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Abstract In the current work, the relationship between

the structure and activity of a series of novel thiazolidine-4-

carboxylic acid derivatives as potent influenza virus neur-

aminidase inhibitors was studied using docking, molecular

dynamics (MD) simulations, and QSAR analysis. A

7,000 ps MD simulation in a cubic water box were

employed to build 3D structure of the 2HU4 in a water

environment. After reaching the equilibrium, the inhibitors

were docked into the 2HU4 to realize the binding site of the

enzyme. The docking analysis showed that the interaction

of the inhibitors with residues Arg371, Arg430, Gly429,

Ile427, Lys432, Pro431, Trp403, and Tyr347 plays an

important role in the activities of the inhibitors. The docked

configurations of the inhibitors with the lowest free energy

were used to calculate the most feasible descriptors. The

selected descriptors were related to the inhibitory activities

using stepwise multiple linear regression, classification

and regression trees, and least squares support vector regres-

sion techniques. The satisfactory results (Rp
2 = 0.883,

QLOO
2 = 0.872, RL25%O

2 = 0.835, RMSELOO = 0.310, and

RMSEL25%O = 0.352) demonstrate that CART-LS-SVR

models present the relationship between influenza virus

neuraminidase inhibitors activity and molecular descriptors

clearly. An energetic analysis based on MD calculations,

revealed that the potency of the most active compound

binding is governed by electrostatic and van der Waals

contacts. The results provide a set of useful guidelines for

the rational design of novel influenza virus neuraminidase

inhibitors.
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Introduction

Severe public health and economic problems due to influ-

enza can affect millions of people worldwide. Influenza

virus is a RNA virus that infects avian and mammalian

cells with the assistance of glycoproteins, hemagglutinin,

and neuraminidase. Influenza virus neuraminidase has been

recognized as a good target for the treatment of influenza

because of its critical roles in the life cycle of the virus. It

also facilitates not only the virion progeny release but also

the general mobility of the virus in the respiratory tract,

thereby enhances infection efficiency (Chand et al., 2001).

Structure-based drug design based on the information of

original neuraminidase crystal structure has proved valu-

able in the discovery and development of anti-influenza

drugs. Up to date, around 170 neuraminidase X-ray com-

plexes in the protein data bank (PDB) contribute to the

development of this drug target. Designing new potent and

selective inhibitors have currently emerged as promising

therapeutics for influenza since the emergence of viruses

resistant to the currently available drugs. Using trial and

error approaches for drug design are usually costly and

time-consuming, therefore the development of theoretical

methods for predicting inhibitory activities of drug-like mole-

cules would be helpful. For this purpose, structure-based
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method is applied as computer-assisted drug design using

molecular docking and molecular dynamics (MD) simula-

tion (Girisha et al., 2009).

In recent years, several drug-like molecules have been

reported to possess inhibitory activities against influenza

virus neuraminidase. However, little is known about their

structure–activity relationship. Mercader and Pomilio

(2010) established a QSAR model which suggested the

inhibitory activity depending on the electric charges, mas-

ses, and polarizabilities of the atoms presented in the mol-

ecule as well as its conformation. Murumkar et al. (2011)

investigated the interactions between some flavonoids and

active site of neuraminidase. However, despite the several

inhibitors described in the literature, further researches are

required to find potent, promising, and selective inhibitors.

The main aim of this work is to realize the structural

basis of the interactions that thiazolidine-4-carboxylic acid

derivatives have with the neuraminidase. Xu et al. (2011)

synthesized these derivatives as novel influenza virus

neuraminidase inhibitors. The crystal structure of neur-

aminidase (PDB ID: 2HU4) was taken from PDB and MD

simulation was performed in a cubic water box, which

enhances the similarity of the MD simulation with the

cellular environment. The obtained protein structure was

used for docking the drugs into the binding site of the

receptor. The best docked conformations of inhibitors with

the lowest free energies were considered as optimized

conformations. Then the descriptor calculation was per-

formed using the best docked conformations of the inhib-

itors. Furthermore, stepwise multiple linear regression

(MLR), classification and regression trees (CART), and

least squares support vector regression (LS-SVR) models

were constructed to study the relationship between the

structures of the inhibitors and the experimental pIC50. The

accuracy and robustness of the constructed models was

illustrated using (1) leave-one-out and (2) leave-multiple-

out cross-validation (LMO-CV) techniques combined with

different statistical parameters. Finally, the constructed

model and the interaction between the drugs and receptor

can not only be used in rapidly and accurately predicting

the activities of newly designed inhibitors, but also provide

useful guidelines for developing potent influenza virus

neuraminidase inhibitors with desired inhibitory activity.

