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Abstract
We discuss the Hausdorff–Young inequality in the context of maximal integral esti-
mates, including the case ofHermite andLaguerre expansions.We establish amaximal
inequality for integral operators with bounded kernel on R, which in particular allows
for the pointwise evaluation of these operators, including the Fourier transform, for
functions in appropriate Lorentz and Orlicz spaces. In the case of the Hermite expan-
sionsweprove a refinedHausdorff–Young inequality, further sharpenedbyconsidering
the maximal Hermite coefficients in place of the Hermite coefficients when estimating
the appropriate Lorentz and Orlicz norms. We also consider the refined companion
Hausdorff–Young inequality and Hardy–Littlewood type inequalities for the Hermite
expansions. Similar results are proved for the Laguerre expansions.

Keywords Hausdorff–Young inequality · Hermite expansions · Laguerre expansions

Mathematics Subject Classification 33C45 · 42B35 · 46E30 · 47A30

1 Introduction

Given an integrable function f defined on R, let ̂f denote its Fourier transform, i.e.,

̂f (x) = 1√
2π

∫ ∞

−∞
f (y)e−i xy dy, x ∈ R. (1.1)
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Zygmund discusses the Fourier transform on R, in particular the definition of ̂f
when f is merely locally integrable, in [32, Vol. 2, Chap. XVI]. When f is in L2(R),
̂f is defined as an L2(R) limit in (1.1) above, and satisfies the Parseval–Plancherel
formula ‖ ̂f ‖2 = ‖ f ‖2. And, when f is in L p(R) for 1 < p < 2, the integral in Eq.
(1.1) has meaning as an L p′

(R) limit where p′ denotes the conjugate index to p, and
̂f satisfies the Hausdorff–Young inequality ‖ ̂f ‖p′ � ‖ f ‖p, [4], [32, Vol.2, Theorem
2.3, p.101].

Zygmund further establishes that the maximal Fourier transform given by

̂f ∗(x) = sup
α,β>0

1√
2π

∣

∣

∣

∫ β

−α

f (y)e−i xy dy
∣

∣

∣

maps L p(R) continuously into L p′
(R), where 1 < p < 2 and p′ is the conjugate to

p, and, consequently, for f in L p(R) it follows that

̂f (x) = lim
α→∞

1√
2π

∫ α

−α

f (y)e−i xy dy a.e.,

[31], [32, Vol.2, Theorem 3.14, p.257].
Zygmund’s maximal theorem is the underlying principle of this note, which con-

cerns the Hausdorff–Young inequality in the context of maximal integral estimates,
including the case of Hermite and Laguerre expansions.

We prove in Theorem 3.1 a maximal inequality for integral operators with bounded
kernel onR that are of type (p0, q0) for 1 < p0, q0 < ∞. Theorem3.1 rests on elemen-
tary principles and, since by the Parseval–Plancherel formula the Fourier transform is
of type (2, 2), it yields Zygmund’s maximal theorem for 1 < p < 3/2.

The full range of Zygmund’s result follows from the Christ–Kiselev maximal
inequality [13]. This principle, originally proved in the context of linear operators
on L p spaces, has been considered for some Lorentz spaces and Orlicz classes [12],
and extended to quasi–Banach function lattices, with applications to Lorentz spaces,
Wiener amalgams, andmaximal Fourier operators among others [23].We complement
these results by proving in Theorem 4.1 the Christ–Kiselev maximal inequality in the
framework of Orlicz spaces; Corollary 4.2 then gives Zygmund’s maximal theorem
for the Fourier transform acting on Orlicz spaces in R

n . An alternative approach to
Zygmund’s result for the L p(R) spaces using Carleson’s theorem is considered in [1,
p. 165].

Now, the type (p, p′) of the Hausdorff–Young inequality for 1 < p < 2 extends
to general expansions in terms of orthogonal functions, but more can be argued. We
will examine orthogonal expansions in terms of the Hermite functions, Hm(x), and
the Laguerre functions, Lα

m(x), for −1/2 < α < −1/3. Our approach rests on a
remarkable estimate for the Hermite functions established by Hille [18, p.436], [28,
p. 240], to wit,

∣

∣Hm(x)
∣

∣ � m−1/12. (1.2)
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Hille notes that Eq. (1.2) is the best possible estimate but that in applications he will
only use the weaker formula |Hm(x)| � 1. On the other hand, we will use Eq. (1.2) to
obtain an improved, or refined, Hausdorff–Young estimate for orthogonal expansions.
We refer to these estimates as refined because they are of type (p, q) with q < p′.

In the case of the Hermite expansions we establish in Theorem 5.1 that for f in
L p(R), the sequence {cm} of its Hermite coefficients is in the sequence space �q ,
provided that p, q verify

1 < p < 2, and,
5

6

1

p
+ 1

q
= 11

12
,

and ‖{cm}‖�q �p ‖ f ‖p. Moreover, the conclusion remains valid for the sequence of
the maximal Hermite coefficients of f . We complete the result with the corresponding
statements for Lorentz and Orlicz spaces. For the Lorentz spaces the sequence of
Hermite and maximal Hermite coefficients of a function in L(p, s) is in the Lorentz
sequence space �q,s for p, q as above and 1 ≤ s ≤ ∞, with the corresponding norm
estimate. And, for the Orlicz spaces, with A, B Young functions satisfying appropriate
growth conditions, if f is in the Orlicz space LA(R), its Hermite andmaximal Hermite
coefficients are in the Orlicz sequence space �B provided that A, B verify

B−1(t) = t11/12A−1(t−5/6), t > 0,

and the corresponding norm inequalities hold.
A companion result to the Hausdorff–Young inequality addresses under what

conditions {cm} is the sequence of Fourier coefficients of a function f in theHausdorff–
Young range [4], [32, Vol. 2, Theorem 2.3, p101]. In a refined formulation Theorem
5.2 establishes that for the Hermite expansions, if 12/11 < p < 2, and q is such that

1

p
+ 5

6

1

q
= 11

12
,

then, given {cm} in �p, there is f in Lq(R) such that the cm are the Hermite coefficients
of f (x), ‖ f ‖q �

p
‖{cm}‖�p , and

f (x) = lim
M

M
∑

m=0

cmHm(x) a.e.

As in the case of Theorems 5.1, 5.2 holds for Lorentz and Orlicz spaces as well.
In addition to the Hausdorff–Young inequality and its companion inequality in

L p(R), Ditzian discusses Hardy–Littlewood type inequalities in the context of expan-
sions by orthogonal polynomials with respect to a family of Freud–type weights [14];
we prove a sharp version of the Hardy-Littlewood inequality for Hermite expansions
in Theorem 5.3.
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As for the Laguerre case, we rely on the fact established in [7, p. 277] that for
α > −1/2, the Laguerre functions satisfy the estimate

∣

∣Lα
m(x)

∣

∣ �α mα/2+1/4−1/12 xα/2, x > 0,

which stems from Eq. (1.2) above.
We then consider the refined Hausdorff–Young inequality, Theorem 5.4, and its

companion inequality, Theorem 5.5, for the Laguerre expansions with −1/2 < α <

−1/3. And, to complete the picture we prove a Hausdorff–Young analogue of type
(p, p′) in Theorem 5.6, and a complement of this result in Theorem 5.7, along the
lines of Ditzian’s results for the Hermite expansions [14, Corollaries 4.1, 4.2, p. 586].

The paper consists of six sections, the second of which presents some background
material. The next three sections cover the topics described above, towit, integral oper-
ators, the Christ–Kiselevmaximal inequality for Orlicz spaces, and a refined version of
the Hausdorff–Young inequality for Hermite and Laguerre orthogonal expansions and
related estimates including the Hardy–Littlewood inequality for Hermite expansions
and a Hausdorff–Young analogue for the Laguerre expansions. In the closing section
we discuss discrete maximal inequalities, which allow for the consideration of Fourier
series rather than integrals, a version of Zygmund’s result for the Orlicz type class of
measurable functions f defined on Rn , L� , [5], which constitute the building blocks
of the Lorentz spaces [9], and we describe briefly the Hausdorff-Young inequality in
the context of Banach spaces of distributions ofWiener type introduced by Feichtinger
[15, 16].

It is a pleasure to acknowledge the comments provided by H. Feichtinger which
contributed to the presentation of this note.

2 Preliminaries

Let (X , μ) be σ–finite measure space, where μ has no atoms and μ(X) = ∞. Given
a measurable function f defined on X , let m( f , λ) denote the distribution function of
f ,

m( f , λ) = μ
({x ∈ X : | f (x)| > λ}), λ > 0.

Then, m( f , λ) is nonincreasing and right continuous, and the nonincreasing rear-
rangement f ∗ of f defined for t > 0 by

f ∗(t) = inf{λ > 0 : m( f , λ) ≤ t}, inf ∅ = 0,

is informally its inverse. f ∗ is nonincreasing and right continuous and, at its points of
continuity t , f ∗(t) = λ is equivalent to m( f , λ) = t .
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The Lorentz space L p,q(X) = L(p, q), 0 < p < ∞, 0 < q ≤ ∞, consists of
those measurable functions f with finite quasinorm ‖ f ‖p,q given by

‖ f ‖p,q =
( q

p

∫ ∞

0

(

t1/p f ∗(t)
)q dt

t

)1/q
, 0 < q < ∞,

and,

‖ f ‖p,∞ = sup
t>0

(

t1/p f ∗(t)
) = sup

λ>0
λm( f , λ)1/p, q = ∞.

Note that, in particular, L(p, p) = L p(X), and L(p,∞) is weak-L p(X).
The Lorentz spaces are monotone with respect to the second index, that is, if 0 <

q < q1 ≤ ∞, then L(p, q) ⊆ L(p, q1) and

‖ f ‖p,q1 � ‖ f ‖p,q .

Given a sequence c = {cm}, let {c∗
m} denote the sequence obtained by ordering

{|cm |} in a nonincreasing fashion. The Lorentz sequence space �p,q , 1 ≤ p < ∞,
1 ≤ q ≤ ∞, consists of those sequences c = {cm}with finite quasinorm ‖c‖�p,q given
by

‖c‖�p,q =
(

∞
∑

m=1

(

m1/pc∗
m

)q 1

m

)1/q
, 1 ≤ q < ∞,

and,

‖c‖�p,∞ = sup
m≥1

m1/pc∗
m, q = ∞.

As for the Orlicz spaces, the letters A, B are reserved for Young functions, i.e., for
functions A(t) defined for t ≥ 0 that are zero at zero, increasing, and convex, or, more
generally, A(t)/t increasing to∞ as t → ∞. TheOrlicz space L A(X) consists of those
measurable functions f (modulo equalityμ-a.e.) such that

∫

X A
(| f (x)|/M)

dμ < ∞
for some M , normed by

‖ f ‖A = inf
{

λ > 0 :
∫

X
A
( | f (x)|

λ

)

dμ ≤ 1
}

.

A couple of useful observations. First, if A(t)/t p decreases and

∫

X
A
(| f (x)|) dμ = ε < 1,

then
∫

X
A
( 1

ε1/p

∣

∣ f (x)
∣

∣

)

dμ ≤
∫

X

1

ε
A
( ∣

∣ f (x)
∣

∣

)

dμ = 1,
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and, consequently,

‖ f ‖A ≤ ε1/p. (2.1)

On the other hand, if B(t)/tq increases, for ε < 1 it follows that,

∫

X
B

( ∣

∣ f (x)
∣

∣

)

dμ ≤ εq
∫

X
B

(

∣

∣ f (x)
∣

∣

ε

)

dμ. (2.2)

The Orlicz sequence space �A consists of those sequence c = {cm} such that for
some M ,

∑

m

A
(|cm |/M)

< ∞,

normed by

‖c‖�A = inf
{

λ > 0 :
∑

m

A
( |cm |

λ

)

≤ 1
}

.

Finally, a mapping T of a class of functions f on (X , μ) into a class of functions
on (Y , ν) is said to be sublinear provided that,

(i) If T is defined for f0, f1, then T is defined for f0 + f1, and

∣

∣T ( f0 + f1)(x)
∣

∣ ≤ ∣

∣T ( f0)(x)
∣

∣ + ∣

∣T ( f1)(x)
∣

∣.

(ii)
∣

∣T (k f )(x)
∣

∣ = |k| ∣∣T ( f )(x)
∣

∣ , for any scalar k .

A sublinear operation T such that

‖T (χE )‖q � ‖χE‖p,1,

where χE denotes the characteristic function of a measurable set E of finite measure,
is said to be of restricted type (p, q). By [27, Theorem 3.13, p.195] T then maps the
Lorentz space L(p, 1) continuously into Lq(X), i.e.,

‖T ( f )‖q � ‖ f ‖p,1, f ∈ L(p, 1). (2.3)

A sublinear operator T defined for f ∈ LA(X) and taking values T ( f ) in LB(Y )

is said to be bounded if there is a constant K > 0 such that
∫

Y
B

( |T f (y)|
K

)

dν ≤ 1, whenever
∫

X
A
(| f (x)|) dμ ≤ 1.

The smallest K above is called the norm of T , is denoted by ‖T ‖, and the operator is
said to be of type (A, B). These operators satisfy ‖T ( f )‖B � ‖ f ‖A. When A(t) = t p

and B(t) = tq , we say that T is of type (p, q).
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Similar considerations apply to bounded sublinear operators T with domain, or
range, a sequence space.

3 Maximal Integral Inequality

We begin by proving the maximal inequality for integral operators referred to in the
Introduction, namely:

Theorem 3.1 Suppose that the operator T has an integral representationwith bounded
kernel k on R, i.e.,

T f (x) =
∫ ∞

−∞
k(x, y) f (y) dy

whenever f is integrable, and consider the maximal operator T ∗ associated to T , to
wit, for α, β > 0, with χα,β the characteristic function of the interval (−α, β), put

T ∗ f (x) = sup
α,β>0

∣

∣ T ( f χα,β)
∣

∣.

Then, if T is of type (p0, q0) for 1 < p0, q0 < ∞, with p′
0 the conjugate index to

p0, p′ that to p, γ = q0/p′
0, and

1 < r = q0 + 1

(q0/p0) + 1
< p0, (3.1)

T ∗ maps the Lorentz space L(p, s) continuously into the Lorentz space L(q, s), where
1 ≤ s ≤ ∞, and p and q verify,

1 < p < r , and, q = γ p′. (3.2)

Moreover, if p satisfies Eq. (3.2) and 1 ≤ s < ∞, for f ∈ L(p, s) we have

T f (x) = lim
α→∞

∫ α

−α

k(x, y) f (y) dy a.e. (3.3)

Furthermore, T ∗ is of type (p, q) whenever Eq. (3.2) holds, and if A, B are Young
functions such that B(t)/tq increases and B(t)/tm decreases for some m > q, T ∗ is
continuous from the Orlicz space L A(R) into the Orlicz space LB(R) provided that
A, B verify

B−1(t) = t1/γ A−1(t−1/γ )

, t > 0.

And, when T ∗ is of type (A, B), Eq. (3.3) holds for f ∈ L A(R).
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Proof First note that for f in some L p(R), 1 ≤ p ≤ ∞, f χα,β is integrable, and so,

T ( f χα,β)(x) =
∫ β

−α

k(x, y) f (y) dy.

Now, since for these f ’s,

T ∗ f (x) = sup
α,β>0

∣

∣

∣

∫ β

−α

k(x, y) f (y) dy
∣

∣

∣

≤ sup
α>0

∣

∣

∣

∫ 0

−α

k(x, y) f (y) dy
∣

∣

∣ + sup
β>0

∣

∣

∣

∫ β

0
k(x, y) f (y) dy

∣

∣

∣,

it suffices to consider functions f supported on either side of the origin. Both terms
are dealt with in the same fashion, and we assume that f vanishes for y ≤ 0.

We claim that with r as in Eq. (3.1), T ∗ is of restricted type (r , q0 + 1). To see
this, let E be a measurable set of finite Lebesgue measure and note that, since χE is
integrable and bounded, we have the identity,

(

∫ β

0
k(x, y)χE (y) dy

)q0+1

=
∫ β

0

d

dy

(

∫ y

0
k(x, t)χE (t) dt

)q0+1
dy

= (q0 + 1)
∫ β

0

(

∫ y

0
k(x, t)χE (t) dt

)q0
k(x, y)χE (y) dy,

where
∫ y
0 k(x, t)χE (t) dt = T

(

χ[0,y] χE
)

(x) .

Hence,

∣

∣

∣

∫ β

0
k(x, y)χE (y) dy

∣

∣

∣

q0+1

≤ (q0 + 1)
∫ ∞

0
|k(x, y)| χE (y)

∣

∣

∣T
(

χ[0,y] χE
)

(x)
∣

∣

∣

q0
dy

and, consequently,

T ∗(χE )(x)q0+1 ≤ (q0 + 1)
∫ ∞

0
|k(x, y)|χE (y)

∣

∣

∣T
(

χ[0,y] χE
)

(x)
∣

∣

∣

q0
dy.

Thus, integrating, with K a bound for k, it follows that

∫ ∞

−∞
T ∗(χE )(x)q0+1 dx

≤ (q0 + 1) K
∫ ∞

0
χE (y)

∫ ∞

−∞

∣

∣

∣T
(

χ[0,y] χE
)

(x)
∣

∣

∣

q0
dx dy
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≤ (q0 + 1) K
∫ ∞

0
χE (y)‖T ‖q0 ‖χE‖q0p0 dy

= (q0 + 1) K ‖T ‖q0 |E |(q0/p0)+1.

Therefore, ‖T ∗(χE )‖q0+1 ≤ c ‖χE‖r ,1, with c = (

(q0 + 1) K ‖T ‖q0)1/(q0+1)
, and

T ∗ is of restricted type (r , q0 + 1). Hence, by Eq. (2.3) above, for f ∈ L(r , 1) we
have

‖T ∗( f )‖q0+1 � ‖ f ‖r ,1.

Moreover, since for f ∈ L1(R),

T ∗( f )(x) ≤ K
∫ ∞

−∞
| f (y)| dy = K ‖ f ‖1,

T ∗ is of type (1,∞), and, consequently, interpolating, by [6, Corollary to Theorem
10, p. 293], with 0 < θ < 1, and

1

p
= (1 − θ) + θ

r
, and,

1

q
= θ

q0 + 1
,

it follows that

‖T ∗( f )‖q,s �p0,q0,K ,p,s ‖ f ‖p,s, 1 ≤ s ≤ ∞. (3.4)

Now, eliminating θ yields

q0 + 1

q
=

(

1 − 1

p

)

/
(

1 − 1

r

)

,

and replacing r by its value given in Eq. (3.1) above it readily follows that q = γ p′,
and the claim involving the Lorentz spaces has been established.

The existence of the pointwise limit Eq. (3.3) follows along the lines the comments
after Corollary 4.2 below. If f ∈ L(p, s) with p > 1 and s < ∞, with χR the
characteristic function of B(0, R), since

m( f χR, λ) � f min
(

R, λ−p),

it readily follows that for the dense family of compactly supported g ∈ L(p, s), gχR

is integrable and equal to g for all sufficiently large R, and so,

Tg(x) = lim
R→∞

∫

B(0,R)

k(x, y) g(y) dy, x ∈ R.
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Moreover, since for f ∈ L(p, s), for each λ, m( f − f χR, λ) decreases to 0 as
R → ∞, it readily follows that

‖ f − f χR‖p,s → 0 as R → ∞,

and since T is linear and continuous on L(p, s), for f ∈ L(p, s) we have

‖T ( f ) − T ( f χR)‖q,s �p ‖ f − f χR‖p,s → 0 as R → ∞.

Hence, we conclude that for f ∈ L(p, s) we have

T f (x) = lim
R→∞

∫

B(0,R)

k(x, y) f (y) dy a.e.,

and (3.3) has been established.
Now, on account of the monotonicity of the Lorentz norms with respect to the

second index, since for p, q verifying Eq. (3.2) we have p < r < q0 + 1 < q, setting
s = q in Eq. (3.4), it follows that

‖T ∗( f )‖q � ‖T ∗( f )‖q,q �p0,q0,K ,p ‖ f ‖p,q

�p0,q0,K ,p ‖ f ‖p,p �p0,q0,K ,p ‖ f ‖p ,

and T ∗ is of type (p, q).
Furthermore, since the assumptions to apply the interpolation theorem for operators

of types (p, q) and (1,∞) are satisfied [29, Theorem 2.11, p. 187], the conclusion
for Orlicz spaces obtains.

Finally, if A, B are Young functions such that T ∗ is of type (A, B), the pointwise
convergence in this case follows mutatis mutandis the Lorentz spaces case, and we
have finished. 
�

Theorem 3.1 can be recast in two different contexts. On the one hand, R can be
replaced by a closed bounded interval I in the line, and on the other hand by R

n ,
n > 1, [8].

4 Orlicz Spaces Maximal Inequalities

We proceed now to prove the Orlicz spaces version of the Christ–Kiselev maximal
inequality. The proof rests on the notion of filtrations [13], [18, Theorem 2.11.1, p.
169].

Let (X , μ) be a σ -finite measure space with no atoms. A filtration is a family of
measurable sets Aα such that

(i) If β < α, then Aβ ⊂ Aα .
(ii) limε→0+ μ

(

Aα+ε\Aα

) = limε→0+ μ
(

Aα\Aα−ε

) = 0 .

(iii) μ
(

⋂

α Aα

)

= 0,
⋃

α Aα = X .
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Examples of filtrations are Aα = (−∞, α] inR, and Aα = B(0, α) ⊂ R
n , provided

that μ
({x ∈ R

n : |x | = α}) = 0 for all α ≥ 0.
We then have the Orlicz spaces maximal inequality, that is:

Theorem 4.1 Suppose that T is a bounded sublinearmapping from LA(X) into LB(Y )

with norm ‖T ‖, where A, B are Young functions such that A(t)/t p decreases and
B(t)/tq increases, where 1 ≤ p < q < ∞. Further, assume that B(t)/tq1 decreases
for some q1 > q.

Let T ∗ denote the maximal operator associated to T and the filtration Aα , i.e.,

T ∗ f (x) = sup
α

|T ( f χα)(x)|.

Then T ∗ is of type (A, B), and ‖T ∗‖ ≤ ‖T ‖ ∑∞
m=1 2

m(1−q/p)(1/q1) .

Proof Assume first that ‖ f ‖A = 1, and so
∫

X
A
(| f (x)|) dμ = 1. Let

G(α) =
∫

X
A
( | f χAα (x)|

)

dμ, α > 0.

From the properties of the filtrations it follows that G(α) is continuous, and

lim
α→0

G(α) = 0, and, lim
α→∞G(α) =

∫

X
A(| f (x)|) dμ = 1.

Also, that G(α) is monotone in α, and assumes values from 0 to 1, and so, for
m = 1, 2, . . . and j = 1, 2, . . . , 2m − 1, the relation

G(αm
j ) = j

2m
,

determines the points αm
j , with αm

j the smallest such solution on an interval of
constancy of G.

For m = 1, 2, . . . j = 1, . . . , 2m , where χαm
2m

= 1 and χαm
0

= 0, let

f mj = f
(

χαm
j

− χαm
j−1

)

.

Then
∫

X A
(| f mj (x)|) dμ = 2−m for m = 1, 2, . . . , and since A(t)/t p decreases,

by Eq. (2.1) we have

‖ f mj ‖A ≤ 2−m/p. (4.1)

As in [25, Theorem 2.11.1, p. 169], for α ∈ [0, 1], consider the expression forG(α)

given by

G(α) =
∞
∑

�=1

k�

2�
, k� = 0, 1,
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and define

jm(α) = 2m
m

∑

�=1

k�

2�
.

Then, by the continuity of G, as functions in L A(X) (up to sets of μ measure 0), it
follows that

f χα =
∑

m=1
km=1

f mjm (α),

and, consequently,

T ∗( f )(y) ≤
∞
∑

m=1

(

sup
1≤ j≤2m

∣

∣T ( f mj )(y)
∣

∣

)

.

Moreover, since max1≤�≤L |a�| ≤ B−1
( ∑L

�=1 B
(|a�|

))

, we have

T ∗( f )(y) ≤ ‖T ‖
∞
∑

m=1

B−1
(

2m
∑

j=1

B
(

∣

∣T ( f mj )(y)
∣

∣

‖T ‖
)

,

and so, by Minkowski’s integral inequality,

‖T ∗( f )‖B ≤ ‖T ‖
∞
∑

m=1

∥

∥

∥B−1
(

2m
∑

j=1

B
(

∣

∣T ( f mj )
∣

∣

‖T ‖
)∥

∥

∥

B
. (4.2)

Let

�m(y) = B−1
(

2m
∑

j=1

B
(

∣

∣T ( f mj )(y)
∣

∣

‖T ‖
)

, m = 1, 2, . . .

To estimate the contribution of each �m , fix m, observe that

∫

Y
B

(

�m(y)
)

dν =
2m
∑

j=1

∫

Y
B

(

∣

∣T ( f mj )(y)
∣

∣

‖T ‖
)

dν,

and consider each summand above separately.
Now, we can write

∫

Y
B

(

∣

∣T ( f mj )(y)
∣

∣

‖T ‖
)

dν =
∫

Y
B

( ‖ f mj ‖A
∣

∣T ( f mj )(y)
∣

∣

‖T ‖‖ f mj ‖A

)

dν,
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and, since B(t)/tq increases and ‖ f mj ‖A < 1, by Eq. (2.2) it follows that,

∫

Y
B

(

∣

∣T ( f mj )(y)
∣

∣

‖T ‖
)

dν ≤ ‖ f mj ‖qA
∫

Y
B

(

∣

∣T ( f mj )(y)
∣

∣

‖T ‖‖ f mj ‖A

)

dν. (4.3)

And, since T is of type (A, B), the integral above is≤ 1, and so, by Eqs. (4.1, 4.3),

∫

Y
B

(

∣

∣T ( f mj )(y)
∣

∣

‖T ‖
)

dν ≤ ‖ f mj ‖qA ≤ 2−mq/p.

Therefore, the sum in question is bounded by

∫

Y
B

(

�m(y)
)

dν ≤
2m
∑

j=1

(‖ f mj ‖A
)q/p ≤ (2−m)q/p

2m
∑

j=1

1 = 2m
(

1− q
p

)

< 1.

Finally, since B(t)/tq1 decreases, by Eq. (2.1),

‖�m‖B ≤ 2m
(

1− q
p

)

(1/q1),

and, consequently, summing over m from Eq. (4.2) it follows that

‖T ∗( f )‖B ≤ ‖T ‖
∞
∑

m=1

2m
(

1− q
p

)

(1/q1) < ∞,

which is the desired conclusion in this case.
The estimate for arbitrary f ∈ LA(X) follows upon replacing f by f /‖ f ‖A above,

and the proof is finished. 
�
Now, the Orlicz spaces maximal inequality yields the pointwise convergence of the

operators in question, namely:

Corollary 4.2 Suppose that the conditions for Theorem 4.1 hold. In addition, suppose
that for g in a dense subset of L A(X), limα→∞ Tα(g)(y) = T (g)(y) exists ν–a.e.,
and that for all f ∈ LA(X), limα→∞ ‖Tα( f ) −T ( f )‖B = 0. Then, for f ∈ L A(X),

lim
α→∞ Tα( f )(y) = T ( f )(y) ν–a.e.

Proof For f ∈ L A(X) put

F(y) = lim sup
α

Tα( f )(y) − lim inf
α

Tα( f )(y),

and note that for g in the dense set where the convergence holds ν–a.e.we have

F(y) ≤ 2 sup
α

∣

∣Tα( f − g)(y)
∣

∣ ν − − a.e.
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Hence, by the Orlicz spaces maximal inequality,

‖F‖B ≤ 2 ‖T ∗( f − g)‖B ≤ 2 ‖T ∗‖ ‖ f − g‖A,

which, by the density of the g’s, can be made arbitrarily small. Thus ‖F‖B = 0, and
so F(y) = 0 ν-a.e., and, consequently,

lim
α→∞ Tα( f )(y) exists ν − a.e. (4.4)

Now, since by assumption limα→∞
∥

∥Tα( f ) − T ( f )
∥

∥

B = 0 , there is a sequence
{αm} tending to∞ such that limαm→∞ Tαn ( f )(y) = T ( f )(y) ν-a.e., which combined
with Eq. (4.4) gives that limα→∞ Tα( f )(y) = T ( f )(y) ν − a.e., and the proof is
finished. 
�

Zygmund’s result concerning the Fourier transform on R
n in the context of Orlicz

spaces follows from Corollary 4.2. Indeed, by [19], the Fourier transform is bounded
from L A(Rn) into LB(Rn) whenever B(t)/tm decreases for some m > 2 and the
Young functions A, B verify

B−1(t) = t A−1(1/t), t > 0.

Note that this implies that, if A(t)/t p decreases and q = p′, then

B−1(t)

t1/q
= A−1(1/t)

1/t1/p

also decreases, and so B(t)/tq increases. Thus, A and B satisfy the assumptions of
Theorem 4.1 with 1 < p < q = p′ < ∞ there. Also, functions in L1(Rn) ∩ L A(Rn),
for which there is a.e. convergence, are dense in LA(Rn). For the filtrations we take
Aα = B(0, α), α > 0. Then, for every f ∈ L A(Rn), with ̂f denoting the function in
LB(Rn) determined by Hausdorff–Young, we have

̂f (x) = lim
α→∞

1

(2π)n/2

∫

B(0,α)

e−i<x,y> f (y) dy a.e.

It is also possible to produce, as J. E. Littlewood used to say, a proof of the pointwise
convergence of the Fourier integral for functions in the Lorentz and Orlicz spaces for
a “mathematician in a hurry.” Indeed, by the Christ–Kiselev maximal inequality, the
n–dimensional Zygmund maximal Fourier transform is of type (p, p′) for 1 < p < 2,
and, therefore, by interpolation it maps L(p, s) continuously into L(p′, s) for 1 ≤ s ≤
∞, and is of type (A, B) whenever A, B satisfy the conditions given after Corollary
4.2. This observation applies to other contexts as well.
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5 Hausdorff–Young Inequalities

In this section we prove a refined version of the Hausdorff–Young inequality, and
related estimates, for Hermite and Laguerre expansions.

Hermite Expansions

Szegö discusses the Hermite and Laguerre polynomials in Chapter V of [28]. Earlier,
Hille had considered theHermite polynomials, Hm(x), and discussed some remarkable
formulas and estimates [18, 30]. In particular, Hille considered the generating formula

∞
∑

m=0

Hm(x)
um

m! = e2xu − u2 ,

and defined the Hermite functions, Hm(x), by

Hm(x) = 1

(m!)1/2
1

2m/2 Hm(x) e−x2/2.

TheHermite functions constitute anONS inRwith respect to the Lebesguemeasure
there.

We prove now the refined Hausdorff–Young inequality for the Hermite expansion
stated in the Introduction:

Theorem 5.1 Suppose the Hermite expansion of the function f is given by f (x) ∼
∑∞

m=0 cmHm(x), where

cm =
∫ ∞

−∞
Hm(x) f (x) dx, m = 0, 1, 2, . . . ,

and let T be themapping that assigns to f the sequence {cm} of itsHermite coefficients.
Then, T maps the Lorentz space L(p, s) continuously into the Lorentz sequence space
�q,s , 1 ≤ s ≤ ∞, provided that p, q verify

1 < p < 2, and,
5

6

1

p
+ 1

q
= 11

12
. (5.1)

In particular, T is of type (p, q) whenever Eq. (5.1) holds.
Furthermore, if A, B are Young’s functions such that B(t)/t2 increases, B(t)/t12

decreases, and
∫ ∞
t

(

B(s)/s12
)

ds/s � B(t)/t12, T maps L A(R) continuously into
the Orlicz sequence space �B provided that A, B verify

B−1(t) = t11/12A−1(t−5/6), t > 0.
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And, if the maximal Hermite coefficients Cm are given by

Cm = sup
α>0

∣

∣

∣

∫ α

−α

Hm(x) f (x) dx
∣

∣

∣, m = 0, 1, 2, . . . ,

all norm inequalities above hold with Cm in place of cm there.

Proof Let μ denote the atomic measure concentrated on the integer atoms m =
0, 1, 2, . . ., taking the value μ(m) = 1 on each such atom. Given λ > 0, let
Iλ = {m : |cm | > λ}; we are interested in estimating μ

(Iλ

)

. Now, if 0 �= m ∈ Iλ, on
account of Eq. (1.2) we have

λ < |cm | � ‖ f ‖1 m− 1
12 ,

and, consequently, for such m we have

m �
( ‖ f ‖1

λ

)12
.

Hence it readily follows that

λ12 μ
({

m �= 0 : |cm | > λ
})

� ‖ f ‖121 , (5.2)

which gives the desired estimate for μ(Iλ) when 0 /∈ Iλ.

Now, if 0 ∈ Iλ, sinceH0(x) = 1 we get that λ < |c0| ≤ ‖ f ‖1, and so

λ12 μ(0) = λ12 ≤ ‖ f ‖121 ,

which combinedwithEq. (5.2) above gives that, also in this case,λ12 μ
( Iλ

)

� ‖ f ‖121 .

Thus,

‖{cm}‖�12,∞ = sup
λ>0

λ μ
({

m : |cm | > λ
})1/12 � ‖ f ‖1, (5.3)

and T is continuous from L(1, 1) = L1(R) into the Lorentz sequence space �12,∞.
Also, since T is of type (2, 2) and the Lorentz norms are monotone with respect to

the second index, we have

‖{cm}‖�2,∞ � ‖{cm}‖�2 � ‖ f ‖2 � ‖ f ‖2,1,

and, thus, interpolating, by [6, Corollary to Theorem 10, p. 293] it follows that T
maps the Lorentz space L(p, s) continuously into the Lorentz sequence space �q,s ,
1 ≤ s ≤ ∞, where, for 0 < θ < 1,

1

p
= θ + 1 − θ

2
,

1

q
= θ

12
+ 1 − θ

2
.
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Now, simple algebraic manipulations allow us to eliminate θ giving Eq. (5.1), and,
provided that Eq. (5.1) holds, we get that

‖{cm} ‖�q,s �p,s ‖ f ‖p,s, 1 ≤ s ≤ ∞. (5.4)

Moreover, on account of the monotonicity of the Lorentz norms with respect to the
second index, since for p, q verifying Eq. (5.1) we have p < 2 < q, setting s = q in
Eq. (5.4), it follows that

‖{cm} ‖�q � ‖{cm} ‖�q,q �p ‖ f ‖p,q �p ‖ f ‖p.p �
p

‖ f ‖p, (5.5)

and T is of type (p, q) .
The Orlicz spaces estimate follows now by interpolation [29, Theorem 2.8, p.184].
To proceed with the maximal estimates, we transfer the results from the atomic

measure to the Lebesgue measure on R by means of a technique introduced in [6],
and conclude that Eq. (5.5) holds with {Cm} in place of {cm} there.

More precisely, let

H(u, x) = Hm(x), m ≤ u < m + 1, m = 0, 1, 2, . . . ,

and from

cm =
∫ ∞

−∞
Hm(x) f (x) dx, m = 0, 1, 2, . . . ,

pass to

C( f )(u) =
∫ ∞

−∞
H(u, x) f (x) dx, u ∈ R

+.

Let p, q satisfy the relation Eq. (5.1) above. Note that

‖C( f )‖qq =
∫ ∞

0

∣

∣

∣

∫ ∞

−∞
H(u, x) f (x) dx

∣

∣

∣

q
du

=
∞
∑

m=0

∫ m+1

m

∣

∣

∣

∫ ∞

−∞
Hm(x) f (x) dx

∣

∣

∣

q
du =

∞
∑

m=0

∣

∣cm
∣

∣

q
,

and, consequently, by Eq. (5.5),

‖C( f )‖q = ‖{cm}‖�q �p ‖ f ‖p.

Now, if χα = χ[−α,α], the conditions of the Christ–Kiselev maximal inequality, or
Theorem 4.1, are satisfied, and so, with

C∗( f )(u) = sup
α

∣

∣C( f χα)(u)
∣

∣ = sup
α

∣

∣

∣

∫ α

−α

H(u, x) f (x) dx
∣

∣

∣,
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it follows that ‖C∗( f )‖q � ‖ f ‖p. Again, as above,

‖C∗( f )‖qq =
∞
∑

m=0

∫ m+1

m

(

sup
α

∣

∣

∣

∫ α

−α

Hm(x) f (x) dx
∣

∣

∣

)q
du =

∞
∑

m=0

Cq
m,

and, consequently,

‖{Cm}‖�q �p ‖ f ‖p, (5.6)

and Eq. (5.5) holds with {Cm} in place of {cm} there.
Let now S be the sublinear mapping that assigns to f the sequence {Cm} of its

maximal Hermite coefficients. Then Eq. (5.6) holds for those p, q that verify Eq.
(5.1) above. The estimates for {Cm} in the Lorentz and Orlicz spaces follow now by
interpolation; in the case of Lorentz spaces we use [6, Corollaty to Theorem 10, p.
293], and for the Orlicz spaces we essentially repeat the argument for the {cm}. The
proof is thus finished. 
�

We prove next the (refined) companion result to the Hausdorff–Young inequality
for Hermite expansions, namely:

Theorem 5.2 Let 12/11 < p < 2, and suppose that q is such that

1

p
+ 5

6

1

q
= 11

12
. (5.7)

Then, given {cm} in the Lorentz sequence space �p,s , there is f in the Lorentz space
L(q, s), 1 ≤ s ≤ ∞, such that f (x) ∼ ∑∞

m=0 cm Hm(x), and

‖ f ‖q,s �p,s ‖{cm}‖�p,s .

In particular, if τ denotes the mapping that assigns f to the sequence {cm}, τ is of
type (p, q) whenever Eq. (5.7) holds.

Moreover, if A, B are Young’s functions such that B(t)/t2 increases, and for some
r > 2, B(t)/tr decreases and

∫ ∞
t

(

B(s)/sr
)

ds/s � B(t)/tr , then τ maps the Orlicz
sequence space �A continuously into the Orlicz space LB(R), provided that A, B
verify

B−1(t) = t11/10A−1(t−6/5), t > 0.

Furthermore, the maximal operator τ ∗ associated to τ is of type (A, B), and for
f = τ({cm}) we have

f (x) = lim
M

M
∑

m=0

cmHm(x) a.e.
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Proof Let b(x) = {Hm(x)}. Then, by Eq. (1.2), as in Eq. (5.3) it follows that b(x) ∈
�12,∞ uniformly in x , and so, for a sequence {cm} in �12/11,1, we have

∣

∣

∣

∑

m

cm Hm(x)
∣

∣

∣ � ‖{cm}‖�12/11,1 , uniformly in x .

Hence, if f (x) ∼ ∑∞
m=0 cmHm(x), then f ∈ L∞(R), and

‖ f ‖∞,∞ = ‖ f ‖∞ � ‖{cm}‖�12/11,1 .

And, by a now familiar argument, τ is of type (2, 2) and we have ‖ f ‖2,∞ �
‖cm‖�2,1 , and so, interpolating, by [6, Corollary to Theorem 10, p.293] it follows that
τ maps the Lorentz sequence space �p,s continuously into the Lorentz space L(q, s),
1 ≤ s ≤ ∞, where, for 0 < θ < 1,

1

p
= 11

12
θ + 1 − θ

2
,

1

q
= 1 − θ

2
.

Now, eliminating θ gives Eq. (5.7), and, provided that Eq. (5.7) holds, we get that

‖ f ‖q,s �p,s ‖{cm} ‖�p,s , 1 ≤ s ≤ ∞.

And, since p < q, setting s = q gives that τ is of type (p, q), provided that Eq.
(5.7) holds.

The result for the Orlicz spaces follows now by interpolation [21, Theorem 2.8, p.
184], but we can say more. Referring to the Orlicz spaces discrete maximal inequality,
Theorem 6.1, to be proved in the next section, let

τ ∗({cm}) = sup
M

∣

∣

∣

M
∑

m=0

cmHm(x)
∣

∣

∣.

Then, byTheorem6.1 it follows that τ ∗ maps �A continuously into LB(R)whenever
τ is of type (A, B).

Let now fM = ∑M
m=1 cmHm(x), and observe that by the linearity and boundedness

of τ , with cM2
M1

denoting the sequence with terms cm for M1 + 1 ≤ m ≤ M2 and 0
otherwise, we have

‖ fM2 − fM1‖B �
A

‖cM2
M1

‖�A → 0 as M1, M2 → ∞,

and, consequently, { fM } is Cauchy in LB(R). If we denote the limit of this sequence
by f , then f (x) ∼ ∑∞

m=0 cm Hm(x), ‖ f ‖B �
A

‖{cm}‖�A , and

lim
M

∥

∥

∥ f −
M

∑

m=0

cmHm

∥

∥

∥

B
= 0.
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Also, for a dense subset of �A, namely, those sequences with finitely many nonzero
terms,

∑∞
m=0 cmHm(x) is actually a finite sum, and so,

lim
M→∞

M
∑

m=0

cmHm(x) =
∞
∑

m=0

cmHm(x), all x ∈ R.

Hence, since these conditions are met, by the Orlicz spaces pointwise convergence
result (Corollary 4.2, or an argument similar to that of Theorem 6.2) we have,

f (x) = lim
M

M
∑

m=0

cmHm(x) a.e.,

and the proof is finished. 
�
A refined Hausdorff-Young inequality and companion result for n–dimensional

Hermite expansions is given in [10].
Ditzian completes the picture with the consideration of Hardy–Littlewood type

inequalities in a context that includes the Hermite expansions as well as type (p, p′)
Hausdorff–Young analogues [14].

We consider Hardy–Littlewood type estimates next. The key ingredient here is the
sharp Hardy–Littlewood estimate for functions f in the real Hardy space H1(R),
[21, Theorem 1.1, p. 270], namely, if f (x) ∼ ∑∞

m=0 cmHm(x) denotes the Hermite
expansion of f in H1(R), then

∞
∑

m=0

|cm | (1 + m)−
3
4 � ‖ f ‖H1 . (5.8)

This result is sharp because if we replace the H1(R) norm by the L1(R) norm on
the right-hand side above, Eq. (5.8) holds with 3/4 replaced by 3/4 + ε, ε > 0, on
the left-hand side, and there is an L1(R) function f such that the expression on the
left–hand side of Eq. (5.8) is infinite [20].

We then have the Hardy–Littlewood inequality for Hermite expansions:

Theorem 5.3 Let 1 < p < 2, and let μ denote the measure on the integers with mass

μ(m) = (1 + m)− 3
2 for n = 0, 1, 2, . . . Given a function f ∈ L p(R) with Hermite

series expansion f (x) ∼ ∑∞
m=0 cmHm(x), let T be the mapping that assigns to f the

sequence {Cm} given by

Cm = cm (1 + m)
3
4 , m = 0, 1, 2 . . .

Then, T maps the Lorentz space L(p, s) into the Lorentz sequence space �
p,s
μ ,

1 ≤ s ≤ ∞, and, in particular,

∞
∑

m=0

|cm |p(1 + m)(p−2) 34 �p ‖ f ‖p
p. (5.9)
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Furthermore, if q > 2 and {cm} is a sequence that satisfies
∞
∑

m=0

|cm |q (

1 + m
)(q−2) 34 < ∞, (5.10)

there is a function f ∈ Lq(R) such that cm = cm( f ), the Hermite coefficients of f ,
and

‖ f ‖qq �q

∞
∑

m=0

|cm |q(1 + m
)(q−2) 34 . (5.11)

Proof We begin by proving Eq. (5.9). First note that, since

‖{Cm}‖2
�2μ

=
∞
∑

m=0

|cm |2(1 + m)
3
4 2 (1 + m)−

3
2 � ‖ f ‖22,

T is continuous from L2(R) into �2μ.
Also, by Eq. (5.8),

∞
∑

m=0

|cm | (1 + m)
3
4 (1 + m)−

3
2 =

∞
∑

m=0

|cm | (1 + m)−
3
4 � ‖ f ‖H1 ,

and T is continuous from the real Hardy space H1(R) into �1μ.
Then, for 1 < p < 2, with

1

p
= (1 − θ) + θ

2
, 0 < θ < 1,

by [24, Eq. (2), p. 401] it follows that T maps the Lorentz space L(p, s) into the
Lorentz sequence space �

p,s
μ , 1 ≤ s ≤ ∞, and, in particular, when s = p, L p(R) into

�
p
μ, and so, Eq. (5.9) holds.
Next, let {cm} be a sequence that satisfies Eq. (5.10) above for some q > 2, and

let fM (x) = ∑M
m=0 cmHm(x), M = 1, 2, . . . We claim that fM ∈ Lq(R), all M ,

with an appropriate bound. To see this, let p = q ′ denote the conjugate to q, and for
g ∈ L p(R) with ‖g‖p ≤ 1, let g(x) ∼ ∑∞

m=0 BmHm(x) . Note that since

(

1 − 2

q

) 3

4
+

(

1 − 2

p

) 3

4
= 0,

it follows that for all M ,

∫

R

fM (x) g(x) dx =
M

∑

m=0

cm Bm =
M

∑

m=0

cm (1 + m)
(1− 2

q ) 34 Bm (1 + m)
(1− 2

p ) 34 ,
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and, therefore,

∣

∣

∣

∫

R

fM (x) g(x) dx
∣

∣

∣

≤
(

M
∑

m=0

|cm |q (1 + m)(q−2) 34
)1/q( M

∑

m=0

|Bm |p(1 + m)(p−2) 34
)1/p

.

Now, Eq. (5.9) implies that

(
M

∑

m=0

|Bm |p(1 + m)(p−2) 34
)1/p

�
p

‖g‖p � 1,

and so,

‖ fM‖q �q

(
M

∑

m=0

|cm |q(1 + m)(q−2) 34
)1/q

,

and fM ∈ Lq(R), all M .
A similar argument gives that for M1 < M2,

‖ fM2 − fM1‖q �q

(
M2
∑

m=M1+1

|cm |q (1 + m)(q−2) 34
)1/q

,

and, consequently, { fM } is Cauchy in Lq(R). If we denote the limit of this sequence
by f , then f (x) ∼ ∑∞

m=0 cm Hm(x),

‖ f ‖q �q

(
∞
∑

m=0

|cm |q(1 + m)(q−2) 34
)1/q

,

and Eq. (5.11) has been established. 
�

Laguerre Expansions

We will now consider the Laguerre expansions. The Laguerre polynomials, Lα
m(x),

were introduced by Szegö, [28, p.96] and are defined by

∞
∑

m=1

Lα
m(x)um = (1 − u)1−αe−ux/(1−u), α > −1,

and the Laguerre functions, Lα
m(x), by

Lα
m(x) =

( �(m + 1)

�(m + α + 1)

)1/2
Lα
m(x) e−x/2xα/2.
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The functions Lα
m(x) are orthonormal on [0,∞), and for α > −1/2 satisfy the

following estimate established in [7, p.277],

∣

∣Lα
m(x)

∣

∣ �
α
m

α
2 + 1

4− 1
12 xα/2, (5.12)

which stems from Eq. (1.2) above. Note that if in addition α < −1/3, then

α

2
+ 1

4
− 1

12
= (3α + 1)

6
< 0.

We then have a refined Hausdorff–Young inequality for the Laguerre expansion:

Theorem 5.4 With −1/2 < α < −1/3, let the Laguerre expansion of f be given by
f (x) ∼ ∑∞

m=1 c
α
mLα

m(x), where

cα
m =

∫ ∞

0
Lα
m(x) f (x) dx, m = 1, 2, . . . ,

and let T be the mapping that assigns to a function f the sequence {cα
m} of its Laguerre

coefficients. Then, T maps the Lorentz space L(p, s) continuously into the Lorentz
sequence space �q,s , 1 ≤ s ≤ ∞, provided that

2

2 + α
< p < 2, and,

(4 + 3α

3

) 1

p
+ (1 + α)

1

q
= 7 + 6α

6
. (5.13)

In particular, whenever p, q verify Eq. (5.13),

‖T ( f )‖�q =
(

∞
∑

m=1

|cα
m |q

)1/q
�

α,p
‖ f ‖p. (5.14)

Moreover, if the maximal Laguerre coefficients are defined by

Cα
m = sup

β>0

∣

∣

∣

∫ β

0
Lα
m(x) f (x) dx

∣

∣

∣,

then Eq. (5.14) above holds with Cα
m in place of cα

m there.

Proof Let

1

γ
= − (3α + 1)

6
, 12 < γ < ∞, (5.15)

and note that by Eq. (5.12) it follows that for m = 1, 2, . . .,

|cα
m | �α m−1/γ

∫ ∞

0
xα/2 | f (x)| dx .
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Now, since α < 0, the Hardy-Littlewood inequality [2, p.44] yields

∫ ∞

0
xα/2| f (x)] dx �α

∫ ∞

0
tα/2 f ∗(t) dt

= ‖ f ‖2/(α+2),1,

and, therefore,

∣

∣cα
m

∣

∣ �α m−1/γ ‖ f ‖2/2+α,1,

and, as in Eq. (5.3) it follows that

‖{cα
m}‖�γ,∞ �α ‖ f ‖(2/(2+α)),1,

i.e., T is continuous from L(2/(2 + α), 1) into �γ,∞.
This estimate, together with the type (2, 2) of T that yields ‖{cα

m}‖�2,∞ � ‖ f ‖2,1,
constitute the right frame for the application of [6, Corollary to Theorem 10, p.293],
and, consequently, interpolating we have

‖cα
m‖�q,s �α,p,s ‖ f ‖p,s, 1 ≤ s ≤ ∞, (5.16)

where, with 0 < θ < 1,

1

p
= θ

2 + α

2
+ 1 − θ

2
, and,

1

q
= θ

1

γ
+ 1 − θ

2
.

Hence, replacing γ by its value gives,

1

p
+ 1

q
= 1 − θ

6
,

where, by some algebraic manipulations,

1 − θ

6
= 1 + 1

6 (1 + α)

(

1 − 2

p

)

.

It then readily follows that

(4 + 3α

3

) 1

p
+ (1 + α)

1

q
= 7 + 6α

6
,

and Eq. (5.13) has been established.
Moreover, since p < 2 < q, setting s = q in Eq. (5.16), yields

‖{cα
m}‖�q � ‖{cα

m}‖�q,q �α,p ‖ f ‖p,q �α,p ‖ f ‖p,p �α,p ‖ f ‖p,

and Eq. (5.14) holds.
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From this point on the proof for the maximal coefficients proceeds as that in the
Hermite case, and is left to the reader. 
�

The continuity properties of T above on the Orlicz spaces follow along the lines
established for the Hermite expansion using Eq. (5.14) now, and the indices depend
on α. Rather than dealing with the resulting cumbersome expressions, we state the
underlying principle to obtain them [29, p. 181]. Suppose that a sublinear mapping T
is of types, weak–types, or mixed types (p0, q0) and (p1, q1), with p) �= p1, and let
the equation of the straight line passing through the points (1/p0, 1/q0), (1/p1, 1/q1)
be given by y = εx + γ . Then, under appropriate growth conditions on the Young’s
functions A, B, the mapping T is of type (A, B) provided that

B−1(t) = tγ A−1(tε).

As for the refined Hausdorff–Young companion inequality for Laguerre expansions
we have:

Theorem 5.5 With −1/2 < α < −1/3, suppose that p, q are such that

6

7 + 3α
< p < 2, and (1 + α)

1

p
+

(4 + 3α

3

) 1

q
= 7 + 6α

6
. (5.17)

Then, given {cm} in the Lorentz sequence space �p,s , there is f in the Lorentz space
L(q, s), 1 ≤ s ≤ ∞, such that f (x) ∼ ∑∞

m=1 cm Lα
m(x), and

‖ f ‖q,s �α,p,s ‖{cm}‖�p,s .

In particular, if τ denotes the mapping that assigns f to the sequence {cm}, τ is
of type (p, q) whenever (5.17) holds. Furthermore, in that case the maximal operator
τ ∗ associated to τ is of type (p, q), and for f = τ({cm}) we have

f (x) = lim
M

M
∑

m=1

cm Lα
m(x) a.e.

Proof With γ as in Eq. (5.15), let η, 1 < η < 12/11, denote its conjugate index, i.e.,

1

η
= 1 − 1

γ
= (3α + 7)

6
.

Now, if b(x) = {Lα
m(x)}, and since as in Eq. (5.3) it follows that the sequence

{m−γ } is in �γ,∞, by Eq. (5.12) it follows that

∣

∣

∣

∞
∑

m=1

cm Lα
m(x)

∣

∣

∣ �α ‖c‖�η,1 xα/2,
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and, consequently, if f ∼ ∑∞
m=1 cmLα

m(x), then f ∈ L(2/|α|,∞) and

‖ f ‖2/|α|,∞ �α ‖c‖�η,1 ,

and τ is a continuous mapping from the Lorentz sequence space �η,1 into the Lorentz
space L(2/|α|,∞).

Hence, by the type (2, 2) of τ , by a familiar argument it follows that ‖ f ‖2,∞ �
‖cm‖�2,1 , and so, interpolating, by [6, Corollary to Theorem 10, p. 293] it follows that
τ maps the Lorentz sequence space �p,s continuously into the Lorentz space L(q, s),
1 ≤ s ≤ ∞, where, for 0 < θ < 1,

1

p
= 3α + 7

6
θ + 1 − θ

2
, and,

1

q
= −α

2
θ + 1 − θ

2
.

