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Abstract Ultrasound promoted, cerium ammonium nitrate

catalyzed sustainable synthesis of spiro[indoline3,40-pyr-

ano[2,3-c]pyrazole] derivatives (4a–l) is reported herein.

The synthesized compounds were screened for their anti-

oxidant activities as free radical scavenging effect on

diphenylpicryl hydrazine (DPPH•), 2,20-azino-bis(3-ethyl-

benzthiazoline-6-sulphonic acid) (ABTS•?) and nitric oxide

(NO) radicals. The screened compounds showed potent

scavenging activities against DPPH•, ABTS•? and NO

radicals. In order to further extend on studies and to obtain a

deep insight into structure activity relationship of this class

of compounds, we designed N-substitution of indole moiety

with the aim to study its antioxidant potential.

Keywords Indole-2,3-dione �
3-Methyl-1-phenyl-2-pyrazolin-5-one �
Active methylene group � Antioxidant activity

Introduction

Macromolecules like proteins, lipids and DNA are major

targets for free radical-induced damage. The oxidative

damage to proteins has been found to be high in specific

brain regions, and are elevated during ageing and in some

types of neurodegenerative disorders (Foster et al., 1996;

Floor and Wetzel, 1998). In particular, the damage to DNA

is more erratic, and assail by free radicals can generate

structural damage (i.e. strand breaks) and/or alteration of

the bases. Unrepaired DNA lesions might impair tran-

scription and protein synthesis (Hatahet et al., 1994).

Thus, an increasing interest in antioxidants, such as free

radicals and reactive oxygen species (ROS), has engrossed

substantial interest. The free radicals are also believed to be

associated with carcinogenesis, mutagenesis, arthritis, diabetes,

inflammation, cancer and genotoxicity (Kourounakis et al.,

1999; Buyukokuroglu et al., 2001) due to oxidative stress, which

arises as a result of imbalance between free radical generations.

Moreover, ROS are continuously generated in very low

amounts in active cells of aerobic organisms as byproducts

of metabolic processes, and they have found to be the key

players in the pathophysiological mechanisms associated

with various inflammatory disorders (Trouba et al., 2002).

So the significance of ROS in the pathogenesis of multi-

farious diseases has attracted considerable attention. Disease

progression may be retarded by administrating protective

compounds, which can act in several different ways as

inhibitors of ROS formation, free radical scavenging, chain

breaking antioxidants or transition metal chelators, and

therefore research on active antioxidant of natural or syn-

thetic origin received a great attention (Delles et al., 2008).

Moreover, the development of hybrid molecules having

different pharmacophores in one frame may lead to com-

pounds with interesting pharmacological profiles. In this

regards, substituted pyrano[2,3-c]pyrazoles are much sought

after class of heterocycles exhibiting wide range of biological

activities like antimicrobial (Mityurina et al., 1981; Lakshmi

et al., 2010), anticancer (Wang et al., 2009), anti-inflamma-

tory (Zaki et al., 2006), inhibitors of human Chk1 kinase

(Foloppe et al. 2006) and also as biodegradable agrochemicals

(Abdelrazek et al., 2007). Besides, indole derivatives consti-

tute an important class of therapeutic agents in medicinal
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chemistry, including anticancer (Suzen and Buyukbingol,

2000; Lakshmi et al., 2010), antioxidant (Lakshmi et al.,

2010), antirheumatoidal (Buyukbingol et al., 1994), anti- HIV

(Suzen and Buyukbingol, 1998), and also play a vital role in

the immune system (Lieberman et al., 1997; Page et al., 2007)

and as potent scavengers of free radicals (Chyan et al., 1999).

Literature survey reveals that synthesis of pyran system

has been accomplished by many workers (Saundane et al.,

2013; Mandha et al., 2012) employing various catalysts as

ammonium chloride (Dabiri et al., 2009), ethylenediamine

diacetate (Lee and Hari, 2010), triethylbenzyl ammonium

(TEBA) salt (Zhu et al., 2007), L-proline (Yuling et al.,

2010), surfactant metal carboxylates (Wang et al., 2010), b-

cyclodextrin (Sridhar et al., 2009), ionic liquids (Moghadam

and Miri, 2011) and reaction conditions (Shanthi et al.,

2007; Elinson et al., 2008). We have also reported the

synthesis of spirooxindole derivatives by a multi-step pro-

cess catalyzed by Et3N in ethanol under refluxing condition

Dandia et al., (2003a, b; Joshi et al., 1989). Although most

of the recent methods have their own merits, but some

methods are weakened by at least one limitation such as low

yield, (especially when bulky substituent on substrates lead

to low solubility in water) complicated workup procedure,

chromatographic separation and technical intricacy.

In the above regards and on the basis of pharmacological

indications that show the existence of two or more different

heterocyclic moieties in a single molecule often remarkably

enhances the biocidal profile, we intended the synthesis of a

series of spiro[indoline3,40-pyrano[2,3-c]pyrazole] deriva-

tives (4a–l) through a three component reaction of substi-

tuted isatin, active methylene reagent, and 3-methyl-1-

phenyl-2-pyrazolin-5-one in the presence of catalytic

amount of cerium ammonium nitrate as a green and efficient

catalyst in water, thus utilizing the multipurpose promoter

efficacy of CAN (Sridharan and Menendez, 2010).

