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Abstract Anaplastic lymphoma kinase (ALK) is involved

in many signaling mechanisms that lead to cell-cycle pro-

gression; overexpression of ALK has been found in many

types of cancers. ALK is a recognized target for the devel-

opment of small-molecule inhibitors for the treatment of

cancer. In this study, a diverse set of 71 ALK inhibitors were

aligned by three different methods (pharmacophore, dock-

ing-based, and rigid body (Distill) alignment) for the

development of comparative molecular field analysis

(CoMFA) and comparative molecular similarity indices

analysis (CoMSIA) models. The best 3D QSAR models were

obtained, which used rigid body (Distill) alignment of test

and training set molecules. CoMFA and CoMSIA models

were found statistically significant with leave-one-out cor-

relation coefficients (q2) of 0.816 and 0.838, respectively;

cross-validated coefficients (r2
cv) of 0.812 and 0.837,

respectively; and conventional coefficients (r2) of 0.969 and

0.966, respectively. QSAR models were validated by a test

set of 14 compounds giving satisfactory prediction of cor-

relation coefficients (r2
pred) of 0.910 and 0.904 for CoMFA

and CoMSIA models, respectively. Based on the generated

contour maps, we have designed 10 novel ALK inhibitors

and predicted their activities. Finally, molecular docking

study was performed for designed molecules. The designed

compounds showed good potential to be used as ALK

inhibitors.

Keywords ALK inhibitors � 3D QSAR � CoMFA �
CoMSIA � Docking � Tripos

Introduction

Anaplastic lymphoma kinase (ALK) is an enzyme, which

belongs to insulin receptor superfamily. It is a tyrosine kinase-

type receptor and formed by instructions of ALK gene (Cheng

and Ott, 2010). ALK is 220-kDa receptor tyrosine kinase

(RTK) identified in human as well as in drosophila and

mouse, and discovered as fusion protein ‘‘nucleophosphamin-

anaplastic lymphoma kinase’’ derived from chromosomal

translocation. Owing to chromosomal translocation of ALK

gene, the fusion ALK enzyme is synthesized, which has

kinase activity and make its contribution to oncogenesis

(Pulford et al., 2004). Structure of ALK is shared with three

domains of RTKs: (1) intracellular, (2) transmembrane, and

(3) extracellular. Level of ALK is seen decreased in healthy

adult tissue compared with children (Zificsak et al., 2011).

Physiological role of ALK is not well defined, but it is sug-

gested that it contributes to the development of brain as well as

to the proliferation of nerve cells and also affects the dopa-

minergic signaling (Moh et al., 2011). Translocation of ALK

causes oncogenesis, which plays an important role as an

oncogene in the development of anaplastic large cell lym-

phomas (ALCL) known as non-Hodgkin’s lymphoma (NHL),

non-small cell lung cancer, and in inflammatory myofibrob-

lastic tumors. Full-length ALK is usually expressed in various

types of cancers such as breast cancer, neuroblastoma, Ewing

sarcoma, retinoblastoma, and melanoma. The pathogenic role

of ALK receptor has not been clearly understood but over-

expression of ALK is seen in many cancers. Furthermore,

ALK fuses with other proteins like nucleophosphamin

(NPM), ALK lymphoma oligomerization on chromosome 17

(ALO17), TRK-fused gene (TFG), moesin (MSN), etc. and

makes ALK-fusion proteins, which are also responsible for

tumor growth (Palmer et al., 2009). Nucleophosmin-ana-

plastic lymphoma kinase protein (NPM-ALK) is a mutant
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form of ALK and seen in a majority of the cases of ALCL. In

these cases, it is believed that ALK may give bases (purines

and pyrimidines) in tumorigenesis via many signaling

mechanisms that will lead to cell-cycle progression, durabil-

ity, cell movement, and its shaping (Tripathy et al., 2011).