Materials and methods

Data set

Influenza virus neuraminidase inhibitors of 28 novel thia-

zolidine-4-carboxylic acid derivatives together with their

inhibitory activities (pIC50) were taken from the article

recently published by Xu et al. (2011). The 50 % inhibitory

concentration (IC50) is defined as the concentration of

neuraminidase inhibitor necessary to reduce the activity by

50 % relative to a reaction mixture containing virus but no

inhibitor. The chemical structures and experimental activ-

ity of these compounds are shown in Fig. 1 and Table 1.

The chemical structures of the studied compounds were

constructed by HyperChem package (version 7, Hypercube

Inc.). Prior to docking study, the energy minimizations for

these compounds were performed by AM1 semi-empirical

method and Polak-Ribiere algorithm until the root-mean

square gradient of 0.1 kcal mol-1.

MD simulation and molecular docking

MD simulations were performed using the GROMACS 3.5.1

package with the standard GROMOS96 43a1 force field

(VanGunsterenv et al. 1996. The crystal structure of neur-

aminidase (PDB ID: 2HU4) consisted of four similar chains.

One of the chains was considered for the MD simulations and

docking purpose. The system was immersed in a cubic water

box and the energy of the complexes was minimized using the

steepest descent approach realized in the GROMACS pack-

age. MD simulation studies consist of equilibration and pro-

duction phases. In the first stage of equilibration, the solute

(protein and water molecules) was fixed and the position-

restrained dynamics simulation of the system was restrained

at 310 K. The water permitted to relax about the protein and

the relaxation time of water was 30 ps. Finally, the full system

was subjected to 7,000 ps MD simulation at 310 K temper-

ature and 1 bar pressure. The particle mesh Ewald (PME)

method for long-range electrostatics, a 14 Å cutoff for van

der Walls interactions, a 12 Å cutoff for coulomb interaction

with updates every 10 steps, and the Lincs algorithm for

covalent bond constraints were used in this study.

The molecular docking was carried out using the

Molegro Virtual Docker software. All the torsion angles in

the small molecules were set free to perform flexible dock-

ing. The docking simulations were performed by Molegro

virtual docking engine with flexible mode for the inhibitor

and the MolDock score with grid resolution of 0.3 Å. The

MolDock score optimizer and genetic algorithm search

strategy were used for docking with the following settings:

an initial population of 200 randomly placed individuals, a

maximum number of 250,000 iterations, a crossover rate of

0.80, and scaling factor of 0.5. One Hundred independent

docking runs were carried out for each ligand. Results were

clustered according to the root-mean-square-deviation

Fig. 1 Basic structures of

selected thiazolidine-4-car-

boxylic acid as influenza virus

neuraminidase inhibitors
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(RMSD) criterion. The best docked conformations with the

lowest binding free energy for each ligand were used for

calculation of the molecular descriptors.

Molecular descriptors calculation

The important step for constructing a QSAR model is to

encode the structural features of the inhibitors, named

molecular descriptors. A total of 1,142 molecular descrip-

tors were calculated by the Dragon software. Those

descriptors that stayed constant for all the molecules were

eliminated. Also, pairs of descriptors with a correlation

coefficient greater than 0.80 were classified as inter-cor-

related, and therefore one of them in each correlated pair

has been eliminated. A total of 769 descriptors were con-

sidered for further investigations (stepwise MLR and

CART) after discarding the descriptors with constant and

inter-correlated ones. The calculated descriptors were

among topological, electronic, geometrics, constitutional,

3D-MoRSE, 2D autocorrelations, BCUT, GETAWAY, and

Randic molecular profile categories. In the present work,

attempts were made to correlate the activity of influenza

virus neuraminidase inhibitors with the best descriptors

encoding the steric, hydrophobic, electronic, and structural

features of thiazolidine-4-carboxylic acid derivatives.

Theory of CART

CART (Breiman et al., 1984), as a binary tree representa-

tion, is able to describe the relationships between the

dependent and independent variables with high flexibility

and sufficient accuracy. Moreover, CART has the ability to

select the most descriptive variables from a large number of

descriptors without having the side effect of immunity to

outliers, collinearity, and heteroscedasticity. This method-

ology has the ability to explain and predict both categorical

Table 1 Compounds list, observed and predicted pIC50 values for stepwise MLR-LS-SVR and CART-LS-SVR models

