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Abstract Dihydroorotate dehydrogenase (DHODH) is a

central enzyme of pyrimidine biosynthesis which catalyzes

oxidation of dihydroorotate (DHO) to orotate (ORO).

DHODH inhibitors are considered as promising targets for

the development of antiproliferative, antiparasitic, and

immunosuppressive drugs. The best 2D QSAR model for

the prediction of human dihydroorotate dehydrogenase

(hDHODH) inhibitory activity was obtained by applying

MLR giving r2 = 0.834 and q2 = 0.756, PCR giving

r2 = 0.833 and q2 = 0.756, and PLS giving r2 = 0.864

and q2 = 0.786. 2D QSAR studies reveal the importance of

alignment independent descriptors for predicting hDHODH

inhibitory activity. The 3D QSAR study was performed by

comparative molecular field analysis (CoMFA) to ratio-

nalize the structural requirements responsible for the

inhibitory activity of these compounds. The best CoMFA

model obtained for the training set was statistically sig-

nificant with cross-validated coefficients (q2) of 0.630 and

conventional coefficients (r2) of 0.949. The CoMFA con-

tour maps suggest some important structural features-like

electronegative substituents at biphenyl ring system for

strong inhibitory activity. We believe that these results are

helpful in design of more potent and selective hDHODH

inhibitors.

Keywords Dihydroorotate dehydrogenase (DHODH) �
2D QSAR � CoMFA � Amino nicotinic acid and

isonicotinic acid derivatives � hDHODH inhibitors

Introduction

Flavoenzyme dihydroorotate dehydrogenase (DHODH) [EC

1.3.99.11] (Liu et al., 2004) is a fourth enzyme of pyrimidine

de novo synthesis which catalyses oxidation of intermediate

dihydroorotate (DHO) to orotate (ORO) (Fig. 1). Pyrimidines

are required for the biosynthesis of DNA, RNA, glycoproteins

and phospholipids (Jones, 1980). DHODH catalyzes synthesis

of pyrimidines which are necessary for cell growth and pro-

liferation of rapidly growing cells. Requirement of pyrimidine

nucleotides are depended on cell type and developmental

stage, involvement of de novo pathway is small in resting or

fully differentiated cells where cells acquire pyrimidine

mainly by the salvage pathways (Mascia et al., 2000).

DHODH enzymes are divided into two families based upon

their localization, amino acid sequence, substrate/cofactor

dependence, and cellular localization (Norager et al., 2002;

Bjornberg et al., 1999). Enzymes belongs to family-1 located

in the cytosol, electron acceptors involved in second half

reaction of redox process are either fumarate or NAD?

whereas family-2 enzymes transfer electrons to ubiquinone

(CoQ), to which hDHODH belongs (Bjornberg et al., 1997).

DHODH inhibitors blocks the growth of fast proliferating cell

whereas cells which grow at normal speed can meet the

requirement of pyrimidine bases from normal metabolic

cycle. Inhibitors of hDHODH have proven efficacy for the

treatment of cancer (Shawver et al., 1997; Baumann et al.,

2009) and immunological disorders, such as rheumatoid

arthritis and multiple sclerosis (Chen et al., 1986; Herrmann

et al., 2004; Merrill et al., 2009). Brequinar (Shannon et al.,

1999) and leflunomide (Fox et al., 1999; Rozman, 1998)

(Fig. 2) are two examples of such compounds. Brequinar is an

antitumor and immunosuppressive agent, while leflunomide,

which is a prodrug of the active metabolite A771 726

(Williamson et al., 1996), shows immunosuppressive activity.
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We have recently compiled the literature pertaining recent

advancements in the discovery and development of DHODH

inhibitors (Vyas and Ghate, 2011). In search for selective

hDHODH inhibitors, we have attempted 2D and 3D QSAR

(CoMFA) studies on amino nicotinic acid and isonicotinic

acid derivatives. QSAR models generated in this work can

provide useful information for the design of new compounds

with better hDHODH inhibitory activity.

Material and method

2D QSAR was performed using Vlife MDS QSAR plus

software and 3D QSAR (CoMFA) was performed using the

SYBYL 9 1.2 software from Tripos Inc., St. Louis, MO,

USA on a HP computer with Core2 Duo processor and a

window XP operating system.

2D QSAR modeling and data set

The hDHODH inhibitory activity data IC50 (lM) was taken

from the published work of Castro Palomino Laria et al.