Results and discussion

Chemistry

We approached the synthesis of a library of spiro[indo-

line3,40-pyrano[2,3-c]pyrazole] derivatives (4a–l), bearing

different substitutions and their evaluated for their antiox-

idant potential.

Initially, we tested the reaction of isatin, malanonitrile

and 3-methyl-1-phenyl-2-pyrazolin-5-one as a simple

model substrate under various reaction conditions

(Scheme 1) for synthesis of spiro[indoline3,40-pyrano[2,3-

c]pyrazole] derivative (4a). The results are shown in

Table 1. With reference to the crucial utility of solvent in

chemical transformation, a variety of solvents were

employed for the synthesis of spiro[indoline3,40-pyr-

ano[2,3-c]pyrazole] derivatives. As can be seen, that

among all the solvents, water seems to be the solvent of

choice both in terms of time and yields of the spiro[indo-

line3,40-pyrano[2,3-c]pyrazole] derivatives (4a–l).

It was observed that when the reaction was carried out at

room temperature stirring without any catalyst, the yield of

product was very low (Table 1, 35 %, entry 1) even after pro-

long time. Increasing the temperature does not seem to affect the

yields of the product. Afterwards, evaluation of various catalysts

was carried out for the synthesis of spirooxindole derivatives in

aqueous medium under ultrasonic irradiation (Table 1, entry

4–9). It can be seen that a mixture of isatin, ethylcyanoacetate

and 3-methyl-1-phenyl-2-pyrazolin-5-one in the presence of

catalytic amount of cerium ammonium nitrate afforded ethyl 60-
amino-30-methyl-2-oxo-10-phenyl-10H-spiro[indoline3,40-pyr-

ano[2,3-c]pyrazole]-50-carboxylate (4a) in excellent yields

(90 %), while with other catalysts, the product formed with

yields ranging between 54 and 76 %. Although, ultrasound

irradiation decreased the reaction time, but failed to increase

the yield of the final product (Table 1, entry 3).

Further, the catalyst loading was optimized by using

different concentration of CAN in the model reaction. It

was found that with increasing the amount of CAN from

5 mol% to 10 and 20 mol%, the yields increased from

74 % to 90 and 92 %, respectively (Table 1, entries

10–12). Further increase in amount of catalyst does not

seem to affect the overall yields of the product. 10 mol%

CAN in water under ultrasonic irradiation, was found to the

best combination for synthesis of spiro[indoline3,40-pyr-

ano[2,3-c]pyrazole] derivatives (4a–l) in excellent yields.

Under the optimized reaction conditions, a series

of spiro[indoline3,40-pyrano[2,3-c]pyrazole] derivatives
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(4a–l) were synthesized (Scheme 2). The results are sum-

marized in Table 2.

The multicomponent synthesis of spiro[indoline3,40-
pyrano[2,3-c]pyrazole] derivatives can be explained by a

plausible mechanism presented in Scheme 3. The ultra-

sonic cavitation induced shear forces and the jets produced

near the surface of the vessel, and the catalyst may activate

malanonitrile through sonolysis of the C–H bond. The

reaction between the activated malanonitrile and the isatin

(activated by CAN) facilitates the formations of the

corresponding isatiylidene malanonitrile intermediate

(c) under sonic condition, which in turn reacts with the

active methylene site of 3-methyl-1-phenyl-2-pyrazolin-5-

one. This C-4 alkylation of 3-methyl-1-phenyl-2-pyrazolin-

5-one with electrophilic C=C of intermediate (c) followed

by nucleophilic addition of the -OH group on the cyano

moiety subsequently results in formation of the desired

product (e).
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Scheme 2 Synthesis of

spiro[indoline3,40-pyrano[2,3-

c]pyrazole derivatives (4a–l)

Table 2 Synthesis of

spiro[indoline3,40-pyrano[2,3-

c]pyrazole] derivatives (4a–l)

Entry R R1 X Time (min) Yield (%) Mp (�C)

4a H H COOEt 20 94 238–240

4b H 5-Cl COOEt 18 92 246–248

4c H 5,7-diCH3 COOEt 18 91 260–262

4d CH2–CH=CH2 H COOEt 20 84 182–184

4e C2H5 H COOEt 15 92 208–210

4f CH2–C6H5 H COOEt 10 97 244–246

4g H H CN 10 95 237–238

4h H 5-Br CN 12 92 242–244

4i H 5-CH3 CN 10 98 288–290

4j CH2–CH=CH2 H CN 18 90 218–220

4k C2H5 H CN 10 84 210–212

4l CH2–C6H5 H CN 8 97 232–234

Table 1 Optimization of

reaction conditions
Entry Catalyst Method Time (min) Yield (%)

1. – Stirr., r.t. 480 35

2. – Stirr., 80 �C 300 45

3. – )))) 70 50

4. K2CO3 )))) 55 58

5. NaHCO3 )))) 52 61

6. TBAB )))) 60 63

7. CTAC )))) 68 54

8. P-TSA )))) 50 68

9. L-Proline )))) 40 76

10. CAN (5 mol%) )))) 15 74

11. CAN (10 mol%) )))) 10 90

12. CAN (20 mol%) )))) 14 92
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Antioxidant activity

The antioxidant activities of spiroindolinones were deter-

mined as an index of pharmacological efficacy. Three

model systems were used namely DPPH•, ABTS•? and NO

scavenging activity. In the assessment of antioxidant

activity, only synthetic relevant free radicals were used.