Inhibition of ALK may reduce the growth of ALK-positive

lymphoma cells. ALK is nowadays getting more attention as a

therapeutic target for the treatment of cancer. Crizotinib is an

ALK inhibitor, which is under clinical trials for its effec-

tiveness and safety in anaplastic large cell lymphoma as well

as in neuroblastoma (Shaw et al., 2011). More recently,

ARIAD laboratories have synthesized a new compound

named ‘‘AP-26133’’ which has better efficacy as an ALK

inhibitor. Novel ALK inhibitors are necessary for improved

kinase selectivity profile and to fight against the resistance

mechanisms (Allwein et al., 2012). Structural study as well as

characterization of ALK domain can help in identifying and

the development of ALK inhibitors (Tartari et al., 2011). The

present study was undertaken to explore key structural

requirements of different chemical scaffolds as ALK inhibi-

tors by utilizing comparative molecular field analysis

(CoMFA) and comparative molecular similarity indices

analysis (CoMSIA) with three different (pharmacophore,

docking-based, and rigid body) alignment methods. CoMFA

is a versatile and powerful tool in rational drug design (Vyas

and Ghate 2012a, b). CoMFA calculates steric and electro-

static fields surrounding the molecules and correlating the

differences in these fields to inhibitory activity. In CoMSIA,

similarity indices are calculated at regularly placed grid points

for aligned molecules. CoMSIA calculates other molecular

descriptors like hydrophobic fields, hydrogen-bond donor

(HBD) and hydrogen-bond acceptor (HBA) fields (Klebe and

Abraham, 1999). Contour maps of CoMFA and CoMSIA

fields describe the ‘‘favorable’’ or ‘‘unfavorable’’ contribu-

tions of a region of interest surrounding the ligands to the

target property (Vyas et al., 2013). Based on generated 3D

QSAR models, we have designed 10 novel ALK inhibitors

and predicted their activities. Docking study was performed

for designed molecules to explore the binding mode of

inhibitors in the active site of ALK. The aim was to explore

combined use of docking study with 3D QSAR to design new

compounds with improved potency against ALK.

Materials and methods

Dataset

A dataset of 71 compounds (ALK inhibitors) consisting of

2-acyliminobenzimidazoles and piperidine carboxamides

were collected from the literature (Lewis et al., 2012;

Bryan et al., 2012). Chemical structures and activity data

are shown in Table 1. ALK enzyme inhibitory IC50 (lM)

values were converted to pIC50 and subsequently used as

dependent variable for 3D QSAR study (Table 1).

Selection of training and test set

The total set of 71 inhibitors were divided into training set

(57 compounds) for generating QSAR model and a test set

(14 compounds) for validating the quality of the models.

An ideal division of a training and test set will lead to

dataset with resemblance of all the compounds of a test set

in multidimensional descriptor space to a training set and

resemblance of all representative compounds of a training

set to a test set. Selection of a training and test set mole-

cules was done by considering the fact that test set mole-

cules represent a range of inhibitory activities similar to

that of a training set. Thus, a test set was the true repre-

sentative of the training set. This was achieved by arbi-

trarily setting aside 14 compounds as a test set with a

regularly distributed biological data.

Computational details

QSAR modeling, calculations, and visualizations for

CoMFA and CoMSIA analyses were performed using

SYBYL X 1.3 software from Tripos Inc., St. Louis, MO,

USA. Compound 66 was selected as template molecule

because of its high inhibitory activity. The structures of all

other compounds were constructed from the template

molecule using ‘‘SKETCH’’ function in SYBYL, partial

atomic charges were calculated by the Gasteiger-Huckel

method. and energy minimization was performed using

Tripos force field (Gasteiger and Marsili, 1980) with a

distance-dependent dielectric and Powell conjugate gradi-

ent algorithm. The minimum gradient difference of

0.05 kcal/mol Å was set as a convergence criterion (Clark

et al., 1989).

Alignment

The most crucial input for CoMFA and CoMSIA analyses

is the alignment of the molecules that requires 3D struc-

tures of the analyzed molecules to be aligned according to

a suitable conformational template. 3D QSAR models are

often sensitive to a particular alignment scheme. Generally,

the results of CoMFA and CoMSIA analyses depend upon

the alignment method of molecules. The comparisons of

different alignment techniques were reported (Vyas et al.,

2012; Roy et al., 2008) in the literature for CoMFA and

CoMSIA analyses. Therefore, three different alignment

techniques were compared carefully in this work, to find

the most efficient one for the present system.
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Table 1 Structures, experimental, and predicted pIC50 with residuals of the training and test sets using CoMFA and CoMSIA models