(Castro et al., 2010). The negative logarithm of the mea-

sured IC50 (lM) values were converted to pIC50 and sub-

sequently used as the dependent variable for QSAR study.

Compounds were sketched using the 2D draw application

and converted to 3D structures. Energy minimization

and geometry optimization were conducted using Merck

molecular force field (MMFF) and atomic charges, maxi-

mum number of cycles were 1000, convergence criteria

(RMS gradient) was 0.01 and medium’s dielectric constant

of 1 by batch energy minimization method. Conformational

search was carried out by a systemic conformational search

method. Energy minimized geometry was used for calcu-

lation of descriptors, a total of 208, 2D descriptors were

calculated which encoded different aspects of molecular

structure and consists of electronic, thermodynamic, spatial

and structural descriptors, e.g., retention index (chi),

atomic valence connectivity index (chiV), path count,

chain path count, cluster, path cluster, element count, estate

number, semi-empirical, molecular weight, molecular

refractivity, logP, and topological index. Various align-

ment-independent (AI) descriptors were also calculated.

Selection of training and test set

Dataset of 26 molecules (Table 1) was divided into training

(22) and test (4) set compounds. Selection of the training set

and the test set molecules was done manually by considering

the fact that test set molecules represent a range of biological

activity similar to that of the training set. Thus, the test set
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Table 1 Structure, experimental, and predicted activity with residual and 2D descriptors of amino nicotinic acid and isonicotinic acid derivatives

Comp.

no.

Structure IC50

(lm)

pIC50 MLR PCR PLS T_N_

F_5

4path

ClusterCount

T_C_

C_6
aPred Res bPred Res cPred Res

1

N

HO O
H
N

O CH3

F
200 6.699 6.913 -0.214 6.902 -0.203 6.911 -0.212 0.0 29.0 16.0

2t

N

HO O
H
N

O
CH3

F

F

88 7.056 7.721 -0.665 7.193 -0.137 7.187 -0.131 2.0 36.0 22.0

3

N

HO O
H
N

O
CH3

Cl

150 6.824 6.689 0.135 6.706 0.118 6.692 0.132 2.0 33.0 18.0

4

N

HO O
H
N

O

F

F

90 7.046 7.329 -0.283 7.321 -0.275 7.327 -0.281 1.0 29.0 18.0

5

N

HO O
H
N

O

F

F
CH3

19 7.721 7.609 0.112 7.589 0.132 7.606 0.115 2.0 33.0 16.0
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Table 1 continued

Comp.

no.

Structure IC50

(lm)

pIC50 MLR PCR PLS T_N_

F_5

4path

ClusterCount

T_C_

C_6
aPred Res bPred Res cPred Res

6

N

HO O
H
N

O
CH3

F

F

15 7.824 7.84 -0.016 7.821 0.003 7.837 -0.013 0.0 30.0 17.0

7t

N

O O
H
N

O

F

Li

CH3

19 7.721 7.634 0.087 7.655 0.066 7.638 0.083 3.0 31.0 19.0

8

N

O O
H
N

O
CH3

O

Li

CF3

14 7.854 7.828 0.026 7.772 0.082 7.817 0.037 0.0 30.0 15.0

9

N

O O
H
N

O
CF3

Li

F

200 6.699 6.865 -0.166 6.887 -0.188 6.869 -0.17 1.0 31.0 17.0

10

N

HO O
H
N

O
CF3

F

H3C

110 6.959 7.149 -0.19 7.148 -0.189 7.149 -0.19 1.0 31.0 17.0
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Table 1 continued

Comp.

no.

Structure IC50

(lm)

pIC50 MLR PCR PLS T_N_

F_5

4path

ClusterCount

T_C_

C_6
aPred Res bPred Res cPred Res

11

N

HO O
H
N

O
CH3

F

33 7.482 7.149 0.333 7.348 0.134 7.349 0.133 1.0 37.0 17.0

12t

N

HO O
H
N

O
CH3

F

H3C F

12 7.921 7.846 0.075 7.736 0.185 7.517 0.404 2.0 35.0 17.0

13

N

HO O
H
N

O
CH3

F

CH3

99 7.004 7.386 -0.382 7.834 -0.83 7.844 -0.84 2.0 35.0 17.0

14

N

HO O
H
N

O
CH3

F

F

12 7.921 8.209 -0.288 7.834 0.087 7.817 0.104 2.0 36.0 17.0

15

N

HO O
H
N

O
F

F

23 7.638 7.906 -0.268 7.899 -0.261 7.844 -0.206 1.0 41.0 19.0
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Table 1 continued

Comp.

no.

