1988) and CoMSIA (Klebe et al., 1994), but also averts the

selection and calculation or measurement of the physico-

chemical descriptors required by classical QSAR. HQSAR

analysis involves three main steps: the generation of sub-

structural fragments for each of the molecules in the training

set; the encoding of these fragments in holograms; and cor-

relation of the latter with the available biological data.

In HQSAR, the input molecule is broken into a series of

unique structural fragments (linear, branched, and overlap-

ping) containing user-defined minimum and maximum

number of atoms. According to a predefined set of rules that

encodes the frequency of occurrence of various molecular

fragment types, the hashed fingerprint is obtained. Then, this

hashed fingerprint is divided into strings at a fixed interval as

determined by a hologram length (HL) parameter. The

strings are then aligned and the sum of each column consti-

tutes the individual component of the molecular hologram of

a particular length.

A number of parameters concerning hologram genera-

tion, such as HL, fragment size, and fragment distinction,

prevailingly affect the HQSAR model quality (Heritage

Trevor and Lowis David, 1999). In order to derive the best

HQSAR model, it is necessary to discuss the influence of

various combinations of parameters on the HQSAR model.

All models generated in these studies were evaluated using

full cross-validated q2, partial least squares (PLS), and

leave-one-out (LOO) method.

Predictive correlation coefficient (r2
pred)

The predictive ability of the HQSAR models was expressed

with predictive correlation coefficient (r2
pred), defined as:

r2
pred ¼ SD� PRESSð Þ=SD

where SD is the sum of squared deviations between the

biological activity of the test set and the mean activity of
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the training set molecules and the PRESS is the sum of

squared deviations between predicted and observed activity

values for every molecule in the test set.

HQSAR analysis for various fragment distinction

combinations

For the sake of reducing the chances of bad collisions, the

defaults of the HLs are set automatically by software as

several prime numbers, such as 53, 59, 61, 71, 83, 97, 151,

199, 257, 307, 353, and 401. Employing these prime

numbers as HLs, several combinations of these parameters

were considered using the fragment size default (4–7) as

follows: A/B, A/B/C, A/B/C/H, A/B/H, A/B/DA, A/B/C/

DA, A/B/H/DA, and A/B/C/H/DA. The fragment distinc-

tion parameters are described as follows: A, atoms; B,

bonds; C, connections; H, hydrogen atoms; DA, donor and

acceptor. Due to the lack of chiral carbon atom of all the 28

molecules, the fragment distinction of chirality was not

discussed in Table 2.

From what has been demonstrated in Table 2, we can

obviously see that the best statistical model was derived

Table 1 Chemical structures, experimental and predicted activities, and residuals of compounds included in the training set and test set