The synthetic nitrogen-centred DPPH•, ABTS•? and NO

radicals were used as indicator compounds in testing

hydrogen transfer capacity that are related to the antioxi-

dant activity. Antioxidant activities data were compared

with standard drug ascorbic acid. In results, we have found

correlation between substitution in indole ring and substi-

tution of pyran ring at 5th position. Overall, all compounds

exhibited good DPPH• and NO scavenging activity

whereas, moderate ABTS•? scavenging activity. The

antioxidant properties were expressed as EC50 values.

DPPH radical scavenging activity

Although the DPPH radical scavenging abilities of all the

spiroindoline derivatives were moderately lower than those

of ascorbic acid (409.75 ± 0.288) lg/ml, it was evident that

they show reducing ability (possibly by hydrogen transfer)

and could serve as free radical scavengers. It was anticipated

that compounds possessing carboxylate group (an electron

donating group) at 5th position of pyran ring showed higher

activity except compound 4b and 4c. The combination of

carboxylate group with N-benzyl substitution in indole ring

(i.e. compound 4f) showed good activity. This revealed to be

important for activity, since the N-benzyl substituted indole

ring with carbonitrile group (i.e. compound 4l) showed

decreased potency. The compound 4a, i.e. without any

substitution in indole ring and carboxylate group at 5th

position of pyran ring showed good activity, while compound

4g without any substitution in indole ring and carbonitrile

group showed least activity. In compound 4d, with N-allyl

substitution and carboxylate group showed moderate activity,

while same indole ring with carbonitrile group, i.e. com-

pound 4j, showed least activity. In compound 4i, incorpo-

ration of CH3 group at 5th position of isatin showed electron

donating effect, but carbonitrile group with electron with-

drawing effect turned it to give moderate activity, while in

compound 4c two electron donating groups are present at 5th

and 7th position of isatin with carboxylate group, but this

compound is only moderately active whereas, compound 4b

and 4h, i.e. Cl and Br substitution in indole ring, have not

shown any effect and gives least activity. The N-ethyl sub-

stitution in indole ring with carboxylate group, i.e. compound

4e, showed good activity and with carbonitrile group showed

least activity. The results are shown in Table 3 and Fig. 1.

The results show that compound 4a and 4f showed highest

activity. In compound 4a, there is presence of an electron

donating groups (hydrogen in form of NH of indole ring and

carboxylate group at 5th position of pyran ring), which sta-

bilized the compound after donating the hydrogen to DPPH•

radical. In compound 4f, there is presence of an electron

donating groups (N-benzyl, a bulky group substitution on

indole ring and carboxylate group at 5th position of pyran

ring) which stabilized the compound after donating the

hydrogen to DPPH• radical.

ABTS radical scavenging activity

In ABTS assay, among the tested compounds, compound 4f

with combination of carboxylate group at 5th position of
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pyran ring and N-benzyl substitution at indole ring, showed

good activity which is equipotent to ascorbic acid, which we

took as standard drug. Besides, with N-substitution and car-

boxylate group at 5th position of pyran ring (i.e. compound

4d) and with carbonitrile group (i.e. compounds 4j–l) showed

least activity, but compound 4e, having N-ethyl substitution

at indole ring and carboxylate group at 5th position of pyran

ring showed moderate activity. Incorporation of Cl, H and Br

(i.e. compound 4b, 4g and 4h) have not showed any effect

and shows least activity. It was observed that unsubstituted in

indole ring with carboxylate group (i.e. compound 4a) shown

moderate activity. Whereas, incorporation of CH-3 group at

5th position in indole ring with carbonitrile group (i.e. com-

pound 4i) also gave moderate activity, but the 5,7-diCH3

substitution with carboxylate group (i.e. compound 4c) dis-

played least activity (Table 3; Fig. 2). The results show that

compound 4f showed highest activity. In compound 4f, there

is presence of an electron donating groups (in form of benzyl

group substituted on nitrogen of indole ring and carboxylate

at 5th position of pyran ring) which stabilized the compound

after donating the hydrogen or lone pair to ABTS•? radical

cation.

