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Abstract

The study of the infinite Hankel matrix acting on analytic function spaces dates back
to the influential work of Nehari and Widom on the Hardy space HZ. Since then, it
has been extensively generalized to other settings such as weighted Bergman spaces,
Dirichlet type spaces, and Mobius invariant function spaces. Nevertheless, several
fundamental operator-theoretic questions, including the boundedness and compact-
ness, remain unresolved in the context of the Dirichlet space. Motivated by this, via
Carleson measures, the Widom type condition, and the reproducing kernel thesis, we
obtain:

(i) necessary and sufficient conditions for bounded and compact operators induced
by Hankel matrices on the Dirichlet space, thereby answering a folk question in
this field (Galanopoulos et al. in Result Math 78(3) Paper No. 106, 2023);

(i1) necessary and sufficient conditions for bounded and compact operators induced
by Cesaro type matrices on the Dirichlet space.

As abeneficial product, we find an intrinsic function-theoretic characterization of func-
tions with positive decreasing Taylor coefficients in the function space X" throughly
studied by Arcozzi et al. (Lond Math Soc II Ser 83(1):1-18, 2011). In addition, we
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also show that a random Dirichlet function almost surely induces a compact Hankel
type operator on the Dirichlet space.

Keywords Hankel matrix - Cesaro matrix - Carleson measure - Dirichlet space -
Bergman space

Mathematics Subject Classification 47B35 - 30H20 - 46E15

1 Introduction

Let N be the set of nonnegative integers. Suppose A = {A,},en iS a sequence of
complex numbers. An infinite Hankel matrix Hj induced by the sequence A is given
by Hy = (A1)} ken. The Hankel matrix H); is initially defined for all finitely
supported sequences in £2. The celebrated Nehari theorem [36] illustrates that H
represents a bounded operator on £2 if and only if there exists a function ¥ in L> on
the unit circle T such that A,,, n > 0, is the n-th Fourier coefficient of .

For f(z) = ZZO:O apz* in H (D), the class of functions analytic on the open unit
disk D, the Hankel matrix H acts on the function f via

Ha(f)(@) =) (Z Amak) 2", zeD,

n=0 \k=0

whenever the right-hand side makes sense and defines an analytic function on D. For
a space X € H(D) equipped with a norm || - || x, the Hankel type operator Hj is
bounded on X if Hj (f) is well defined in H (D) for any f € X and there exists a
positive constant C independent of g such that ||Hj (g)llx < C|lg|lx for all g in X.

By the Fourier transform, the Hankel matrix H ) represents a bounded operator on
€2 if and only if H, is bounded on the Hardy space H?>. See [38] for details. When A
is the moment sequence {, },en of a finite positive Borel measure u on [0, 1), where
Un = f[o,l) t"duu(t), the related Hankel matrix is denoted by H , in the literature.
Write H,, for the corresponding Hankel type operator. Widom [45] proved that 7,
is bounded on H? if and only if wj = O(ﬁ). It is worth noting that {j%}jeN is
the moment sequence of the Lebesgure measure on [0, 1), which corresponds to the
classical Hilbert matrix H = ((j + k + 1)™1); xen. See [12, 17-19, 29-31, 33-35,
48] for developments of the Hilbert matrix acting on analytic function spaces.

Since then, operator questions regarding the Hankel matrix have been investigated
in various other function spaces of analytic functions on the open unit disk, including
Hardy spaces, weighted Bergman spaces, Dirichlet type spaces, and Mobius invari-
ant function spaces. Diamantopoulos’ [16] work illustrates that Widom’s condition
remains true for the Dirichlet type space D, with 0 < o < 2. He also noted that
the boundedness of H,, on the classical Dirichlet space D and the Bergman space A?
coincides. Under a milder condition, using Carleson measures for D, Galanopoulos
and Peldez [21] completely characterized the boundedness of H, on the Dirichlet
space. Chatzifountas, Girela and Peldez studied the boundedness and compactness of
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'H,, between distinct Hardy spaces in [14]. Girela and Merchén [25] obtained a method
to give complete descriptions of the boundedness and compactness of H,, on some
Hardy spaces and Mobius invariant function spaces. Bao et al. [6] considered bounded
‘H,, on analytic functions spaces in terms of so-called Hankel measures.

In their recent work, Galanopoulos et al. [23] demonstrated that a 1-logarithmic
1-Carleson measure ensures the boundedness of 7, on the Dirichlet space. However,
they also pointed out that the characterization of the finite positive Borel measure p on
[0, 1) for which the operator H, is bounded on the Dirichlet space remains unresolved.
Via Carleson measures, Widom type conditions and the reproducing kernel thesis, the
current work answers this question.

Recall that the Dirichlet space D is a Hilbert space of analytic functions on D
equipped with the Dirichlet inner product

(f,8)p = f(0)g(0) + fD f(2)g @)dA(z). (1.1)

Here dA(z) = mw~'dxdy for z = x + iy is the normalized Lebesgue measure on ID. A
finite positive Borel measure v on D is said to be a Carleson measure for the Dirichlet
space if there is a positive constant C such that

1

( fD |f<z>|2dv(z>)2 <Clflp (12)

forall f € D.Denote by CM (D) the set of Carleson measures for D. The smallest such
C in (1.2) is denoted by ||[v[|cm (D), the Carleson measure norm of v. If the identity
map I; : D — L*(D,dv) is compact, then we say that v is a vanishing Carleson
measure for D. See [2, 5, 20, 21, 44, 47] for this definition of Carleson measures for
D and related investigations.

In this paper, we first obtain the following result.

Theorem 1.1 Suppose A = {\,}neN is a sequence of complex numbers. Then the
Hankel type operator 'Hy, is bounded on the Dirichlet space D if and only if hy is
analytic on D and the measure |h’x(z) |2d A(z) is a Carleson measure for the Dirichlet

space D, where h3(z) = > 72 Azl

In the case of H,,, by Theorem 1.1, the operator H,, is bounded on D if and only
if |h;L (2) |2dA(z) is a Carleson measure for D, where

1
hu(z) = /[ ——du).

0,1) 1—1tz

Note that in [44] Stegenga’s beautiful characterization of C M (D) is related to the
logarithmic capacity of a finite union of intervals of the unit circle. Based on certain
integrals involve the Carleson box and the heightened box, Arcozzi et al. [2, Theorem
1] gave a complete description of C M (D). There still lacks a direct relation between
moment sequences and the boundedness of H;, on the Dirichlet space. We will establish
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these relations through the use of Widom type conditions and the reproducing kernel
thesis.

Corresponding to the Dirichlet inner product (1.1), the reproducing kernel of the
Dirichlet space D at a point w € D is

Ky (z) =1+log

1 —zw
and its normalized reproducing kernel
Ky(2)
k (Z) = ——
T VK w)

Now, we state our characterization of the bounded Hankel type operator H,, on the
Dirichlet space as follows.

Theorem 1.2 Suppose w is a finite positive Borel measure on [0, 1). Then the following

conditions are equivalent.

(i) The Hankel type operator H,, is bounded on D.
(ii) The reproducing kernel thesis holds; that is,

sup |[[Hy (ki) llp < oo,
re[0,1)

where k; is the normalized reproducing kernel of D at t in [0, 1).
(iii) The Widom type condition is true; that is,

o
anﬁzo ;
= log(m +2) )"

To prove Theorem 1.2, we need Cesaro type matrices. As benefit products, the
necessary and sufficient condition for the boundedness of Cesaro type matrix acting
on the Dirichlet space is obtained.

Let n = {n,}sen be a sequence of complex numbers. Recall that the Cesaro type
matrix C is the following infinite lower triangular matrix:

0 0 0 0 .-
nn OO0 .-
Co=|mmmnm 0 -

In the same way as operators induced by Hankel matrices, the matrix C induces a
Cesaro type operator Cy as follows:

C,,(f)(z)zZ(n,,Zak) 7", zeD, (1.3)

n=0 k=0
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for f(z) = ZZO:O anz" in H(D), whenever the right-hand side of (1.3) makes sense
and defines an analytic function on D.

If n, = 1/(n + 1) for every n, then the Cesaro type matrix Cy is the classical
Cesaro matrix C. Danikas and Siskakis [15] showed that the operator induced by C
is bounded from H* to BM O A. Siskakis [42, 43] studied the action of C on Hardy
spaces.

Given a finite positive Borel measure @ on [0, 1), if

Nn = Un = / t"du(t)
[0.1)

for each n, then we write Cy as C,. The operator C,, is said to be the Cesaro-like
operator which was introduced in [22, 27] recently. We refer to [7, 9, 23, 24] for more
results about C,, on some spaces of analytic functions. From Theorem 5 in [23], if u
is a 1-logarithmic 1-Carleson measure, then C,, is bounded on D. Conversely, if C,, is
bounded on D, then p is a %—logarithmic 1-Carleson measure. In his recent work [10],
Blasco studied the boundedness of Cesaro-like operators induced by complex Borel
measures on ID acting on some weighted Dirichlet spaces.

Our subsequent finding gives necessary and sufficient conditions for the bounded-

ness of every Cesaro type operator on the Dirichlet space D.

Theorem 1.3 Suppose § = {n,}7>, is a sequence of complex numbers. Then the
following conditions are equivalent.

(i) The Cesaro type operator Cy is bounded on D.
(ii) The reproducing kernel thesis holds; that is,

sup [|Cyk:llp < 00,
te[0,1)

where k; is the normalized reproducing kernel of D at t in [0, 1).
(iii) The Widom type condition is true; that is,

o0

> =0 (;) :
log(m + 2)

n=m

Following our previous work on the boundedness of Hankel type operators and
Cesaro type operators on the Dirichlet space, we also establish their compactness
counterparts. These results are included in Sect. 4.

Let (X,,)nen be asequence of independent identically distributed (i.i.d.) real random
variables on a probability space (2, A, ). For a sequence {«,,} of complex numbers,
one formally defines a random power series

00(2) =) Xn(@)anz".
n=0
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By Nehari’s theorem, almost surely the random analytic function ¢, induces a bounded
Hankel type operator on the Hardy space H? if and only if the symbol function ¢, is
a BMOA function almost surely. The famous unsolved Anderson’s question [1] is to
seek the necessary and sufficient condition to characterize random BMOA functions.
One can consult [28, 37] for recent progress and more details in this subject.

According to Theorem 1.1, the symbol function h3 of a bounded Hankel type
operator H) on D must be in the Dirichlet space. However, our next corollary illustrates
that, under milder conditions, a random Dirichlet function almost surely induced a
compact Hankel type operator, and hence almost surely induced a bounded Hankel
type operator.

Theorem 1.4 Suppose A = {d,}neN is a sequence of complex numbers. Let (X,)neN
be a sequence of i.i.d. real random variables satisfying that E[X,] = 0 and E[Xﬁ] is
finite. If hy, € D, then almost surely the Hankel type operator H is compact on D,
where @ = {X,ZE}

neN’

Denote by Z the set of integers. Let E € Z. As defined by Rudin [40], the integrable
function f on the unite circle T is called an E-function if f (n), the n-th Fourier
coefficient of f, is equal to zero for alln € Z \ E. Suppose p > 2,theset E C Z
is called a Rudin’s A(p) set if there is a positive constant C such that || f|/zr() <
C| f Il L2 () for all trigonometric polynomials whose coefficients are equal toO on Z\ E..
The Rudin’s A (p) setis a natural generalization of the classical lacunary sequence (the
Hadamard set) which plays important roles in many aspects of analysis (see [11, 26,
40] for more details). Recall that an increasing sequence {nj }ren of positive integers
is said to be lacunary if there exists ¢ in (1, co) such that ny41/ny > g for all k. It is
also known that there exist Rudin’s A (p) sets rather than Hadamard sets.

Our next result presents a characterization of bounded and compact Hankel type
operators on D when non-zero Fourier coefficients of the symbol function are located
in a Rudin’s A(p) set.

Corollary 1.5 Suppose p > 2, the set E is a Rudin’s A(p) setand . = {\, : n € E}
is a sequence of complex numbers. Then the following statements are equivalent.

(1) The Hankel type operator H, is compact on D.
(i) The Hankel type operator Hy, is bounded on D.

(iii) The symbol function hy(z) =), cp 2" belongs to D; that is,

Z(n + DA < oo.

nek
We end this introduction by some remarks on the boundedness of Hankel matrix on
the Dirichlet space and the following function space X related to the Dirichlet space

thoroughly studied by Arcozzi et al. [4]. Precisely, X" is an analytic function space on
D [4, p. 2] consisting of functions f such that

I£15 = 1£OF + Il £ 1PdAllcmp) < oo.
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Denote by &) the norm closure in X of the space of polynomials. Equivalently, f € A}
if and only if | f/|>d A is a vanishing Carleson measure for D. We refer to [4, 39, 46,
47] for more details and applications of X and A}.

Now, Theorem 1.1 reads as that the Hankel type operator Hj, is bounded on the
Dirichlet space D if and only if A3 is in X'. Such a result may not be surprising to
the operator theory on the function spaces. However, there is still a lack of a full
function-theoretic description of functions on X (one can consult [4, p. 16] for more
details). Hence, our Widom type conditions in Theorems 1.2 and 3.1 seem to be the
first intrinsic function-theoretic characterization of functions with positive decreasing
Taylor coefficients in the function space X'. For convenience, we include a separate
corollary as follows.

Corollary 1.6 Suppose A = {1,}°2 is a decreasing sequence of positive real numbers
and hy(z) = Y oo g Anz" for z € D. Then hy, € X if and only if

SFreo(pt )
log(m + 2)

n=m

For an analytic function f with non-zero Fourier coefficients belonging to a Rudin’s
A(p) set, by Corollary 1.5, it follows that f € X if and only if f € D. This is a slice
generation of Arcozzi, Rochberg, Sawyer, Wick’s work [4] related to the equivalence
of Parts (3.b) and (3.c) in Theorem 4. More details of discussions about the function
space X are given in Sect. 6.

Throughout this paper, the symbol A =~ B means that A < B < A. We say that
A < B if there exists a positive constant C such that A < CB.

2 Bounded Hankel Type Operators 7, on D

In this section we will prove Theorem 1.1. We also consider the Mobius invariance of
the norm of a bounded Hankel type operator on the Dirichlet space.

Given a function b in H (D), define a Hankel type bilinear form on the Dirichlet
space, initially for f, g in P, as

Ty(f.8) = (fg. b)p.

Here P is the space of polynomials. The norm of the bilinear form 7} is

ITollpxp = sup {ITp(f. &)l - I fllp = liglp =1, f.g € P}.

For a bounded bilinear form 7}, on D, T}, is said to be compact on D if T (Bp X Bp)
is precompact in C, where Bp = {f € D : || f|lp < 1}. In other words, T} is compact
on D if and only if for all bounded sequences {(f,, g»)} € D x D, the sequence
{Ty»(fn, gn)} has a convergent subsequence. See [8] for more descriptions on compact
bilinear operators.
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With respect to the normalized basis {(n + 1)~1/22"} of the Dirichlet space D, the
matrix representation of 7j is

<Lb. ) 'k—()l
JTF gl i) ST

where b is the (j + k)-th Taylor coefficient of b. Arcozzi, i et al. characterized the
boundedness and compactness of the bilinear form on the Dirichlet space as follows.
Theorem A [3, Theorem 1.1] Let b € H(D). Then the following assertions hold.

(1) Tp extends to a bounded bilinear form on D if and only if b € X.
(ii) T} extends to a compact bilinear form on D if and only if b € A.

Proof of Theorem 1.1 Given a sequence of complex number A = {1}, suppose A
is analytic on D and the measure |h’x(z)|2d A(z) is a Carleson measure for D. Then

hy € X.Hence, hy, € D.Let f(z) = Y jo ckz* belong to D. Using the fact that D
is a subset of the Hardy space H?, we get

o0
Z)"j-i-kck

k=0

sup
jeN

< Q.

Write aj = Y 22 Aj+kCk. Then {aj} jen is a bounded sequence of complex numbers
and hence H) (f)(z) = Z;)o:o a;z’ is analytic on ID. Note that

o0
IHx £ = laol® + Y G + Dlajl*.
j=0

Let m be a positive integer. For any polynomial g(z) = Z;-":O b jzj with ||g]lp < 1,
we have

m—1 o0
aoho + Y _(j + Daj1bji1| < |rollcollbol + [bol | Aeck
j=0 k=1

m—1 00
+ Z bjr1(j+1) Z?»j+1+k6k
j=0 k=0

D z

+ ‘/D f(2)81(2) hi(2)dA(2)

= lrolll flipligllp + liglp

f (@) — f(0)
3 ( [[fo-ro

= |2ollcollbol + bol

1

2 2
|h(2) |2dA(z)>
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1

2 2 2
" ( [ ir@Pik! dA(z))

/ 2 %
x </ g1 @] dA(z)) ,
D

wl}ere g1 (z). = ZT:O b_ij- Since |h%(z)|2dA(Z) is a Carleson measure for D, there
exists a positive constant C such that

m—1
aoby + ) (j + Daj1bj1| < Cl fllp.
j=0
Therefore

1/2
m—1 /

laol* + Y (i + Dlajwil*| < Clflp
j=0

and [Ha fllp < Cll fllp.
On the other hand, suppose the operator ) is bounded on D. Then, for the function

I(z) = zonD, we see that Hy (1)(z) = > _pe oy Ant12" belongs to D. This implies that
hy; is analytic on D and

/ W (2)PdAz) < oo.
D
The boundedness of the operator H, on D yields

[(Hafs 8)pl S I fIipliglp

for all f and g in D. Moreover, for any polynomials f and g,

A)f(z)g’(z)h%(z) dA(z)=A)(fo)’(z)g’(2)dA(z)- 2.1

Consequently,

|10 + ‘ /D (F @@ hRAAR)

SIflplglp.

Therefore, Thx is a bounded bilinear form on D. It follows from Theorem A that

hy € X and hence |h’x(z)|2dA(z) is a Carleson measure for D. This completes the
whole proof of Theorem 1.1. O
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Denote by Aut(D) the Mobius group which consists of all one-to-one analytic
functions that map D onto itself. Let D be the space of functions f in D with f(0) = 0.
For a sequence A = {1, },en of complex numbers, consider

o0

(=) (Z An+kak) ", zeD,
k=1

n=1

where f(z) = Z;’lozl a,7" € D. For the bounded ﬁl on 5, the norm of ﬁx is Mobius
invariant in the following sense.

Proposition 2.1 Let A = {An}nen be a sequence of complex numbers. Suppose the
Hankel type operator Hy, is bounded on D. Then there exist positive constants C1 and
C, depending only on A such that

CilIHAl < Iy ll < C2lIHal

forall ¢ € Aut(D), where Ly = {)‘fl’v"}neN with
o
hpo¢@) =) hpni"
n=0

Proof By Theorem 1.1, the boundedness of ﬁx onD yields
2 ~
”WI' dA||CM(D) < 00.

From the proof of Theorem 1.1, there are positive constants C; and C, depending only
on A such that

CLIR dAll ey 5, < IHA < Calll WP Al gy ) 22)
Let ¢ € Aut(D). For g € D, by the change of variables, we see
| le@Pithg 00y @Paa) = [ ls@ wn P aPdaw)
Also,
f g (2)*dA(z) = / (g0 ™) (w)PdA(w).
D D
Thus there is C > 0 such that
/D 18(2)*|(hg 0 ¢) (2)*dAz) < C /D 18'(2)|*d A(z)
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forall g € D if and only if
f |k (w)*|h-(w) Pd A(w) < C / K (2)]*d A(z)
D D

for all k € D. This means

AP All ey ) = N1(hg 0 8) P Al ¢y 5
Combining this with (2.2), we get the desired result. O

Remark 2.2 By a personal communication, Professor Blasco informed us that Proposi-
tion 2.1 can be stated as folloxvs. SlNJpposg ¢ € Aut(D) and A = {Xn}nSN isa 1 sequence
of complex numbers. Then H, : D — D is bounded if and only if Hy, : D — D'is

bounded and IIﬁx,,,H = | Hall-

3 Bounded Hankel Type Operators H, and Cesaro Type Operators C,
onD

This section is devoted to an intrinsic description of the boundedness of H, on D.
Indeed, we can characterize bounded Hankel type operators Hj on D induced by a
decreasing sequence of positive numbers. The proof is based on our characterization
of bounded Cesaro type operators on D.

The following Hilbert’s double theorem for the Dirichlet space plays a crucial role
in our proofs. By using Schur’s test, one can show that inequality (see the proof of
Theorem 2 in [41] for more details).

Theorem B [41, p. 814] Let f(z) = Z,fio arz® in D. Then there exists a positive
constant C independent of f such that

oo lanllam|
n m
<C
Z Z logn+m+1) ~ Zn|an|
We first prove Theorem 1.3.
Proof of Theorem 1.3 Since ||ky||p = 1 for any w € D, we obtain the implication
1) = ().

Next, for each ¢ € [0, 1), recall that the normalized reproducing kernel k; for the
Dirichlet space is

1\ &
k =|1+Ilog——~ 1 —1"7" ).
1(2) ( + Ogl—t2> ( +Zn z)

n=1
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By direct computations,

1 -1 0 n+l tk
ICyki 13 = (1 +log — ﬂ) nol* + Y _(n + Dnag (1 +y ;)

n=0

Thus for any positive integer m and ¢ € [0, 1),

e \ ' 2 Ttk
t) D+ Dl (Z;)

k=1

ICykell 2 <1Og -

2 (log 1

In particular, let r = mLH € (0, 1). Then

-1
- ;) 1" (log(m + 1)) Z(n + Dl

n=m

1

o0
—|C 2 1 2,
g 1% kil 2 Y+ Dl

n=m

By (ii), we have ||Cy kt||% < 1 and hence

S nln =0 (é) ,
log(m + 2)

n=m
which gives (ii) = (iii).
(iii)) = (i). The Widom type condition gives

1
(n + 1) log(n +2)

|7ln|

forall n € N. For f(z) = Y 7o axz¥ in D, we get

< [l (ZkH) <Z<k+1>|ak|)

< 1nal Qog(n +2))7 1| flIp
Sl

In Zak

for all nonnegative integers n. Thus Cy (f) is well defined in H (D).
Because of (iii),

>+ Dl < oo, 3.

n=0
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Letg(z) = Y pop axz* be in the Dirichlet space D. Then

o0
ICyelH < Imoaol* +2 ) (n + Dinusil*laol®
n=0

9] n+1
+2) "+ Dy (Z |ak|>
k=1

n=0

2

Using (3.1), (iii), and Theorem B, we deduce

o0 o0 o
ICyglD S gl + D+ Dingar (Z |ak|xu<5n+1}<k>) (Z |a,-|><{,»5n+1}<j))

n=0 k=1 j=1

o 0 o
~lglh+ DD laglla;] > @+ D

k=1 j=1 n=max{k—1,j—1}
< 1el? +ii lagllaj|
~ 18D logtk + j + 1)

k=1 j=1
< ligl.

where x(x<n41)(k) is the characteristic function on {k <n 41} N NT. Here N7 is
the set of positive integers. Hence C; is bounded on D. The proof of Theorem 1.3 is
complete. O

The proof of Theorem 1.2 follows from the next more general result.

Theorem 3.1 Suppose A = {A,};2 , is a decreasing sequence of positive real numbers.
Then the following conditions are equivalent.

(1) The Hankel type operator Hy is bounded on D.
(ii) The reproducing kernel thesis holds; that is,

Sup ”Hlkt”D < 00,
te[0,1)

where k; is the normalized reproducing kernel of D at t in [0, 1).
(iii) The Widom type condition is true; that is,

- 1
V=0——).
’;:nn " (log(m +2)>

Proof If H; is bounded on D, it is clear that (ii) holds.
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(i1) = (iii). Since {},} is a decreasing sequence of positive numbers,
1 _1 oo 00 ik 2
IHak: ||2D = (1 + log m) Z(fl +1) (Z Antk—+1 ;)
n=1 k=1
1 —1 o° n [k 2
> (1 + log m) Z(n +1) (Z )\n+k+1z)
n=m =
1 "k
<1+logl_t2> Z(n—i—l)kan Zk

k=1

-1
€ 2 2 2
pe <log T— t) " (log(m + 1)) E (n+ DAz,

n=m

for all t € [0, 1) and all positive integers m.

For any fixed integer m, taking ¢t = + in the above, we get
00 , 1
n;n(zn + D33 S g D
and
Z(Zn + 223,10 S <
log(m + 1)

n=m

Then the desired result holds.
(>iii) = (@i). It follows from (iii) that
1

Py . — 3.2
k™~ klog(k + 1) (3.2)

for all positive integers k. Let f(z) = > joy ayz* belong to D. By (3.2) and the
monotonicity of {Ax},

00
Z Antkk

k=0

o0
< hlaol + ) Ansklan]
k=1

e e} )“2 . %
SIflp+1flp (Z ﬁ)

1

2
SUfllp + 1 £1p (Z (Hl)zlog(k“))

S Ifllp
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for all nonnegative integers n. Then H, (f) is analytic on the unit disk D for any f in
D.

Observe that by condition (iii), we have
o0
D A+ gy < oo (3.3)
n=0

Then the Holder inequality gives Z/fio Aclak| < || fllp- Consequently,

k=0

o 2 0 o 2
IHaflIp < (me) +Y (n+1) (mem)
n=0 k=0
2

00 n+1
SIAIH+D m+1D) (Z Akt |ak|>

n=0 k=0
o0 o 2
+ Z(ﬂ +1 ( Z )\n+k+l|ak|> . 3.4
n=0 k=n+1
By Theorem 1.3 and the monotonicity of the sequence A, it is true that
00 n+1 2 00 n+1 2
>+ (Z P |ak|> <Y 4+ Da2y, (Z |ak|>
n=0 k=0 n=0 k=0
<l&.f2lp S 11D (3.5)

where f2(z) = Y ;2 lak |z¥ with the same Dirichlet norm of f.