O
N

O

R1R2

R3

R4

R5

Compound R1 R2 R3 R4 R5 Observed pIC50 Predicted pIC50 Residual

1a C8H17 H H H CONH2 0.921 1.333 0.412

2 C8H17 H H H COOH 1.456 1.494 0.038

3 OC10H21 H H H COOH 1.699 1.669 -0.030

4 Phenyl H H H CONH2 0.823 0.788 -0.035

5 H Phenyl H H CONH2 0.602 0.576 -0.026

6 Phenyl H H H COOH 1.194 1.002 -0.192

7 H Phenyl H H COOH 0.678 0.789 0.111

8a 4-Fluorophenyl H H H COOH 1.432 1.572 0.140

9 3-Fluorophenyl H H H COOH 1.387 1.436 0.049

10 4-Chlorphenyl H H H COOH 1.569 1.601 0.032

11 3-Chlorphenyl H H H COOH 1.721 1.583 -0.138

12 p-Tolyl H H H COOH 1.398 1.437 0.039

13 4-Isopropyphenyl H H H COOH 1.456 1.427 -0.029

14 4-Methoxyphenyl H H H COOH 1.046 1.219 0.173

15 Phenyl H F H COOH 0.638 0.701 0.063

16 OC9H19 H H H COOH 1.638 1.633 -0.005

17 OC8H17 H H H COOH 1.585 1.596 0.011

18a OC7H15 H H H COOH 1.495 1.566 0.071

19a OC6H13 H H H COOH 1.468 1.527 0.059

20 O-Phenyl H H H COOH 1.444 1.421 -0.023

21 O-(4-CF3-phenyl) H H H COOH 1.721 1.637 -0.084

22 CH2-phenyl H H H COOH 1.268 1.244 -0.024

23 C(CH3)2-phenyl H H H COOH 1.328 1.298 -0.030

24 OCH2CH2O-phenyl H H H COOH 0.959 0.983 0.024

25a O-Phenyl H H C(O)Me COOH 1.921 1.772 -0.149

26 O-(4-CF3-phenyl) H H C(O)Me COOH 2.000 2.011 0.011

27 OCH2CH2O-phenyl H H C(O)Me COOH 1.387 1.357 -0.030

28 O-Phenyl H H C(O)isopropyl COOH 1.921 2.017 0.096

a Test set compound
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using atoms, bonds, connections, and donor and acceptor

(DA) as fragment distinction with 6 being the optimum

number of PLS components showing cross-validated q2

value of 0.773 and conventional r2 value of 0.978. As can

be seen from the comparison between model 2 and model

6, the DA played an important role in ameliorating the

model quality. The important role of hydrogen bond

acceptor was also reflected in the 3D-QSAR pharmaco-

phore model (Jain et al., 2013). In our study, the model 6

was indicative of the possibility that the hydrogen bond

donor exerted positive impact on the inhibitory activity,

which is a new discovery but needs to be confirmed in

further investigation. In particular, based on the model 6 in

which the DA flag was enabled, the additional selection of

hydrogen flag in model 8 cannot make the model better,

which is ascribed to the drastic increase in the number of

fragments generated when both of these options are con-

sidered (Heritage Trevor and Lowis David, 1999).

HQSAR analysis for the influence of various fragment

size

Based on the best HQSAR model generated above (model

6, Table 2), the influence of different fragment sizes on

statistical parameters was further investigated and sum-

marized in Table 3. As can be seen from Table 3, the r2

values of all models were greater than 0.94, and the q2

values are also satisfactory. The result shown in bold fonts

in Table 3 indicated that the fragment size (3–6) led to

better statistical results in comparison with other fragment

sizes. Therefore, the best final HQSAR model obtained

from training set with 23 compounds was established using

atoms, bonds, connections, DA as fragment distinction, and

1–7 as fragment size with 5 being the optimum number of

PLS components showing cross-validated q2 value of 0.790

and conventional r2 value of 0.961.

The evaluation of HQSAR model quality

Since the structure encoded within a 2D fingerprint is

directly related to biological activity of molecules, the

HQSAR model is able to predict the activity of new related

molecules according to its fingerprint. In virtue of the

finally optimal QSAR model showing non-cross-validated

(r2 = 0.961) and cross-validated (q2 = 0.790) correlation

coefficients, which manifested a good internally predictive

power, the predicted pIC50 values of both test set and

training set compounds are listed in Table 1. Furthermore,

the graphic results for the experimental versus predicted

activities of both training set and test set are displayed in

Fig. 1. The constructed HQSAR model showed good

agreement between experimental and predicted values for

the test set compounds with the higher predictive correla-

tion coefficient (r2
pred ¼ 0:605), which signified a high

external predictability of model. As far as the satisfactory

performance of this holographic QSAR is considered, the

model can be used to predict the biological activity of

novel compounds within this structural class.