Structure IC50

(lm)

pIC50 MLR PCR PLS T_N_

F_5

4path

ClusterCount

T_C_

C_6
aPred Res bPred Res cPred Res

16 F

F F O

HN

N

O
OH

53 7.276 7.524 -0.248 7.564 -0.288 7.531 -0.255 2.0 39.0 16.0

17

N

HO O
H
N

O
F

F

17 7.769 8.204 -0.435 8.008 -0.239 8.006 -0.237 2.0 36.0 16.0

18

N

HO O
H
N

F

CH3

F

5 8.301 8.023 0.278 8.014 0.287 8.021 0.28 2.0 44.0 21.0

19

N

HO O
H
N

F

F
O

6 8.222 7.929 0.293 7.954 0.268 8.148 0.074 2.0 41.0 17.0

20t

N

HO O
H
N

F

F
O

CF3

4 8.398 8.674 -0.276 8.223 0.175 8.212 0.186 2.0 42.0 15.0
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Table 1 continued

Comp.

no.

Structure IC50

(lm)

pIC50 MLR PCR PLS T_N_

F_5

4path

ClusterCount

T_C_

C_6
aPred Res bPred Res cPred Res

21

N

HO O
H
N

F

F

Cl

5 8.301 8.501 -0.2 8.518 -0.217 8.204 0.097 2.0 39.0 18.0

22

N

HO O
H
N

F

F

CH3

O
CF3

6 8.222 7.973 0.249 7.987 0.235 7.989 0.233 2.0 40.0 16.0

23

N

HO O
H
N

F

F

CH3

Cl

4 8.398 8.268 0.13 8.273 0.125 8.267 0.131 2.0 32.0 14.0

24

N

HO O
H
N

F

FCl

8 8.097 8.011 0.086 7.987 0.11 8.007 0.09 1.0 33.0 16.0

25 F F

FF

HN

N

OH
O

O 3 8.523 8.568 -0.045 8.597 -0.074 8.573 -0.05 2.0 45.0 16.0
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was a true representative of the training set. This was

achieved by arbitrarily setting aside four compounds as a test

set with a regularly distributed biological data. Unicolumn

statistics of test and training sets (Table 2) showed accurate

selection of test and training sets, as maximum of the

training set was more than that of test set and the minimum

of training set was less than or equal to that of test set.

Statistical computation

Vlife MDS was used to generate 2D QSAR models by

multiple linear regression (MLR), principal component

regression (PCR) and partial least squares (PLS) regression

methods, coupled with forward–backward variable selection

method. Statistical measures were used for the evaluation of

2D QSAR models were the number of compounds in

regression n, regression coefficient r2, number of descriptors

in a model k, F-test (Fisher test value) for statistical signif-

icance F, cross validated correlation coefficient q2, predic-

tive squared correlation coefficients r2
pred, coefficient of

correlation of predicted data set pred_r2se and standard error

of estimation r2 se and q2 se.

Multiple linear regression (MLR) analysis

MLR is a regression method used to model linear rela-

tionship between a dependent variable Y (hDHODH

inhibitory activity) and independent variables X (2D

descriptors). MLR is based on least squares: the model is fit

such that sum-of-squares of differences of observed and a

predicted value is minimized. MLR estimates values of

regression coefficients (r2) by applying least squares curve

fitting method. The model creates a relationship in the form

of a straight line (linear) that best approximates all the

individual data points. Regression equation takes the form

Y ¼ b1 � x1 þ b2 � x2 þ b3 � x3 þ c

where Y is dependent variable, ‘b’s are regression coeffi-

cients for corresponding ‘x’s (independent variable), ‘c’ is

a regression constant, or intercept (Kubyani 1994; Croux

and Joossens 2005).

Principal component regression (PCR) method

PCR is a data compression method based upon the corre-

lation among dependent and independent variables. PCR

provides a method for finding structure in data sets. Its aim

is to group correlated variables, replacing the original

descriptors by new set called principal components. These

principal components uncorrelated and are built as a simple

linear combination of original variables. It rotates the data

into a new set of axes such that first few axes reflect most

of the variations within the data. PCA selects a new set of

axes for the data. These are selected in decreasing order of

variance within the data. Purpose of PCR is the estimation

of values of a dependent variable on the basis of selected

principal components (PCs) of independent variables

(Huberty, 1984).