Note that the monotonicity of the sequence A again, the Holder inequality, and
formula (3.3). Then

o0 o0 2 o0 o 2
Y+ 1)( > An+k+1|ak|) <) n+ 1)( > mm)
n=0 n=0

k=n+1 k=n+1
00 o 52
S ||f||%>2<n+1>< 3 f)
n=0 k=n+1
00 )»2 k—1

~IFIp Y25+ 1)
k=1 n=0

o
= IF15 Y ki S 115 (3.6)

k=1

Joining (3.4), (3.5), and (3.6), we get the boundedness of H) on D. The proof is
complete. O
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4 Compact Hankel and Cesaro Type Operators on D

In this section, we give corresponding results about the compactness of Hankel and
Cesaro type operators on D.
The result below is the compact version of Theorem 1.1.

Theorem 4.1 Suppose A = {\,}neN is a sequence of complex numbers. Then the
Hankel type operator Hy is compact on the Dirichlet space D if and only if hy is
analytic on D and the measure WX(Z) 12d A(z) is a vanishing Carleson measure for the
Dirichlet space D.

Proof Suppose hy € Xp. Then the identity map
1;:D— L*D, |h’x|2dA)

is compact. Let {f}72; be a bounded sequence in D such that {f;}2, tends to 0
uniformly in compact subsets of D as k — oo. From the proof of Theorem 1.1, we
obtain

1

0 ]2 2
[(Ha fes @) S 120ll i (0)]1g(O)] + llgllp (fD M’ lh;<z>|2dA<z>)

1

2
+lglp ( f |fk<z>|2|h;(z>|2dA(z>>
D
for all g € D. Hence, for any ¢ > 0, there is an integer k¢ such that

|(Hafe. gl S liglp e

for all k > ko and all g € D. Then |Hy fx|lp — 0 as k — oo. Thus Hj is compact
onD.

Conversely, suppose H; is compact on D. For a bounded sequence {(fy,, g:)};2; S

D x D, both {f,} and {g,} are bounded sequences in D. Then both {H (f,)} and
{H» (gn)} have convergent subsequences. Because of (2.1), Thx extends to a compact
bilinear form on D. Then Theorem A yields Ay € Xp. The proof is complete. O

For the compactness of C, on D, we also have the following conclusion.

Theorem 4.2 Suppose 1 = {n,},2, is a sequence of complex numbers. Then the
following conditions are equivalent.

(i) The Cesaro type operator Cy is compact on D.
(ii) The reproducing kernel thesis holds; that is,

tlinlfl_ ICykillD = 0,
where k; is the normalized reproducing kernel of D at t in [0, 1).
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(iii) The Widom type condition is true; that is,

> nlml =0 (é) :
log(m + 2)

n=m

Proof (i) = (ii). Note that ||k;||p = 1 for each t € [0, 1) and k; tends to zero
uniformly in compact subsets of D as ¢t — 1~. Then (ii) holds.
(i1) = (iii). Checking the proof of Theorem 1.3, we see

o0
log(m +1) Y~ (n+ Dlmural® S Gk 1 @1

n=m

for all positive integers m. Taking m — oo in (4.1), we obtain (iii).
(iii)) = (i). Let m be a positive integer. For f(z) = Zi’,io a, 7" in D, consider

C,(,’”)(f)(z)=2<nnz )z, zeD.

n=0 k=0

Then C,(,m) is a finite rank operator. Thus, C,(,m) is compact on D. Because of (iii), for
every € > 0, there exists a positive integer N such that

o]

D 4 DI <

n=m

€
log(m + 2)

for m > N. Using the proof of Theorem 1.3, we have

00 n+1 2 o0 00 00
Y 4 Dl (Dm) SO0 lacllay) Y @+ Dl
n=m k=1 k=1 j=1 n=max{k—1,j—1,m}
e laklla;]
J
6 ——————————————————————————
’;Zlog(k—}-j + m)
=1 j=I
Sellflp

forallm > N. Thus, form > N,

2

00 00 n+1
1Cy = CY™YOID S laol? Z<n+1)|nn+1|2+ > 4 Dineni P (Zlakl)

k=1
2
S el flp-

In other words, ||Cy — C,({”) | = 0asm — oo. Hence Cy is compact on D. The proof
is finished. O
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The compact result corresponding to Theorem 3.1 also holds.

Theorem 4.3 Suppose A = (A}, is a decreasing sequence of positive real numbers.
Then the following conditions are equivalent.

(1) The Hankel type operator Hj, is compact on D.
(i1) The reproducing kernel thesis holds; that is,

lim [Hyk:llp =0,
t—1-

where k; is the normalized reproducing kernel of D at t in [0, 1).
(iii)) The Widom type condition is true; that is,

(0.¢]
2 1
= og(m +2)

Proof By the proof of Theorem 3.1, the arguments here are similar to that of
Theorem 4.2. We omit it. O

5 Random Hankel Type Operators on D and a Result Related to
Rudin’s A(p) Sets

In this section, we prove Theorem 1.4 and Corollary 1.5. Many known real random
variables sequences (X, ),en satisfy the conditions in Theorem 1.4. First of all, all
bounded mean zero random variables are included in Thereom 1.4. The typical example
is the Bernoulli random variables sequence (X,),eN. In other words, (X,)neN 18
independent such that P(X,, = 1) = P(X,, = —1) = 1/2. In addition, for the classical
independent normal distribution sequence X, = N (0, 1), we have E[X,] = 0 and
E[X 2] = 3 (cf. [32, p. 2]). Therefore, Theorem 1.4 can be applied to the corresponding
random Gaussian analytic Dirichlet functions.