N

O
HN

N
N

HN

CH3

R

Compounds R IC50 (lM)a pIC50
b Predicted activity Residual

CoMFA CoMSIA CoMFA CoMSIA

1c 3,4,5-OMePh 0.174 6.760 7.726 7.826 -0.967 -1.067

2c –Ph 2.32 5.635 7.128 7.161 -1.494 -1.527

3c 3-ClPh 2.01 5.697 7.133 6.939 -1.436 -1.242

4c 4-ClPh 6.30 5.201 6.015 5.993 -0.814 -0.792

5 3-OMePh 1.02 5.991 5.913 6.039 0.078 -0.048

6c 4-OMePh 3.10 5.509 6.236 6.014 -0.727 -0.505

7 3-EtPh 0.912 6.040 6.063 5.895 -0.023 0.145

8 3,4-OMePh 1.73 5.762 5.746 5.795 0.016 -0.033

9c 3,4-benzodioxane 1.48 5.830 6.417 6.029 -0.587 -0.199

10 3,5-OMePh 0.325 6.488 6.444 6.469 0.044 0.019

N

O
HN

N
N

NH

OH3C

O
H3C

OH3C

R

11 Ph 0.833 6.080 6.094 6.095 -0.015 -0.016

12 CH2–Ph 0.364 6.439 6.662 6.686 -0.223 -0.247

13c (CH2)2–Ph 0.358 6.447 6.448 6.739 -0.002 -0.293

14 (CH2)3–Ph 6.71 5.173 5.321 5.361 -0.148 -0.188

15 CH2–CO–Ph 2.94 5.532 5.644 5.538 -0.112 -0.006

16 CH(S–Me)–Ph 2.60 5.585 5.412 5.464 0.173 0.121

17 CH(R–Me)–Ph 2.01 5.697 5.717 5.717 -0.020 -0.020

N

O
HN

N
N

NH

OH3C

O
H3C

OH3C

R

18c 4-Me 0.174 6.760 7.209 7.657 -0.742 -1.190

19c 2-Me 0.341 6.467 6.728 7.053 0.3523 0.028

20 3-Me 0.083 6.083 7.92 7.943 -0.124 -0.147

21 3-OCF3 0.016 7.796 7.673 7.899 0.327 0.101

22 4-OCF3 0.010 8.000 6.662 6.709 -0.431 -0.478

23 2-Cl 0.587 6.231 7.199 7.218 -0.102 -0.121

24 3-Cl 0.080 7.097 7.086 7.042 -0.064 -0.020

25 4-Cl 0.095 7.022 7.168 7.284 -0.013 -0.129

26 3-NO2 0.070 7.155 5.362 5.411 0.171 0.122

27 4-NO2 2.93 5.533 7.158 6.989 0.064 0.233
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Table 1 continued

Compounds R IC50 (lM)a pIC50
b Predicted activity Residual

CoMFA CoMSIA CoMFA CoMSIA

28c 3-CO2Me 0.060 7.222 6.882 7.070 -1.112 -1.300

29 4-CO2Me 1.70 5.770 7.044 7.060 0.677 0.661

30 3-Ph 0.019 7.721 6.844 6.870 0.016 -0.010

31 4-Ph 0.138 6.860 6.979 6.907 -0.262 -0.190

32 3-OPh 0.192 6.717 7.109 6.999 0.400 0.510

33 3-Morpholine 0.031 7.509 8.64 8.440 -0.339 -0.139

R

N

N
H

N
N

O

34 OH 0.005 8.301 8.596 8.897 -0.073 -0.374

O

N

N
H

N
N

O

R

35 OMe 0.003 8.523 8.923 9.020 0.077 -0.020

36 OEt 0.001 9.000 8.34 8.314 0.359 0.385

37 NHEt 0.002 8.699 8.123 8.229 -0.503 -0.609

38 N(Et)2 0.024 7.620 8.128 8.269 -0.383 -0.524

39 NH2 0.018 7.745 8.599 8.494 0.100 0.205

40 NHPr 0.002 8.699 8.406 8.270 -0.251 -0.115

O

N
N

N
H

HN
O

H3C
CH3

F

R

41c H 0.007 8.155 8.637 8.458 0.159 0.338
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Table 1 continued

Compounds R IC50 (lM)a pIC50
b Predicted activity Residual

CoMFA CoMSIA CoMFA CoMSIA

42
N

0.0016 8.796 8.540 8.643 0.159 0.056

43

S

N

-O

-O

0.002 8.699 8.606 8.629 0.093 0.070

44 N

N
N

0.002 8.699 8.134 8.076 -0.053 0.005

45 ON 0.0083 8.081 8.708 8.763 0.088 0.033

46
N

HN

0.0016 8.796 8.778 8.601 -0.079 0.098

47c

N

HN

O

0.002 8.699 8.796 8.801 0.125 0.120

48
N

H2N

0.0012 8.921 8.758 8.670 -0.235 -0.147

49

N

OHO 0.003 8.523 8.749 8.662 -0.050 0.037

50
N

O

HO

0.002 8.699 8.707 8.834 0.147 0.100

51

N
H

O
H
N

0.0014 8.854 8.742 8.658 -0.043 0.041

52

N

OH2N
0.002 8.699 8.843 8.891 0.078 0.030
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Table 1 continued