Partial least squares (PLS) regression method

PLS analysis is a popular regression technique which can

be used to correlate one or more dependent variable (Y) to

several independent (X) variables. PLS relates a matrix Y of

dependent variables to a matrix X of molecular structure

descriptors. PLS is useful in situations where the number of

independent variables exceeds the number of observation,

when X data contain colinearties or when N is less than

Table 1 continued

Comp.

no.

Structure IC50

(lm)

pIC50 MLR PCR PLS T_N_

F_5

4path

ClusterCount

T_C_

C_6
aPred Res bPred Res cPred Res

26

N

HO O
H
N

F

F

CH3

11 7.959 8.017 -0.058 8.001 -0.042 8.014 -0.055 2.0 34.0 15.0

t test set compounds, Res residual values
a Pred Predicted pIC50 by MLR
b Pred Predicted pIC50 by PCR
c Pred Predicted pIC50 by PLS

Table 2 Unicolumn statistics of training and test sets (2D QSAR)

Set Average Max Min Std Dev. Sum

Training 7.741 8.523 6.699 0.573 170.31

Test 7.381 7.921 6.824 0.5234 29.52
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5 M, whares N is number of compound and M is number of

dependant variable. Main aim of PLS regression is to

predict the activity (Y) from X and to describe their com-

mon structure (Wold et al., 2001).

2D QSAR models were generated using pIC50 values as

dependent variable and various descriptors values as

independent variables. The cross-correlation limit was set

at 0.5, number of variables in final equation is 4 in MLR,

PCR and PLS. Term selection criteria was set as r2 and

F-test, ‘in’ at 4 and ‘out’ at 3.99. Variance cutoff was set at

0, scaling to auto scaling and number of random iterations

to 10.

Validation of QSAR models

The definitive validity of the model is examined by mean

of external validation (q2), which evaluates how well the

equation generalizes. The training set was used to derive an

adjustment model that was used to predict the activity of

the test set. The predicted power of equations was validated

using predictive squared correlation coefficients r2
pred.

3D QSAR modeling and data set

The structures of all the compounds were constructed from

the template molecule (compound 25) by using the

‘‘SKETCH’’ option function in SYBYL, and partial atomic

charges were calculated by the Gasteiger Huckel method

and energy minimizations were performed using the Tripos

force field (Gasteiger and Marsili, 1980) with a distance-

dependent dielectric and the Powell conjugate gradient

algorithm convergence criterion of 0.01 kcal/mol Å (Clark

et al., 1989). The total set of inhibitors was divided man-

ually into training set of 22 compounds for generating 3D

QSAR model and a test set of 4 compounds for validating

the quality of the model.

Molecular modeling and alignment

The alignment of molecules is the process of aligning two

or more molecules in 3D space to optimally superimpose

specific atoms on each other based on distances. Com-

pound 25 was used as a template because of the highest

activity and all other compounds were aligned on the basis

of the common structure (Fig. 3). Rigid body alignment of

molecules in a Mol2 database was performed using maxi-

mum common substructures defined by Distill (without

including bond types in rings). Structure of the template

compound 25 and common substructure in bold is shown in

Fig. 3. Alignment of training and test set compounds is

shown in Fig. 4.

CoMFA model

CoMFA steric and electrostatic interaction fields of each

molecule were calculated on a 3D cubic lattice with grid

spacing of 2 Å in all the Cartesian directions and CoMFA

fields were calculated using the QSAR module of SYBYL.

CoMFA descriptors were calculated using sp3 carbon probe

atom with a van der Waals radius of 1.52 Å and a charge of

?1.0 to generate steric (Lennarde-Jones 6–12 potential)

field energies and electrostatic (Coulombic potential) fields

with a distance-dependent dielectric at each lattice point.

The SYBYL default energy cutoff of 30 kcal/mol was set

for both steric and electrostatic fields. In order to reduce

noise and improve efficiency, column filtering (minimum

sigma) was set to 2.0 kcal/mol.

Predictive r2 value

To validate the CoMFA model, predictive abilities for the

test set compounds (expressed as r2
pred) was determined

using the following equation

r2
pred ¼ SD� PRESS=SD

where, SD is the sum of the squared deviations between the

inhibitory activity of molecules in the test set and the mean

inhibitory activity of the training set molecules, and PRESS

is the sum of the squared deviations between predicted and

actual activity values for every molecule in the test set.