Interpretation of HQSAR contribution map

A significant role of a QSAR model is not only to predict

the activities of untested molecules, but also to throw light

on what molecular fragments play key roles to the contri-

bution of biological activity. The results of the HQSAR

analysis can be graphically displayed as color-coded

Table 2 HQSAR analysis for various fragment distinction combi-

nations on the key statistical parameters using default fragment size

(4–7)

Model Fragment distinction r2 SEE q2 SEP HL N

1 A/B 0.784 0.198 0.523 0.294 307 3

2 A/B/C 0.917 0.126 0.669 0.252 257 4

3 A/B/C/H 0.917 0.126 0.663 0.254 257 4

4 A/B/H 0.762 0.208 0.503 0.300 307 3

5 A/B/DA 0.888 0.151 0.634 0.272 71 5

6 A/B/C/DA 0.978 0.069 0.773 0.221 97 6

7 A/B/H/DA 0.828 0.181 0.584 0.282 71 4

8 A/B/C/H/DA 0.955 0.096 0.771 0.215 53 5

The model chosen for analysis is highlighted in bold fonts

q2 cross-validated correlation coefficient, SEP cross-validated stan-

dard error, r2 non-cross-validated correlation coefficient, SEE non-

cross-validated standard error, HL hologram length, N optimal num-

ber of components

Fragment distinction: A atoms, B bonds, C connections, H hydrogen

atoms, DA donor and acceptor

Table 3 HQSAR analysis for the influence of various fragment size

using the best fragment distinction (A/B/C/DA)

Fragment size r2 SEE q2 SEP HL N

1–3 0.947 0.107 0.725 0.243 59 6

4–7 0.978 0.069 0.773 0.221 97 6

3–10 0.978 0.066 0.662 0.261 307 5

1–4 0.944 0.106 0.708 0.243 307 5

2–5 0.953 0.097 0.685 0.253 53 5

3–6 0.961 0.088 0.790 0.206 97 5

5–8 0.953 0.097 0.740 0.230 53 5

6–9 0.973 0.075 0.748 0.226 83 5

7–10 0.982 0.063 0.660 0.271 353 6

1–7 0.955 0.093 0.771 0.209 97 4

The model chosen for analysis is highlighted in bold fonts
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structure diagrams in which the color of each atom reflects

its contribution to the molecule’s overall activity. The

colors at the red end of the spectrum (red and orange)

represent poor contributions, while colors at the green end

(yellow, blue, and green) indicate favorable contributions.

HQSAR offers a good way of accounting for the variance

of molecular activity by condensing information on the

structural fragment.

Using the best HQSAR model, which factored atoms,

bonds, connections, and DA into fragment distinction

parameters, the atomic contribution maps of 23 compounds

included in the training set were generated. The individual

atomic contributions maps of the most (compound 26) and

least (compound 5) potent cPLA2a inhibitors, resulting

from the best HQSAR model, are displayed in Fig. 2. From

Fig. 2, it can be seen that the structural fragment containing

the carboxylic acid moiety in 5 position of the indole ring

(compound 26) was colored yellow indicating its positive

contribution to its inhibitory activity, while the amide

group in the same place (compound 5) was colored heavily

red signifying its negative effect on the activity. This was a

possible reason why compounds 2, 6, and 7 with carboxylic

acid moiety on the 5 position of indole ring have higher

potency than compounds 1, 4, and 5. This result was

consistent with previous studies, which reinforced the

importance of the carboxylic acid moiety in establishing

the pharmacophore of these inhibitors (Jain et al., 2013). In

consideration of the preeminence of the carboxylic acid

moiety and the newly discovered role of hydrogen bond

donor in our study, we deduced that the carboxylic acid

group may function as hydrogen bond donor in the inter-

action between the inhibitors and the active site of target

enzyme, which also supported the above-mentioned

hypothesis in HQSAR analysis for various fragment dis-

tinction combinations.

In particular, it is found that one fragment of the com-

pound 26, represented by oxygen-(4-CF3-phenyl) moiety,

was indicated to be strongly related to its biological

activity. Compared with the molecular structure of com-

pound 25 and compound 27, the introduction of trifluoro-

methyl played an important role in improving the activity

of compound 26, which was probably attributed to the

electron-withdrawing effect of the trifluoromethyl. The

electron-withdrawing group attached to the oxygen-(4-
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Fig. 1 Plot of experimental versus predicted pIC50 values of the

training set and test set molecules. The training set and test set

molecules are shown in black (squares) and red (triangle) spots,

respectively

Fig. 2 Atomic contribution maps for compound 26 and compound 5
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phenyl) may be able to strengthen inhibitory activity,

which was the basis for our follow-up molecular design.