Table 3 EC50 values of compounds in antioxidant properties

O N
N

C6H5

X

H2N

R1
NR

O

EC50

Compound R R1 X DPPH ABTS NO

4a H H COOEt 539.53 ± 0.345 1010.20 ± 0.346 671.95 ± 0.230

4b H 5-Cl COOEt 811.20 ± 0.236 3678.57 ± 0.246 1372.50 ± 0.345

4c H 5,7-diCH3 COOEt 920.20 ± 0.257 2763.61 ± 0.269 1122.33 ± 0.236

4d CH2–CH=CH2 H COOEt 619.45 ± 0.347 1597.09 ± 0.257 891.09 ± 0.185

4e C2H5 H COOEt 600.66 ± 0.191 1076.53 ± 0.242 730.86 ± 0.202

4f CH2–C6H5 H COOEt 456.91 ± 0.148 488.60 ± 0.358 560.49 ± 0.173

4g H H CN 1054.45 ± 0.259 3324.66 ± 0.256 1188.57 ± 0.132

4h H 5-Br CN 959.28 ± 0.239 2941.47 ± 0.358 1131.47 ± 0.218

4i H 5-CH3 CN 727.42 ± 0.282 1147.95 ± 0.159 793.73 ± 0.239

4j CH2–CH=CH2 H CN 974.25 ± 0.311 3345.33 ± 0.512 898.09 ± 0.198

4k C2H5 H CN 969.48 ± 0.178 3340.00 ± 0.347 877.28 ± 0.241

4l CH2–C6H5 H CN 922.98 ± 0.193 4167.91 ± 0.567 892.67 ± 0.188

Ascorbic acid 409.75 ± 0.288 550.00 ± 0.134 544.21 ± 0.132

EC50 value: The effective concentration at which the antioxidant activity was 50 %; DPPH•, ABTS•? and NO radicals were scavenged by 50 %,

respectively. EC50 values were obtained by interpolation from linear regression analysis. Values were the mean of three replicates ± SE

Fig. 1 DPPH radical

scavenging activity of indole

derivatives at different

concentrations
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Nitric oxide scavenging activity

In NO assay, among the tested compounds, compounds 4e

and 4f having N-substituted indole ring with carboxylate

group at 5th position of pyran ring, showed good activity.

Other N-substituted indole with carboxylate group or with

carbonitrile group (i.e. compounds 4d, 4j, 4k, 4l, respec-

tively) showed moderate activity. Free NH functionality of

indole ring with carboxylate group (i.e. compound 4a)

showed moderate activity, while with carbonitirle group

(i.e. compound 4g) showed least activity. The incorpora-

tion of CH-3 group at 5th position in indole ring with

carbonitrile group (i.e. compound 4i) gives moderate

activity, but the incorporation of 5,7-diCH3, Cl with car-

boxylate group (i.e. compounds 4b and 4c), and Br with

carbonitrile group (i.e. compound 4h) have not shown any

effect and gives least activity (Table 3; Fig. 3). The results

show that compound 4f possess highest activity. In com-

pound 4f, there is presence of an electron donating groups

(in form of benzyl group substituted on nitrogen of indole

ring and carboxylate at 5th position of pyran ring) which

stabilized the compound after donating the hydrogen or

lone pair to NO radical.

Conclusion

This work describes for the first time the in vitro antioxidant

activities of spirooxindole derivatives, as a new class of

potential antioxidants. The results showed that all the spiro-

oxindole derivatives had demonstrated strong activity in

DPPH• and NO scavenging method and moderate activity in

ABTS•? scavenging procedure. The compound 4f (Ethyl60-
amino-30-methyl-2-oxo-10-phenyl-10H-spiro[1-benzylindo-

line-3,40-pyrano[2,3-c]pyrazole]-50-carboxylate) has shown

strong activity in DPPH•, ABTS•? and NO scavenging

screening. Overall, compound 4a having electron donating

carboxylate group and compound 4f having both N-benzyl

and carboxylate group having electron donating effect were

found to be the most potent antioxidant described in this study.

Experimental

Chemistry

The melting points of all the compounds were determined

on a Toshniwal apparatus. The purity of compounds was

Fig. 2 ABTS scavenging

activity of indole derivatives at

different concentrations

Fig. 3 NO scavenging activity

of indole derivatives at different

concentrations
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checked on thin layers of silica gel G-coated glass plates

with n-hexane ethyl acetate (7:3) as eluent. Infrared (IR)

spectra were recorded on a Shimadzu Fourier transform

(FT)-IR 8400 S spectrophotometer using KBr pellets.

Sonication was carried out with the help of a standard

ultrasonic irradiation instrument SonaprosPR-1000 MP

(Oscar Ultrasonics Pvt. Ltd.) operating at 750 W and

generating 23 KHz output frequency. It has the following

characteristics: Standard Titanium horn with a diameter of

6 mm/12 mm, replaceable flat stain less steel tip and dig-

ital thermometer to determine temperature. The glass

reactor was designed and made from borosil glass.