Analysis of the residuals

The training set was initially checked for outliers for both

2D and 3D QSAR analysis. In general, if the residual of a

compound between experimental and predicted pIC50

values is greater than 1 logarithm unit, compound is

considered as outlier. Examination of the residuals from

cross-validated predictions (Tables 1, 3) indicated that

there is no outlier in 2D and 3D QSAR models.

N

O

HO

NH

O F F

FF

Fig. 3 Structure of the template compound 25, common substructure

is in bold
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Results and discussion

Results of 2D QSAR study

Generation of 2D QSAR models

2D QSAR study on amino nicotinic acid and isonicotinic

acid derivatives resulted in several QSAR models. Statis-

tically significant QSAR models were selected for

discussion.

Model-1 (MLR) pIC50 ¼ þ0:4500 T N F 5ð Þ þ 0:0613

4pathClusterCountð Þ � 0:1157 T C C 6ð Þ þ 6:7645 where,

n = 22training and 4test, k = 2, DF = 19, r2 = 0.834,

q2 = 0.756, F test = 47.83, r2 se = 0.243, q2 se = 0.295,

r2
pred = 0.793, pred_r2se = 0.334.

Model-2 (PCR) pIC50 ¼ þ0:4275 T N F 5ð Þ þ 0:0647

4pathClusterCountð Þ � 0:1156 T C C 6ð Þ þ 6:6789 where,

n = 22training and 4test, k = 2, DF = 19, r2 = 0.833,

q2 = 0.774, F test = 47.34, r2 se = 0.244, q2 se = 0.284,

r2
pred = 0.811, pred_r2se = 0.304.

Model-3 (PLS) pIC50¼ þ0:4500 T N F 5ð Þ þ 0:0613

4pathð ClusterCountÞ � 0:1157 T C C 6ð Þ þ6:7645 where,

n = 22training and 4test, k = 2, DF = 19, r2 = 0.864,

q2 = 0.786, F test = 48.83, r2 se = 0.233, q2 se = 0.294,

r2
pred = 0.821, pred_r2se = 0.304.

In above QSAR models, r2 is a correlation coefficient

that multiply by one hundred gives explained variance in

inhibitory activity. Predictive ability of generated QSAR

Table 3 Experimental and predicted pIC50 with residual values using

3D QSAR (CoMFA) model

Compound no. Experimental pIC50 Predicted pIC50 Residual

1 6.699 6.712 -0.013

2t 7.056 7.150 -0.094

3 6.824 6.713 0.110

4 7.046 7.181 -0.136

5 7.721 7.648 0.074

6 7.824 7.981 -0.157

7t 7.721 7.786 -0.065

8 7.854 7.530 0.323

9 6.699 6.961 -0.262

10 6.959 6.818 0.140

11 7.482 7.347 0.135

12t 7.921 8.046 -0.125

13 7.004 7.012 -0.607

14 7.921 7.612 0.309

15 7.638 7.736 -0.098

16 7.276 7.229 0.047

17 7.769 7.794 -0.025

18 8.301 8.315 -0.014

19 8.222 8.251 -0.029

20t 8.398 8.370 0.028

21 8.301 8.173 0.128

22 8.222 8.276 -0.054

23 8.398 8.125 0.273

24 8.097 8.108 -0.011

25 8.523 8.574 -0.051

26 7.959 7.785 0.174

t test set compound

Fig. 4 Alignment of training

and test set compounds on

compound 25
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models was evaluated by q2 employing leave-one-out

method. F value reflects ratio of variance explained by

models and variance due to error in regression. High

F value indicates that model is statistically significant. Low

standard error (SE) of estimation indicted by r2 se and q2

se, suggested that models are statistically significant. Pre-

dictive ability of QSAR model was also confirmed by

external validation of test set compounds denoted by r2
pred.

Observed and predicted pIC50 is shown in Table 1. Plot of

observed versus predicted pIC50 is shown in Fig. 5.

