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Abstract p38 kinase plays a vital role in inflammation

mediated by tumor necrosis factor-a and interleukin-1b
pathways. Inhibition of p38 kinase provides an effective

way to treat inflammatory diseases. 3D-QSAR study was

performed to obtain reliable comparative molecular field

analysis (CoMFA) and comparative molecular similarity

indices analysis (CoMSIA) models for a series of p38

inhibitors with three different alignment methods (Recep-

tor based, atom by atom matching, and pharmacophore

based). Among the different alignment methods, better

statistics were obtained with receptor-based alignment

(CoMFA: q2 = 0.777, r2 = 0.958; CoMSIA: q2 = 0.782,

r2 = 0.927). Superposing CoMFA/CoMSIA contour maps

on the p38 active site gave a valuable insight to understand

physical factors which are important for binding. In addi-

tion, this pharmacophore model was used as a 3D query for

virtual screening against NCI database. The hit compounds

were further filtered by docking and scoring, and

their biological activities were predicted by CoMFA and

CoMSIA models.

Keywords p38 inhibitors � 3D QSAR � CoMFA �
CoMSIA � Pharmacophore � GALAHAD

Introduction

Rheumatoid arthritis (RA) is characterized by the chronic

inflammation of joints that leads to destruction of cartilage

and bone deformation (Chen et al., 1993; Pincus, 1995).

Patients suffering from arthritis and other autoimmune dis-

eases have elevated levels of pro-inflammatory cytokines

such as TNFa and IL-1b in the synovial fluid (Dinarello,

1991; Feldmann et al., 1996). They are produced by synovial

macrophages and exhibit similar biological activities like cell

proliferation, collagen synthesis, adhesion molecule expres-

sion, etc. (Dominguez et al., 2005). Clinical therapies with

anticytokines were employed to obstruct the hyperactivated

pro-inflammatory cytokines and prevent the joint damage

caused by TNFa and IL-1b. The cost of anticytokine treat-

ment, mode of administration, and post-treatment infections

hampered the effective use of these anticytokine therapies

(Andreakos et al., 2002). Intracellular signaling pathways

involving p38 mitogen-activated protein kinase (MAPK)

regulate the production of several pro-inflammatory cyto-

kines and are considered as a focal point in the development

of new therapeutic agents to treat inflammatory disease such

as RA (Kulkarni et al., 2006). p38 MAP kinases are proline-

directed serine-threonine protein kinases that are activated by

various growth factors and pro-inflammatory cytokines by

the dual phosphorylation of TXY motifs in the activation

loop (Pearson et al., 2001). Four variants of p38 kinase have

been recognized, namely, p38a (also known as p38), p38b,

p38c (ERK6/SAPK3), and p38d (SAPK4) with 40–60 %

structural similarity (Lee et al., 1994; Jiang et al., 1996;

Li et al., 1996; Jiang et al., 1997). Several reports indicate

that p38a has profound role in RA and is involved in the

expression of TNFa and IL-1b at both transcription and

translation levels while the roles of p38b, p38c, and p38d
have to be identified critically (Newton and Holden, 2003).
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In the last couple of decades, the three dimensional

structure-activity relationship (3D QSAR) techniques such

as comparative molecular field analysis (CoMFA) and

comparative molecular similarity indices analysis (CoM-

SIA) (Cramer et al., 1988; Klebe et al. 1994; Bohm et al.,

1999) have been routinely used in modern drug design.

Current studies are now focused on the development of

novel inhibitors. Several series of p38a kinase inhibitors

are reported and despite these, more structurally diverse

inhibitors should be discovered. The primary aim of this

study is lead optimization and lead identification of p38

kinase inhibitors. QSAR techniques are most often used as

a tool for lead optimization within the congeneric domain

of molecules. There is strong literature evidence suggesting

that lead identification can be achieved by pharmacophore-

based methods (Martin et al., 1993; Jones et al., 1995;

Patel et al., 2002; Willett and Winterman, 1986). In this

study, we combined both these approaches to identify lead

compounds using pharmacophore-based approach and

optimize the lead compounds using QSAR approach. We

have developed 3D-QSAR models for a series of dihy-

droquinazolinone inhibitors (John et al., 2003) using

receptor-based and ligand-based schemes (atom by atom

matching and pharmacophore based). The generated

CoMFA and CoMSIA models were further validated by the

test set. Receptor-based model was selected for further

explanation of contour maps. Furthermore, the pharmaco-

phore which was generated for 3D-QSAR studies was

validated with the crystal structure-bound conformation of

potent p38 kinase inhibitor Dihydroquinazolinone (PDB

code: 1M7Q) and then used in the virtual screening of NCI

database. Compounds with high screening scores obtained

after different filtering were further supported by CoMFA

and CoMSIA with good predicted pIC50 values. The results

obtained could be useful for further prospects.

