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Abstract
A projective representation of a locally compact group does phase retrieval if it admits
a maximal spanning frame vector. In this paper, we provide a characterization of
maximal spanning vectors for type I and square integrable irreducible projective
representations of separable locally compact abelian groups. This generalizes the
well-known criterion for the time–frequency case and unifies previous criteria for
finite groups case and locally compact Gabor case. As an application, we show that
irreducible projective representations of compact abelian groups do phase retrieval.

Keywords Wavelet transform · Projective representation · Phase retrieval ·
Continuous frame · Maximal spanning vector
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1 Introduction

The phase retrieval problem considers recovering a signal of interest frommagnitudes
of its linear or nonlinear measurements. Balan, Casazza and Edidin [2] initiated the
investigation of the phase retrieval problem by using linear measurements against
a frame. The study of the phase retrieval problem of frames has attracted atten-
tion of mathematicians and it has rich connections with abstract harmonic analysis,
representation theory, number theory, algebraic geometry etc. (cf. [12, 17]).

As mentioned in [15], sources containing explicit constructions of frames with
guaranteed phase retrieval properties are relatively scarce. A sufficient condition for
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a frame being phase retrievable is that it has maximal span (cf. [3]). Applying this
idea, one could construct phase retrievable frames from orbits of vectors with respect
to a group action. In the following, we consider Hilbert spaces over C. By a locally
compact group, we mean a topological group whose topology is locally compact and
Hausdorff. The general setup goes as follows. Let G be a locally compact group with
unity e. A multiplier on G is a measurable function from G × G to the unit circle
α : G × G → T which satisfies

(1) α(x, y)α(xy, z) = α(x, yz)α(y, z) for all x, y, z ∈ G;
(2) α(e, x) = α(x, e) = 1 for all x ∈ G.

A projective representation of G with respect to α (or an α-representation) is a map
π : G → U(Vπ ), where Vπ is a complex Hilbert space and U(Vπ ) is the space of
unitary operators on Vπ , such that

(1) π(x)π(y) = α(x, y)π(xy) for all x, y ∈ G;
(2) for any v ∈ Vπ , the map x �→ π(x)v is a measurable function from G to Vπ .

We study properties of the family of vectors {π(g)v | g ∈ G} for a fixed v ∈ Vπ . We
refer to [20, 24] for properties of multipliers on locally compact groups, to [21, 22]
for properties of projective representations (or multiplier representations) of locally
compact groups. In particular, we know that the matrix coefficients are measurable by
[21, Theorem 1].

Recall that v ∈ Vπ is a frame vector for (π, Vπ ) if the map G → