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Abstract A series of twenty-two new pyrazoline deriv-

atives was prepared from quinoline-based chalcones which

in turn were synthesized by condensing formylquinolines

with diverse acetylthiophenes. The titled compounds were

characterized by spectroscopic techniques (NMR, IR and

MS) and elemental analysis. All the compounds were

screened for antileishmanial activities. Compounds 1e, 1f,

2a, 2c, 2d, 2g, 2k, and 4a were found potentially active

antileishmanial agents. Bioassay results show that the type

and positions of the substituents seem to be critical for their

antileishmanial activities.
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Introduction

1,3-Diaryl-2-propen-1-ones (chalcones) are one of the most

important classes of natural products, and are widespread

in the plant kingdom. Chalcones (natural or synthetic)

possess a broad spectrum of biological activities including

anti-inflammatory (Ballesteros et al.,1995), antifungal

(Nowakowska, 2007), antioxidant (Mukherjee et al., 2001),

antimalarial (Wu et al., 2002), antituberculosis (Sivakumar

et al., 2007), analgesic (Viana et al., 2003), antitumor

(Shibata, 1994), anticancer (Wattenberg et al., 1994),

antiviral (Trivedi et al., 2007), anti-AIDS (Wu et al., 2003)

and antileishmanial agents (Boeck et al., 2006).

Pyrazoline derivatives of chalcones have been reported

to possess a widespread range of biological activities

like antibacterial (Nauduri and Reddy, 1998), antifungal

(Azarifar and Shaebanzadeh, 2002), antidepressant (Bilgin

et al., 1993), antitumor (Taylor and Patel, 1992), antimi-

crobial (Ramalingham et al., 1977), anti-inflammatory,

molluscicidal activity (Barsoum et al., 2006), antiamoebic

(Budakoti et al., 2006), anticonvulsant activities (Ozdemir

et al., 2007). One of the most famous pyrazole-based drugs

used as a non-steroidal anti-inflammatory drug (NSAID) is

celecoxib (Fig. 1) (Rezende, et al., 2010). Considerable

attention has been focused on the pyrazoline family in the

last two decades. Among various pyrazoline derivatives,

2-pyrazolines seem to be the most frequently studied pyr-

azoline-type compounds (Lévai, 2005). After the pioneer-

ing work by Fischer and Knövenagel in the late nineteenth

century, the reaction of a,b-unsaturated aldehydes and

ketones with hydrazines became one of the most popular

methods for the preparation of 2-pyrazolines (Lévai et al.,

2004).

Quinolines and their derivatives, which represent a

major class of heterocycles (Meth-Cohn and Narine, 1978)

and are widely found in natural products (Michael 2003,

2004) and drugs (Alhaider et al., 1985; Campbell et al.,

1988; Du, 2003), exhibit significant role in medicinal

chemistry. Several quinoline derivatives have been repor-

ted to exhibit bactericidal (Awad et al., 1991), antimalarial

(Ginsburg et al., 1999), antiallergenic (Althuis et al., 1980)

and anti-inflammatory (Dillard et al., 1973) properties.

Some of the famous antimalarial drugs, containing quino-

line ring system; available in the market are plasmoquine

S. U. F. Rizvi � H. L. Siddiqui (&) � M. Ahmad �
M. H. Bukhari

Institute of Chemistry, University of the Punjab,

Lahore 54590, Pakistan

e-mail: drhamidlatif@yahoo.com

M. N. Ahmad

Institute of Chemical Sciences, University of Peshawar,

Peshawar 25120, Pakistan

123

Med Chem Res (2012) 21:1322–1333

DOI 10.1007/s00044-011-9647-8

MEDICINAL
CHEMISTRY
RESEARCH



(Manske and Kulka, 1953), primaquine and chloroquine

(Singh et al., 1978). Many quinoline derivatives are found

to possess anticancer and antitumor activities (Loaiza et al.,

2004). Among the quinolines, 2-chloro-3-formylquinolines

find an important place in synthetic organic chemistry, as

these are key intermediates for further b-annelation of a

wide variety of ring systems and for the inter-conversions

of many functional groups (Meth-Cohn, 1993).

In this study, the 2-chloro-7/8-methyl-3-formylquinoline

nucleus and chalcone functionality have been incorporated

in a single molecule (1a–k and 2a–k). Then each of the

prepared chalcones was refluxed with hydrazine hydrate in

ethanol to yield twenty-two novel 2-pyrazolines (3a–k and

4a–k) based on quinolyl-thienyl ring systems. Finally, all

the title compounds were tested for their antileishmanial

activities.

Results and discussion

Chemistry

The two precursors, 2-chloro-3-formyl-7- and 8-methyl-

quinoline were prepared by reported method (Meth-

Cohn et al., 1981). Synthesis of the chalconess (1a–k and

2a–k) was based on Claisen-Schmidt condensation (Li

et al., 1995). For this purpose, the prepared formyl quin-

olines were condensed with commercially available acetyl

thiophenes (Table 1), in the presence of sodium hydroxide.

Finally, chalcones thus prepared, on cyclization with

hydrazine hydrate, gave the corresponding 2-pyrazoline

derivatives (3a–k and 4a–k) in a reasonably good yield

(Scheme 1).

Spectral data (IR, 1H-NMR and MS) of all the newly

synthesized compounds were found in good agreement

with the proposed structures. IR spectra of the compounds

1a–k and 2a–k showed an absorption band at 1650 cm-1,

typical of the stretching vibrations of chalcone moiety. No

peaks were found due to starting material aldehydic func-

tionality as impurity. In the 1H-NMR spectra of the chal-

cones (1a–k except 1e, 1f and 1i) and (2a–k except 2e, 2f

and 2i), two very sharp doublets around d 7.40 ppm for Ha

and d 8.20 ppm for Hb, with J-value 15–16 Hz for the trans

chalcones were exhibited. Interestingly, in chalcones 1e

and 2e, Ha and Hb showed a doublet in the upfield at d
7.33–7.32 and 8.10–8.08 ppm, respectively. This may be

attributed to an additional ?I effect induced by CH3 group

present in the close vicinity. Similarly, in chalcones (1f, 1i,

2f and 2i), Ha revealed a doublet relatively in the downfield

at d 7.82–7.81 ppm. This may be attributed to an additional

-I effect due to Cl/Br in the vicinity. The molecular ion

observed in the mass spectra for all the chalcones con-

firmed their molecular masses. The base peak, in the mass

spectra of most of the chalcones, was obtained possibly by

the cleavage of HC–CO bond in the chalcone moiety.

While in bromo- and iodo-substituted chalcones (1i–1k and

2i–2k), the base peak is due to the cleavage of two bonds,

i.e. CO—thiophenyl and Br/I—thiophenyl bonds. The E-

configuration was confirmed by X-ray structure of two

similar structured chalcones which were already reported

(Rizvi et al., 2008).

Similarly, in case of 2-pyrazolines (3a–k and 4a–k), IR

spectra of all the compounds did not show absorbance at

1650 cm-1 which confirmed the absence of the chalcone

moiety. A new peak with absorption band at 3280 cm-1

was revealed due to NH of 2-pyrazoline ring. 1H-NMR

spectra of the pyrazolines (3a–k and 4a–k) ascertained the

presence of two doublets of doublet signals due to CH2

protons Ha (upfield H of CH2) at d 2.82–3.21 ppm region

and Hb (downfield H of CH2) at d 3.64–4.10 ppm,

respectively. The CH proton appeared as a triplet at d
5.28–5.40 ppm region. The molecular ion M?, observed in

the mass spectra for all the pyrazolines confirmed their

molecular masses. The base peak, in almost all the mass

spectra (except for 3f), was exhibited by M? itself.
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Chloroquine    Celecoxib

(Antimalarial)              (NSAID)

Fig. 1 Structures of a quinoline and a pyrazole-based drugs

Table 1 Aryl moiety (Ar) in chalcones (1a–k) and (2a–k)

Ketones Ar

a C4H3S-3-yl

b 3-CH3C4H2S-2-yl

c 4-CH3C4H2S-2-yl

d 5-CH3C4H2S-2-yl

e 2,5-diCH3C4HS-3-yl

f 3-ClC4H2S-2-yl

g 5-ClC4H2S-2-yl

h 2,5-diClC4HS-3-yl

i 3-BrC4H2S-2-yl

j 5-BrC4H2S-2-yl

k 5-IC4H2S-2-yl
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Antileishmanial activity

According to the results obtained, structure–activity rela-

tionship among the two series of chalcones (1a–k and

2a–k) may be explained in terms of stereo- and electronic

and/or steric properties (see Fig. 2).