Materials and methods

Dataset

Forty five novel p38a kinase inhibitors were taken from

literature with their biological activities (John et al., 2003)

in terms of IC50 values and forty one molecules were

selected for the development of model. Four molecules

were excluded because of their low inhibition concentra-

tion (IC50). These compounds were excluded as they might

act as outliers and it would affect the quality of the model.

The IC50 values i.e., the concentration (nM) of inhibitors

that produces 50 % inhibition of p38 kinase were con-

verted into pIC50 as reported in Tables 1, 2, and 3. The

dataset is randomly divided into a training set of 32 mol-

ecules and test set of nine molecules. The IC50 (nM) values

were taken in molar (M) range and converted to pIC50

according to the formula given in following Eq.

pIC50 ¼ �log IC50

Molecular docking

Docking study was performed to validate the hits obtained

from virtual screening using SYBYL 8.11 (SYBYL 8.1.,

Tripos, St. Louis, MO) molecular modeling package

installed on Linux system. Protein structure was prepared

using biopolymer module of SYBYL. Hydrogen atoms

were added to structure, atom types and charges were

assigned using AMBER7 FF99 force field, and side chain

amides were modified. Docking study was performed using

Table 1 Structure and biological values (pIC50) of dihydroquinaz-

olinone inhibitors (series 1)

N

N

Cl Cl

O

H

Ar

R

Compound 9c-9r, Compound 10a-10c

Compound no. Ar R X Y pIC50

9c Phenyl Co2Me – – 7.523

9d 2-Fl-Phenyl Co2Me – – 8.155

9ea 3-Fl-Phenyl Co2Me – – 7.102

9f 4-Fl-Phenyl Co2Me – – 7.658

9ga 2-Cl-Phenyl Co2Me – – 9.000

9h 3-Cl-Phenyl Co2Me – – 7.174

9i 4-Cl-Phenyl Co2Me – – 7.328

9ka 3-CF3-Phenyl Co2Me – – 6.770

9l 4-CF3-Phenyl Co2Me – – 6.886

9m 2-CH3-Phenyl Co2Me – – 7.959

9na 3-CH3-Phenyl Co2Me – – 6.495

9o 4-CH3-Phenyl Co2Me – – 7.357

9p 2,4-di-Fl-Phenyl Co2Me – – 8.155

9q 2,6-di-Fl-Phenyl Co2Me – – 7.357

9ra 2-CH3-4-Fl-Phenyl Co2Me – – 7.959

10a 2-Cl-4-Fl-Phenyl OMe – – 8.523

10b 2,4-di-Fl-Phenyl OMe – – 7.959

10c 2-Cl-Phenyl OMe – – 8.222

a Test set compounds

1 SYBYL 8.1. Tripos Inc, 1699 South Hanley Road, St Louis, MO,

63144, USA
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Surflex-Dock module of SYBYL, which uses empirical

scoring function to score ligand and protomol (Ruppert

et al., 1997) guided docking. All the molecules were

docked to the inhibitor binding site of p38 kinase crystal

structure in complex with DQO (PDB code: 1M7Q) (John

et al., 2003).

Pharmacophore generation

The pharmacophore hypothesis was generated using

GALAHAD (genetic algorithm with linear assignment of

hypermolecular alignment of datasets) module of SYBYL.

GALAHAD operates in two main stages: the ligands are

aligned to each other in internal coordinate space, and then

the conformations produced are aligned in Cartesian space.

The features considered in developing the pharmacophore

model includes hydrogen bond donor atoms, hydrogen

bond acceptor atoms, hydrophobic and charged centers.