Compounds designed and activity predicted

In view of the information derived from these contribution

maps, we modified the structure of compound 26 by

substituting the R4 and R5 fragment with other groups such

as propionyl and amide group, respectively. Nevertheless,

the predicted activities resulting from the best HQSAR

model herein established were far from satisfaction. Taking

the dominant role of the carboxylic acid moiety and the

electron-withdrawing effect into consideration, we further

modified the structure of 1-(5-carboxyindol-1-yl)propan-2-

one cPLA2a inhibitors. The structures of new compounds

with potentially improved biological activity are displayed

in Fig. 3. In terms of the best holographic QSAR model

established above, the activity of the new compounds thus

designed were predicted, as shown in Table 4. From the

prediction results, the biological activities (pIC50) of new

compounds were all greater than 2.0. These new com-

pounds are likely to possess higher inhibitory activity but

still remain to be experimentally verified.

Conclusions

In summary, we successfully generated a hologram QSAR

model for 1-(5-carboxyindol-1-yl)propan-2-one cPLA2a
inhibitors with good statistical results. The model (N = 5)

displayed significant cross-validated (q2 = 0.790) and non-

cross-validated (r2 = 0.961) correlation coefficients. The

high agreement between the experimental and predicted

values for the test set compounds verified the reliability and

robustness of the constructed HQSAR model, indicating a

high external predictability of model. The importance of

the structural fragment to the overall activity of this series

was interpreted by the HQSAR contribution maps. Con-

tribution maps showed that the carboxylic acid moiety in

position 5 of the indole scaffold and the electron-with-

drawing effects increased the inhibitory activity. Moreover,

we have designed novel inhibitors of cPLA2a possessing

better inhibitory activity. Therefore, the HQSAR model

can provide guidelines for future efforts in the design of

new more active cPLA2a inhibitors that are structurally

related with the training set compounds.
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Schäfers M, van der Velde A, Schulze Elfringhoff A, Jr Fabian,