Compounds R IC50 (lM)a pIC50
b Predicted activity Residual

CoMFA CoMSIA CoMFA CoMSIA

53 N
H3C

CH3
HO

0.0012 8.921 8.691 8.648 -0.106 -0.063

54 N

CH3
H3C

HO
0.001 9.000 8.804 8.750 -0.083 -0.030

55

N

H3C
CH3

HO 0.0026 8.585 8.861 8.670 0.139 0.330

56 N

H3C
CH3HO

0.0019 8.721 8.819 8.805 0.005 0.019

57c

HN
H3C

CH3
HO

0.001 9.000 8.998 8.790 -0.299 -0.091

58
NH3C

CH3
HO

0.0015 8.824 8.870 8.856 0.130 0.144

R
O

N
N

N
H

HN
O

H3C
CH3

N
H3C

CH3
HO

59 0.002 8.699 8.790 8.860 0.210 0.140

60 F 0.001 9.000 8.797 8.864 0.203 0.136
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Table 1 continued

Compounds R IC50 (lM)a pIC50
b Predicted activity Residual

CoMFA CoMSIA CoMFA CoMSIA

61

F

F 0.001 9.000 8.725 8.741 0.275 0.259

62

N
0.001 9.000 8.857 8.899 0.143 0.101

63c

N
0.001 9.000 8.649 8.557 -0.427 -0.335

64

N

0.006 8.222 8.741 8.851 -0.042 -0.152

65

F

F 0.002 8.699 8.669 8.691 -0.146 -0.168

66

F

N 0.003 8.523 8.802 8.832 0.198 0.168

67 N 0.001 9.000 8.798 8.766 -0.275 -0.243

68

F

Cl 0.003 8.523 8.825 8.856 -0.126 -0.157

69 Cl 0.002 8.699 8.574 8.489 -0.051 0.034

70

F

Cl 0.003 8.523 8.992 8.827 0.008 0.173

71 F

N

0.001 9.000 8.912 8.392 0.088 0.608

a ALK enzyme inhibitory activity IC50 (lM)
b Negative logarithm of IC50 (lM) (pIC50)
c Test set
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Distill (align 1)

Rigid body alignment of molecules in a Mol2 database was

performed using maximum common substructure (MCS)

defined by Distill. Compound 66 was used as a template

and all other compounds were aligned on the basis of the

common structure. MCS represents a common core of all

the structures used for the alignment. Distill generates

MCS on the basic of a group of connected atoms common

to a set of structures used for the alignment. A rigid

alignment attempts to align molecules in a database to a

template molecule on a common backbone or core (MCS).

This core will typically have been produced by Distill. The

minimum atom count in MCS fragments can be as small as

3. For the alignment of the molecules using Distill, first the

core is looked for in all the molecule, if core may be found

more than once, or there may be more than one mapping of

the core atoms to the molecule atoms. In this case a single

mapping is chosen. Finally, all the molecule are fit to the

template using the best mapping of the core to the mole-

cules and the database is updated with the molecule’s new

orientation. Alignment of training and test set compounds

using Distill module is shown in Fig. 1a.

Docking-based alignment (align 2)

The active conformation of all the compounds was

achieved by molecular docking study. Docking experi-

ments were performed using Surflex–Dock module of

SYBYL X 1.3. The X-ray crystallographic structure of the

ALK (PDB ID: 3L9P) (Lee, 2010) solved at 1.8 Å reso-

lution was retrieved from the PDB databank. Each inhibitor

was docked into the ALK using the flexible docking

module implemented in Surflex–Dock (Jain, 1996). Active

conformation was selected from the binding orientation in

the active site of ALK and evaluated by consideration of

binding free energy scores (Surflex–Dock score). Since for

all compounds the best-docked geometries (active confor-

mation) were in agreement with the crystallographic data

of the ALK/glycerol complex (and thus already aligned)

(Fig. 1b), they were directly submitted to QSAR study.

Pharmacophore-based alignment (align 3)

All the compounds (training and test sets) were selected to

generate pharmacophore model using DISCOtech. All the

compounds were aligned on some common features

depending upon the position rotation and conformation.

Generated pharmacophore model contains 1 donor site, 1

acceptor atom and 2 hydrophobic regions, which was then

used for the alignment of the compounds in QSAR study

(Fig. 1c).

These three different alignment methods yielded very

good statistical results, but rigid body alignment of mole-

cules by Distill (align 1) gave us the best results (Table 2)

with a significant statistical value of q2 and r2
cv as compared

to aligns 2 and 3, so further QSAR study was carried out

using align 1 (Distill).

CoMFA model

In CoMFA analysis, steric and electrostatic potential

energies were calculated using Tripos force field with a

probe atom having a van der Waals radius of sp3-hybrid-

ized carbon and a ?1 charge to generate steric (Lennard-

Jones 6–12 potential) field energies and electrostatic

(Coulombic potential) fields with a distance-dependent

dielectric at each lattice point. A lattice with 2 Å grid

spacing extending at least 4 Å in each direction beyond the

aligned molecules was used. The steric and electrostatic

energy values were truncated at 30.0 kcal/mol. In order to

reduce noise and improve efficiency, column filtering

(minimum sigma) was set to 2.0 kcal/mol.

Fig. 1 Alignment of training and test set compounds a rigid body alignment using Distill, b docking-based, c pharmacophore-based
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CoMSIA model

The CoMSIA similarity index descriptors were calculated

using a dummy sp3-hybridized carbon with ?1 charge. The

same lattice box used in CoMFA calculations was also

applied to CoMSIA calculations with a grid spacing of 2 Å

with a radius of 1.0 Å as implemented in SYBYL. Simi-

larity indices were calculated between a probe and each

atom of the molecules based on a Gaussian distance

function. CoMSIA not only computes steric and electro-

static fields, but also calculates hydrophobic, HBD, and

hydrogen-bond acceptor (HBA) fields. For the distance

dependence between the probe atom and the molecule

atoms, a Gaussian function was used. Because of the dif-

ferent shape of the Gaussian function, the similarity indices

calculated at all grid points, both inside and outside the

molecular surface.