Interpretaion of 2D QSAR models

Descriptors used in generation of 2D QSAR models are

shown in Fig. 6. 2D QSAR models indicates positive con-

tribution of T_N_F_5 and 4pathClusterCount and negative

contribution of T_C_C_6. Alignment independent (AI)

topological descriptor (Balaban, 1982) T_N_F_5 contrib-

uted positively to QSAR models, where T_C_C_6 contrib-

uted negatively. Alignment-independent descriptors can be

generated by considering the topology of the molecule, atom

type, and bond. For calculation of alignment independent

descriptors every atom in the molecule was assigned at least

one and at most three attributes. First attribute is ‘T-attribute’

to thoroughly characterize topology of the molecule. Second

attribute is atom type, atom symbol is used here. Third

attribute is assigned to atoms taking part in a double or triple

bond. After all the atoms have been assigned their respective

attributes, selective distance count statistics for all combi-

nations of different attributes are computed. A selective

distance count statistic ‘XY2’ (e.g., ‘TOPO2N3’) counts all

the fragments between start atom with attribute ‘X’ (e.g., ‘2’

double bonded atom) and end atom with attribute ‘Y’

(e.g., ‘N’) separated by graph distance 3. Graph distance can

be defined as the smallest number of atoms along the path

connecting two atoms in the molecular structure. In this

study, to calculate AI descriptors, we used following attri-

butes: 2 (double bonded atom), 3 (triple bonded atom), C, N,

O, H, F, and Cl the distance range of 0–7. T_N_F_5 is a count

of number of nitrogen atoms separated from any fluorine

atom (single or double bonded) by five bond distance, e.g.,

N_C_N_C_C_C_F. Positive contribution of T_N_F_5

reveals the importance of presence of nitrogen atom in pyr-

idine ring and fluorine atom on first phenyl ring of biphenyl

ring template. T_C_C_6 is a count of number of carbon

atoms separated from any other carbon atom (single or

double bonded) by six distance, e.g., C_C_C_C_C_C_C_C.

4pathClusterCount is a molecular connectivity index which

signifies total number of fragments of fourth order path

cluster in a molecule. Molecular connectivity index is used to

describe electronic environment and bonding configuration

of each non-hydrogen atom (heavy atom) in the molecule

for example carbon valence connectivity index takes into

account only bonds between carbon atoms. 4pathCluster-

Count reveals the importance of molecular connectivity

for heavy atoms and their bonding configuration in the

molecules.

Results of 3D QSAR study

The q2, r2
pred, rncv

2 , F, and SEE values were computed as

defined in SYBYL. PLS analysis showed a high q2 value of
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Fig. 5 Graphs of experimental versus predicted pIC50 using 2D QSAR models
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0.630 with four components. Cross-validated q2 (rcv
2 ) of

0.630 indicated a good predictive ability of the model. The

non-cross-validated PLS analysis results in a conventional r2

of 0.949, F = 137 and a standard error of estimation (SEE)

of 0.218. In both steric and electrostatic field contributions,

the former accounts for 0.554, while the latter contributes

0.446, indicating that these two factors nearly contribute the

same to the binding affinities. The high bootstrapped r2

(0.966) value and low standard deviation (0.032) suggest a

high degree of confidence in the analysis. The predicted,

experimental activity and the residual value of all the

inhibitors are listed in Table 3, and the correlation between

predicted and experimental activity is depicted in Fig. 7. The

predictive ability of the 3D QSAR model was further vali-

dated using an external test set of four compounds not

included in the model generation study. The predicted r2

(r2
pred) values from the CoMFA model was 0.763.

CoMFA contour maps

Contour maps for the best CoMFA model are shown in Fig. 8.

In the contour maps, the steric CoMFA contour plot with the

highest active compound 25 is shown in Fig. 8a. The field

energies at each lattice point were calculated as the scalar

results of the coefficient and the standard deviation associated

with a particular column of the data table (std*coeff), as

always plotted as the percentages of the contribution of

CoMFA equation. In this figure, the green contours represent

regions of high steric tolerance (80% contribution), while the

yellow contours represent regions of low steric bulk tolerance

(20% contribution). The steric contour of CoMFA showed a

large green contour around the first phenyl ring of biphenyl

ring template, indicating a favorable effect of steric bulk of

fluorine atom for inhibitory activity. This steric favored area is

generated by high electron density of fluorine atom. This can

be explained by analyzing the structural features and inhibi-

tory activity of 25 (2,3,5,6-tetrafluorophenyl, IC50 = 3 lm)

and 26 (2,6-difluorophenyl IC50 = 11 lm), 13 (2-fluoro,

5-methylphenyl IC50 = 99 lm), and 3(2-chlorophenyl

IC50 = 150 lm). Fluorine atom is larger than hydrogen, thus

steric bulk (lipophilicity) in the molecule can be increased by

replacing H atom by F atom. A steric unfavorable yellow

contour was observed near the C-30 methoxy at terminal

phenyl ring of biphenyl ring template, suggested that bulky
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Fig. 7 Plot of experimental versus predicted pIC50 using 3D QSAR