Synthesis of spiro[indoline3,40-pyrano[2,3-c]pyrazole

derivatives (4a–l)

An equimolar mixture of isatin (1 mmol, 0.147 g), eth-

ylcyanoacetate (1 mmol, 0.113 g), 3-methyl-1-phenyl-2-

pyrazolin-5-one (1 mmol, 0.174 g) and 10 mol% CAN in

5 ml water was introduced in a 20 mL, heavy-walled,

pear-shaped, two-necked flask with non standard taper

outer joint. The flask was attached to a 12 mm tip

diameter probe, and the reaction mixture was sonicated at

ambient temperature for the specified period at 50 %

power of the processor and 230 W output in a 4 s pulse

mode. At the end of the reaction period, thin-layer

chromatography (TLC) was checked, and the flask was

detached from the probe. The contents were transferred to

a beaker. The formed solid was filtered off, washed

thoroughly with warm water (2 9 20 ml), and then dried

to obtain crude products which were purified by crystal-

lization from mixture of methanol acetone (6:4) to give

compound 4, giving satisfactory spectral and elemental

analysis.

Ethyl 60-amino-30-methyl-2-oxo-10-phenyl-10H-

spiro[indoline-3,40-pyrano[2,3-c]pyrazole]-50-carboxylate

(4a)

White crystalline solid; YIELD: 94 %; m.p. 238–240 �C;

IR (KBr) : 3392, 3230, 3172, 1716, 1652, 1600, 1554,

1160 cm-1; 1H NMR (DMSO-d6, 300 MHz): d 0.71 (t, 3H,

CH3), 1.55 (s, 3H, CH3), 3.72 (q, J = 6.80 Hz, 2H, CH2),

6.84–6.93 (m, 3H), 7.18 (t, J = 5.40 Hz, 1H), 7.32 (t,

J = 07.5 Hz, 1H), 7.49(t, J = 8.4 Hz, 2H), 7.75 (d,

J = 7.5 Hz, 2H), 8.14 (brs, 2H, NH2, D2O exchangeable),

10.53(s, 1H, NH, D2O exchangeable); 13C NMR (DMSO-

d6, 75 MHz): d 12.0, 13.4, 48.0, 59.6, 75.1, 98.7, 109.4,

120.5, 122.3, 123.5, 126.9, 128.3, 129.9, 136.1, 137.9,

142.4, 144.7, 161.7, 168.3, 179.9; MS (m/z): 416 (M?).

Anal. calcd. for C23H20N4O4: C, 66.34, H, 4.84, N, 13.45.

Found: C, 66.30, H, 4.81, N, 13.38.

Ethyl 60-amino-5-chloro-30-methyl-2-oxo-10-phenyl-10H-

spiro[indoline-3,40-pyrano[2,3-c]pyrazole]-50-carboxylate

(4b)

White crystalline solid; YIELD: 92 %; m.p. 246–248 �C;

IR (KBr): 3396, 3228, 3172, 1698, 1644, 1608, 1566,

1160 cm-1; 1H NMR (DMSO-d6, 300 MHz) : d 0.77 (t,

3H, CH3), 1.61 (s, 3H, CH3), 3.75 (q, J = 6.6 Hz, 2H,

CH2), 6.89 (d, J = 8.4 Hz, 1H), 7.08 (s, 1H), 7.23 (d,

J = 8.1 Hz, 1H), 7.33 (t, J = 7.2 Hz, 1H), 7.50 (t,

J = 7.8 Hz, 2H), 7.80 (d, J = 8.1 Hz, 2H), 8.25 (brs, 2H,

NH2, D2O exchangeable), 10.68 (s, 1H, NH, D2O

exchangeable); 13C NMR (DMSO-d6, 75 MHz): d 11.8,

13.2, 47.8, 59.2, 74.1, 97.6, 110.4, 120.2, 123.5, 125.9,

126.5, 127.7, 129.5, 137.3, 137.9, 141.1, 144.1, 161.5,

167.8, 179.2; MS (m/z) : 450 (M?); Anal. calcd. for

C23H19ClN4O4 : C, 61.27, H, 4.25, N, 12.43. Found : C,

61.30, H, 4.31, N, 12.42.

Ethyl 60-amino-30,5,7-trimethyl-2-oxo-10-phenyl-10H-

spiro[indoline-3,40-pyrano[2,3-c]pyrazole]-50-carboxylate

(4c)

White crystalline solid; YIELD: 91 %; m.p. 260–262 �C;

IR (KBr): 3398, 3228, 3170, 1702, 1648, 1611, 1570,

1168 cm-1; 1H NMR (DMSO-d6, 300 MHz) : d 0.75 (t,

3H, CH3), 1.58 (s, 3H, CH3), 2.12 (s, 3H, CH3), 2.19 (s,

3H, CH3), 3.73 (q, J = 6.90 Hz, 2H, CH2), 6.57 (s, 1H),

6.78 (s, 1H), 7.32 (t, J = 7.2 Hz, 1H), 7.50 (t, J = 7.8 Hz,

2H), 7.80 (d, J = 7.8 Hz, 2H), 8.17 (brs, 2H, NH2, D2O

exchangeable), 10.47 (s, 1H, NH, D2O exchangeable); 13C

NMR (DMSO-d6, 75 MHz): d 11.8, 12.9, 16.3, 18.6, 20.6,

47.8, 56.2, 59.2, 75.0, 98.6, 117.9, 120.0, 121.2, 126.4,

129.4, 129.5, 130.6, 135.5, 137.4, 138.3, 144.0, 144.4,

161.3, 168.1, 179.9; MS (m/z) : 444 (M?); Anal. calcd. for

C25H24N4O4 : C, 67.55, H, 5.44, N, 12.60. Found: C, 67.49,

H, 5.39, N, 12.63.