Lehr M (2010) 1-(5-Carboxyindol-1-yl)propan-2-one inhibitors

of human cytosolic phospholipase A2a with reduced lipophilic-

ity: synthesis, biological activity, metabolic stability, solubility,

bioavailability, and topical in vivo activity. J Med Chem

53(14):5165–5178. doi:10.1021/jm1001088

Ghosh M, Tucker DE, Burchett SA, Leslie CC (2006) Properties of

the Group IV phospholipase A2 family. Prog Lipid Res

45(6):487–510. doi:10.1016/j.plipres.2006.05.003

Hegen M, Sun L, Uozumi N, Kume K, Goad ME, Nickerson-Nutter

CL, Shimizu T, Clark JD (2003) Cytosolic phospholipase A2a–

deficient mice are resistant to collagen-induced arthritis. J Exp

Med 197(10):1297–1302. doi:10.1084/jem.20030016

Heritage Trevor W, Lowis David R (1999) Molecular hologram

QSAR. In: Rational drug design, vol. 719. ACS Symposium

Series. American Chemical Society, pp 212–225. doi:10.1021/

bk-1999-0719.ch014

Jain S, Ghate M, Bhadoriya K, Bari S, Sugandhi G, Mandwal P

(2013) 3D-QSAR pharmacophore modeling and in silico

screening of phospholipase A2a inhibitors. Med Chem Res

22(7):3096–3108. doi:10.1007/s00044-012-0316-3

Kaptur M, Elfringhoff AS, Lehr M (2011) Structure–activity

relationship studies on 1-(5-carboxyindol-1-yl)-propan-2-one

inhibitors of human cytosolic phospholipase A2a: variation of

the activated ketone moiety. Bioorg Med Chem Lett

21(6):1773–1776. doi:10.1016/j.bmcl.2011.01.085

Table 4 Chemical structures of designed molecules and predicted activities

Compound R1 R2 R3 R4 R5 Predicted pIC50

A O-(4-CN-phenyl) H H C(O)Me COOH 2.011

B O-(4-COOH-phenyl) H H C(O)Me COOH 2.094

C O-(4-COOCH3-phenyl) H H C(O)Me COOH 2.066

Med Chem Res (2014) 23:1512–1518 1517

123

http://dx.doi.org/10.1016/j.it.2004.01.006
http://dx.doi.org/10.1021/jm8009876
http://dx.doi.org/10.1021/jm8009876
http://dx.doi.org/10.1517/13543776.14.7.937
http://dx.doi.org/10.1517/13543776.14.7.937
http://dx.doi.org/10.1517/13543776.5.7.673
http://dx.doi.org/10.1021/ja00226a005
http://dx.doi.org/10.1021/ja00226a005
http://dx.doi.org/10.1021/jm1001088
http://dx.doi.org/10.1016/j.plipres.2006.05.003
http://dx.doi.org/10.1084/jem.20030016
http://dx.doi.org/10.1021/bk-1999-0719.ch014
http://dx.doi.org/10.1021/bk-1999-0719.ch014
http://dx.doi.org/10.1007/s00044-012-0316-3
http://dx.doi.org/10.1016/j.bmcl.2011.01.085


Kita Y, Ohto T, Uozumi N, Shimizu T (2006) Biochemical properties

and pathophysiological roles of cytosolic phospholipase A2s.

Biochim Biophys Acta 1761(11):1317–1322. doi:10.1016/j.

bbalip.2006.08.001

Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices

in a comparative analysis (CoMSIA) of drug molecules to

correlate and predict their biological activity. J Med Chem

37(24):4130–4146. doi:10.1021/jm00050a010

Lee KL, Foley MA, Chen L, Behnke ML, Lovering FE, Kirincich SJ,

Wang W, Shim J, Tam S, Shen MWH, Khor S, Xu X, Goodwin

DG, Ramarao MK, Nickerson-Nutter C, Donahue F, Ku MS,

Clark JD, McKew JC (2007) Discovery of ecopladib, an indole

inhibitor of cytosolic phospholipase A2a. J Med Chem

50(6):1380–1400. doi:10.1021/jm061131z

Lee KL, Behnke ML, Foley MA, Chen L, Wang W, Vargas R, Nunez

J, Tam S, Mollova N, Xu X, Shen MWH, Ramarao MK,

Goodwin DG, Nickerson-Nutter CL, Abraham WM, Williams C,

Clark JD, McKew JC (2008) Benzenesulfonamide indole

inhibitors of cytosolic phospholipase A2a: optimization of

in vitro potency and rat pharmacokinetics for oral efficacy.

Bioorg Med Chem 16(3):1345–1358. doi:10.1016/j.bmc.2007.

10.060

Lehr M (2006) Inhibitors of Cytosolic Phospholipase A2 as Potential

Anti-Inflammatory Drugs. Anti-Inflamm Anti-Allergy Agents

Med Chem 5(2):149–161. doi:10.2174/187152306776872488

Magrioti V, Kokotos G (2010) Phospholipase A2 inhibitors as

potential therapeutic agents for the treatment of inflammatory

diseases. Expert Opin Ther Pat 20(1):1–18. doi:10.1517/

13543770903463905

McKew JC, Lee KL, Shen MWH, Thakker P, Foley MA, Behnke ML,

Hu B, Sum F-W, Tam S, Hu Y, Chen L, Kirincich SJ, Michalak

R, Thomason J, Ipek M, Wu K, Wooder L, Ramarao MK,

Murphy EA, Goodwin DG, Albert L, Xu X, Donahue F, Ku MS,

Keith J, Nickerson-Nutter CL, Abraham WM, Williams C,

Hegen M, Clark JD (2008) Indole cytosolic phospholipase A2 a
inhibitors: discovery and in vitro and in vivo characterization of

4-{3-[5-chloro-2-(2-{[(3,4-dichlorobenzyl)sulfonyl]amino}ethyl)-1

-(diphenylmethyl)-1H-indol-3-yl]propyl}benzoic acid efipladib.