No. R1 R2 DGbind pIC50 (obs.) Stepwise MLR-LS-SVR CART-LS-SVR

1a C6H5– H 17.98 4.672 4.922 4.303

2 (2-OH)C4H4– H 19.31 4.695 4.915 4.431

3 (2-COOH)C4H4– H 17.65 4.742 4.946 5.182

4a (4-CN)C4H4– H 18.73 4.631 4.693 4.958

5 (2-NO2)C4H4– H 19.02 4.648 4.352 4.232

6 (2-OH, 3-CH3O)C4H3– H 20.47 4.91 5.362 4.625

7 C4H3O– H 16.37 4.366 4.414 4.177

8 C6H5– ClCH2CO– 19.39 5.123 4.831 4.981

9 (2-OH)C4H4– ClCH2CO– 19.60 5.234 4.758 5.287

10a (2-COOH)C4H4– ClCH2CO– 21.78 4.971 5.416 4.600

11 (4-CN)C4H4– ClCH2CO– 19.54 5.063 5.321 5.130

12 (2-NO2)C4H4– ClCH2CO– 20.38 5.116 4.972 4.745

13 (2-OH, 3-CH3O)C4H3– ClCH2CO– 20.59 5.101 5.332 5.564

14a C4H3O– ClCH2CO– 18.83 4.889 5.167 5.208

15 C6H5– PhCH2CO– 25.22 5.917 6.166 5.594

16 (2-OH)C4H4– PhCH2CO– 23.95 6.187 6.305 6.443

17 (2-COOH)C4H4– PhCH2CO– 22.50 5.717 5.438 5.633

18 (4-CN)C4H4– PhCH2CO– 22.38 5.607 5.556 5.524

19a (2-NO2)C4H4– PhCH2CO– 20.74 5.728 5.296 5.978

20 (2-OH, 3-CH3O)C4H3– PhCH2CO– 20.04 5.79 5.657 5.881

21 C4H3O– PhCH2CO– 23.45 5.539 5.417 5.360

22 C6H5– NH2CH2CO– 24.36 6.276 6.462 6.300

23a (2-OH)C4H4– NH2CH2CO– 26.84 6.678 6.365 6.235

24 (2-COOH)C4H4– NH2CH2CO– 25.23 6.553 6.431 6.570

25 (4-CN)C4H4– NH2CH2CO– 24.59 6.092 6.445 6.282

26 (2-NO2)C4H4– NH2CH2CO– 23.31 5.991 6.194 5.697

27a (2-OH, 3-CH3O)C4H3– NH2CH2CO– 28.57 6.854 7.229 6.814

28 C4H3O– NH2CH2CO– 23.20 6.009 5.940 6.172

R1 and R2 are substituted groups in thiazolidine-4-carboxylic acid derivatives as shown in Fig. 1
a Referring to the compounds in the prediction set
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and continuous responses. CART, as a binary recursive

splitting procedure, divides the data into mutually exclusive

sub-groups, called child nodes, which are more homoge-

neous with respect to the response than the initial dataset. In

general, the configuration of CART consists of two basic

steps: (1) growing an over-large tree and (2) tree pruning

and optimal tree selection. The tree building process starts

by dividing the parent node into two children nodes and

searches for the best split. The resulting maximal tree

usually provides poor prediction results for new samples.

Therefore, the selection of a smaller tree with better pre-

dictive ability without losing much accuracy is necessary.

The optimal tree size is obtained by pruning, i.e., removing

successively branches of the maximal tree. The theories

behind the CART have been adequately described else-

where (Vander Heyden et al., 2005). For CART modeling,

the CART toolbox was used with MATLAB Version 7.1.

Theory of LS-SVR

Support vector machine was introduced by Vapnik (1998)

and has attracted much research attention in recent years due

to its performance over similar techniques in real applica-

tions. For a given regression problem, the goal of SVM is to

find the optimal hyper-plane, from which the distance to all

the data points is minimum. LS-SVR is an alternative method

of SVM which fits a linear relation (y = wx ? b) between

the regression (x) and the dependent variable (y). The best

relation is the one that minimizes the cost function (Q) con-

taining a penalized regression error term:

Q ¼ 0:5 wTwþ 0:5 c sum e2
i

� �
ð1Þ

Subjected to

yi ¼ wTu xið Þ þ b þ ei ð2Þ

where u denotes the feature map. The first part of the cost

function is a weight decay which is used to regularize

weight sizes and penalize large weights. The second part of

cost function is the regression error for all training data.

The relative weight of this part as compared to the first part

was indicated by the parameter c. The details theory and

mathematical equations of LS-SVR has been described in

literature (Cheng et al., 2010, 2011). The LS-SVR toolbox

(Suykens, Leuven, Belgium) was used with MATLAB

Version 7.1 to derive all the LS-SVR models.

Results and discussion

MD simulation on influenza virus neuraminidase

The homology model was clarified using the crystal com-

plex of influenza virus neuraminidase in complex with

corresponding ligand Oseltamivir downloaded from PDB

database (http://www.rcsb.org/pdb/home/home.do). The

PDB ID code is 2HU4. Before MD simulation, the pre-

existing ligand was extracted out. A 7,000 ps MD simu-

lation was performed on influenza virus neuraminidase in

water box to obtain the protein conformation in water

environment. This conformation is more similar to the

conformation of neuraminidase in a cell environment.