Ethyl 60-amino-30-methyl-2-oxo-10-phenyl-10H-spiro[1-

allylindoline-3,40-pyrano[2,3-c]pyrazole]-50-carboxylate

(4d)

White crystalline solid; YIELD: 84 %; m.p. 182–184 �C;

IR (KBr): 3398, 3228, 3170, 1702, 1648, 1611, 1570,

1168 cm-1; 1H NMR (DMSO-d6, 300 MHz) : d 0.67 (t,

3H, CH3), 1.50 (s, 3H, CH3), 3.73 (q, J = 6.90 Hz, 2H,

CH2), 4.29 (dd, 1H, CH2), 4.58 (dd, 1H, CH2), 5.25 (d, 1H,

CH2), 5.43 (d, 1H, CH2), 5.84 (m, 1H, CH), 6.95–7.83 (m,

9H, ArH), 8.24 (brs, 2H, NH2, D2O exchangeable). 13C

NMR (DMSO-d6, 75 MHz): d 11.7, 13.4, 47.0, 58.9, 74.6,

97.6, 118.7, 119.8, 119.8, 122.2, 126.0, 127.4, 129.0,

131.4, 134.7, 137.4, 142.3, 143.9, 144.0, 167.6, 177.1; MS
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(m/z) : 457 (M?). Anal. calcd. for C26H24N4O4 : C, 68.40,

H, 5.32, N, 12.10. Found: C, 68.49, H, 5.39, N, 12.13.

Ethyl 60-amino-30-methyl-2-oxo-10-phenyl-10H-spiro[1-

ethylindoline-3,40-pyrano[2, 3-c]pyrazole]-50-carboxylate

(4e)

White crystalline solid; YIELD: 92 %; m.p. 208–210 �C;

IR (KBr): 3398, 3228, 3170, 1702, 1648, 1611, 1570,

1168 cm-1; 1H NMR (DMSO-d6, 300 MHz) : d 0.63 (t,

3H, CH3), 1.33 (t, 3H, J = 6.8 Hz), 1.50 (s, 3H, CH3), 3.73

(q, 2H, J = 6.8 Hz), 6.39–7.24 (m, 9H, ArH), 8.29 (brs,

2H, NH2, D2O exchangeable); 13C NMR (DMSO-d6,

75 MHz): d 10.2, 11.7, 47.5, 58.7, 72.6, 95.6, 114.2, 117.9,

118.2, 120.0, 121.2, 124.4, 127.4, 129.5, 130.6, 134.3,

137.4, 142.5, 143.3, 144.0, 166.1, 176.9; MS (m/z) : 445

(M?); Anal. calcd. For C25H24N4O4 : C, 67.50, H, 5.41, N,

12.57. Found: C, 67.55, H, 5.44, N, 12.60.

Ethyl 60-amino-30-methyl-2-oxo-10-phenyl-10H-spiro[1-

benzylindoline-3,40-pyrano[2, 3-c]pyrazole]-50-
carboxylate (4f)

White crystalline solid; YIELD: 97 %; m.p. 244–246 �C;

IR (KBr): 3398, 3228, 3170, 1702, 1648, 1611, 1570,

1168 cm-1. 1H NMR (DMSO-d6, 300 MHz) : d 0.63 (t,

3H, CH3), 1.50 (s, 3H, CH3), 3.73 (q, J = 6.90 Hz, 2H,

CH2), 4.91 and 5.13 (2H, AB system J = 15.5 Hz),

6.57–7.89 (m, 14H, ArH), 8.20 (brs, 2H, NH2, D2O

exchangeable); 13C NMR (DMSO-d6, 75 MHz): d 11.5,

13.6, 46.9, 58.9, 73.6, 96.6, 117.9, 118.2, 120.0, 122.2,

126.4, 127.4, 129.5, 131.6, 134.3, 137.4, 142.3, 143.8,

144.0, 161.6, 165.5, 176.9; MS (m/z) : 507 (M?); Anal.

calcd. for C30H26N4O4 : C, 71.04, H, 5.13, N, 11.01.

Found: C, 71.13, H, 5.17, N, 11.06.