For a complex number sequence A = {A, },en and a sequence of i.i.d. real random
variables (X,),en with E[X,,] = 0 and E[X;‘] < o0, if hy, € D, then Z;O:O |)»n|2 <
0. Moreover, by i.i.d. and E[X2] < \/E[X4], we have

(0.¢] o
E [Z mxnﬂ} = 1lPElIX, ] < 00
n=0 n=0

and almost surely

oo
ho(@ =) Xp(@)in"
n=0

is analytic on the unit disk.
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For our proof, we need the following elementary inequalities which may be well
known. However, we cannot locate literature. For the sake of completeness, we have
included a brief proof.

Lemma 5.1 Let (X,),eN be a sequence of i.i.d. real random variables with E[X,] = 0
and E[Xﬁ] = 1. Then for all finite complex numbers ay, . .., a,, we have

n 4

Za,’Xi

i=1

2
E .

Proof For any fixed natural number n > 1, let A, = Y /_, a; X;. It is easy to see

n
|An|2 = Z |ai|2X,~2 + 22 Re(aja;)X;X;.

i=1 i<j

Note that (X,),eN is a sequence of i.i.d. real random variables with E[X,,] = O for
each n. Then

2
n

2
E[|A.*] =E (Z|a,-|2xl.2) +4E ZRe(aiaj)x,»xj

i=1 i<j
= > JaiPlaj PEIX2X2] +4 Y (Re(a:d;) EIX2X2)
i,j i<j
<Y 1aiPlaPEIX? XA +4 Y laia,; PEIX? X3,

i,j i<j

Observe that (E[X?X2])* < E[X}]E[X?] = 1, hence

E

4 n 2
<2 [Z |a,»|2] ,
i=1

n
2 aiXi
i=1

and the proof is completed. O

Let f e HD).ForO < p <ooand0 <r < 1, let

1
p

1 2 0
My (f.r) = (E/o e )|”d9)

and

€

Moo (f, 1) = i9y).
oo fy7) H%gﬂlf(re )|
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Denote by H? the Hardy space consisting of those functions f in H (D) with

| fllzr = sup M,(f,r) < oo.

O<r<l

It is well known (cf. [20, p. 3]) that D is a subset of H” for any p > 0.

From a result of Brown and Shields [13, p. 300], if an analytic function f satisfies
M,(f',r) € L*(0,1],dr) with 2 < p < oo, then |f'(z)|*dA(z) is a Carleson
measure for D. We strengthen this conclusion as follows.

Lemma5.2 Let 2 < p < oo. Suppose ¢ is an analytic function on the open unit

disk D with M, (¢', r) € L%([0, 11, dr). Then |¢'(z)|>d A(z) is a vanishing Carleson
measure for the Dirichlet space.

Proof Let2 < p < oo.Suppose { fi o is asequence in D such that sup,,, || finllp <
oo and functions f;, tend to zero uniformly in compact subsets of D as m — oo. Due
to Mp(q&’, r) € L*([0, 11, dr), for any € > 0, there exists a é in (0, 1) such that

2
1 2 »
f(f |¢’(rel'9)|"d9) dr < e.
) 0

Since p > 2, using the Holder inequality with indices £ 5 and 2, we get for any
re,1)

2 9 2
f | fure®) P18 (re )P 2 (/ s )
0 2
P2
( |fm(”€l0)|P - 9) |
7T

9 P
(/ "’)I” ) Il fn I
27 Hp

S

Therefore, for the above § € (0, 1),

1 1 2 . .
/ P10 () PdA) = / (— / |fm(re“")|2|¢’<re'9>|2d9) dr
{zeD:|z|>8} 8 T Jo

<2Q20) P full* 5,
HP2

2
1 2 P
x/ (/ |¢’(ref9)|l’d9) dr
s 0

2
<6|Ifm|| 2 Selfmlp Se

=2
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Since functions f;, tend to zero uniformly in {z € D : |z| < §}, there is a positive
integer N such that

/ | fn (@' ()P dAR) < e
{zeD:|z| <8}
for all m > N. Consequently,
lim / | fm(2)¢'(2)PdA(z) = 0.
m—00 D

Thus |¢’ (z)|2d A(z) is a vanishing Carleson measure for D. The proof of the case of
p = o< is similar. We omit it. O

Note that if p = 2 and ¢ € H(D), then Mp(cp’, r) € L*([0, 1], dr) if and only if
¢ € D. In general, the measure |¢'(z) |2d A(z) with ¢ € Disnota vanishing Carleson
measure for the Dirichlet space.

Remark 5.3 For ¢ € H(D), if |¢'(z)|?dA(z) is a vanishing Carleson measure for D,
then of course |¢'(z)|2d A(z) is a Carleson measure for D. By a personal communi-
cation, Professor Blasco has a condition weaker than that in Lemma 5.2 to show that
|9’ (2) |2dA(z) is a Carleson measure for D.

Now, we are ready to prove Theorem 1.4.