RMSD value of the protein backbone was examined to

investigate the stability of the system (protein, water, etc.).

Figure 2 shows the time history of RMSD for neuramini-

dase conformation in a water environment relative to the

starting structure. This figure indicates that the RMSD of

neuraminidase reaches equilibration and oscillates around

in average value after 4,000 ps simulation time. Also, the

RMSD value of protein backbone is 0.30 ± 0.02 nm from

a 4,000–7,000 ps trajectory. Finally, the influenza neur-

aminidase structure was used in the docking experiments.

Molecular docking

The main aspect for the drug docking was to realize the

effective interaction of the drugs with the various amino

Fig. 2 RMSD values of protein

backbone for 2HU4 and 2HU4-

27 complex during 7,000 ps

MD simulation

Med Chem Res (2013) 22:1700–1710 1703

123

http://www.rcsb.org/pdb/home/home.do


acid residues in the active sites. The binding sites of

the neuraminidase receptor were studied to understand

the nature of the residues defining the sites. To realize the

binding sites of the influenza neuraminidase receptor, the

best potent reported drug in Table 1, compound 27, was

docked into the receptor. The applied box size for docking

was 70 9 70 9 70 Å and grid resolution was 0.3 Å. The

most important binding sites were Arg (118, 371, 428, and

430), Gly (405, 429), Glu433, Ile 427, Lys432, Pro431,

Trp403, and Tyr347 (Fig. 3a, b). Polar hydrogen bonds in

compound 27 cause to be capable of hydrogen bonding to

the polar protein residues (such as Arg, Glu, etc.) in the

binding sites. The obtained binding sites show Gly429,

Ile427, Lys432, Pro431, Trp403, and three Arginine resi-

dues at positions 118, 371, and 428 in their binding

pockets, capable of making hydrogen bonding interactions

that could potentially interact favorably with O–H, N–H,

and COOH groups of the inhibitors. The strongest hydro-

gen bonds interactions between docked drug and residues

are Arg371 (3.11 Å, -2.47 kcal), Ile427 (3.10 Å,

-2.49 kcal), Lys432 (2.98 Å, -2.5 kcal), and Pro431

(3.26 Å, -1.67 kcal). However, van der Walls and elec-

trostatic interactions are also important because of presence

of both phenyl group and polar atoms, respectively. As a

result, substituents which improve hydrogen bonds and

electrostatic interactions would prefer in order to enhance

the efficiency and potency of the inhibitors. For example

compound 27 shows better inhibitory activity compared to

compounds 21 and 22 because of the presence of both OH

and OCH3 groups. Also, presence of electron withdrawing

groups in R1 branch such as –CN (in compound 25) and

–NO2 (in compound 26) reduce the pIC50 values. On the

other hand, for the same R1 group, the inhibitory activity

increase as R2 branch replace with more polar groups. For

instance, compound 22 show greater pIC50 than com-

pounds 15, 8, and 1. This pattern is repeated in whole data

set, for example compounds 2, 9, 16, 23, and so on. Finally,

the optimized conformation for each inhibitor was obtained

using Molegro Virtual Docker software. The obtained

conformations of the inhibitors were used for descriptor

calculation in developing QSAR models.

MD simulation on influenza virus neuraminidase–

inhibitor complex

In order to examine conformational variations of inhibitor

on the protein conformation, we decided to perform a MD

simulation on the neuraminidase–inhibitor complex. MD

simulation (7,000 ps) was performed on influenza virus

neuraminidase–inhibitor with respect to the compound 27

with the best inhibitory activity in a water box. MD sim-

ulation was performed on the receptor–ligand at 310 K.

RMSD of the protein backbone was calculated by the MD

trajectory to investigate the stability of system including

protein, inhibitor and water. As shown in Fig. 2 after

approximately 4,000 ps of MD simulation, the structure of

the receptor–ligand becomes stable. The average RMSD

for the neuraminidase–inhibitor complexes was calculated

from a 4,000 to 7,000 ps trajectory, where the data points

were fluctuated 0.31 ± 0.02 nm. Therefore, the inhibitor

binding to the protein does not affect the conformation of

the protein significantly and the stability of the protein

conformation in the presence of inhibitor confirmed the

docking results.

To investigate the correlation between interaction

energy and pIC50, the binding free energy between receptor

and the inhibitors within the complex structures were

examined using molecular mechanics-generalized Born

surface area (MM-GBSA) method (Kollman et al., 2011).