Partial least square (PLS) analysis

CoMFA and CoMSIA models were derived using PLS

regression analysis. Calculated CoMFA and CoMSIA

descriptors were used as independent variables and ALK

inhibitory activity (pIC50) as the dependent variable in the

PLS analysis. PLS analysis was performed using the leave-

one-out (LOO) and cross-validation (CV) methods for 3D

QSAR analysis, which gives q2 and r2
cv, respectively as a

statistical index of predictive power. The non-cross-

validated models were assessed by the conventional cor-

relation coefficient (r2), standard error of estimation (SEE),

and F values. A 100-cycle bootstrap analysis was per-

formed to assess the statistical confidence of the derived

models. The mean correlation coefficient is represented as

bootstrap r2 (r2
boot). The PLS analysis was then repeated

with no validation using the optimal number of compo-

nents to generate CoMFA and CoMSIA models (Cramer

et al., 1988).

Predictive r2 value

The predictive r2 (r2
pred) was based only on the molecules

(14 compounds) not included in the training set and is

defined as r2
pred = SD - PRESS/SD where, SD is the sum

of the squared deviations between the inhibitory activities

of molecules in a test set and the mean inhibitory activity

of a training set molecules, and PRESS is the sum of

squared deviations between predicted and actual activity

values for every molecule in a test set.

Analysis of the residuals

The training set was initially checked for outliers for 3D

QSAR analysis. In general, if the residual of a compound

between experimental pIC50 and predicted pIC50 values is

greater than 1 logarithm unit, the compound is considered

as outlier. Examination of the residuals from cross-

Table 2 Statistical parameters of comparative study of three alignments using CoMFA and CoMSIA models by PLS analysis

Statistical parameters Align 1 (distill) Align 2 (docking-based) Align 3 (pharmacophore-based)

CoMFA CoMSIA CoMFA CoMSIA CoMFA CoMSIA

q2 0.816 0.838 0.639 0.499 0.603 0.667

r2
ncv 0.969 0.966 0.870 0.890 0.965 0.739

r2
cv 0.812 0.837 0.613 0.478 0.623 0.662

r2
bs 0.972 0.922 0.674 0.975 0.689 0.911

N 4 4 2 1 1 1

F 403 357 177 215 822 153

SEE 0.218 0.231 0.440 0.405 0.386 0.619

r2
pred 0.910 0.904 0.632 0.778 0.625 0.719

r2
bs 0.978 0.923 0.874 0.915 0.894 0.767

Probability of r2
ncv – – – – – –

Field contribution

Steric 0.742 0.142 0.651 0.124 0.810 0.179

Electrostatic 0.258 0.153 0.349 0.242 0.190 0.240

Hydrophobic 0.228 0.204 – 0.207

H-bond donor 0.282 0.282 – 0.300

H-bond acceptor 0.195 0.148 – 0.074

N is the optimal number of components (PLS components), q2 is the leave-one-out (LOO) validation coefficient, r2
cv is cross-validation

coefficient, r2
ncv is the non-cross-validation coefficient, r2

pred is the predictive correlation coefficient, SEE is the standard error of estimation, F is

the F-test value, r2
bs is mean r2 of bootstrapping analysis (100 runs)
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validated predictions (Table 1) indicated that there is no

outlier in 3D QSAR models.

Docking study

The Surflex–Dock module of SYBYL was used for molec-

ular docking. The X-ray crystallographic structures of ALK

(PDB ID: 3L9P) (Lee, 2010) solved at 1.8 Å resolution was

retrieved from the PDB, and modified for docking calcula-

tions. Co-crystallized ligand was removed from the struc-

ture, water molecules were removed, H atoms were added,

and side chains were fixed during protein preparation. Pro-

tein structure minimization was performed by applying

Tripos force field, and partial atomic charges were calculated

by Gasteiger-Huckel method.

Results and discussion

Results of the CoMFA analysis

The statistical parameters of standard CoMFA models

constructed with steric and electrostatic fields are given in

Table 2. The q2, r2
cv, r2

pred, r2
ncv, F, and SEE values were

computed as defined in SYBYL. PLS analysis showed a q2

value of 0.816 and r2
cv of 0.812. A non-cross-validated PLS

analysis results in a conventional r2 of 0.969, F = 403 and

a standard error of estimation (SEE) of 0.218 with four

components. In both steric and electrostatic field contri-

butions, the former accounts for 0.742, while the latter

contributes 0.258, indicating that steric field contributed

the highest to the binding affinity. A high bootstrapped r2

(0.978) value and low standard deviation (0.006) suggest a

high degree of confidence in the analysis. The predicted

and experimental pIC50 and residual values are listed in

Table 1, and the correlation between the predicted and the

experimental pIC50 of training and test set is depicted in

Fig. 2a.

Results of the CoMSIA analysis

CoMSIA offered steric, electrostatic, hydrophobic, HBD,

and HBA fields’ information. Optimization of CoMSIA

study was performed using the above fields. CoMSIA

models were generated using steric, electrostatic, hydro-

phobic, HBD, and HBA fields in different combinations,

and the results of this study are summarized in Table 3.