Now, it readily follows that

1

p
+ 1

q
= 1 + θ

6
,

and since

1 + θ

6
= 7 + 6α

(6 + 6α)
− 1

q

1

3

1

1 + α
,

from above we get that

(1 + α)
1

p
+

(4 + 3α

3

) 1

q
= 7 + 6α

6
,

and Eq. (5.17) holds.
From this point on the proof proceeds as that in the Hermite case, and is left to the

reader. 
�
We prove next the (p, p′) Hausdorff–Young analogue inequality for Laguerre

expansions anticipated in the Introduction:

Theorem 5.6 Let −1/2 < α < −1/3, 1 < p < 2, and q = p′, the conjugate to p.

Then, with dνp(x) = x (α/2)
(

2
p −1

)

dx, given a function f ∈ L p
νp (R

+) with Laguerre
series expansion f (x) ∼ ∑∞

m=1 c
α
mLα

m(x), it follows that

(
∞
∑

m=1

|cα
m |q m((3α+1)/6)

(

1− 2
q

)
)1/q

�α,p

(

∫ ∞

0
| f (x)|p x (α/2)

(

2
p −1

)

dx
)1/p

. (5.18)
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Furthermore, given a sequence c = {cm} such that

∞
∑

m=1

|cm |p m((3α+1)/6)
(

2
p −1

)

< ∞,

there is a function f (x) ∼ ∑∞
m=1 c

α
mLα

m(x) with cm = cα
m, the Laguerre coefficients

of f , and

(

∫ ∞

0
| f (x)|q x (α/2)

(

1− 2
q

)

dx
)1/q

�α,p

(
∞
∑

m=1

|cm |p m((3α+1)/6)
(

2
p −1

)
)1/p

. (5.19)

Proof Let γ be defined as in Eq. (5.15). Let T be themapping that assigns to a function
f (x) ∼ ∑∞

m=1 c
α
mLα

m(x), the sequence {cα
m} of its Laguerre coefficients. Then, with

dν(x) = xα/2 dx , if f ∈ L1
ν(R

+), by Eq. (5.12),

|cα
m |m1/γ �α

∫ ∞

0
| f (x)| xα/2 dx, n = 1, 2, . . . ,

and {cα
m m1/γ } ∈ �∞. Now, with μ(m) = m−1/γ ,m = 1, 2, . . . , the linear functional

L(c) =
∞
∑

m=1

cα
m cm, c = {cm} ∈ �1μ,

satisfies

∣

∣L(c)
∣

∣ =
∣

∣

∣

∞
∑

m=1

cα
m m1/γ cm

1

m1/γ

∣

∣

∣ ≤ ‖{cα
m m1/γ }‖�∞ ‖{cm}‖�1μ

,

and is thus bounded on �1μ with norm ≤ ‖{cα
m m1/γ }‖�∞ . Hence, since �1μ is σ–finite,

its dual is �∞
μ , and, therefore, {cα

m} ∈ �∞
μ , and

‖{cα
m}‖�∞

μ
≤ ‖{cα

m m1/γ }‖�∞,

and so, T maps L1
ν(R

+) continuously into �∞
μ .

Since T is also a bounded mapping from L2(R+) into �2, we can apply the Stein–
Weiss complex interpolation theorem with change of measure [26, Theorem 2.11, p.
164], or the real interpolation theorem with change of measure [22, Theorem 4, p.
773], and get, for 0 < θ < 1, with

1

p
= θ + (1 − θ)

2
,

1

q
= (1 − θ)

2
,
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and

μθ(m) = m−(1/γ )(θ),m = 1, 2, . . . , dνθ (x) = x (α/2) (θ) dx,

that T maps L p
νθ (R

+) continuously into �
q
μθ , and, consequently,

(
∞
∑

m=1

|cα
m |q μθ(m)

)1/q
�α,p

(

∫ ∞

0
| f (x)|p dνθ (x)

)1/p
.

Now, since

θ =
( 2

p
− 1

)

=
(

1 − 2

q

)

,

it readily follows that the measure in the statement is dνp(x) = x (α/2)
(

2
p −1

)

dx , and,
consequently,

(
∞
∑

m=1

|cα
m |q m(−1/γ )

(

1− 2
q

)
)1/q

�α,p

(

∫ ∞

0
| f (x)|p x (α/2)

(

2
p −1

)

dx
)1/p

,

and Eq. (5.18) follows upon substituting γ by its value.
Next, let τ be the mapping that assigns to the sequence c = {cm} the function

τ(c) = f (x), where f (x) ∼ ∑∞
m=1 cmLα

m(x). Then, by Eq. (5.12),

x−α/2| f (x)| �α

∞
∑

m=1

|cm |m−1/γ ,

and so, withμ(m) = m−1/γ ,m = 1, 2, . . ., x−α/2 f (x) ∈ L∞(R+)whenever c ∈ �1μ .

Moreover, since x−α/2 is locally integrable, ν is σ–finite, and as above it follows that
f ∈ L∞

ν (R+) and

‖ f (x)‖L∞
ν (R+) ≤ ‖ f (x) x−α/2‖L∞(R+).

Thus, ‖ f ‖L∞
ν (R+) ≤ ‖c‖�1μ

, and τ is continuous from �1μ into L∞
ν (R+).

And, since τ is bounded from �2 into L2(R+), interpolatingwith change ofmeasure
[22, Theorem 4, p. 773], [26, Theorem 2.11, p. 164], we get that for 0 < θ < 1, with

1

p
= θ + (1 − θ)

2
,

1

q
= (1 − θ)

2
,

and

μθ(m) = m−(1/γ )θ , m = 1, 2, . . . , dνθ (x) = x (α/2) θ dx,
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τ maps �
p
μθ into Lq

νθ (R
+), i.e.,

(

∫ ∞

0
| f (x)|q dνθ (x)

)1/q
�α,p

(
∞
∑

m=1

|cm |pμθ(m)
)1/p

.

And, since

θ =
( 2

p
− 1

)

=
(

1 − 2

q

)

,

Equation (5.19) follows readily upon substituting γ by its value, and the proof is
finished. 
�

Because the analogue Hausdorff–Young inequality involves weighted norms, it is
of interest to identify those functions f whose Laguerre coefficients are in �q , for
some q > 2, and explore the dual result. In this direction we have:

Theorem 5.7 With −1/2 < α < −1/3, let 1 < p < 2, and suppose that p, q satisfy
the relation

(4 + 3α

3

) 1

p
+ 1

q
= 7 + 3α

6
. (5.20)

Then, with dνp(x) = xα(1/p−1/2) dx, if f ∈ L p
νp (R

+) has the Laguerre series
expansion f (x) ∼ ∑∞

m=1 c
α
mLα

m(x), we have

∥

∥{cα
m} ∥

∥

�q
�α,p

(

∫ ∞

0
| f (x)|p xα

(

1
p− 1

2

)

dx
)1/p

. (5.21)

Furthermore, let 1 < p < 2, and suppose that now p, q verify the relation

1

p
+

(4 + 3α

3

) 1

q
= 7 + 3α

6
. (5.22)

Then, if c = {cm} ∈ �p, there is a function f such that cm = cα
m( f ) are the Laguerre

coefficients of f , and

(

∫ ∞

0
| f (x)|q xα

(

1
2− 1

q

)

(1−q) dx
)1/q

�α,p ‖{cm}‖�p . (5.23)

Proof Let γ , 12 < γ < ∞, be given by Eq. (5.15), and let T be the mapping
that assigns to a function f the sequence {cα

m} of its Laguerre coefficients. Now, if
f ∈ L1

ν1
(R+)where dν1(x) = xα/2 dx , by Eq. (5.12), as above it readily follows that

∣

∣cα
m

∣

∣m1/γ �α

∫ ∞

0
| f (x)| xα/2 dx, m = 1, 2, . . . ,
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and so, an argument similar to that leading to Eq. (5.3) yields that T is bounded from
L1

ν1
(R+) into �γ,∞. This combined with the fact that T maps L2(R+) boundedly into

�2 allows for real interpolation with change of measure, and by [3, Sect. 5.5, p. 119],
T is continuous from L p

νθ (R
+) into �q , where, with 0 < θ < 1,

1

p
= θ + (1 − θ)

2
= (1 + θ)

2
,

1

q
= θ

γ
+ (1 − θ)

2
,

and dνθ (x) = x (α/2)θ dx . Moreover, since from the above relation it follows that
θ = (2/p) − 1, we have

dνθ (x) = x
(

α/2
) (

2
p −1

)

dx .

As for q, simple algebraic manipulations yield

(

1 − 2

γ

) 1

p
+ 1

q
=

(

1 − 1

γ

)

, (5.24)

and so, Eq. (5.20) follows replacing γ by its value. For these values of p, q we have
Eq. (5.21), and the proof of the first assertion is finished.