The calculations were performed on each complex system

using ten snapshots from 4,000 to 7,000 ps MD simulations

region. The following equation was used:

DGbind ¼ DEMM þ DGsolv � TDS ð3Þ

where DEMM is the change of the gas phase MM energy

upon binding, and includes internal (DEint), electrostatic

(DEelect), and van der Waals (DEVDW) energies. DGsolv is

the change of the solvation free energy upon binding, and

Fig. 3 Binding sites of the most

a potent drug (compound 27)

with neuraminidase receptor

and b compound 27. The

residues and drug are shown as

stick models

1704 Med Chem Res (2013) 22:1700–1710
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includes the electrostatic solvation free energy DGsolvGB

(polar contribution calculated using generalized Born

model), and the non-electrostatic solvation component

DGsolvSA (non-polar contribution estimated by solvent

accessible surface area). Finally, TDS is the change of the

conformational entropy upon binding. The binding free

energy values obtained from MM-GBSA calculations are

reported in Table 1. As shown in Fig. 4, there is a good

agreement between binding free energy and pIC50 values

(RFit
2 = 0.86). Also, the averaged energy values for two

active ligands (compounds 22 and 27) are given in Table 2.

The interaction is more favorable for the receptor-27

complex as the difference in the calculated DGbind value

between two inhibitors was 4.21 kcal/mol. Considering the

energy components of the binding free energies, the major

favorable contributors to ligand binding are VDW and

electrostatic terms, whereas polar and non-polar solvation

and entropy terms oppose binding. If we examine the

contributions to each binding energy, the most important

terms which dictates the difference in the binding affinity

are DEVDW (4.24 kcal/mol) and DEelect (2.05 kcal/mol),

which is the key factor for the more favorable DGbind and

pIC50 values for compound 27.

QSAR model construction

Hybrid methods of stepwise MLR-LS-SVR and CART-LS-

SVR are presented in this work for QSAR study of thia-

zolidine-4-carboxylic acid derivatives. This means that we

have to discuss two stages: (i) descriptor selection (step-

wise MLR and CART) and (ii) mapping tool (LS-SVR).

Descriptor selection using stepwise MLR and CART

techniques

The objective of descriptor selection is threefold: improv-

ing the prediction performance of predictors, providing

faster and more cost effective predictors, and providing a

better understanding of the underlying process that gener-

ated the data. For this purpose, all of the calculated 769

descriptors from previous section were used for stepwise

MLR and CART analyses. For stepwise MLR, the cali-

bration set was used to select the most feasible descriptors

and to calculate coefficients relating the descriptors to the

inhibitory activities of inhibitors. However, the prediction

set, consisted of 25 % of molecules, was used to evaluate

the generated model. The molecules in each of the cali-

bration and prediction sets were shown in Table 1. Based

on the number of molecules in the calibration set (75 % of

molecules), we selected three descriptors to construct

QSAR models since the number of selected descriptors

should keep lower than five times of the number of mol-

ecules (Salt et al., 2007). Equation 4 shows the specifica-

tions of the obtained MLR model which was made by these

descriptors:

pIC50 ¼ �4:681 �0:42ð Þ þ 11:241 �1:02ð Þ GATS4p

� 0:456 �0:037ð Þ SP06þ 0:872 �0:079ð Þ
More14e n ¼ 21; R2

Cal ¼ 0:882; RMSECal ¼ 0:345;

R2
p ¼ 0819; RMSEp ¼ 0:461; F ¼ 156:3 ð4Þ

where GATS4p, Greay autocorrelation of lag 4/weighted

atomic polarizabilities; SP06, shape profile no. 06;

More14e, 3D-Morse/weighted atomic Sanderson electro-

negativities are three descriptors selected in stepwise MLR

technique.

In CART technique, tree partitioning will progress until

no further split can be occurred. The size of a tree in the

CART analysis is an important issue, since an unreason-

ably big tree can only make the interpretation of results

more difficult. In order to reduce the number of variables

and obtain the best predictive tree, a fourfold cross-vali-

dation has been applied. The number of terminal nodes

versus COST function is plotted in Fig. 5. The dashed line

in this figure is obtained using the equation of Xmin ?1s,

Fig. 4 Scatter plot of the observed pIC50 versus predicted DGbind

using MM-GBSA calculations for the data set and new designed

inhibitors

Table 2 Calculated binding energies for receptor–ligand complexes

using MM-GBSA for the snapshots of MD simulations

Ligand no. DEint
a DEelect DEVDW DGsolvGB DGsolvSA -TDS DGbind

22 1.36 -18.38 -39.65 13.53 2.30 16.48 -24.36

27 1.25 -20.43 -43.89 14.82 2.64 17.04 -28.57

New 6 1.18 -22.06 -47.32 15.65 3.29 15.81 -31.45

a Energies are in kcal/mol
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where Xmin is the value of the minimum COST and s is the

standard error of the minimum COST. Figure 6 exhibits the

optimal tree with low RMSE for variable selection in

CART technique. Three descriptors of VED2 (average

eigenvector coefficient sum from distance matrix), BELm3

(lowest eigenvalue no. 3 of burden matrix/weighted atomic

masses), and RARS (R matrix average row sum) have been

selected using CART technique. As second stage of

developing QSAR models, we should use these selected

descriptors as inputs for LS-SVR modeling.