J Med Chem 51(12):3388–3413. doi:10.1021/jm701467e

Miyaura C, Inada M, Matsumoto C, Ohshiba T, Uozumi N, Shimizu

T, Ito A (2003) An essential role of cytosolic phospholipase A2a
in prostaglandin E2—mediated bone resorption associated with

inflammation. J Exp Med 197(10):1303–1310. doi:10.1084/jem.

20030015

Nagase T, Uozumi N, Ishii S, Kume K, Izumi T, Ouchi Y, Shimizu T

(2000) Acute lung injury by sepsis and acid aspiration: a key role

for cytosolic phospholipase A2. Nat Immunol 1(1):42–46

Sapirstein A, Bonventre JV (2000) Specific physiological roles of

cytosolic phospholipase A2 as defined by gene knockouts.

Biochim Biophys Acta 1488(1–2):139–148. doi:10.1016/S1388-

1981(00)00116-5

Seno K, Okuno T, Nishi K, Murakami Y, Watanabe F, Matsuura T,

Wada M, Fujii Y, Yamada M, Ogawa T, Okada T, Hashizume H,

Kii M, Hara S, Hagishita S, Nakamoto S, Yamada K, Chikazawa

Y, Ueno M, Teshirogi I, Ono T, Ohtani M (2000) Pyrrolidine

inhibitors of human cytosolic phospholipase A(2). J Med Chem

43(6):1041–1044

Seno K, Okuno T, Nishi K, Murakami Y, Yamada K, Nakamoto S,

Ono T (2001) Pyrrolidine inhibitors of human cytosolic phos-

pholipase A2. Part 2: synthesis of potent and crystallized

4-triphenylmethylthio derivative ‘Pyrrophenone’. Bioorg Med

Chem Lett 11(4):587–590. doi:10.1016/S0960-894X(01)00003-

8

Uozumi N, Kume K, Nagase T, Nakatani N, Ishii S, Tashiro F,

Komagata Y, Maki K, Ikuta K, Ouchi Y, J-i Miyazaki, Shimizu

T (1997) Role of cytosolic phospholipase A2 in allergic response

and parturition. Nature 390(6660):618–622

1518 Med Chem Res (2014) 23:1512–1518

123

http://dx.doi.org/10.1016/j.bbalip.2006.08.001
http://dx.doi.org/10.1016/j.bbalip.2006.08.001
http://dx.doi.org/10.1021/jm00050a010
http://dx.doi.org/10.1021/jm061131z
http://dx.doi.org/10.1016/j.bmc.2007.10.060
http://dx.doi.org/10.1016/j.bmc.2007.10.060
http://dx.doi.org/10.2174/187152306776872488
http://dx.doi.org/10.1517/13543770903463905
http://dx.doi.org/10.1517/13543770903463905
http://dx.doi.org/10.1021/jm701467e
http://dx.doi.org/10.1084/jem.20030015
http://dx.doi.org/10.1084/jem.20030015
http://dx.doi.org/10.1016/S1388-1981(00)00116-5
http://dx.doi.org/10.1016/S1388-1981(00)00116-5
http://dx.doi.org/10.1016/S0960-894X(01)00003-8
http://dx.doi.org/10.1016/S0960-894X(01)00003-8

	Hologram quantative structure--activity relationship studies on 1-(5-carboxyindol-1-yl)propan-2-one inhibitors of human cytosolic phospholipase A2 alpha 
	Abstract
	Introduction
	Experiment and computation
	Datasets and molecular modeling
	HQSAR analysis
	Predictive correlation coefficient ( r_{\rm{pred}}^{2} )
	HQSAR analysis for various fragment distinction combinations
	HQSAR analysis for the influence of various fragment size
	The evaluation of HQSAR model quality
	Interpretation of HQSAR contribution map
	Compounds designed and activity predicted

	Conclusions
	References