For example, the unsubstituted thiophenyl derivatives

(1a and 2a) have prominent difference in antileishmanial

activities, i.e. 2a is more active than 1a (IC50 = 0.88 ±

0.20 lg/ml for 1a and IC50 = 0.61 ± 0.81 lg/ml for 2a),

while the activity decreased considerably by the introduc-

tion of CH3 group at position 3 of thiophenyl ring (1b and

2b; Table 2) perhaps due to steric effect, whereas, the

activity is relatively increased on moving the methyl sub-

stituent to position 4 (1c and 2c) or 5 (1d and 2d) impairing

the steric effect. Conversely, replacing the methyl group by

chloro group at position 3 of thiophenyl ring (1f and 2f)

results in enhanced activity. This may be attributed to the

greater electronic effect of chloro group, while the steric

effect of bromo group overweighs the electronic effect at

position 3 of thiophenyl ring (1i and 2i). Moreover,

substituting the halogen atoms (Cl, Br and I) at position 5

of thiophenyl ring (1g, 1j, 1k, 2g, 2j and 2k) deactivates

these compounds due to the absence of electronic effect

stereochemically. Similarly, 2,5-disubstituted methyl

derivatives (1e and 2e) displayed more activity than their

dichloro analogs (1h and 2h). This may be attributed to the

possibility of existence of electronic effect which is due to

the dipolar repulsive forces as shown in Fig. 2d by curved

arrow (iii). While, there is no such electronic or steric

effect in dimethyl derivatives (1e and 2e).

It is quite obvious from Table 2 that conversion of both

series of chalcones (1a–k and 2a–k) to their corresponding

2-pyrazoline derivatives (3a–k and 4a–k) results in an

overall decrease in the antileishmanial activity. This fact

clearly indicates the significance of chalcone moiety
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Scheme 1 Reaction protocol

for the synthesis of 2-pyralozine

derivatives (3a–k) and

(4a–k) (i) AcOH, H3PO4, reflux,

4–6 h, (ii) POCl3, DMF, 80�C,

(iii) a–k, NaOH, rt, 2 h, (iv)

Hydrazine, EtOH, reflux
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Fig. 2 Proposed stereo-,

electronic and/or steric

properties (i) electronic effect
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effect; (iii) electronic effect

(dipolar repulsive forces)
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towards antileishmanial activity in the titled compounds. In

Fig. 2, this is proposed to be due to electronic effect shown

by curved arrows, labelled as (i), which is vanished by the

ring-closure at chalcones moiety.

Conclusion

It is evident from the above discussion that the chalcones

(1a–k and 2a–k) exhibited more activity than their corre-

sponding pyrazoline derivatives (3a–k and 4a–k). We

divided the compounds into four categories for their an-

tileishmanial activities and represrented in Table 3, i.e.

IC50 = 0.59–0.56 lg/ml or below as significantly active,

0.69–0.60 lg/ml as good activity, 0.79–0.70 lg/ml as

moderately active and 0.95–0.80 lg/ml as low activity.

The compounds 1e, 1f, 2a, 2c, 2d, 2g, 2k and 4a were

found potentially active antileishmanial agents.

Experimental

General

Melting points were taken on Gallenkamp melting point

apparatus and remained uncorrected. IR spectra were

recorded in KBr pellets on Perkin Elmer infrared spectro-

photometer. 1H NMR spectra were performed in CDCl3 on

Brücker/XWIN NMR (400 MHz) and TMS was used as

internal standard (chemical shifts, d in ppm) unless other-

wise specified. Mass spectra were recorded on a Jeol

MSRoute instrument. Thin layer chromatography (TLC)

was performed with aluminium sheets-Silica gel 60 F254

purchased from Merck. Purification of synthesized com-

pounds was made by recrystallization from appropriate

solvents. Reagent grade chemiocals such as phosphoryl

chloride, acetyl thiophenes, o-toluidine, m-toluidine, N,N-

dimethylformamide and hydrazine hydrate (Aldrich and

Alpha Aesar) were used as received. Elemental analyses

were performed by C.S.I.C., Madrid Spain and were within

±0.4% of predicted values for all compounds.

General procedure for the preparation of (2E)-3-(2-chloro-

7/8-methylquinolin-3-yl)-1-(Ary) prop-2-en-1-ones (1a–k)

and (2a–k)

The two precursors, 7/8-methyl-substituted 2-chloro-3-

formylquinolines were synthesized following literature

method (Meth-Cohn et al., 1981). A mixture of formyl-

quinoline (10 mmol) and an aromatic ketone (10 mmol) in

methanol (50 ml) was stirred at room temperature,

Table 2 Antileishmanial activity of series 1a–k, 2a–k, 3a–k and 4a–

k (IC50 values)

Compounds IC50 (lg/ml)

1a 0.88 ± 0.20

1b 0.92 ± 0.11

1c 0.83 ± 0.05

1d 0.74 ± 0.31

1e 0.62 ± 0.24

1f 0.59 ± 0.20

1g 0.81 ± 0.09

1h 0.78 ± 0.14

1i 0.71 ± 0.18

1j 0.91 ± 0.31

1k 0.84 ± 0.22

2a 0.61 ± 0.81

2b 0.94 ± 0.10

2c 0.59 ± 0.09

2d 0.61 ± 1.25

2e 0.73 ± 0.08

2f 0.78 ± 0.15

2g 0.65 ± 0.14

2h 0.85 ± 0.18

2i 0.93 ± 0.99

2j 0.78 ± 0.032

2k 0.67 ± 0.23

3a 0.94 ± 0.02

3b 0.76 ± 0.05

3c 0.87 ± 0.08

3d 0.89 ± 0.03

3e 0.76 ± 0.19

3f 0.78 ± 0.07

3g 0.83 ± 0.50

3h 0.71 ± 0.45

3i 0.85 ± 0.18

3j 0.93 ± 0.62

3k 0.88 ± 0.27

4a 0.67 ± 0.09

4b 0.78 ± 0.23

4c 0.74 ± 0.09

4d 0.89 ± 0.10

4e 0.93 ± 0.16

4f 0.84 ± 0.07

4g 0.75 ± 0.02

4h 0.79 ± 0.03

4i 0.94 ± 0.20

4j 0.93 ± 0.20

4k 0.77 ± 0.02

Standard drug MIC(lg/ml ± SD)

(Amphotericin B)

0.56 ± 0.20
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followed by dropwise addition of aq. NaOH (4 ml, 10%).

The stirring was continued for 2 h and the reaction mixture

was then kept at 0�C for 24 h. Subsequently, it was poured

onto ice-cold water (200 ml). The precipitates were col-

lected by filtration, washed with cold water followed by

cold MeOH. The resulting chalcones were recrystallized

from CHCl3 and dried in vacuo.

(2E)-3-(2-Chloro-7-methylquinolin-3-yl)-1-thien-3-ylprop-

2-en-1-one (1a) Yield, 65%; colourless solid. mp

180–182�C. IR (KBr, cm-1): 1649 (C=O), 1594 (C=C),

1565 (C=N of quinoline ring). 1H-NMR (CDCl3) d: 2.57

(3H, s, Me), 7.39 (1H, dd, H4
0, J = 5.1 Hz, 2.9 Hz), 7.42

(1H, dd, H5, J = 8.2 Hz, 1.2 Hz), 7.45 (1H, d, Ha,

J = 15.7 Hz), 7.69 (1H, dd, H5
0, J = 5.1 Hz, 1.0 Hz), 7.76

(1H, d, H6, J = 8.3 Hz), 7.79 (1H, s, H8), 8.19 (1H, d, Hb,

J = 15.6 Hz), 8.20 (1H, dd, H2
0, J = 2.9 Hz, 1.0 Hz), 8.42

(1H, s, H4). MS (m/z): 313 (M?, 1.86%), 111

(M?–C12H9NCl, 100%). Anal. Calcd for C17H12ClNOS: C,

65.07; H, 3.85; N, 4.46. Found: C, 65.03; H, 3.76; N, 4.43.

(2E)-3-(2-Chloro-7-methylquinolin-3-yl)-1-(3-methylthien-

2-yl) prop-2-en-1-one (1b) Yield, 51%; pale yellow solid.

mp 208–210�C. IR (KBr, cm-1): 1653 (C=O), 1594 (C=C),

1563 (C=N of quinoline ring). 1H-NMR (CDCl3) d:

2.56–2.66 (s, 29 Me), 7.02 (1H, d, H4
0, J = 4.9 Hz), 7.40

(1H, d, Ha, J = 15.4 Hz), 7.42 (1H, dd, H5, J = 8.2 Hz,

1.3 Hz), 7.49 (1H, d, H5
0 J = 4.9 Hz), 7.77 (1H, d, H6,

J = 8.6 Hz), 7.78 (1H, s, H8), 8.18 (1H, d, Hb,

J = 15.4 Hz), 8.40 (1H, s, H4). MS (m/z): 327 (M?, 10%),

125 (M?–C12H9NCl, 100%). Anal. Calcd for

C18H14ClNOS: C, 65.95; H, 4.30; N, 4.27. Found: C,

65.92; H, 4.25; N, 4.25.