Stepwise MLR-LS-SVR and CART-LS-SVR models

In the next step, the selected descriptors in the stepwise

MLR and CART techniques were used as inputs for

developing the LS-SVR model to predict the value of pIC50

for the influenza virus neuraminidase inhibitors. In order to

generate a LS-SVR model, at first the kernel function

should be determined, which represents the sample distri-

bution in the mapping space. In this work, the radial basis

kernel function (RBF) was used, since it is a non-linear

function and could reduce the computational complexity of

training procedure. The next step in the construction of LS-

SVR model was optimizing of its parameters, including c
and D2. The optimized values for the parameters were

obtained from grid search method. The optimized values of

c and D2 were 29.74 and 162.98 (in stepwise MLR-LS-

SVR) and 35.76 and 151.9 (in CART-LS-SVR models),

respectively. The predicted values of thiazolidine-4-car-

boxylic acid derivatives activity using stepwise MLR-LS-

SVR and CART-LS-SVR models are listed in Table 1.

This table shows that the calculated pIC50 is a good esti-

mate of experimental pIC50. The predicted stepwise MLR-

LS-SVR and CART-LS-SVR values of pIC50 were plotted

versus their observed values, shown in Figs. 7 and 8,

respectively. This figure shows a good agreement between

the experimental results and the predicted values.

Model validation is nowadays recognized as a compul-

sory stage in QSAR model development. Golbraikh and

Tropsha (2002)considered a QSAR model to be predictive,

if all of the following conditions are satisfied: (1)

QLOO
2 [ 0.5, (2) Rp

2 [ 0.6, r0
2 (i.e., predicted vs. observed

activities imply regressions through the origin) is close to

Fig. 5 Cost versus the number of terminal nodes

Fig. 6 Selected tree with low RMSE-CV for descriptor selection

Fig. 7 Plot of predicted pIC50 values against the observed values for

the calibration and prediction sets using stepwise MLR-LS-SVR

Fig. 8 Plot of predicted pIC50 values against the observed values for

the calibration and prediction sets using CART-LS-SVR

1706 Med Chem Res (2013) 22:1700–1710
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Rp
2 such that (Rp

2 - r0
2)/Rp

2 \ 0.1. In addition, according to

the recommendation of Roy and Roy (2002), an additional

statistic for external validation (rm
2 ) was calculated using

Eq. (5):

r2
m ¼ R2

p � 1 � R2
p � r2

0

� �0:5
� �

ð5Þ

For a model with good external predictability, rm
2 value

should be greater than 0.5. The MLR-LS-SVR and CART-

LS-SVR models were further evaluated by applying the

LMO-CV technique. In the L25 %O procedure, a group of

25 % of molecules was randomly selected from the training

set. Then each group was left out and was predicted by the

model developed from the remaining observations. This

procedure was carried out 200 times. The theory behind

these validation methods has been sufficiently described

elsewhere (Jalali-Heravi et al., 2009; Shahbazikhah et al.,

2011). The statistical results are given in Table 3 shows the

stepwise MLR-LS-SVR and CART-LS-SVR models

possessed all the criteria to be considered as a predictive

model. It is clear from Table 3 that the results of QLOO
2 ,

RL25%O
2 and their corresponding RMSEs for the CART-LS-

SVR model are superior compared with those of the stepwise

MLR-LS-SVR. The RMSEs of both LOO and LMO have

been reduced more than 40 % using CART-LS-SVR

technique. The strong correlation between the calculated

activity and the experimental activity demonstrated the

robustness of the models, and the feasibility and advantage

of the computational approach in this study.

Descriptors appeared in the QSAR models

The correlation matrix between selected descriptors in

stepwise MLR and CART techniques together with pIC50

is listed in Table 4. The methods for calculations of these

descriptors and the meaning of them are explained in the

Handbook of Molecular Descriptors by Todeschini and

Consonni (2000). As can be seen in the Table 4, the

effective descriptors for inhibitory activity were GATS4p,

More14e, BELm3, and VED2; therefore, we will only

explain these descriptors. The appearance of average Geary

autocorrelation of lag 4/weighted atomic polarizabilities

(GATS4p) among other descriptors in the model shows

the importance of polarizability and surface area of the

inhibitor. Both these factors are very important for the

inhibition mechanism. For instance, for compounds 6, 13,

20, and 27 which they have the same rigid substituents of

R1, the values of pIC50 increase when R2 is replaced with

more polarizable groups of PhCH2CO– and NH2CH2CO–.