Next, from Eq. (5.22) it follows that 1 < q ′ < 2, and that

(

1 − 2

γ

) 1

q ′ + 1

p′ =
(

1 − 1

γ

)

.

Thus, q ′, p′ verify Eqs. (5.24, 5.21) holds for q ′, p′, and, with

dν(x) = x
α
(

1
q′ − 1

2

)

dx,

if g ∈ Lq ′
ν (R+) has a Laguerre series expansion g(x) ∼ ∑∞

m=1 d
α
m Lα

m(x), then,

‖{dα
m}‖

�p
′ �

α,q ′

(

∫ ∞

0
|g(x)|q ′

x
α
(

1
q′ − 1

2

)

dx
)1/q ′

.

Now, for fM (x) = ∑M
m=1 cmLα

m(x) and g(x) as above we have

∫ ∞

0
fM (x)g(x) dx =

M
∑

m=1

cm dα
m,
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and so,

∣

∣

∣

∫ ∞

0
fM (x) g(x) dx

∣

∣

∣ ≤
(

M
∑

m=1

|cm |p
)1/p‖{dα

m}‖
�p

′

�α,q ′
(

M
∑

m=1

|cm |p
)1/p(

∫ ∞

0
|g(x)|q ′

x
α
(

1
q′ − 1

2

)

dx
)1/q ′

.

As for the integral on the left–hand side above, observe that for our range of values
of α, with β = α

( 1
q ′ − 1

2

)

, xβ is locally integrable, and with dν(x) = xβ dx , it equals

∫ ∞

0
fM (x) g(x) dx =

∫ ∞

0
fM (x) x−βg(x) dν(x),

and taking the sup over those functions g with ‖g‖
Lq′

ν
≤ 1, it follows that

(

∫ ∞

0
| fM (x)|q x−β q dν(x)

)1/q =
(

∫ ∞

0
| fM (x)|q xβ (1−q) dx

)1/q

�α,p

(
M

∑

m=1

|cm |p
)1/p

.

A similar argument shows that for M1 < M2,

‖ fM2 − fM1‖q �α,p

(
M2
∑

m=M1+1

|cm |p
)1/p

,

and, consequently, { fM } is Cauchy in Lq
ν (R). If we denote the limit of this sequence

by f , then f (x) ∼ ∑∞
m=1 cm Lα

m(x), and

(

∫ ∞

0
| f (x)|q xβ (1−q) dx

)1/q
�α,p

(
∞
∑

m=1

|cm |p
)1/p

.

Finally, since also β = α
( 1
2 − 1

q

)

, Eq. (5.23) holds, and the proof is finished. 
�

6 Concluding Remarks

Interpolation arguments are at the core of our results. Since the hybrid Orlicz–Lorentz
spaces enjoy interpolation properties similar to those of both the Lorentz and Orlicz
spaces [29], the interested reader may prove results for those spaces adapting the ideas
above.
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Also, note that the maximal inequalities extend to the discrete case, i.e, when
L A(X) is replaced by the sequence space �A, as is the case for �p spaces [18, Theorem
2.11.3, p. 171], and the Lorentz spaces [23]. The results are similar and also follow
by interpolation, or else by transferring estimates from the atomic measure to the
Lebesgue measure on R, as was done in the proof of the Hausdorff–Young inequality
for Hermite and Laguerre expansions. These results can then be applied to Fourier
series rather than integrals.

More precisely, consider the following setting. Let S : �A → L A(R)be themapping
that assigns to a sequence z = {zm} in �A the function S(z) on R defined piecewise
by

S(z)(x) = zm, m ≤ x < m + 1,

and let an inverse S̃ : LA(R) → �A be defined by z = S̃( f ) where

zm = S̃( f )m =
∫ m+1

m
f (x) dx, all m.

Note that ‖S(z)‖A = ‖z‖�A , and that, by Jensen’s inequality, ‖S̃( f )‖�A ≤ ‖ f ‖A.

Also, S̃S = I . We then have the Orlicz spaces discrete maximal inequality:

Theorem 6.1 Suppose the Young functions A, B satisfy the conditions of Theorem
3.1. Let τ : �A → LB(R) be a bounded linear mapping, and let χm denote the
characteristic function of (−∞,m]. Consider the maximal operator

τ ∗(z)(x) = sup
m

∣

∣τ(χmz)(x)
∣

∣.

Then, we have ‖τ ∗(z)‖B � ‖z‖�A .

Proof Let T = τ S̃; clearly, T : L A(R) → LB(R) boundedly, and so, by the Orlicz
spaces maximal inequality, ‖T ∗( f )‖B � ‖ f ‖A.Now, since Sχm = χmS and S̃S = I ,
it follows that τ(z) = T S(z) and

τ ∗(z)(x) ≤ T ∗(S(z))(x).

The conclusion follows readily from this. 
�
Theorem 6.1 yields Menshov’s theorem for Orlicz spaces along the lines of the

proof for the �p spaces [18, Theorem 2.11.5, p. 172]. Indeed, we have:

Theorem 6.2 Suppose that the Young function A satisfies A(t)/t2 decreasing, A(1) =
1, and let {ϕm} be an ONS in some L2. Given a sequence {cm} define

c∗(x) = sup
n

∣

∣

∣

n
∑

m=1

cmϕm(x)
∣

∣

∣.
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Then we have, ‖ c∗‖2 � ‖ c ‖�A . Moreover, if for c ∈ �2 we interpret
∑∞

m=1 cmϕm

as an L2 sum, then for c ∈ �A we have

lim
n→∞

n
∑

m=1

cmϕk(m) =
(

∞
∑

m=1

cmϕm

)

(x) a.e.

Proof It is readily seen that, if c = {cm} ∈ �A, then c ∈ �2, and ‖ c ‖�2 ≤ ‖ c ‖�A , and
so

∑∞
m=1 cmϕm(x) defines an element in L2, which is precisely τ(c), such that

‖τ(c)‖2 � ‖ c ‖�2 � ‖ c ‖�A .

The norm conclusion follows readily from Theorem 6.1. As for the limit, it holds
for finite sequences, and since these sequences are dense in �A, essentially Corollary
4.2 gives the conclusion for all sequences. 
�

We also point out that a refined Hausdorff–Young inequality holds for expansions
by orthogonal polynomials with respect to a class of Freud–type weights on R, thus
completing Ditzian’s results [14]. The proof follows along the lines to that of Theorem
5.1, and, therefore, it can be extended to include the corresponding results for the max-
imal coefficients, n–dimensional expansion, and Lorentz and Orlicz space estimates
[11].

We consider next an observation concerning the Orlicz classes, L� , that constitute
the building blocks of the Lorentz spaces L(p, r) on Rn for 0 < r < p, p > 1. They
are defined as follows.

Given a nondecreasing function � ≥ 0 defined on (0,∞) such that

∫ ∞

0

tq−1

�(t)q/p
dt < ∞, (6.1)

where 0 < r < p, p > 1, and 1/p + 1/q = 1/r , the Orlicz type class L� consists of
thosemeasurable functions f defined onRn such that the nonincreasing rearrangement
f ∗ of | f | satisfies

∫ ∞

0
�

(

f ∗(t)
)

dt < ∞.

Then, for this range of values, L(p, r) = ⋃

� L� , where the �’s satisfy Eq. (5.1).
In particular, for any such � and f ∈ L� we have [9] ,

‖ f ‖p,r �p,�

(

∫ ∞

0
�

(

f ∗(t)
)

dt
)1/p

. (6.2)

The following version of Zygmund’s maximal theorem holds for the classes L� :

Theorem 6.3 Let T be a linear mapping of types (1,∞) and (2, 2), and let T ∗ denote
the maximal operator associated to T as in the maximal inequality theorem. For
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1 < p < 2, 0 < r < p, and 1/p + 1/q = 1/r , consider the Orlicz class L� where
� satisfies Eq. (6.1). Then, with p′ the conjugate to p, for f ∈ L� we have

‖T ∗( f )‖p′,r �p,�

(

∫ ∞

0
�

(

f ∗(t)
)

dt
)1/p

. (6.3)

Proof Since T satisfies the conditions of the maximal inequality with A(t) = t p,
B(t) = t p

′
there, 1 < p < 2, interpolating it readily follows that

‖T ∗( f )‖p′,s �p,s ‖ f ‖p,s 1 < p < 2, 1 ≤ s ≤ ∞.

Hence, letting s = r above, Eq. (6.3) follows from Eq. (6.2), and the proof is
finished. 
�

We close this note with a remark about the Banach spaces of distributions of
Wiener’s type [15, 16], or the Wiener amalgam spaces as they are referred to nowa-
days [17], in the context of the Hausdorff–Young inequality. These spaces, which
were introduced by Feichtinger, allow for the consideration of the fact that the local
properties of f are reflected in the global properties of ̂f , and vice versa [15, Prop.
3.3]; these results are, in various directions, best possible [15, Remark 3.1]. In view
that all essential elements, including the Christ–Kiselev inequality, are in place [23],
it is a tantalizing challenge to consider a similar result for more general expansions in
terms of orthogonal functions, including the ones considered here.

Funding The research for this paper was not supported by any funding agency.
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