(CoMFA) model
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Fig. 6 Contribution charts of 2D QSAR models
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groups in these region would decrease hDHODH inhibitory

activity. CoMFA electrostatic contour map is shown in

Fig. 8b. Regions where increased positive-charge is favorable

for inhibitory activity are indicated in blue (80% contribu-

tion), while regions where increased negative-charge is

favorable for inhibitory activity are indicated in red (20%

contribution). A large region of red contours near the first

phenyl ring of biphenyl ring template shows that the presence

of electronegative substituent (–F). Fluorine has the highest

electron density, thus such an electronegative groups (–CF3, –

OCF3) are very important for better hDHODH inhibitory

activity. It can shows the fact that activity of 13 (2-fluoro,

5-methylphenyl IC50 = 99 lm) is less than 2 (2,5-difluoro-

phenyl IC50 = 88 lm). A large blue contour is seen in the

vicinity of terminal phenyl ring, depicts that positively

charged groups, such as hydrogen atoms is beneficial for

inhibitory activity. This is indeed the case for 24 (IC50 =

8 lm) and 4 (IC50 = 90 lm). Second blue polyhedron near

the C-2 position of pyridine ring indicate that a low electron

density in this area will have a positive effect on the inhibitory

activity. Small blue polyhedra located near the nitrogen atom

of pyridine ring, indicate that an electropositive group needs to

be present in this region.

2D versus 3D QSAR (CoMFA) analysis

The comparison of 2D and 3D QSAR (CoMFA) analysis

suggested common structural features responsible for

hDHODH inhibitory activity. Positive contribution of

alignment-independent topological descriptor T_N_F_5

reveals the importance of nitrogen atom in pyridine ring

and fluorine atom on first phenyl ring of biphenyl ring

template separated by five bond distance. T_N_F_5 is an

important descriptor, accounts for highest contribution

(Fig. 6) for hDHODH inhibitory activity in all the 2D

QSAR models. Fluorine is much more lipophilic than

hydrogen, so incorporating fluorine atoms in a molecule

will make it more lipophilic. Lipophilicity is an important

property in describing the affinity of the compounds in

terms of their partitioning the biological membranes hence

the fluorinated compound has a higher bioavailability.

Fluorine is a good leaving group, so it has a potential for

covalent bonds to be formed between the molecule and

hDHODH by loss of fluoride, leading to inhibition of

hDHODH activity. Lone pair of electron on N-atom in

pyridine ring system can form H-bond with CoQ binding

site of hDHODH. Positive contribution of 4pathCluster-

Count reveals the importance of molecular connectivity for

heavy atoms and their bonding configuration in the mole-

cules. Analysis of CoMFA steric and electrostatic contour

plots offered enough information to understand the binding

mode between the inhibitors and binding site (CoQ) of

hDHODH. The bulky and electronegative group (–F) of

compound at the first phenyl ring of biphenyl ring system

seems to be penetrating the junction of red (electrostatic)

and green (steric) contours indicating the presence of

bulkiness as well as electronegativity for the enhancement

of hDHODH inhibitory activity. 2D and 3D QSAR models

suggested that substitution on first phenyl ring especially

with –F, –CF3, and –OCF3 and terminal phenyl ring with

positively charged groups led toward better inhibitory

activity.

Conclusion

2D and 3D QSAR study identifies common features

responsible for hDHODH inhibitory activity of nicotinic

acid and isonicotinic derivatives. 2D QSAR studies revealed

that alignment-independent descriptors were major con-

tributing descriptors. CoMFA model is satisfactory accord-

ing to the statistical results as well as the contour maps

Fig. 8 CoMFA (std*coeff) contour maps. Compound 25 is shown inside the field, a CoMFA steric contour map and b CoMFA electrostatic

contour maps
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analysis. CoMFA contour plots offered enough information

to understand the binding mode between inhibitors and CoQ

binding site of hDHODH. The most significant feature for

better hDHODH inhibitory activity is the substitution pattern

(–F, –CF3, –OCF3) on biphenyl ring system. QSAR models

generated in this study can provide useful information for the

design of new compounds and helped in prediction of

hDHODH inhibitory activity prior to synthesis.
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