Therefore, the value of pIC50 increase as the GATS4p

value increases. Also, compound 27 (the most active

compound) has the highest value of GATS4p. This pattern

is also repeated for other sets of inhibitors, for example,

compounds 1, 8, 15, and 22 and so on. BELm3 (lowest

eigenvalue no. 3 of burden matrix/weighted atomic masses)

is among BCUT descriptors which is related to molecular

graph theory Bonchev (1983) and they influence transport

phenomena as well as entropy contributions. BCUT

descriptors were proposed as molecular descriptor with

high discrimination power, to be used in the recognition

and ordering of molecular structures. The basic assump-

tion was that the lowest eigenvalues contain contributions

from all atoms and thus reflect the topology of the whole

molecule.

The next descriptor related to inhibitory activity is 3D-

Morse/weighted atomic Sanderson electronegativities

(Mor14e), which is the 3D-molecule representation of

structures based on electron diffraction (MoRSE) descrip-

tor. 3D-MoRSE codes 3D structure of a molecule. By

increasing the value of Mor14e, inhibitory activity increa-

ses. For instance, for the compound 2, the value of Mor14e

was 0.241 with pIC50 of 4.695, and for the compound 9, the

value of Mor14e was 0.448 with pIC50 of 5.123. Therefore,

the substituent with a higher value of Mor14e would prefer

as a potent influenza virus neuraminidase inhibitor. VED2

Table 3 The statistical parameters of stepwise MLR-LS-SVR and

CART-LS-SVR for inhibitory activities

Parameters Stepwise

MLR-LS-SVRa
CART-LS-SVRb

QLOO
2 0.823 0.872

RMSELOO
c 0.436 0.310

RL25%O
2 0.764 0.835

RMSEL25%O 0.480 0.352

Rp
2 0.836 0.883

r0
2 0.789 0.868

(Rp
2 - r0

2)/Rp
2 0.056 0.017

rm
2 0.619 0.761

a Selected variables: GATS4p, SP06, and More14e
b Selected variables: VED2, BELm3, and RARS
c Calculation of RL25%O

2 was based on 200 random selections

Table 4 Correlation matrix of the selected descriptors together with

pIC50 value

pIC50 GATS4p SP06 More14e VED2 BELm3 RARS

pIC50 1 0.775 0.269 0.547 0.650 0.708 0.467

GATS4p 1 0.454 0.358 0.783 0.711 0.429

SP06 1 0.512 0.152 0.571 -0.129

More14e 1 0.230 0.719 0.170

VED2 1 0.569 0.721

BELm3 1 0.335

RARS 1
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(average eigenvector coefficient sum from distance matrix,

topological descriptor) can be calculated from the infor-

mation theory, and it measures the complexity of the mol-

ecule in terms of the diversity of elements that includes in

its chemical structure, such as the type of atoms, bonds,

cycles, etc.

Qualitative energy analysis

To get a detailed view of the effects of individual residues

on inhibitory activities of the receptor–ligand systems, a

residue decomposition of the total energy was performed to

evaluate the energetic influences of critical residues on the

binding. For this purpose, energy of interaction between

individual residues and three active ligands (compounds

22, 23, and 27) was calculated with the calculate interac-

tion energy protocol encoded in Molegro Virtual Docker

for the three receptor–ligand complexes. The residue-based

decomposition of interaction energies in three systems

identified several critical residues of 2HU4. Table 5 lists

the average energy contributions of these key residues of

interest for three systems. As can be seen, the interaction

between ligands and the residues Arg371, Arg430, Gly429,

Ile427, Lys432, Pro431, Trp403, and Tyr347 are the most

favorable dominant contributions to the binding of three

ligands to 2HU4. Also, the energy interaction for Ile427,

Lys432, and Pro431 residues (the strongest interactions) are

about 50 % greater for the most active drug (compound 27)

than compounds 22 and 23. These key residues are well

coincided with the molecular docking studies and QSAR

results. Thus, these critical residues together with the

obtained descriptors and CART-LS-SVR model may pro-

vide guidance for the rational design to discover more

potent influenza virus neuraminidase inhibitors.

Design of new potent inhibitors

As shown in the previous sections, molecular docking,

MD, and QSAR analysis provided detailed insight into the

structural requirements for potent activity of the inhibitors.