CoMSIA models showed higher correlation and high
Fig. 2 Plot of experimental versus predicted activities of training and

test set compounds based on a CoMFA model, b CoMSIA model

Table 3 Optimization of CoMSIA analysis for Align 1

Features q2 r2
ncv r2

cv N F SEE S E H D A

SEHDA 0.838 0.966 0.837 4 357 0.231 0.142 0.153 0.228 0.282 0.195

SEHD 0.832 0.961 0.829 4 315 0.246 0.185 0.200 0.268 0.346 –

SEHA 0.807 0.865 0.810 4 322 0.243 0.246 0.222 0.266 – 0.266

SEDA 0.813 0.965 0.809 4 355 0.232 0.187 0.193 – 0.349 0.271

SHE 0.835 0.962 0.818 4 327 0.241 0.330 0.236 0.435 – –

SED 0.803 0.960 0.818 4 303 0.250 0.264 0.273 – 0.463 –

EHA 0.776 0.766 0.760 4 241 0.254 – 0.211 0.401 – 0.387

EDA 0.805 0.967 0.802 4 378 0.225 – 0.203 – 0.486 0.311

Bold values indicate the best results obtained among all combinations

N is the optimal number of components (PLS components); q2 is the leave-one-out (LOO) cross-validation coefficient; r2
ncv is the non-cross-validation coefficient;

SEE the standard error of estimation; F Fischer’s F value; S Steric; E Electrostatic; H Hydrophobic; D H-bond donor; A H-bond acceptor
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predictive properties. In most of the models, steric and

electrostatic fields were the common factors indicating the

importance of these fields for the present series of mole-

cules. We found that the CoMSIA descriptors such as

steric, electrostatic, hydrophobic, HBD, and HBA fields

played significant roles in the prediction of ALK inhibitory

activity. These factors result in best CoMSIA models

(Table 3). Statistically significant CoMSIA model gives q2

of 0.838, r2
cv of 0.837, r2 of 0.966, F of 357, and SEE of

0.416 values with four components. The corresponding

field contributions are 0.142 (steric), 0.153 (electrostatic),

0.228 (hydrophobic), 0.282 (HBD), and 0.195 (HBA). Plot

of experimental and predicted pIC50 of training and test set

is depicted in Fig. 2b.

Predictive power of CoMFA and CoMSIA models

The predictive abilities of 3D QSAR models were further

validated using a test set of 14 compounds, not included in

the model generation study. The predicted r2 (r2
pred) values

of CoMFA and CoMSIA models are 0.910 and 0.904,

respectively (Table 2). By comparison of experimental and

predicted pIC50 values of a test set compounds, it is

observed that CoMFA and CoMSIA models performed

well in the predication of ALK inhibitory activity.

CoMFA contour maps

The contour maps of CoMFA denote the region in the

space where the aligned molecules would favorably or

unfavorably interact with ALK-binding site. Contour maps

for the best CoMFA model are shown in Fig. 3. In the

contour maps, the steric CoMFA contour plot of an active

compound 66 is shown in Fig. 3a. The field energies at

each lattice point were calculated as the scalar results of the

coefficient and the standard deviation associated with a

particular column of the data table (std*coeff), being

always plotted as the percentages of the contribution of

CoMFA equation. In this figure, the green color contours

represent regions of high steric tolerance (80 % contribu-

tion), while the yellow color contours represent regions of

low steric bulk tolerance (20 % contribution). The steric

contour of CoMFA (Fig. 3a) model showed a large green

color contour covering the amide linker between benzoni-

trile ring and imidazole ring of benzimidazole nucleus of

template structure, which showed favorable bulky substi-

tution. A second favorable steric contour was found near

the piperidine ring indicating a favorable effect of steric

bulk with high electron density of –N atom of piperidine

ring. The active compounds of the dataset extended their

bulky substitution into the sterically favored green color

contour map of CoMFA and therefore exhibited good

inhibitory activity. Difference between the activities of 40

(IC50 = 0.007 lM) and 41 (IC50 = 0.0016 nM) was due to

the presence of more sterically favored ethyl piperidine

ring in 41, whereas 40 does not have any substitution at this

position. One steric unfavorable yellow color contour was

observed near the carbonyl oxygen atom of amide linker

between isopropyl group and cyclohexane ring. It sug-

gested that bulky groups in these regions would decrease

ALK inhibitory activity. CoMFA electrostatic contour map

is shown in Fig. 3b. Regions where increased positive-

charge is favorable for inhibitory activity are indicated in

blue color (80 % contribution), while regions where

increased negative charge is favorable for inhibitory

activity are indicated in red color (20 % contribution). The

Fig. 3 CoMFA (std*coeff) contour maps. Compound 66 is shown

inside the field, a contour maps of CoMFA steric map shown in green

(80 % contribution) refer to sterically favored regions; yellow (20 %

contribution) indicates disfavored areas, b contour maps of CoMFA

electrostatic field. Electrostatic contour map is shown in red (20 %

contribution) indicating regions where negatively charged substituents

are favored, while blue contours (80 % contribution) refer to regions

where negatively charged substituents are disfavored (For interpreta-

tion of the references to color in this figure legend, the reader is referred

to the web version of this article.) (Color figure online)
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electrostatic contour maps display a red color contour

around the –C8 and –N1 atoms of benzimidazole ring,

which indicates that a negatively charged group at –C8

position of benzimidazole ring would increase the activity.