60-amino-30-methyl-2-oxo-10-phenyl-10H-spiro[indoline-

3,40-pyrano[2,3-c]pyrazole]-50-carboxylate (4g)

White crystalline solid; YIELD: 95 %; m.p. 237–238 �C;

IR (KBr): 3412, 3280, 3174, 2200, 1692, 1650, 1526,

1132 cm-1; 1H NMR (DMSO-d6, 300 MHz) : d 1.55 (s,

3H, CH3), 6.94 (d, J = 7.4 Hz, 1H), 7.03 (t, J = 7.6 Hz,

1H), 7.18 (d, J = 7.2 Hz, 1H), 7.28 (t, J = 7.5 Hz, 1H),

7.36 (t, J = 7.6 Hz, 1H), 7.52 (t, J = 7.8 Hz, 2H), 7.58

(brs, 2H, NH2, D2O exchangeable), 7.79 (d, J = 7.9 Hz,

2H), 10.76 (s, 1H, NH, D2O exchangeable); 13C NMR

(DMSO-d6, 75 MHz): d 12.3, 48.3, 56.6, 96.9, 110.4,

118.6, 120.7, 123.2, 125.4, 127.1, 129.8, 130.8, 132.6,

138.2, 142.1, 144.5, 145.5, 162.3, 178.8; MS (m/z) : 369

(M?); Anal. calcd. for C21H15N5O2 : C, 68.28, H, 4.09, N,

18.96. Found: C, 68.26, H, 4.04, N, 18.88.

60-Amino-5-bromo-30-methyl-2-oxo-10-phenyl-10H-

spiro[indoline-3,40-pyrano[2,3-c]pyrazole]-50-carbonitrile

(4h)

White crystalline solid; YIELD: 92 %; m.p. 242–244 �C;

IR (KBr): 3436, 3269, 3168, 2198, 1706, 1650, 1576,

1168 cm-1; 1H NMR (DMSO-d6, 300 MHz): d 1.58 (s,

3H, CH3), 6.91 (d, J = 7.6 Hz, 1H), 7.42–7.54(4H, m),

7.28 (t, J = 7.9 Hz, 1H), 7.64 (brs, 2H, NH2, D2O

exchangeable), 7.79 (d, J = 7.8 Hz, 2H), 10.90 (s, 1H, NH,

D2O exchangeable); 13C NMR (DMSO-d6, 75 MHz): d
12.1, 47.9, 56.4, 96.7, 110.6, 118.2, 120.9, 125.8, 126.6,

129.5, 129.6, 131.7, 132.3, 137.3, 139.2, 144.1, 145.0,

161.0, 178.5; MS (m/z): 447(M?); Anal. calcd. for

C21H14BrN5O2: C, 56.27, H, 3.15, N, 15.62. Found: C,

56.17, H, 3.21, N, 15.60.

60-Amino-30,5-dimethyl-2-oxo-10-phenyl-10H-

spiro[indoline-3,40-pyrano[2,3-c]pyrazole]-50-carbonitrile

(4i)

White crystalline solid; YIELD: 98 %; m.p. 288–290 �C;

IR (KBr): 3426, 3269, 3178, 2192, 1696, 1650, 1576,

1174 cm-1; 1H NMR (DMSO-d6, 300 MHz): d 1.56 (s,

3H, CH3), 2.26 (s, 3H, CH3),6.84 (d, J = 7.8 Hz, 1H), 7.08

(s, 1H), 7.12 (d, J = 7.6 Hz, 1H), 7.35 (t, J = 8 Hz, 1H),

7.52 (t, J = 8.4 Hz, 2H), 7.55 (brs, 2H, NH2, D2O

exchangeable), 7.78 (d, J = 8.3 Hz, 2H), 10.64 (s, 1H, NH,

D2O exchangeable); 13C NMR (DMSO-d6,75 MHz): 11.9,

20.4, 48.2, 56.7, 96.6, 110.1, 118.4, 119.9, 125.3, 126.8,

129.9, 130.5, 131.9, 132.6, 137.4, 139.8, 144.3, 145.7,

161.2, 177; MS(m/z):383(M?); Anal. calcd. for

C22H17N5O2: C, 68.92, H, 4.47, N, 18.27. Found: C, 68.82,

H, 4.51, N, 18.11.

60-amino-30-methyl-2-oxo-10-phenyl-10H-spiro[1-

allylindoline-3,40-pyrano[2,3-c]pyrazole]-50-carbonitrile

(4j)

White crystalline solid; YIELD: 90 %; m.p. 218–220 �C; IR

(KBr): 3408, 1708, 1660, 1605, 1540, 1166 cm-1; 1H

NMR (DMSO-d6, 300 MHz): 1.42 (s, 3H, CH3), 4.29 (dd,

1H, CH2), 4.58 (dd, 1H, CH2), 5.25 (d, 1H, CH), 5.43

(d, 1H, CH), 5.84 (m, 1H, CH), 6.94–7.50 (m, ArH, 14H),

8.28 (brs, 2H, NH2, D2O exchangeable); 13C NMR (DMSO-

d6, 75 MHz): 11.7, 43.4, 55.9, 109.2, 117.8, 120.0, 123.2,

124.5, 126.2, 127.3, 128.3, 129.0, 131.2, 135.5, 137.2, 141.9,

143.8, 144.9, 161.1, 176.0; MS (m/z): 410 (M?); Anal. calcd.