In this study, eight compounds (i.e., 9g, 14b, 14c, 14e, 14k,

15a, 15f, and 15i) were selected to carry out pharmaco-

phore hypothesis and the genetic algorithm was used to

create conformers for all molecules. The compounds which

were selected to generate pharmacophore hypothesis are

highly active. Five models are generated with default

parameters. The pharmacophore indicates that donor and

acceptor atoms are quite crucial to target the hinge region.

The selected pharmacophore model is shown in Fig. 1.

Atom by atom matching alignment

In this scheme, one of the most active compounds (14c) was

used as the template. Systematic search was used in the

conformational analysis and all rotatable bonds were sear-

ched in 10� increments from 0� to 360�. Conformational

energy was computed with electrostatic term and the lowest

energy conformer was selected. The template was modified

for other ligands in the dataset. The common moiety was

constrained for each molecule and the substituents were

minimized at Tripos force field. The minimized structures

were aligned over the template using atom by atom matching

method and are displayed in Fig. 2. The alignment obtained

was subsequently used for CoMFA and CoMSIA.

Table 2 Structure and biological values (pIC50) of dihydroquinaz-

olinone inhibitors (series 2)

N

N

Cl Cl

O

H

Ar

X Y

NH

.

Compound14a-14n

Compound no. Ar R X Y pIC50

14a 2-Cl-Phenyl – – CH 9.046

14b 2,4-di-Fl-Phenyl – – CH 9.699

14c 2-Cl-4-Fl-

Phenyl

– – CH 10.000

14d 2-Cl-Phenyl – – N 8.854

14e 2,4-di-Fl-Phenyl – – N 8.585

14f 2-Cl-Phenyl – O CH 9.699

14ga 2-Cl-4-Fl-

Phenyl

– O CH 10.000

14h 2-Cl-Phenyl – NH CH 9.301

14i 2,4-di-Fl-Phenyl – NH CH 9.222

14j 2-Cl-Phenyl – CH2 N 10.000

14ka 2-Cl-4-Fl-

Phenyl

– CH2 N 9.886

14l 2-Cl-Phenyl – CO N 8.824

14m 2,4-di-Fl-Phenyl – CO N 8.620

14n 2-Cl-4-Fl-

Phenyl

– CO N 8.959

a Test set compounds

Table 3 Structure and biological values (pIC50) of dihydroquinaz-

olinone inhibitors (series 3)

N

N

Cl Cl

O

H

Cl

F

N

R

Compound15a-15i

Compound no. Ar R X Y pIC50

15a – Methyl – – 9.301

15b – Ethyl – – 8.921

15c – i-Propyl – – 9.222

15da – Cyclopropyl – – 8.959

15e – Methyl cyclopropyl – – 9.301

15f – Ethyl 1-cyclopropyl – – 9.523

15ga – Cyclobutyl – – 9.398

15h – Methyl cyclobutyl – – 9.222

15i – t-Butyl – – 9.699

a Test set compounds
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Pharmacophore-based alignment

Pharmacophore-based alignment was done using GALA-

HAD. In this scheme, the molecules in the dataset

(41 compounds) were aligned to the selected pharmaco-

phore model. The alignment was done based on the com-

mon pharmacophores between the molecules in the dataset.

The alignment obtained from this scheme along with their

pharmacophoric features is shown in Fig. 3 and subse-

quently used for CoMFA and CoMSIA.

Receptor-based alignment

Among the inhibitors in the dataset, one of the compound

(14e) was complexed with the receptor is known (21).

Therefore, the ligand (14e) extracted from the protein

structure (PDB code: 1M7Q) was used as the template

molecule. The common moiety was constrained for each

molecule and other molecules in the dataset were modified.

The compounds in the dataset were minimized within the

receptor site using Tripos force field, but the whole protein

active site was fixed during minimization. All minimized

structures inside the receptor were superimposed to get the

molecular alignment for CoMFA and CoMSIA, and sub-

sequently used for analysis. The alignment of the mole-

cules inside the receptor is shown in Fig. 4.

Database search

The selected pharmacophore model was validated and

converted into a UNITY query for pharmacophore-guided

virtual screening studies. The query was screened against

NCI2000 database. The ‘‘flexible database search’’ option

was implemented to perform virtual screening. Primary

filters such as Lipinski’s rule of five, Van der Waals

bumps, restricting the number of rotatable bonds to B7, and

QFIT (pharmacophoric match between query and the hit

compound) were applied to reduce the dataset. Further

screening of the hits was carried out using the docking

algorithm, Surflex-Dock in SYBYL. The generated UNITY

query with distance constraints is shown in Fig. 5.

Fig. 1 Representation of the selected pharmacophore model. Cyan
indicates hydrophobes, green indicates hydrogen bond acceptors,

magenta indicates hydrogen bond donors, and red indicates positive

nitrogens (Color figure online) Fig. 2 Alignment of molecules in the dataset by atom and atom

matching method

Fig. 3 Alignment of molecules by pharmacophore-based alignment

methods. 41 molecules in the dataset are aligned based on the

common pharmacophores using GALAHAD
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Fig. 4 Alignment of molecules inside the receptor using receptor-guided alignment scheme

Fig. 5 The generated UNITY

query for virtual screening

against NCI database along with

the distance constraints
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CoMFA model

The steric and electrostatic field effects were calculated

using the Tripos force field with a distance-dependent

dielectric constant at all intersections in a regular space

(2 Å) grid. A sp3 carbon atom was used as steric probe and

a ?1 charge as electrostatic probe. The generated steric and

electrostatic fields were scaled by CoMFA-Standard scal-

ing method in SYBYL with default energy cutoff value

30 kcal/mol. With standard options for scaling of variables,

the regression analysis was carried out using the full cross-

validated PLS method (Cramer et al., 1988a, b; Wold et al.,

1984) of leave-one-out (LOO) (Wold, 1978). The mini-

mum sigma (column filtering) was set to 2.0 kcal/mol to

improve the signal-to-noise ratio by omitting those lattice

points whose energy variation was below this threshold.

The final model, a non-cross-validated conventional anal-

ysis, was developed with the optimum number of compo-

nents to yield a non-cross-validated r2 value.

CoMSIA model

The reported CoMSIA method is based on molecular

similarity indices (Klebe et al. 1994) with the same lattice

box as was used in CoMFA. Molecular similarity is

expressed in terms of five different properties, namely

steric, electrostatic, hydrophobic, and hydrogen bond donors

and acceptors which were calculated using a C? probe atom

with a radius of 1 Å placed at a regular grid spacing of 2 Å.

CoMSIA similarity indices (AF) for molecule j with atoms i at

a grid point q were calculated using Eq. 1.

Aq
F;K jð Þ ¼ �

X
xprob;kxike�ar2

iq; ð1Þ

where k represents the following physicochemical properties:

steric, electrostatic, hydrophobic, and hydrogen bond donor

and acceptor. A Gaussian-type distance dependence was used

between grid point q and each atom i of the molecule. The

default value (0.3) was used as the attenuation factor (a). The

steric indices were related to the third power of the atomic

radii, electrostatic descriptors were derived from atomic par-

tial charges, hydrophobic fields were derived from atom-

based parameters (Viswanadhan et al., 1989), and hydrogen

bond donor and acceptor indices were obtained by a rule-

based method based on experimental results (Klebe, 1994).

Partial least square (PLS) analysis and validation

of QSAR models

To derive 3D-QSAR models, the CoMFA and CoMSIA

descriptors were used as independent variables and the

pIC50 values as the dependent variable. The PLS method

(Wold and Ruhe, 1984; Geladi, 1988) was used to linearly

Table 4 The regression summary of CoMFA and CoMSIA models by different alignment methods

CoMFA CoMSIA

Alignment 1

(ligand based)

Alignment 2

(pharmacophore

based)

Alignment 3

(receptor based)

Alignment 1

(ligand based)

Alignment 2

(pharmacophore

based)

Alignment 3

(receptor based)

q2a 0.775 0.734 0.777 0.806 0.750 0.782

r2b 0.951 0.894 0.958 0.927 0.862 0.927

SEEc 0.212 0.299 0.196 0.257 0.342 0.258

F value 130.278 122.917 153.910 86.288 90.613 86.132

r2 predd 0.778 0.631 0.818 0.927 0.688 0.710

No. of compounds 41 41 41 41 41 41

NOCe 4 2 4 4 2 4

Contribution

Steric 0.714 0.448 0.598 0.146 0.089 0.139

Electrostatic 0.286 0.552 0.402 0.347 0.366 0.408

Hydrophobic – – – 0.126 0.127 0.120

Hydrogen bond donor – – – 0.255 0.183 0.259

Hydrogen bond acceptor – – – 0.125 0.235 0.074

a Cross-validated correlation after leave-one-out procedure
b Correlation coefficient
c Standard error of estimate
d Predicted correlation coefficient for test set compounds
e Optimal number of components
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correlate these CoMFA and CoMSIA descriptors to the

activity. The CoMFA cutoff values were set to 30 kcal/

mol for both steric and electrostatic fields, and all fields

were scaled by the default options in SYBYL. The cross-

validation analysis was performed using the LOO method

in which one compound was removed from the dataset

and its activity was predicted using the model derived

from rest of the dataset. The cross-validated correlation

coefficient (q2) that resulted in the optimum number of

components and the lowest standard error of prediction

was considered for further analysis and calculated using

Eq. 2.

q2 ¼ 1�
P
ðYpredicted � YobservedÞ2P
ðYobserved � YmeanÞ2

ð2Þ

where, Ypredicted, Yobserved, and Ymean are the predicted,

observed, and mean values of the target property (pIC50),

respectively. The non-cross-validated PLS analyses were

performed with a column filter value of 2.0, to reduce

analysis time with small effect on the q2 values. The

predictive power of the developed 3D-QSAR models has

been assessed by test set (nine molecules) predictions. The

predictive abilities of the models were expressed by the

predictive r2 value, which is analogous to the cross-

validated r2(q2) and is calculated using Eq. 3.

r2
pred ¼

SD� PRESS

SD
; ð3Þ

PRESS ¼
X

y

Ypredicted � Yobserved

� �2 ð4Þ

where SD is the sum of the squared deviations between the

biological activities of the test set and mean activities of

the training molecules, and PRESS is the sum of squared

deviation between the predicted and observed activity of

the test set molecules and is calculated using Eq. 4.

Results and discussion

Molecular docking

To predict the appropriate binding conformation for p38

kinase inhibitors and the reported hit compounds from

virtual screening, Surflex-Dock was used to generate an

ensemble of docking conformations. Before the docking

was done, the reliability of Surflex-Dock was evaluated

by re-docking the co-crystallized ligand [14e (DQO)] into

the binding site. It was observed that Surflex-Dock has

successfully reproduced the binding pose. Moreover, the

resulted hit compounds from screening after QFIT filter-

ing were further screened using molecular docking into

the binding site. The docked compounds were filtered

based on scoring function and interaction with crucial

active site residues (Leu107, Met109, Gly110) in the

binding site.

Table 5 Observed, predicted, and residual values for the test set and

training set by CoMFA and CoMSIA models

Compound pIC50 CoMFA CoMSIA

Predict Residual Predict Residual

9c 7.523 7.540 -0.017 7.571 -0.048

9d 8.155 7.728 0.427 7.705 0.450

9ea 7.102 7.499 -0.397 7.463 -0.361

9f 7.658 7.699 -0.041 7.623 0.035

9ga 9.000 7.928 1.072 7.710 1.290

9h 7.174 7.267 -0.093 7.444 -0.270

9i 7.328 7.474 -0.146 7.506 -0.178

9ka 6.770 7.361 -0.591 7.300 -0.530

9l 6.886 6.901 -0.015 7.173 -0.287

9m 7.959 7.855 0.104 7.626 0.333

9na 6.495 7.384 -0.889 7.559 -1.064

9o 7.357 7.384 -0.027 7.504 -0.147

9p 8.155 7.926 0.229 7.739 0.416

9q 7.357 7.650 -0.293 7.709 -0.352

9ra 7.959 8.011 -0.052 7.677 0.282

10a 8.523 8.419 0.104 8.266 0.257

10b 7.959 8.278 -0.319 8.257 -0.298

10c 8.222 8.256 -0.034 8.213 0.009

14a 9.046 9.475 -0.429 9.643 -0.597

14b 9.699 9.440 0.259 9.676 0.023

14c 10.000 9.639 0.361 9.688 0.312

14d 8.854 8.695 0.159 8.630 0.225

14e 8.585 8.639 -0.054 8.671 -0.086

14f 9.699 9.913 -0.214 9.677 0.022

14ga 10.000 10.082 -0.082 9.729 0.271

14h 9.301 9.407 -0.106 9.351 -0.050

14i 9.222 9.297 -0.075 9.388 -0.166

14j 10.000 10.046 -0.046 9.946 0.054

14ka 9.886 10.144 -0.258 9.990 -0.104

14l 8.824 8.716 0.108 8.637 0.187

14m 8.620 8.643 -0.023 8.678 -0.058

14n 8.959 8.886 0.073 8.688 0.271

15a 9.301 9.124 0.177 9.193 0.109

15b 8.921 8.926 -0.005 9.123 -0.202

15c 9.222 9.370 -0.148 9.129 0.093

15da 8.959 9.074 -0.115 9.166 -0.207

15e 9.301 9.228 0.073 9.321 -0.020

15f 9.523 9.484 0.039 9.570 -0.047

15ga 9.398 9.827 -0.429 9.482 -0.084

15h 9.222 9.277 -0.055 9.431 -0.209

15i 9.699 9.670 0.029 9.478 0.221

a Test set compounds
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CoMFA and CoMSIA statistical results

The CoMFA and CoMSIA studies were carried out using

three different schemes. Results of the PLS analyses of three

different alignments are summarized in Table 4. The ligand-

based model gave better result for CoMFA with cross-vali-

dated r2(q2) = 0.775 and non-cross-validated r2 = 0.951,

while for CoMSIA model, combination of steric, electro-

static, donor, acceptor and hydrophobic terms yielded a

cross-validated r2(q2) = 0.806 and non-cross-validated

r2 = 0.927. These models were validated by a test set of nine

molecules with predictive r2 = 0.778 for CoMFA model and

0.927 for CoMSIA model. The pharmacophore-based model

also gave good results for both CoMFA and CoMSIA.

CoMFA yields a cross-validated r2(q2) = 0.734 and non-

cross-validated r2 = 0.894, while CoMSIA model yielded a

cross-validated r2(q2) = 0.750 and non-cross-validated

r2 = 0.862. The predictive ability of these models was cal-

culated by an external test set and it gave 0.631 for CoMFA

and 0.688 for CoMSIA. In comparison, receptor-guided

alignment gave better statistical results. CoMFA yields a

cross-validated r2(q2) = 0.777 and non-cross-validated

r2 = 0.958, while CoMSIA model yielded a cross-validated

r2(q2) = 0.782 and non-cross-validated r2 = 0.927. These

models were also validated on a test set of nine molecules

with predictive r2 = 0.818 for CoMFA and 0.710 for

CoMSIA. It can be seen that all the models are better in

statistics, so we decided to explain receptor-based model to

better understand the relationship between the inhibitors and

the macromolecule. The predicted pIC50 value for test and

training set from CoMFA and CoMSIA models are given in

Table 5. Graphical representations of actual and predicted

inhibitory activities of CoMFA and CoMSIA are shown in

Figs. 6 and 7.

CoMFA and CoMSIA contour plots

Since the model was built on the basis of receptor-guided

scheme, we could overlay the 3D contour maps produced

by CoMFA and CoMSIA onto the receptor binding pocket.

Fig. 6 Trend of actual and predicted activities of training and test set by receptor-based model (CoMFA)

Fig. 7 Trend of actual and predicted activities of training and test set by receptor-based model (CoMSIA)
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The results obtained from CoMFA indicate that steric and

electrostatic properties play a major role in inhibition

activity (Table 4). However, electrostatic properties play a

major role in CoMSIA, followed by donor and steric fields.

This is because of the fact that the substituents are highly

bulky, electropositive, and electronegative in nature. So we

explain more on steric and electrostatic field contributions.