(2E)-3-(2-Chloro-7-methylquinolin-3-yl)-1-(4-methylthien-

2-yl)prop-2-en-1-one (1c) Yield, 56%; yellow solid. mp

173–174�C. IR (KBr, cm-1): 1655 (C=O), 1594 (C=C),

1564 (C=N of quinoline ring). 1H-NMR (CDCl3) d:

2.33–2.56 (s, 29 Me), 7.31 (1H, s, H5
0), 7.42 (1H, dd, H5,

J = 8.2 Hz, 1.3 Hz), 7.44 (1H, d, Ha, J = 15.5 Hz), 7.71

(1H, s, H3
0), 7.76 (1H, d, H6, J = 8.3 Hz), 7.79 (1H, s, H8),

8.21 (1H, d, Hb, J = 15.6 Hz), 8.42 (1H, s, H4). MS (m/z):

327 (M?, %), 125 (M?–C12H9NCl, 100%). Anal. Calcd for

C18H14ClNOS: C, 65.95; H, 4.30; N, 4.27. Found: C,

65.85; H, 4.24; N, 4.23.

(2E)-3-(2-Chloro-7-methylquinolin-3-yl)-1-(5-methylthien-

2-yl)prop-2-en-1-one (1d) Yield, 52%; pale yellow solid.

mp 173–175�C. IR (KBr, cm-1): 1652 (C=O), 1595 (C=C),

1563 (C=N of quinoline ring). 1H-NMR (CDCl3) d:

2.56–2.57 (s, 29 Me), 6.86 (1H, d, H4
0, J = 3.3 Hz), 7.42

(1H, d, Ha, J = 15.6 Hz), 7.43 (1H, dd, H5, J = 8.2 Hz,

1.2 Hz), 7.71 (1H, d, H3
0, J = 3.7 Hz), 7.75 (1H, d, H6,

J = 8.3 Hz), 7.78 (1H, s, H8), 8.18 (1H, d, Hb,

J = 15.6 Hz), 8.40 (1H, s, H4). MS (m/z): 327 (M?,

3.61%), 125 (M?–C12H9NCl, 100%). Anal. Calcd for

C18H14ClNOS: C, 65.95; H, 4.30; N, 4.27. Found: C,

65.89; H, 4.26; N, 4.25.

(2E)-3-(2-Chloro-7-methylquinolin-3-yl)-1-(2,5-dimethylth-

ien-3-yl)prop-2-en-1-one (1e) Yield, 70%; yellow solid.

mp 183–185�C. IR (KBr, cm-1): 1648 (C=O), 1590 (C=C),

1565 (C=N of quinoline ring). 1H-NMR (CDCl3) d: 2.44–

2.72 (s, 39 Me), 7.10 (1H, s, H4
0), 7.32 (1H, d, Ha, J =

15.7 Hz), 7.41 (1H, dd, H5, J = 8.4 Hz, 1.2 Hz), 7.74 (1H, d,

H6, J = 8.3 Hz), 7.78 (1H, s, H8), 8.08 (1H, d, Hb, J =

15.7 Hz), 8.37 (1H, s, H4). MS (m/z): 341 (M?, 10.31%), 306

(M?–Cl, 100%). Anal. Calcd for C19H16ClNOS: C, 66.75; H,

4.72; N, 4.10. Found: C, 66.65; H, 4.68; N, 4.08.

(2E)-3-(2-Chloro-7-methylquinolin-3-yl)-1-(3-chlorothien-

2-yl)prop-2-en-1-one (1f) Yield, 66%; yellow solid. mp

160–162�C. IR (KBr, cm-1): 1650 (C=O), 1591 (C=C),

1569 (C=N of quinoline ring). 1H-NMR (CDCl3) d: 2.56

(3H, s, Me), 7.07 (1H, d, H4
0, J = 5.2 Hz), 7.28 (1H, dd,

H5, J = 8.3 Hz, 1.1 Hz), 7.60 (1H, d, H5
0, J = 5.2 Hz),

7.77 (1H, d, H6, J = 8.6 Hz), 7.82 (1H, d, Ha,

J = 15.5 Hz), 7.96 (1H, s, H8), 8.23 (1H, d, Hb,

J = 15.5 Hz), 8.42 (1H, s, H4). MS (m/z): 347 (M?, 1.8%),

145 (M?–C12H9NCl, 100%). Anal. Calcd. for

C17H11Cl2NOS: C, 58.63; H, 3.18; N, 4.02. Found: C,

58.53; H, 3.16; N, 3.97.

(2E)-3-(2-Chloro-7-methylquinolin-3-yl)-1-(5-chlorothien-

2-yl)prop-2-en-1-one (1g) Yield, 80%; pale yellow solid.

mp 170–171�C. IR (KBr, cm-1): 1656 (C=O), 1598 (C=C),

1570 (C=N of quinoline ring). 1H-NMR (CDCl3) d: 2.52

(3H, s, Me), 6.92 (1H, d, H4
0, J = 4.1 Hz), 7.35 (1H, dd,

H5, J = 8.3 Hz, 1.2 Hz), 7.39 (1H, d, Ha, J = 15.6 Hz),

7.57 (1H, d, H3
0, J = 4.1 Hz), 7.64 (1H, d, H6,

J = 8.3 Hz), 7.72 (1H, s, H8), 8.20 (1H, d, Hb,

Table 3 Proposed categories of

antileishmanial agents
Category Compounds

Significant 1f, 2c

Good 1e, 2a, 2d, 2g, 2k, 4a

Moderate 1d, 1h, 1i, 2e, 2f, 2j, 3b, 3e, 3f, 3h, 4b, 4c, 4g, 4h, 4k

Low 1a–1c, 1g, 1j, 1k, 2b, 2h, 2i, 3a, 3c, 3d, 3g, 3i–3k, 4d–4f, 4i, 4j
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J = 15.6 Hz), 8.39 (1H, s, H4). MS (m/z): 347 (M?,

2.41%), 145 (M?–C12H9NCl, 100%). Anal. Calcd for

C17H11Cl2NOS: C, 58.63; H, 3.18; N, 4.02. Found: C,

58.57; H, 3.14; N, 3.96.

(2E)-3-(2-Chloro-7-methylquinolin-3-yl)-1-(2,5-dichloroth-

ien-3-yl)prop-2-en-1-one (1h) Yield, 63%; off-white

solid. mp 163�C. IR (KBr, cm-1): 1662 (C=O), 1596

(C=C), 1572 (C=N of quinoline ring). 1H-NMR (CDCl3) d:

2.56 (3H, s, Me), 7.23 (1H, s, H4
0), 7.42 (1H, dd, H5,

J = 8.3 Hz, 1.0 Hz), 7.45 (1H, d, Ha, J = 15.7 Hz), 7.76

(1H, d, H6, J = 8.3 Hz), 7.79 (1H, s, H8), 8.15 (1H, d, Hb,

J = 15.7 Hz), 8.39 (1H, s, H4). MS (m/z): 383 (M?, 1.7%),

346 (M?–Cl, 100%). Anal. Calcd for C17H10Cl3NOS: C,

53.35; H, 2.63; N, 3.66. Found: C, 53.26; H, 2.58; N, 3.67.

(2E)-1-(3-Bromothien-2-yl)-3-(2-chloro-7-methylquinolin-3-

yl)prop-2-en-1-one (1i) Yield, 79%; yellow solid. mp

164–165�C. IR (KBr, cm-1): 1652 (C=O), 1592 (C=C),

1568 (C=N of quinoline ring). 1H-NMR (CDCl3) d: 2.57

(3H, s, Me), 7.16 (1H, d, H4
0, J = 5.16 Hz), 7.42 (1H, dd,

H5, J = 8.3 Hz, 1.3 Hz), 7.58 (1H, d, H5
0, J = 5.2 Hz),

7.78 (1H, d, H6, J = 8.6 Hz), 7.82 (1H, d, Ha,

J = 15.6 Hz), 7.79 (1H, s, H8), 8.23 (1H, d, Hb,

J = 15.5 Hz), 8.43 (1H, s, H4). MS (m/z): 393 (M?, 1.5%),

82 (M?–C13H9NOClBr, 100%). Anal. Calcd for

C17H11BrClNOS: C, 51.99; H, 2.82; N, 3.57. Found: C,

51.94; H, 2.76; N, 3.56.