We have employed this information to design several

Table 5 Average energy of interaction between individual residues

and ligands for the three receptor–ligand systems

Amino

acid

residues

Energy of

interaction with

compound 27

Energy of

interaction with

compound 22

Energy of

interaction with

compound 23

Arg118 -2.64 -2.58 -1.33

Arg371 -19.14 -24.00 -28.67

Arg428 -5.33 -2.26 -4.29

Arg430 -6.16 -5.96 -8.68

Asn325 -0.50

Asn369 -0.61

Glu433 -0.50 -1.19 -3.60

Gly405 -1.07 -0.91 -0.32

Gly429 -6.56 -1.94 -2.97

Ile427 -19.24 -9.28 -12.01

Lys432 -17.80 -13.29 -12.09

Pro431 -15.21 -11.75 -11.92

Ser370 -0.35 -0.30 -3.71

Ser404 -3.21 -3.77 -4.01

Thr439 -0.70 -0.61 -0.51

Trp403 -15.89 -15.37 -19.12

Tyr347 -5.71 -8.60 -6.20

Val149 -0.53 -0.49

a Energies are in kcal/mol

Table 6 Structure and predicted pIC50 values of new designed compounds

Structure Compound R1 R2 pIC50

new 1 2-OH, 3-C2H5O CH3 6.937

new 2 2-CH2OH, 3-CH3O Ph 7.161

new 3 2-CH2OH, 3-C2H5O H 6.940

new 4 2-CH2OH, 4-C2H5O CH3 6.110

new 5 2-NH2 Ph 6.640

new 6 2-NH2, 3-CH3O Ph 7.429

new 7 2-NH2, 3-C2H5O Ph 7.266

new 8 2-NHCH3, 3-CH3O Ph 7.172

new 9 2-NHCH3, 3-PhO H 6.631

new 10 2-NH2, 3-N(CH3)2 Ph 7.312

new 11 2-COOH, 3-CH3O H 6.720

new 12 2-COOH, 3-CH3O CH3 6.852

new 13 2-COOH, 3-CH3O Ph 6.978

new 14 2-COOH, 4-C2H5O Ph 5.810
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inhibitors with improved activity. The most potent mole-

cule (compound 27) was used as a reference structure to

design new molecules. To show the practical values of

developed models, we designed a series of new inhibitors

and predicted their pIC50 values by the established QSAR

models. Modifications were made by placing (1) strongly

hydrophilic and electronegative groups in R1 and (2) more

polarizable groups in R2. Table 6 shows the structure and

predicted pIC50 values of newly designed compounds.

There is a good agreement between binding free energy

and pIC50 values (RFit
2 = 0.76) as shown in Fig. 4 which

show the predicted pIC50 values are acceptable. It can be

seen that some designed derivatives (for example com-

pounds new 2 and new 6) showed higher activities than

compound 27 which were the most active in the database.

In addition, examining the contributions to each binding

energy for compounds 27 and new 6 in Table 2, the most

important terms which dictate the difference in the binding

affinity are DEVDW and DEelect. These results obtained

from the developed models serve as computational pre-

dictions which can be used to guide the design of new

potent inhibitors.

Conclusions

In this work, molecular docking, MD simulation and

QSAR analysis were performed to explore structural fea-

tures and binding mechanism of thiazolidine-4-carboxylic

acid derivatives as potent influenza virus neuraminidase

inhibitors. MD simulation followed by docking studies was

used to find the best conformation of 2HU4–inhibitor

complex with lowest binding free energy for each inhibitor.

The combination of stepwise MLR, CART, and LS-SVR

techniques was successfully applied for selecting the best

molecular descriptors and predicting the inhibitor activity

of thiazolidine-4-carboxylic acid derivatives against influ-

enza virus neuraminidase. Various methods were used to

validate these studies, including LOO cross-validation,

LMO cross-validation, Rp
2, r0

2, rm
2 and calibration–prediction

set methods. It is shown that the four parameters of

GATS4p, More14e, BELm3, and VED2 chosen by QSAR

analysis affect significantly the inhibition process of the

drug-like molecules. The selected descriptors indicated that

steric parameters and electronic interactions such as elec-

tronegativity, polarizability, and polar surface area affected

the inhibition activity of these inhibitors. Furthermore, the

residue-based decomposition of interaction energies in

three receptor–ligand systems identified several critical

residues for ligand binding. A group of residues have been

found, namely Ile427, Lys432, and Pro431, which are

important in receptor–ligand interactions. Moreover, the

analysis of the energetic binding components using

MM-GBSA method reveals that while the VDW energy

drives binding of the inhibitors, electrostatic energy alone

does not completely explain the affinity differential. In

summary, the models built in this study provide detailed

and deep insights for understanding the different chemical

parameters affecting ligand–receptor interactions and pro-

vide valuable suggestions for novel inhibitor design and

further chemical optimization.
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