The steric interactions are represented by green and yellow

colored contours while electrostatic interactions are rep-

resented by red and blue colored contours. In steric field,

green contour represents region where bulky substituent

enhances activity, whereas yellow contour indicates region

where bulky substituents decrease the activity. In case of

electrostatic interactions, the blue contour represents region

where electropositive groups enhance the activity, while

red-colored region indicates that electronegative groups

increases the activity. One of the most active compounds in

the series (compound 14j) is shown with CoMFA contour

maps of steric and electrostatic fields in Figs. 8 and 9. The

green contour region near the piperidine or piperazine

moiety of C7 substituent indicates that bulky substituent at

this position increases activity. This is consistent with

series 2 and 3 where the bulky substituent shows potent

activity, whereas in series 1 the absence of bulky groups

shows less activity. The presence of yellow contour near

the second and third position of phenyl ring at C5 indicates

that steric bulk disfavors activity. This is quite visible that

compounds (9k, 9l, 9n, 9o) having bulky substitutions at

those positions are lower in activity. A blue contour present

around the C7 substituent indicates that electropositive and

hydrogen donors are favorable at this position. This blue

contour also reflects the fact that electronegative groups are

unfavorable at this position. This is quite clear that series 1

having carbonyl substitutions lacks activity. Red contours

around the phenyl group of C5 indicate that electronegative

groups are favorable. Compounds having chlorine, fluorine

at those regions are highly active and it is quite evident

throughout the dataset.

The CoMSIA steric and electrostatic contour maps were

more or less similar to that of CoMFA. Figures 10 and 11

show compound 14j superimposed on CoMSIA plots. The

presence of green contour near the piperidine or piperazine

moiety indicates that bulky substitution at this position

enhances the activity. A small yellow contour present at the

fourth position of phenyl ring at C5 indicates that bulky

position around this region disfavors activity. Compounds

such as 9l and 9o having bulkier substitutions at these

positions lack in activity, whereas compounds having

smaller substitutions at this position show better inhibitory

activity. This is quite evident throughout the dataset. These

results were supported by the presence of red contour

around the same region which indicates that electronega-

tive groups such as chlorine and fluorine are favorable.

Evaluation of pharmacophore with crystal complex

The crystal structure of p38a in complex with DQO (PDB

code: 1M7Q) was further utilized to evaluate the selected

pharmacophore model. It was reported that the complex

forms three hydrogen bond interactions with hinge region.

Fig. 8 CoMFA contour maps

for steric field with highly active

compound (14j), where green
contour indicates regions where

bulky groups increase activity

and yellow contours indicate

that bulky groups decrease

activity (Color figure online)
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The complex structure forms hydrogen bonding with

Leu107, Met109, and Gly110 (21). The selected pharma-

cophore model was mapped on to the bound conformation

of DQO. The bound conformation fits quite well on to the

pharmacophore model. The RMSD between the pharma-

cophore and DQO is 0.59 Å. From the mapping we can see

Fig. 9 CoMFA contour maps

for electrostatic field with

highly active compound (14j),
where blue contour indicates

regions where bulky

electropositive groups increase

activity and red contours
indicate regions where

electronegative groups increase

activity (Color figure online)

Fig. 10 CoMSIA contour maps

for steric field with highly active

compound (14j), where green
contour indicates regions where

bulky groups increase activity

and yellow contours indicate

that bulky groups decrease

activity (Color figure online)
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Fig. 11 CoMSIA contour maps

for electrostatic field with

highly active compound (14j),
where blue contour indicates

regions where bulky

electropositive groups increase

activity and red contours
indicate regions where

electronegative groups increase

activity (Color figure online)

Fig. 12 The generated

pharmacophore (sticks) was

mapped with the co-crystallized

ligand DQO

(dihydroquinazolinone in

capped sticks) inside the active

site
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that the pharmacophore features were mapped exactly on

the complex, where the co-crystal ligand interacts with the

key residues of active site. The mapping of pharmacophore

with DQO is shown in Fig. 12. These results suggested that

the generated pharmacophore was reliable enough to

retrieve compounds from a chemical database that fits all

the features of the query.