(2E)-1-(5-Bromothien-2-yl)-3-(2-chloro-7-methylquinolin-3-

yl)prop-2-en-1-one (1j) Yield, 75%; yellow solid. mp

162–164�C. IR (KBr, cm-1): 1653 (C=O), 1588 (C=C),

1566 (C=N of quinoline ring). 1H-NMR (CDCl3) d: 2.56

(3H, s, Me), 7.16 (1H, d, H4
0, J = 4.0 Hz), 7.38 (1H, d, Ha,

J = 15.6 Hz), 7.42 (1H, dd, H5, J = 8.3 Hz, 1.0 Hz), 7.63

(1H, d, H3
0, J = 4.0 Hz), 7.76 (1H, d, H6, J = 8.3 Hz),7.79

(1H, s, H8), 8.21 (1H, d, Hb, J = 15.6 Hz), 8.40 (1H, s,

H4). MS (m/z): 393 (M?, 1.5%), 82 (M?–C13H9NOClBr,

100%). Anal. Calcd for C17H11BrClNOS: C, 51.99; H,

2.82; N, 3.57. Found: C, 51.95; H, 2.79; N, 3.56.

(2E)-3-(2-Chloro-7-methylquinolin-3-yl)-1-(5-iodothien-2-

yl)prop-2-en-1-one (1k) Yield, 90%; deep yellow solid.

mp 164–165�C. IR (KBr, cm-1): 1650 (C=O), 1596 (C=C),

1565 (C=N of quinoline ring). 1H-NMR (CDCl3) d: 2.56

(3H, s, Me), 7.36 (1H, d, H4
0, J = 4.0 Hz), 7.37 (1H, d, Ha,

J = 15.5 Hz), 7.42 (1H, dd, H5, J = 8.4 Hz, 1.2 Hz), 7.50

(1H, d, H3
0, J = 4.0 Hz), 7.76 (1H, d, H6, J = 8.3 Hz),

7.79 (1H, s, H8), 8.21 (1H, d, Hb, J = 15.6 Hz), 8.40 (1H,

s, H4). MS (m/z): 439 (M?, 1.5%), 82 (M?–C13H9NOICl,

100%). Anal. Calcd for C17H11ClINOS: C, 46.44; H, 2.52;

N, 3.19. Found: C, 46.44; H, 2.43; N, 3.18.

(2E)-3-(2-Chloro-8-methylquinolin-3-yl)-1-thien-3-ylprop-

2-en-1-one (2a) Yield, 60%; pale yellow solid. mp

128–130�C. IR (KBr, cm-1): 1649 (C=O), 1591 (C=C),

1561 (C=N of quinoline ring). 1H-NMR (CDCl3) d: 2.76

(3H, s, Me), 7.39 (1H, dd, H4
0, J = 5.1 Hz, 2.9 Hz), 7.46

(1H, d, Ha, J = 15.6 Hz), 7.47 (1H, t, H6, J = 7.6 Hz),

7.60 (1H, d, H7, J = 7.0 Hz), 7.69 (1H, d, H5
0, J = 4.7 Hz,

1.1 Hz), 7.70 (1H, d, H5, J = 6.7 Hz), 8.20 (1H, d, Hb,

J = 15.7 Hz), 8.20 (1H, dd, H2
0, J = 2.8 Hz, 1.1 Hz), 8.42

(1H, s, H4). MS (m/z): 313 (M?, 1.9%), 111 (M?–

C12H9NCl, 100%). Anal. Calcd for C17H12ClNOS: C,

65.07; H, 3.85; N, 4.46. Found: C, 65.04; H, 3.78; N, 4.44.

(2E)-3-(2-Chloro-8-methylquinolin-3-yl)-1-(3-methylthien-

2-yl)prop-2-en-1-one (2b) Yield, 56%; yellow solid. mp

174–175�C. IR (KBr, cm-1): 1654 (C=O), 1594 (C=C), 1563

(C=N of quinoline ring). 1H-NMR (CDCl3) d: 2.66–2.76 (s,

29 Me), 7.02 (1H, d, H4
0, J = 4.9 Hz), 7.41 (1H, d, Ha,

J = 15.4 Hz), 7.47 (1H, t, H6, J = 7.6 Hz), 7.49 (1H, d, H5
0,

J = 5.3 Hz), 7.59 (1H, d, H7, J = 7.0 Hz), 7.71 (1H, d, H5,

J = 8.0 Hz), 8.20 (1H, d, Hb, J = 15.4 Hz), 8.40 (1H, s, H4).

MS (m/z): 327 (M?, 6.74%), 125 (M?–C12H9NCl, 100%).

Anal. Calcd for C18H14ClNOS: C, 65.95; H, 4.30; N, 4.27.

Found: C, 65.90; H, 4.27; N, 4.27.

(2E)-3-(2-Chloro-8-methylquinolin-3-yl)-1-(4-methylthien-

2-yl)prop-2-en-1-one (2c) Yield, 49%; yellow solid. mp

146–147�C. IR (KBr, cm-1): 1655 (C=O), 1593 (C=C),

1565 (C=N of quinoline ring). 1H-NMR (CDCl3) d:

2.33–2.76 (s, 29 Me), 7.31 (1H, s, H5
0), 7.46 (1H, d, Ha,

J = 15.5 Hz), 7.47 (1H, t, H6, J = 7.6 Hz), 7.60 (1H, d,

H7, J = 7.0 Hz), 7.70 (1H, d, H5, J = 7.0 Hz), 7.71 (1H, s,

H3
0), 8.23 (1H, d, Hb, J = 15.6 Hz), 8.42 (1H, s, H4). MS

(m/z): 327 (M?, 5.02%), 292 (M?–Cl, 100%). Anal. Calcd

for C18H14ClNOS: C, 65.95; H, 4.30; N, 4.27. Found: C,

65.85; H, 4.23; N, 4.22.

(2E)-3-(2-Chloro-8-methylquinolin-3-yl)-1-(5-methylthien-

2-yl)prop-2-en-1-one (2d) Yield, 55%; yellow solid. mp

180–181�C. IR (KBr, cm-1): 1652 (C=O), 1596 (C=C),

1563 (C=N of quinoline ring). 1H-NMR (CDCl3) d:

2.57–2.75 (s, 29 Me), 6.86 (1H, d, H4
0, J = 3.1 Hz), 7.43

(1H, d, Ha, J = 15.6 Hz), 7.46 (1H, t, H6, J = 7.7 Hz),

7.59 (1H, d, H7, J = 7.0 Hz), 7.69 (1H, d, H5, J = 8.2 Hz),

7.72 (1H, d, H3
0, J = 3.8 Hz), 8.19 (1H, d, Hb,

J = 15.6 Hz), 8.40 (1H, s, H4). MS (m/z): 327 (M?,

5.56%), 125 (M?–C12H9NCl, 100%). Anal. Calcd for

C18H14ClNOS: C, 65.95; H, 4.30; N, 4.27. Found: C,

65.86; H, 4.25; N, 4.25.

(2E)-3-(2-Chloro-8-methylquinolin-3-yl)-1-(2,5-dimethylth-

ien-3-yl)prop-2-en-1-one (2e) Yield, 67%; yellow solid.

mp 138–140�C. IR (KBr, cm-1): 1648 (C=O), 1585 (C=C),
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1565 (C=N of quinoline ring). 1H-NMR (CDCl3) d:

2.44–2.75 (s, 39 Me), 7.10 (1H, s, H4
0), 7.33 (1H, d, Ha,

J = 15.7 Hz), 7.46 (1H, t, H6, J = 7.7 Hz), 7.59 (1H, d,

H7, J = 7.0 Hz), 7.68 (1H, d, H5, J = 8.1 Hz), 8.10 (1H, d,

Hb, J = 15.7 Hz), 8.37 (1H, s, H4). MS (m/z): 341 (M?,

7.71%), 139 (M?–C12H9NCl, 100%). Anal. Calcd for

C19H16ClNOS: C, 66.75; H, 4.72; N, 4.10. Found: C,

66.66; H, 4.62; N, 4.02.

(2E)-3-(2-Chloro-8-methylquinolin-3-yl)-1-(3-chlorothien-

2-yl)prop-2-en-1-one (2f) Yield, 73%; yellow solid. mp

162–163�C. IR (KBr, cm-1): 1650 (C=O), 1592 (C=C),

1570 (C=N of quinoline ring). 1H-NMR (CDCl3) d: 2.76

(3H, s, Me), 7.07 (1H, d, H4
0, J = 5.3 Hz), 7.47 (1H, t, H6,

J = 7.7 Hz), 7.59 (1H, d, H7, J = 7.0 Hz), 7.60 (1H, d,

H5
0, J = 5.3 Hz), 7.71 (1H, d, H5, J = 8.1 Hz), 7.82 (1H,

d, Ha, J = 15.5 Hz), 8.24 (1H, d, Hb, J = 15.6 Hz), 8.42

(1H, s, H4). MS (m/z): 347 (M?, 1.18%), 145 (M?

–C12H9NCl, 100%). Anal. Calcd. for C17H11Cl2NOS: C,

58.63; H, 3.18; N, 4.02. Found: C, 58.59; H, 3.12; N, 3.98.