Proof If E[Xﬁ] = 0, then X,, = 0 almost surely. Hence without loss of generality, we
can assume that E[Xﬁ] = 1. Recall that

o0
I (@ =Y Xn(@)k2".
n=0

By Theorem 1.1, we shall show that almost surely
Ih , (DPdAG)

is a vanishing Carleson measure for D. By Lemma 5.2, it is sufficient to show that

! 2 / i0 4d9 2
1
E /0 </0 |hx’w(re )| E) dr | < oo.

It follows from Fubini’s theorem that

1 2 . de 1/2
/ 0y 4
E|:/o (/0 |hi,w(rel ) E) dr
1 27 deN?
2/0 /Q<f0 |h;’w(re’9)|4g> dP(w)dr.
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Applying the Holder inequality with respect to the probability measure dIP, we have

2 1/2
/ / (/ I, i9)|4d—9> dP(w)dr
2

2 . d@ 1/2
5/ (// |- (re’9)|4—dIP’(w)> dr.
o \Jalo @ 27
Consequently,

2 ) do 2 ) 4o
’ 0y 4 _ 1 0y,4 =V
/Q fo g, (re' I T dP(w) = fo fQ 5, (re' ) dP ) 2

Recall that

o0
h’x’w(rei‘g) = Zﬂnr”_lei(n_l)(’X"(a))

n=1

and Lemma 5.1, we get

[

Therefore, there is a positive constant C such that

1 27 » 4d9 1/2 [eo) )
!/
E /0 (/0 1Mo (e'™)] E) dr|<C E nli,|” < oo.

n=1

1

00 4 00 1
Zﬂnrn_le’("_l)eXn dP(w) | dr < 32/ A"~ 2dr.
0
n=1

This completes the whole proof. O
To prove Corollary 1.5, we start with a simple observation.

Lemma 5.4 Suppose p > 2, E is a Rudin’s A(p) set and A = {}, : n € E}
is a sequence of complex numbers. If 3., _pn|i,|> < oo, then |h’x(z)|2dA(z) isa

vanishing Carleson measure for the Dirichlet space, where hy(z) =Y, Az

nek

Proof Let p > 2. Forany 0 < r < 1, observe that
h%(reig) — €7i9 Zznrnfleiné,
nek
we have

Z)\' nr’'t— 1 ln9
n

nek

||h re" ) Lr0.201.00) =

LP([0,2],d6)
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Since E is a Rudin’s A(p), there exists a positive constant C such that

2 2
Z Enrn—leinG <C Z Enrn—leine
nek LP([0,27],d0) nek L2([0,27],d0)
=C > [ Pn?r?0D,
nek
Recall that ), n|A, |> < oo, therefore,
i o P I
/ annrn_lelne dr < C/ Z |An|2n2r2("_1)dr
0 nek LP([0,27],d6) 0 nek
< 400.
The lemma then follows from Lemma 5.2. O

Proof of Corollary 1.5 Suppose H, is bounded on D. By Theorem 1.1, iy € D. By
the definition of Dirichlet norm, the condition (iii) holds. (i) = (ii) is clear. The
implication (iii)) = (i) follows from Lemma 5.4 and Theorem 4.1. The proof is
complete. O

6 Final Remarks

In this section, we give some remarks about some functions in A" and the action of
Hankel matrices on the Bergman space A”.

Our results, as we stated in Corollary 1.6, in this paper yield a complete characteri-
zation of functions in X with decreasing Taylor’s sequences of positive numbers. More
precisely, suppose A = {,}7°, is a decreasing sequence of positive real numbers.
From Theorems 1.1 and 3.1, the measure |h/)‘(z)|2dA(z) is a Carleson measure for D
(i.e. hy € &) if and only if

o0

5 1
Yml=0(——).
P (bg(m + 2))

By Theorems 4.1 and 4.3, the measure |h& (2)|2dA(z)isa vanishing Carleson measure
for D (i.e. hy € Ap) if and only if

o0
5 1
nkn =0\ ——m .
nzzm <1og<m T 2>>
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Let p > 2, for an analytic function f with non-zero Fourier coefficients belonging
to a Rudin’s A(p) set E, we write

f@ =" and",

nek

by Corollary 1.5, the following statements are equivalent:

(@) fed;
(b) f e X
©) Y ,cp®m+ Dlay|* < oo.

Suppose A = {A, },en is a sequence of complex number. Let (X,), <N be a sequence
of i.i.d. real random variables with E[X,] = 0 and E[Xz] < oo. If hy, € D,
Theorems 1.4 and 4.1 yield that

P(hy,, € X) = Pl € Xp) = 1
where hx’w(Z) = ZSO:() Xy (CU)EZ"'

Next we consider Hankel type operators H on the Bergman space A% which is also
a Hilbert space of analytic functions on ID and it is equipped with the inner product

<ﬁgM2=A;ﬂ@§GMA&)

From [16, p. 349], (A%)* = D and D* = A? under the pairing
oo
(f.8) =Y aby. 6.1)
k=0

where f(z) = Y 70 axzX and g(z) = Y 7o, bk z*.
For a sequence A = {1, },en of complex numbers, it is easy to see

(Hyrf.g) = (f,Hrg).

Consequently, H, is bounded (resp. compact) on the Dirichlet space D if and only if
H,, is bounded (resp. compact) on A%, If we replace the pairing (6.1) by the Cauchy
pairing

(fv g) = Zaka-
k=0

Then
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Hence we also get that ) is bounded (resp. compact) on D if and only if Hj is
bounded (resp. compact) on AZ.
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