Common pharmacophore hypothesis and virtual

screening

A set of highly active molecules were used to identify the

common pharmacophore, GALAHAD produces five mod-

els with default parameters. The results are given in

Table 6. The resulted models are more or less similar in

statistics. All the models show reasonable specificity,

which is a logarithmic indicator of the expected discrimi-

nation of each query. The number of hits column indicates

that all models hit all ligands in the dataset and each of

them has seven features in it. Pareto rank indicates that no

model is more or less superior to each another. We have

selected one model and the model has been validated for

subsequent virtual screening analysis. The virtual screening

workflow is shown in Fig. 13. The screening of the phar-

macophore query yielded 1,182 hits that met the specific

requirements. The compounds are further screened on the

basis of QFIT, where QFIT is the pharmacophore match

between query and the hit. 268 compounds which were

further filtered by QFIT were then subjected to molecular

docking to the binding site of p38 to select the compounds

on the basis of their ability to form favorable interactions

with the active site. Finally, seven compounds are selected

on the basis of dock score and favorable interaction with

key residues. The pIC50 values of final hits were predicted

using CoMFA and CoMSIA models generated on the basis

of pharmacophore alignment. The results of hit compounds

with their dock score and predicted biological activity

values are shown in Table 7. Thus, these potential hits are

expected to induce improved binding affinity with p38a

kinases. The hit compound NCI 211823 which has good

docking score is shown in Fig. 14. The binding mode of

this hit compound is similar to that of co-crystallized

compound (14e). All the final hit compounds have hydro-

gen bonding interactions with the hinge residues which is

crucial to target the ATP binding site.

Table 6 Number of models obtained along with the pharmacophoric features and their statistical values using GALAHAD

S. no. Specification No of hits Features Pareto rank Energy Sterics H-bond Mol_Qry

Model_01 3.747 8 7 0 6.41 3,356.9 199.9 80.37

Model_02 3.749 8 7 0 7.48 3,515.0 199.5 79.83

Model_03 3.746 8 7 0 7.22 3,415.9 199.7 80.06

Model_04 3.748 8 7 0 9.74 3,500.5 199.3 86.90

Model_05 3.748 8 7 0 15.93 3,778.4 195.8 81.27

Lipinski’s Rule of 5, van der waal bumps check

Number of rotatable bonds 7

QFIT

Molecular docking

NCI DATABASE

PHARMACOPHORE

QUERY

1,182

268

7

Fig. 13 The results obtained from virtual screening. The numbers
given in the figure represent the number of molecules after employing

the filters

1784 Med Chem Res (2013) 22:1773–1787

123



Table 7 Chemical structures of

hit compounds, their dock

scores, predicted CoMFA and

CoMSIA

Hit compound Structure Dock

score

Predicted

CoMFA

Predicted

CoMSIA

NCI 211823

O

N N H

O

O

9.05 9.024 8.436

NCI 321056

O

HN

NH

O

8.61 8.119 8.506

NCI 662429

N

H
N

O

O

O

OH

S

8.03 8.521 8.150

NCI 371720 H
N

N

O

O

O

7.44 7.853 8.376

NCI 648477

F

N

NH

O

O

OH

HO

7.25 8.318 8.153
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Table 7 continued
Hit compound Structure Dock

score

Predicted

CoMFA

Predicted

CoMSIA

NCI 2103

HN NH

O

OO

O

7.34 8.062 8.057

NCI 107558

N NH

O

O

7.13 8.870 8.413

Fig. 14 Binding mode and

hydrogen bonding pattern of the

lead molecule (NCI 211823)

obtained from virtual screening

along with co-crystallized

compound 14e (capped sticks)
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Conclusion

3D-QSAR analysis was performed for a series of potent

p38 inhibitors. Ligand-based and receptor-guided align-

ment schemes were applied to develop models. Receptor-

guided CoMFA and CoMSIA were explained, probably

because the alignment using receptor information is more

realistic. The contour maps revealed that bulky substitu-

tions around piperidine ring of C7 carbon atom and elec-

tronegative groups around the phenyl ring of C5 carbon

atom are desirable for potent activity. The information

obtained can help to design new inhibitors of p38 kinases.

We have also performed virtual screening analysis and we

predicted the biological activities of obtained hits using the

3D-QSAR model generated by pharmacophore-based

alignment. 1,182 hits were obtained using certain filters

such as Lipinski’s rule of five and number of rotatable

bonds to a maximum of seven. These hits were further

reduced to 268 compounds using QFIT. Molecular docking

was employed as final filter and seven compounds were

selected on the basis of dock score, hydrogen bonding

interaction, and the biological activities were predicted

using CoMFA and CoMSIA. The identified hit compounds

were structurally different from already available inhibitors

and we suggest that these compounds could serve as

potential leads.
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