(2E)-3-(2-Chloro-8-methylquinolin-3-yl)-1-(5-chlorothien-

2-yl) prop-2-en-1-one (2g) Yield, 85%; pale yellow solid.

mp 166–168�C. IR (KBr, cm-1): 1656 (C=O), 1598 (C=C),

1572 (C=N of quinoline ring). 1H-NMR (CDCl3) d: 2.76

(3H, s, Me), 7.02 (1H, d, H4
0, J = 4.0 Hz), 7.39 (1H, d, Ha,

J = 15.5 Hz), 7.48 (1H, t, H6, J = 7.6 Hz), 7.61 (1H, d,

H7, J = 7.0 Hz), 7.68 (1H, d, H3
0, J = 4.2 Hz), 7.70 (1H,

d, H5, J = 8.1 Hz), 8.23 (1H, d, Hb, J = 15.6 Hz), 8.41

(1H, s, H4). MS (m/z): 347 (M?–Cl, 1.24%), 145 (M?

–C12H9NCl, 100%). Anal. Calcd for C17H11Cl2NOS: C,

58.63; H, 3.18; N, 4.02. Found: C, 58.55; H, 3.13; N, 3.97.

(2E)-3-(2-Chloro-8-methylquinolin-3-yl)-1-(2,5-dichloroth-

ien-3-yl)prop-2-en-1-one (2h) Yield, 69%; colourless

solid. mp 120–121�C. IR (KBr, cm-1): 1664 (C=O), 1596

(C=C), 1570 (C=N of quinoline ring). 1H-NMR (CDCl3) d:

2.76 (3H, s, Me), 7.15 (1H, s, H4
0), 7.45 (1H, d, Ha,

J = 15.7 Hz), 7.47 (1H, t, H6, J = 7.7 Hz), 7.61 (1H, d,

H7, J = 6.8 Hz), 7.70 (1H, d, H5, J = 8.1 Hz), 8.17 (1H, d,

Hb, J = 15.7 Hz), 8.39 (1H, s, H4). MS (m/z): 383 (M?,

1.8%), 179 (M?–C12H9NCl, 100%). Anal. Calcd for

C17H10Cl3NOS: C, 53.35; H, 2.63; N, 3.66. Found: C,

53.24; H, 2.55; N, 3.60.

(2E)-1-(3-Bromothien-2-yl)-3-(2-chloro-8-methylquinolin-

3-yl) prop-2-en-1-one (2i) Yield, 86%; yellow solid. mp

210–212�C. IR (KBr, cm-1): 1652 (C=O), 1592 (C=C),

1568 (C=N of quinoline ring). 1H-NMR (CDCl3) d: 2.76

(3H, s, Me), 7.16 (1H, d, H4
0, J = 5.2 Hz), 7.47 (1H, t, H6,

J = 7.6 Hz), 7.58 (1H, d, H5
0, J = 5.2 Hz), 7.60 (1H, d,

H7, J = 7.1 Hz), 7.71 (1H, d, H5, J = 8.0 Hz), 7.81 (1H, d,

Ha, J = 15.6 Hz), 8.25 (1H, d, Hb, J = 15.5 Hz), 8.44

(1H, s, H4). MS (m/z): 393 (M?, 1.0%), 82 (M?

–C13H9NOClBr, 100%). Anal. Calcd. for C17H11BrClNOS:

C, 51.99; H, 2.82; N, 3.57. Found: C, 51.98; H, 2.77; N,

3.59.

(2E)-1-(5-Bromothien-2-yl)-3-(2-chloro-8-methylquinolin-

3-yl) prop-2-en-1-one (2j) Yield, 71%; off-white solid.

mp 204–206�C. IR (KBr, cm-1): 1653 (C=O), 1588 (C=C),

1566 (C=N of quinoline ring). 1H-NMR (CDCl3) d: 2.76

(3H, s, Me), 7.17 (1H, d, H4
0, J = 4.0 Hz), 7.39 (1H, d, Ha,

J = 15.6 Hz), 7.48 (1H, t, H6, J = 7.6 Hz), 7.61 (1H, d,

H7, J = 7.1 Hz), 7.63 (1H, d, H3
0, J = 4.0 Hz), 7.70 (1H,

d, H5, J = 8.0 Hz), 8.23 (1H, d, Hb, J = 15.6 Hz), 8.41

(1H, s, H4). MS (m/z): 393 (M?, 2%), 82 (M?

–C13H9NOClBr, 100%). Anal. Calcd for C17H11BrClNOS:

C, 51.99; H, 2.82; N, 3.57. Found: C, 51.93; H, 2.75; N,

3.55.

(2E)-3-(2-Chloro-8-methylquinolin-3-yl)-1-(5-iodothien-2-

yl)prop-2-en-1-one (2k) Yield, 86%; yellow solid. mp

196–198�C. IR (KBr, cm-1): 1649 (C=O), 1596 (C=C),

1565 (C=N of quinoline ring). 1H-NMR (CDCl3) d: 2.76

(3H, s, Me), 7.36 (1H, d, H4
0, J = 3.8 Hz), 7.38 (1H, d, Ha,

J = 15.6 Hz), 7.47 (1H, t, H6, J = 7.6 Hz), 7.51 (1H, d,

H3
0, J = 3.9 Hz), 7.61 (1H, d, H7, J = 7.0 Hz), 7.70 (1H,

d, H5, J = 8.1 Hz), 8.23 (1H, d, Hb, J = 15.6 Hz), 8.41

(1H, s, H4). MS (m/z): 439 (M?, 1%), 82 (M?

–C13H9NOICl, 100%). Anal. Calcd for C17H11ClINOS: C,

46.44; H, 2.52; N, 3.19. Found: C, 46.39; H, 2.42; N, 3.13.

General procedure for the preparation of 2-chloro-3-[3-

(aryl)-4,5-dihydro-1H-pyrazol-5-yl]-7/8-methylquinoline

(3a–k) and (4a–k)

A mixture of chalcone (1a–k or 2a–k, 1.0 mmol) and

hydrazine hydrate (3.0 mmol) in ethanol (10 ml) was

refluxed. The crude product got precipitated within

8–15 min which was poured onto ice-cold water (50 ml).

The precipitates were collected by filtration, washed with

cold water followed by cold EtOH to obtain 2-pyrazolines

which were recrystallised from EtOH (95%) to obtain pure

compounds (3a–k and 4a–k).

2-Chloro-7-methyl-3-(3-thiophen-3-yl-4,5-dihydro-1H-pyr-

azol-5-yl)quinoline (3a) Yield, 80%; colourless solid. mp

180–181�C. IR (KBr, cm-1): 3275 (NH), 1596 (C=N of

pyrazoline ring), 1555 (C=N of quinoline ring). 1H-NMR

(CDCl3) d: 2.50 (3H, s, CH3), 2.95 (1H, dd, J = 16.3,

9.4 Hz, 4-Ha), 3.74 (1H, dd, J = 16.4, 10.6 Hz, 4-Hb), 5.38

(1H, t, J = 9.9 Hz, 5-H), 7.31 (1H, dd, H4
0, J = 5.0 Hz,

2.8 Hz), 7.40 (1H, d, H5, J = 8.1 Hz), 7.62 (1H, dd, H5
0,

J = 4.9 Hz, 0.9 Hz), 7.73 (1H, d, H6, J = 8.3 Hz), 7.75
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(1H, s, H8), 8.08 (1H, dd, H2
0, J = 2.8 Hz, 1.0 Hz), 8.40

(1H, s, H4). MS (m/z): 327 (M?, 78.53%). Anal. Calcd for

C17H14ClN3S: C, 62.28; H, 4.30; N, 12.82. Found: C,

62.24; H, 4.25; N, 12.80.

2-Chloro-7-methyl-3-[3-(3-methylthiophen-2-yl)-4,5-dihydro-

1H-pyrazol-5-yl]quinoline (3b) Yield, 78%; yellow solid.

mp 160–161�C. IR (KBr, cm-1): 3285 (NH), 1602 (C=N of

pyrazoline ring), 1559 (C=N of quinoline ring). 1H-NMR

(CDCl3) d: 2.53–2.62 (s, 29 CH3), 2.84 (1H, dd, J = 16.3,

9.4 Hz, 4-Ha), 3.64 (1H, dd, J = 16.3, 10.4 Hz, 4-Hb), 5.29

(1H, t, J = 9.9 Hz, 5-H), 6.82 (1H, d, H4
0, J = 5.0 Hz),

7.35 (1H, d, H5, J = 8.1 Hz), 7.35 (1H, d, H5
0,

J = 4.9 Hz), 7.74 (1H, d, H6, J = 8.5 Hz), 7.76 (1H, s,

H8), 8.39 (1H, s, H4). MS (m/z): 341 (M?, 84.01%). Anal.

Calcd. for C18H16ClN3S: C, 63.24; H, 4.72; N, 12.29.