Negatively charged nitrogen atom is necessary for red

colored favorable isopleths in proximity to this area.

Nitrogen atoms in such a position usually can form

H-bonds with amino acid residues of the binding site of

ALK. Small blue color contours around the –NH of the

amide linker between benzimidazole and benzonitrile ring

system indicated that a positively charged hydrogen atom

at this position would increase the activity.

CoMSIA contour maps

The CoMSIA contribution maps denote those areas within

the specified region where the presence of a group with a

particular physicochemical property will be favored or

disfavored for good inhibitory activity. CoMSIA calculates

both steric and electrostatic fields, as in CoMFA, but

additionally uses hydrophobic, HBD, and HBA fields. The

CoMSIA steric and electrostatic PLS contour maps were

similarly placed as those for the CoMFA model. The

contour plot of the CoMSIA hydrophobic, HBA, and HBD

fields (std*coeff) are shown in Fig. 4. Favored and disfa-

vored levels were fixed at 80 and 20 %, respectively.

Compound 66 is overlaid in the maps once again. Figure 4a

displayed the hydrophobic plot represented by yellow and

gray color contours. In the CoMSIA hydrophobic map, two

yellow color contours are present: one is distributed under

the imidazole nitrogen of benzimidazole ring system, and

other is found near the phenyl ring carrying the nitrile

substitution, which indicated that hydrophobic groups in

this area are beneficial to enhance ALK inhibitory activity.

Compound 64 (IC50 = 0.002 lM) showed better activity

because of the presence of yellow color contour at halogen

(–F)-substituted phenyl ring, whereas 63 (IC50 =

0.006 lM) has unsubstituted pyridine at this position,

which is less hydrophobic in nature and thus showed

decrease in activity. The large gray color contour covering

both the amide linker revealed the necessity of the hydro-

philic amide groups on these positions to increase the

activity. The graphical interpretation of the HBD interac-

tions in the CoMSIA model is represented in Fig. 4b. Cyan

color contours indicated the regions where HBD substitu-

ents on ligand are favored. In the HBD contour map, one

large cyan color area was observed near the amide linker

between benzimidazole and benzonitrile ring systems.

Amide linker can form H-bonds with residues of ALK,

which indicated the necessity of the –H atom at this posi-

tion for high inhibitory activity. The graphical interpreta-

tion of the HBA interactions in the CoMSIA model is

shown in Fig. 4c. Magenta color (80 % contribution) and

red color (20 % contribution) contours represented the area

where HBA are favored and disfavored, respectively. A

large magenta color contour was observed near carbonyl

oxygen of amide group. Carbonyl oxygen can act as HBA

by attacking protons, indicating a favorable interaction of

Fig. 4 CoMSIA (std*coeff) contour maps. Compound 66 is shown

inside the field. Hydrophobic field (a), HBD field (b), and HBA field (c).

Yellow and gray contours indicate regions where hydrophobic groups

favored and disfavored the activity, respectively. Cyan contour

represent areas where HBD is favored. Magenta and red contours

represent areas where HBA is favored and disfavored, respectively.

Favored and disfavored levels were fixed at 80 and 20 %, respectively

(For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.) (Color figure online)
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HBA group in this region to enhance inhibitory activity. A

large red color contour was found near the benzimidazole

ring, indicating that HBA substituents are disfavored at this

position. However, in the present series, these substitutions

are common in all compounds, and so to interpret the maps

based on comparison of activity of compounds is very

complex. Analyses of CoMFA and CoMSIA contour plots

offered enough information to understand the importance

of substituents at particular position for better activity.

Designing of the novel ALK inhibitors

Based on the results drawn from the 3D QSAR analysis, we

have designed 10 (1–10d) novel potent ALK inhibitors

considering the structural requirement for inhibition ALK,

and predicted ALK inhibitory activity of the designed

compounds (Table 4). The compounds were designed con-

sidering the substituents found to be significant with the

contour maps analyses like (1) sterically favored bulky group

(–R) attached to cyclohexane ring system; (2) negatively

charged group at –C8 position of benzimidazole ring (R2);

(3) the presence of amide spacer between benzimidazole

nucleus and substituted phenyl ring system, which will act as

HBA/HBD; (4) –R1-substituted phenyl ring is responsible

for aromatic hydrophobic interaction with ALK; and (5) the

presence of alkoxy groups (–OMe/–OEt/–OPh) on piperi-

dine ring system which will have hydrophobic interactions

with the active site of ALK (Fig. 5).