for C24H19N5O2 : C, 70.35, H, 4.59, N, 17.15. Found: C,

70.40, H, 4.68, N, 17.10.
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60-amino-30-methyl-2-oxo-10-phenyl-10H-spiro[1-

ethylindoline-3,40-pyrano[2,3-c]pyrazole]-50-carbonitrile

(4k)

White crystalline solid; YIELD: 84 %; m.p. 210–212 �C;

IR (KBr): 3406, 1705, 1656, 1608, 1542, 1162 cm-1; 1H

NMR (DMSO-d6, 300 MHz): d 1.33 (t, 3H, J = 6.8 Hz),

1.42 (s, 3H, CH3), 3.85 (q, 2H, J = 6.8 Hz), 6.92–7.52 (m,

ArH, 14H), 8.23 (brs, 2H, NH2, D2O exchangeable); 13C

NMR (DMSO-d6, 75 MHz): 11.7, 43.4, 55.9, 109.2, 117.8,

120.0, 123.2, 124.5, 126.2, 127.3, 128.3, 129.0, 131.2,

135.5, 137.2, 141.9, 143.8, 144.9, 161.1, 176.0; MS (m/z):

398 (M?); Anal. calcd. for C23H19N5O2 : C, 73.29, H,

4.67, N, 15.27. Found: C, 73.19, H, 4.61, N, 15.24.

60-amino-30-methyl-2-oxo-10-phenyl-10H-spiro[1-

benzylindoline-3,40-pyrano[2,3-c]pyrazole]-50-carbonitrile

(4l)

White crystalline solid; YIELD: 97 %; m.p. 232–234 �C;

IR (KBr): 3406, 1705, 1656, 1608, 1542, 1162 cm-1; 1H

NMR (DMSO-d6, 300 MHz): d 1.42 (s, 3H, CH3), 4.89 (d,

1H, J = 15.6 Hz, benzylic proton), 5.09 (d, 1H,

J = 15.6 Hz, benzylic proton), 6.97–7.42 (m, ArH, 14H),

8.13 (brs, 2H, NH2, D2O exchangeable); 13C NMR

(DMSO-d6, 75 MHz): 11.7, 43.4, 55.9, 109.2, 117.8, 120.0,

123.2, 124.5, 126.2, 127.3, 128.3, 129.0, 131.2, 135.5,

137.2, 141.9, 143.8, 144.9, 161.1, 176.0; MS (m/z): 460

(M?); Anal. calcd. for C28H21N5O2 : C, 68.92, H, 4.47, N,

18.27. Found: C, 68.82, H, 4.51, N, 18.11.

Antioxidant activity

Antioxidant activities of test compounds were measured by

estimating DPPH•, ABTS•? and NO scavenging activity

in vitro using ascorbic acid as standard drug.

DPPH• scavenging activity

Ability of synthesized compounds to scavenge the stable free

radical, DPPH• is measured by the method, appeared in the

literature (Mensor et al., 2001). To 1 ml methanolic solution of

DPPH• (0.25 mM), 1 ml of ethanolic solution of synthesized

compounds was added. To prepare control, 1 ml of methanol

was added to the 1 ml methanolic solution of DPPH•

(0.25 mM). After 20 min, absorbance was recorded at 517 nm

in a UV–Vis doublebeamspectrophotometer. The inhibition (%)

of free radicals was calculated by using the following formula:

Inhibition (% ) =
ðAC� AAÞ
ðAC)

� 100

where AC absorbance of control and AA absorbance of

tested compounds.

ABTS•? scavenging activity

ABTS•? scavenging activity of synthesized compounds

were measured by the method, appeared in the literature

(Re et al., 1999). First, ABTS•? free radicals were gener-

ated through the oxidation of ABTS with potassium per-

sulphate. For this purpose, ABTS was dissolved in

deionized water to 7 mM concentration, and potassium

persulphate was added to a concentration of 2.45 mM. The

reaction mixture was kept in dark at room temperature for

12–16 h before final use. Lastly, the ABTS•? solution was

diluted with absolute ethanol till the absorbance was read

0.700 ± 0.020 at 734 nm. Synthesized compounds in eth-

anol were added to 3 ml of ABTS•? solution and the

absorbance was read after 6 min.

Nitric oxide scavenging activity

The interaction of synthesized compounds with nitric oxide

(NO) was assessed by the nitrate ion detection method

(Sreejayan, 1997). Sodium nitropruside (5 mM) in phos-

phate buffer spontaneously generates NO in an aqueous

solution. NO interacts with oxygen and produces nitrate

ions, which can be estimated by the use of Greiss reagent

(1 % sulphanilamide, 2 % H3PO4 and 0.1 % napthyleth-

ylene diamine dihydrochloride). Sodium nitroprusside

(5 mM) in phosphate buffer was mixed with synthesized

compounds and incubated at 25 �C for 150 min. Prepared

samples were allowed to react with Greiss reagent. The

absorbance of chromophore formed during the diazotiza-

tion of nitrite with sulphanilamide and subsequent coupling

with napthylethylene diamine was read at 546 nm. The

same reaction mixture without the synthesized compound,

but with equal amount of distilled water served as control.
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