Found: C, 63.14; H, 4.65; N, 12.29.

2-Chloro-7-methyl-3-[3-(4-methylthiophen-2-yl)-4,5-dihydro-

1H-pyrazol-5-yl]quinoline (3c) Yield, 83%; colourless

solid. mp 200�C. IR (KBr, cm-1): 3280 (NH), 1599 (C=N

of pyrazoline ring), 1555 (C=N of quinoline ring). 1H-

NMR (CDCl3) d: 2.30–2.50 (s, 29 CH3), 2.85 (1H, dd,

J = 16.3, 9.3 Hz, 4-Ha), 3.66 (1H, dd, J = 16.3, 10.5 Hz,

4-Hb), 5.30 (1H, t, J = 9.9 Hz, 5-H), 7.11 (1H, s, H5
0), 7.37

(1H, d, H5, J = 8.1 Hz), 7.51 (1H, s, H3
0), 7.74 (1H, d, H6,

J = 8.3 Hz), 7.76 (1H, s, H8), 8.41 (1H, s, H4). MS (m/z):

341 (M?, 84.02%). Anal. Calcd. for C18H16ClN3S: C,

63.24; H, 4.72; N, 12.29. Found: C, 63.21; H, 4.69; N,

12.25.

2-Chloro-7-methyl-3-[3-(5-methylthiophen-2-yl)-4,5-dihy-

dro-1H-pyrazol-5-yl]quinoline (3d) Yield, 87%; pale

yellow solid. mp 198�C. IR (KBr, cm-1): 3275 (NH), 1595

(C=N of pyrazoline ring), 1558 (C=N of quinoline ring).
1H-NMR (CDCl3) d: 2.52–2.54 (s, 29 CH3), 2.85 (1H, dd,

J = 16.3, 9.3 Hz, 4-Ha), 3.66 (1H, dd, J = 16.3, 10.5 Hz,

4-Hb), 5.31 (1H, t, J = 9.9 Hz, 5-H), 6.66 (1H, d, H4
0,

J = 3.2 Hz), 6.85 (1H, d, H3
0, J = 3.5 Hz), 7.37 (1H, d,

H5, J = 8.1 Hz), 7.74 (1H, d, H6, J = 8.3 Hz), 7.76 (1H, s,

H8), 8.40 (1H, s, H4). MS (m/z): 341 (M?, 84.04%). Anal.

Calcd. for C18H16ClN3S: C, 63.24; H, 4.72; N, 12.29.

Found: C, 63.23; H, 4.69; N, 12.31.

2-Chloro-3-[3-(2,5-dimethylthiophen-3-yl)-4,5-dihydro-1H-

pyrazol-5-yl]-7-methylquinoline (3e) Yield, 86%; off-

white solid. mp 116–117�C. IR (KBr, cm-1): 3279 (NH),

1610 (C=N of pyrazoline ring), 1556 (C=N of quinoline

ring). 1H-NMR (CDCl3) d: 2.36–2.65 (s, 39 CH3), 2.82

(1H, dd, J = 16.2, 9.7 Hz, 4-Ha), 3.65 (1H, dd, J = 16.3,

10.5 Hz, 4-Hb), 5.28 (1H, t, J = 10.0 Hz, 5-H), 6.86 (1H,

s, H4
0), 7.41 (1H, d, H5, J = 8.3 Hz), 7.72 (1H, d, H6,

J = 8.3 Hz), 7.76 (1H, s, H8), 8.34 (1H, s, H4). MS (m/z):

355 (M?, 100%). Anal. Calcd. for C19H18ClN3S: C, 64.12;

H, 5.10; N, 11.81. Found: C, 64.08; H, 5.05; N, 11.76.

2-Chloro-3-[3-(3-chlorothiophen-2-yl)-4,5-dihydro-1H-

pyrazol-5-yl]-7-methylquinoline (3f) Yield, 79%; col-

ourless solid. mp 166167�C. IR (KBr, cm-1): 3288 (NH),

1608 (C=N of pyrazoline ring), 1560 (C=N of quinoline

ring). 1H-NMR (CDCl3) d: 2.52 (3H, s, CH3), 3.15 (1H, dd,

J = 16.9, 10.1 Hz, 4-Ha), 4.00 (1H, dd, J = 16.9, 10.8 Hz,

4-Hb), 5.39 (1H, t, J = 10.4 Hz, 5-H), 6.86 (1H, d, H4
0,

J = 5.2 Hz), 7.21 (1H, d, H5, J = 8.3 Hz), 7.32 (1H, d,

H5
0, J = 5.2 Hz), 7.76 (1H, d, H6, J = 8.6 Hz), 7.89 (1H,

s, H8), 8.37 (1H, s, H4). MS (m/z): 361 (M?, 96.20%) 185

(M?–C10H7NCl, 100%). Anal. Calcd. for C17H13Cl2N3S:

C, 56.36; H, 3.62; N, 11.60. Found: C, 56.32; H, 3.61; N,

11.58.

2-Chloro-3-[3-(5-chlorothiophen-2-yl)-4,5-dihydro-1H-pyr-

azol-5-yl]-7-methylquinoline (3g) Yield, 83%; off-white

solid. mp 205–207�C. IR (KBr, cm-1): 3284 (NH), 1605

(C=N of pyrazoline ring), 1560 (C=N of quinoline ring).
1H-NMR (CDCl3) d: 2.50 (3H, s, CH3), 2.87 (1H, dd,

J = 16.2, 10.0 Hz, 4-Ha), 3.71 (1H, dd, J = 16.2, 10.7 Hz,

4-Hb), 5.36 (1H, t, J = 10.3 Hz, 5-H), 6.82 (1H, d, H4
0,

J = 4.3 Hz), 7.28 (1H, d, H5, J = 8.3 Hz), 7.47 (1H, d,

H3
0, J = 4.3 Hz), 7.65 (1H, d, H6, J = 8.3 Hz), 7.69 (1H,

s, H8), 8.34 (1H, s, H4). MS (m/z): 361 (M?, 100%). Anal.

Calcd for C17H13Cl2N3S: C, 56.36; H, 3.62; N, 11.60.

Found: C, 56.34 H, 3.59; N, 11.52.

2-Chloro-3-[3-(2,5-dichlorothiophen-3-yl)-4,5-dihydro-1H-

pyrazol-5-yl]-7-methylquinoline (3h) Yield, 75%; off-

white solid. mp 178–179�C. IR (KBr, cm-1): 3282 (NH),

1612 (C=N of pyrazoline ring), 1561 (C=N of quinoline

ring). 1H-NMR (CDCl3) d: 2.52 (3H, s, CH3), 3.11 (1H, dd,

J = 16.7, 9.9 Hz, 4-Ha), 3.98 (1H, dd, J = 16.7, 10.5 Hz,

4-Hb), 5.39 (1H, t, J = 10.2 Hz, 5-H), 6.97 (1H, s, H4
0),

7.35 (1H, d, H5, J = 8.3 Hz), 7.72 (1H, d, H6, J = 8.2 Hz),

7.75 (1H, s, H8), 8.33 (1H, s, H4). MS (m/z): 397 (M?,

100%). Anal. Calcd. for C17H12Cl3N3S: C, 51.47; H, 3.05;

N, 10.59. Found: C, 51.45; H, 3.02; N, 10.54.

3-[3-(3-Bromothiophen-2-yl)-4,5-dihydro-1H-pyrazol-5-yl]-

2-chloro-7-methylquinoline (3i) Yield, 92%; colourless

solid. mp 170–171�C; IR (KBr, cm-1): 3279 (NH), 1608

(C=N of pyrazoline ring), 1556 (C=N of quinoline ring).
1H-NMR (CDCl3) d: 2.53 (3H, s, CH3), 3.19 (1H, dd,

J = 16.8, 10.1 Hz, 4-Ha), 4.06 (1H, dd, J = 16.8, 10.8 Hz,

4-Hb), 5.39 (1H, t, J = 10.4 Hz, 5-H), 6.95 (1H, d, H4
0,

J = 5.5 Hz), 7.35 (1H, d, H5, J = 8.2 Hz), 7.21 (1H, d,

H5
0, J = 5.5 Hz), 7.72 (1H, d, H6, J = 8.6 Hz), 7.74 (1H,

Med Chem Res (2012) 21:1322–1333 1329

123



s, H8), 8.38 (1H, s, H4). MS (m/z): 407 (M?, 100%). Anal.

Calcd. for C17H13BrClN3S: C, 50.20; H, 3.22; N, 10.33.

Found: C, 50.12; H, 3.14; N, 10.30.