Molecular docking analysis

To study the binding modes of the designed molecules with

the ALK, we performed molecular docking experiments into

the ligand-binding site of ALK. The Surflex–Dock uses an

empirically derived scoring function that is based on the

binding affinities of protein–ligand complexes and on their

X-ray structures. The protomol is a unique and important

factor of the docking algorithm and is a computational

Table 4 Structure of designed compounds with predicted activity and docking score

HN

N

N
H

H2N
O

N

R3

R

R2

R1

O

Compound R R1 R2 R3 Predicted pIC50 CoMFA model Predicted pIC50 CoMSIA model Docking score

1d 3-CF3 3-nC4H9 NO2 OMe 8.248 7.841 5.125

2d 3-OCF3 3-i-C3H7 Cl OEt 8.608 7.919 6.445

3d 5-CF3 4-Ph F OPh 8.822 8.048 5.339

4d 5-OCF3 2-C2H5 OH OMe 8.178 7.815 5.424

5d 3-CF3 4-CH2–Ph COOH OEt 8.326 7.858 5.133

6d 3-OCF3 4-(CH2)2–Ph COOH OPh 8.286 7.858 4.502

7d 5-CF3 4-Ph OH OMe 8.305 7.846 3.015

8d 5-OCF3 2-C2H5 F OEt 8.233 7.822 7.611

9d 3-F 3-nC4H9 Cl OPh 8.225 7.857 1.589

10d 2,5-F 3-i-C3H7 NO2 OEt 7.895 7.858 3.166

Fig. 5 Hypothetical interactions model of new designed ALK

inhibitors with ALK enzyme
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representation of assumed ligands that interact with the

binding site. The co-crystal structure of human ALK was

retrieved from the protein data bank. After running Surflex–

Dock, the scores of the active docked conformers were

ranked in a molecular spread sheet. We selected the best total

score conformers and speculated regarding the detailed

binding patterns in the cavity. A total dock score—the total

Surflex–Dock score expressed as -log (Kd) to represent

binding affinities which include hydrophobic, polar, repul-

sive, entropic, and salvation—is given in Table 4.

Binding pose of designed ALK inhibitor (8d) in active

site of ALK

Docking results suggested that compound 8d has the highest

good docking score of 8.048. The overall binding of 8d is

illustrated in Fig. 6. Compound 8d formed two H-bonds with

ALK. The oxygen and –F atom of trifluoromethoxy group

substituted on cyclohexane ring formed H-bond with

hydrogen atom of –NH of Asp1203 (Asp1203NH���OCF3,

1.93 Å; Asp1203NH���FF2CO, 2.47 Å). Docking studies

showed that most of the compounds have a common binding

mode and occupied in the vicinity of active site of ALK.

Conclusions

ALK is an attractive target for small-molecule drug dis-

covery in cancer therapy because of its key role in tumor

biology. In this study, we described 3D QSAR analysis as a

rational strategy to design potent ALK inhibitors, using

three different alignment methods. CoMFA and CoMSIA

models with good predictive capabilities were developed in

this study, which were found satisfactory according to the

statistical results as well as the contour maps analyses, and

used for prediction of ALK inhibitory activity of the

designed compounds. Overall, the predictive power of

CoMFA model appeared to be better than that of CoMSIA

model. 3D QSAR models discussed in this study were

exploited to design novel ALK inhibitors with higher

selectivity and efficacy for ALK inhibition. Finally, dock-

ing study was performed with the designed compound. The

designed compounds showed good potential to be used as

ALK inhibitors.

Acknowledgments The authors would like to thank Nirma Uni-

versity, Ahmedabad, India for providing the necessary facilities.

References

Allwein SP, Roemmele RC, Haley JJ, Mowrey DR, Petrillo DE, Reif

JJ, Gingrich DE, Bakale RP (2012) Development and scale-up of

an optimized route to the ALK inhibitor CEP-28122. Org

Process Res Dev 16:148–155

Bryan MC, Whittington DA, Doherty EM, Falsey JR, Cheng AC,

Emkey R, Brake RL, Lewis RT (2012) Rapid development of

piperidine carboxamides as potent and selective anaplastic

lymphoma kinase inhibitors. J Med Chem 55:1698–1705

Cheng M, Ott GR (2010) Anaplastic lymphoma kinase as a

therapeutic target in anaplastic large cell lymphoma, non-small

cell lung cancer and neuroblastoma. Anti-Cancer Agents Med

Chem 10:236–249

Clark M, Cramer RD, Opdenbosch NV (1989) Validation of the

general purpose tripos 5.2 force field. J Comput Chem

10:982–1012

Fig. 6 Docking interactions of

designed compound 8d (ball-

and-stick with color by atom) in

the active site of ALK using

Surflex–Dock module. The

labeled protein residues are in

capped stick model with color

by atom. Hydrogen bonds are

colored in yellow lines with
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