3-[3-(5-Bromothiophen-2-yl)-4,5-dihydro-1H-pyrazol-5-yl]-

2-chloro-7-methylquinoline (3j) Yield, 76%; colourless

solid. mp 195�C. IR (KBr, cm-1): 3282 (NH), 1600 (C=N

of pyrazoline ring), 1552 (C=N of quinoline ring). 1H-

NMR (CDCl3) d: 2.52 (3H, s, CH3), 2.88 (1H, dd,

J = 16.2, 9.9 Hz, 4-Ha), 3.71 (1H, dd, J = 16.2, 10.7 Hz,

4-Hb), 5.36 (1H, t, J = 10.3 Hz, 5-H), 6.86 (1H, d, H4
0,

J = 4.2 Hz), 7.36 (1H, d, H5, J = 8.3 Hz), 7.43 (1H, d,

H3
0, J = 4.2 Hz), 7.74 (1H, d, H6, J = 8.3 Hz), 7.75 (1H,

s, H8), 8.35 (1H, s, H4). MS (m/z): 407 (M?, 100%). Anal.

Calcd. for C17H13BrClN3S: C, 50.20; H, 3.22; N, 10.33.

Found: C, 50.15; H, 3.19; N, 10.25.

2-Chloro-3-[3-(5-iodothiophen-2-yl)-4,5-dihydro-1H-pyrazol-

5-yl]-7-methylquinoline (3k) Yield, 85%; colourless solid.

mp 212�C. IR (KBr, cm-1): 3281 (NH), 1610 (C=N of

pyrazoline ring), 1550 (C=N of quinoline ring). 1H-NMR

(CDCl3) d: 2.52 (3H, s, CH3), 2.87 (1H, dd, J = 16.2,

9.9 Hz, 4-Ha), 3.71 (1H, dd, J = 16.2, 10.7 Hz, 4-Hb), 5.36

(1H, t, J = 10.3 Hz, 5-H), 6.71 (1H, d, H4
0, J = 4.2 Hz),

7.15 (1H, d, H3
0, J = 4.2 Hz), 7.34 (1H, d, H5,

J = 8.4 Hz), 7.74 (1H, d, H6, J = 8.3 Hz), 7.75 (1H, s,

H8), 8.35 (1H, s, H4). MS (m/z): 453 (M?, 100%). Anal.

Calcd. for C17H13ClIN3S: C, 45.00; H, 2.89; N, 9.26.

Found: C, 44.95; H, 2.85; N, 9.23.

2-Chloro-8-methyl-3-(3-thiophen-3-yl-4,5-dihydro-1H-pyr-

azol-5-yl)quinoline (4a) Yield, 72%; colourless solid. mp

195–196�C. IR (KBr, cm-1): 3274 (NH), 1595 (C=N of

pyrazoline ring), 1550 (C=N of quinoline ring). 1H-NMR

(CDCl3) d: 2.70 (3H, s, CH3), 2.97 (1H, dd, J = 16.4,

9.4 Hz, 4-Ha), 3.75 (1H, dd, J = 16.4, 10.7 Hz, 4-Hb), 5.39

(1H, t, J = 9.9 Hz, 5-H), 7.32 (1H, dd, H4
0, J = 5.0 Hz,

2.8 Hz), 7.45 (1H, t, H6, J = 7.6 Hz), 7.55 (1H, d, H7,

J = 7.0 Hz), 7.60 (1H, d, H5
0, J = 4.6 Hz, 1.0 Hz), 7.67

(1H, d, H5, J = 6.6 Hz), 8.08 (1H, dd, H2
0, J = 2.7 Hz,

1.0 Hz), 8.39 (1H, s, H4). MS (m/z): 327 (M?, 70.30%).

Anal. Calcd. for C17H14ClN3S: C, 62.28; H, 4.30; N, 12.82.

Found: C, 62.22; H, 4.22; N, 12.78.

2-Chloro-8-methyl-3-[3-(3-methylthiophen-2-yl)-4,5-dihydro-

1H-pyrazol-5-yl]quinoline (4b) Yield, 67%; colourless

solid. mp 130–131�C. IR (KBr, cm-1): 3277 (NH), 1605

(C=N of pyrazoline ring), 1552 (C=N of quinoline ring).
1H-NMR (CDCl3) d: 2.63–2.73 (s, 29 CH3), 2.85 (1H, dd,

J = 16.3, 9.4 Hz, 4-Ha), 3.66 (1H, dd, J = 16.3, 10.5 Hz,

4-Hb), 5.31 (1H, t, J = 9.9 Hz, 5-H),6.82 (1H, d, H4
0,

J = 5.1 Hz), 7.45 (1H, t, H6, J = 7.6 Hz), 7.33 (1H, d, H5
0,

J = 5.1 Hz), 7.54 (1H, d, H7, J = 7.0 Hz), 7.69 (1H, d, H5,

J = 7.9 Hz), 8.38 (1H, s, H4). MS (m/z): 341 (M?,

59.47%). Anal. Calcd. for C18H16ClN3S: C, 63.24; H, 4.72;

N, 12.29. Found: C, 63.22; H, 4.75; N, 12.23.

2-Chloro-8-methyl-3-[3-(4-methylthiophen-2-yl)-4,5-dihy-

dro-1H-pyrazol-5-yl]quinoline (4c) Yield, 71%; colour-

less solid. mp 182�C. IR (KBr, cm-1): 3281 (NH), 1595

(C=N of pyrazoline ring), 1555 (C=N of quinoline ring).
1H-NMR (CDCl3) d: 2.30–2.72 (s, 29 CH3), 2.87 (1H, dd,

J = 16.3, 9.3 Hz, 4-Ha), 3.69 (1H, dd, J = 16.3, 10.5 Hz,

4-Hb), 5.31 (1H, t, J = 9.9 Hz, 5-H) 7.11 (1H, s, H5
0), 7.44

(1H, t, H6, J = 7.5 Hz), 7.55 (1H, d, H7, J = 7.0 Hz), 7.69

(1H, d, H5, J = 7.0 Hz), 7.52 (1H, s, H3
0), 8.37 (1H, s, H4).

MS (m/z): 341 (M?, 60.02%). Anal. Calcd. for C18H16

ClN3S: C, 63.24; H, 4.72; N, 12.29. Found: C, 63.20; H,

4.69; N, 12.25.

2-Chloro-8-methyl-3-[3-(5-methylthiophen-2-yl)-4,5-dihydro-

1H-pyrazol-5-yl]quinoline (4d) Yield, 80%; pale yellow

solid. mp 209–210�C. IR (KBr, cm-1): 3278 (NH), 1592

(C=N of pyrazoline ring), 1550 (C=N of quinoline ring).
1H-NMR (CDCl3) d: 2.53–2.72 (s, 29 CH3), 2.86 (1H, dd,

J = 16.3, 9.3 Hz, 4-Ha), 3.67 (1H, dd, J = 16.3, 10.5 Hz,

4-Hb), 5.31 (1H, t, J = 9.9 Hz, 5-H), 6.66 (1H, d, H4
0,

J = 3.0 Hz), 6.86 (1H, d, H3
0 J = 3.4 Hz), 7.44 (1H, t, H6,

J = 7.6 Hz), 7.54 (1H, d, H7, J = 7.0 Hz), 7.62 (1H, d, H5,

J = 8.1 Hz), 8.33 (1H, s, H4). MS (m/z): 341 (M?,

59.81%). Anal. Calcd. for C18H16ClN3S: C, 63.24; H, 4.72;

N, 12.29. Found: C, 63.23; H, 4.70; N, 12.27.

2-Chloro-3-[3-(2,5-dimethylthiophen-3-yl)-4,5-dihydro-1H-

pyrazol-5-yl]-8-methylquinoline (4e) Yield, 88%; brown

solid. mp 126–127�C. IR (KBr, cm-1): 3282 (NH), 1609

(C=N of pyrazoline ring), 1553 (C=N of quinoline ring).
1H-NMR (CDCl3) d: 2.42–2.73 (s, 39 Me), 2.84 (1H, dd,

J = 16.3, 9.7 Hz, 4-Ha), 3.68 (1H, dd, J = 16.3, 10.6 Hz,

4-Hb), 5.30 (1H, t, J = 10.0 Hz, 5-H), 6.86 (1H, s, H4
0),

7.42 (1H, t, H6, J = 7.7 Hz), 7.54 (1H, d, H7, J = 7.0 Hz),

7.68 (1H, d, H5, J = 8.1 Hz), 8.34 (1H, s, H4). MS (m/z):

355 (M?, 100%). Anal. Calcd. for C19H18ClN3S: C, 64.12;

H, 5.10; N, 11.81. Found: C, 64.10; H, 5.08; N, 11.79.

2-Chloro-3-[3-(3-chlorothiophen-2-yl)-4,5-dihydro-1H-pyr-

azol-5-yl]-8-methylquinoline (4f) Yield, 81%; yellowish

brown solid. mp 152�C. IR (KBr, cm-1): 3277 (NH), 1610

(C=N of pyrazoline ring), 1559 (C=N of quinoline ring).
1H-NMR (CDCl3) d: 2.72 (3H, s, CH3), 3.16 (1H, dd,

J = 16.9, 10.2 Hz, 4-Ha), 4.01 (1H, dd, J = 16.9, 10.8 Hz,

4-Hb), 5.39 (1H, t, J = 10.4 Hz, 5-H), 6.87 (1H, d, H4
0,

J = 5.4 Hz), 7.41 (1H, t, H6, J = 7.6 Hz), 7.54 (1H, d, H7,

J = 7.0 Hz), 7.32 (1H, d, H5
0, J = 5.4 Hz), 7.65 (1H, d,
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H5, J = 8.1 Hz), 8.37 (1H, s, H4). MS (m/z): 361 (M?,

100%). Anal. Calcd. for C17H13Cl2N3S: C, 56.36; H, 3.62;

N, 11.60. Found: C, 56.34; H, 3.58; N, 11.54.

2-Chloro-3-[3-(5-chlorothiophen-2-yl)-4,5-dihydro-1H-pyr-

azol-5-yl]-8-methylquinoline (4g) Yield, 80%; pale yel-

low solid. mp 230–232�C. IR (KBr, cm-1): 3285 (NH),

1603 (C=N of pyrazoline ring), 1560 (C=N of quinoline

ring). 1H-NMR (CDCl3) d: 2.72 (3H, s, CH3), 2.89 (1H, dd,

J = 16.3, 10.1 Hz, 4-Ha), 3.71 (1H, dd, J = 16.3, 10.7 Hz,

4-Hb), 5.39 (1H, t, J = 10.3 Hz, 5-H), 6.85 (1H, d, H4
0,

J = 4.2 Hz), 7.42 (1H, t, H6, J = 7.6 Hz), 7.56 (1H, d, H7,

J = 7.0 Hz), 7.48 (1H, d, H3
0, J = 4.4 Hz), 7.63 (1H, d,

H5, J = 8.0 Hz), 8.35 (1H, s, H4). MS (m/z): 361 (M?,

100%). Anal. Calcd. for C17H13Cl2N3S: C, 56.36; H, 3.62;

N, 11.60. Found: C, 56.31; H, 3.56; N, 11.55.

2-Chloro-3-[3-(2,5-dichlorothiophen-3-yl)-4,5-dihydro-1H-

pyrazol-5-yl]-8-methylquinoline (4h) Yield, 75%; yel-

lowish brown solid. mp 153�C. IR (KBr, cm-1): 3280

(NH), 1615 (C=N of pyrazoline ring), 1560 (C=N of

quinoline ring). 1H-NMR (CDCl3) d: 2.72 (3H, s, CH3),

3.15 (1H, dd, J = 16.8, 10.0 Hz, 4-Ha), 4.00 (1H, dd,

J = 16.8, 10.5 Hz, 4-Hb), 5.40 (1H, t, J = 10.3 Hz, 5-H),

6.96 (1H, s, H4
0), 7.41 (1H, t, H6, J = 7.6 Hz), 7.56 (1H, d,

H7, J = 6.8 Hz), 7.62 (1H, d, H5, J = 8.1 Hz), 8.35 (1H, s,

H4). MS (m/z): 397 (M?, 100%). Anal. Calcd. for

C17H12Cl3N3S: C, 51.47; H, 3.05; N, 10.59. Found: C,

51.41; H, 3.00; N, 10.56.

3-[3-(3-Bromothiophen-2-yl)-4,5-dihydro-1H-pyrazol-5-yl]-

2-chloro-8-methylquinoline (4i) Yield, 77%; pale yellow

solid. mp 166–168�C. IR (KBr, cm-1): 3279 (NH), 1607

(C=N of pyrazoline ring), 1555 (C=N of quinoline ring).
1H-NMR (CDCl3) d: 2.72 (3H, s, CH3), 3.21 (1H, dd,

J = 16.9, 10.2 Hz, 4-Ha), 4.10 (1H, dd, J = 16.8, 10.8 Hz,

4-Hb), 5.40 (1H, t, J = 10.4 Hz, 5-H), 6.86 (1H, d, H4
0,

J = 5.5 Hz), 7.43 (1H, t, H6, J = 7.6 Hz), 7.21 (1H, d, H5
0,

J = 5.5 Hz), 7.54 (1H, d, H7, J = 7.1 Hz), 7.65 (1H, d, H5,

J = 8.0 Hz), 8.39 (1H, s, H4). MS (m/z): 407 (M?, 100%).

Anal. Calcd. for C17H13BrClN3S: C, 50.20; H, 3.22; N,

10.33. Found: C, 50.14; H, 3.18; N, 10.29.

3-[3-(5-Bromothiophen-2-yl)-4,5-dihydro-1H-pyrazol-5-yl]-

2-chloro-8-methylquinoline (4j) Yield, 80%; pale yellow

solid. mp 215–216�C. IR (KBr, cm-1): 3282 (NH), 1597

(C=N of pyrazoline ring), 1552 (C=N of quinoline ring).
1H-NMR (CDCl3) d: 2.72 (3H, s, CH3), 2.89 (1H, dd,

J = 16.2, 9.9 Hz, 4-Ha), 3.71 (1H, dd, J = 16.2, 10.6 Hz,

4-Hb), 5.36 (1H, t, J = 10.3 Hz, 5-H), 6.87 (1H, d, H4
0,

J = 4.2 Hz), 7.42 (1H, t, H6, J = 7.6 Hz), 7.55 (1H, d, H7,

J = 7.1 Hz), 7.43 (1H, d, H3
0, J = 4.2 Hz), 7.63 (1H, d,

H5, J = 8.0 Hz), 8.36 (1H, s, H4). MS (m/z): 407 (M?,

100%). Anal. Calcd. for C17H13BrClN3S: C, 50.20; H,

3.22; N, 10.33. Found: C, 50.19 H, 3.17; N, 10.28.

2-Chloro-3-[3-(5-iodothiophen-2-yl)-4,5-dihydro-1H-pyrazol-

5-yl]-8-methylquinoline (4k) Yield, 82%; pale yellow

solid. mp 178�C. IR (KBr, cm-1): 3280 (NH), 1605 (C=N

of pyrazoline ring), 1550 (C=N of quinoline ring). 1H-

NMR (CDCl3) d: 2.72 (3H, s, CH3), 2.90 (1H, dd,

J = 16.3, 9.9 Hz, 4-Ha), 3.73 (1H, dd, J = 16.3, 10.6 Hz,

4-Hb), 5.37 (1H, t, J = 10.2 Hz, 5-H), 6.71 (1H, d, H4
0,

J = 4.0 Hz), 7.42 (1H, t, H6, J = 7.6 Hz), 7.16 (1H, d, H3
0,

J = 4.1 Hz), 7.56 (1H, d, H7, J = 7.0 Hz), 7.63 (1H, d, H5,

J = 8.1 Hz), 8.36 (1H, s, H4). MS (m/z): 453 (M?, 100%).

Anal. Calcd. for C17H13ClIN3S: C, 45.00; H, 2.89; N, 9.26.

Found: C, 44.98; H, 2.81; N, 9.25.

In vitro antileishmanial assay

The title compounds (1a–k and 2a–k) and (3a–k and

4a–k) were tested for the antileishmanial activity using

L. major promastigotes as parasites for in vitro screening.

Parasites were cultured at 24�C in shaking incubator on M

199 medium containing foetal bovine serum (10%);

HEPES (25 mM), and penicillin and streptomycin (0.22 lg

each) (Ali et al., 1997).

Each compound (1 mg) was dissolved in DMSO (1 ml)

and Amphotericin B (1 mg) taken in DMSO (1 ml) was

used as a positive control. Parasites were taken from lag

phase of their growth and were centrifuged at 3000 rpm for

3 min. The parasite density was maintained at 2 9 106

cells/ml by diluting with fresh culture medium. In 96-well

plates, 180 ll of medium was added in different wells. The

experimental compound (20 ll) was added in medium and

serially diluted. Parasite culture (100 ll) was added in all

wells. In negative controls, DMSO was serially diluted in

medium; while the positive control, contained varying

concentrations of standard antileishmanial compound, i.e.

Amphotercin B. The plates were incubated for 72 h at

24�C. The culture was examined microscopically on an

improved neubaur counting chamber and IC50 values of

compounds possessing antileishmanial activity were cal-

culated. All assays were run in duplicate. The results are

summarized in Table 2. IC50 values of compounds were

determined using prism windows-based software.

After running the samples, % of inhibition is calculated

in serial dilution methods. It depends on the activity of the

compounds; some of them show in 4-6-7 or 10 dilution the

inhibitory concentration. Subsequently, we count the

number of parasite in neubauer chamber (0.0025 mm2) and

implement the result manually in the prism windows-based

software.
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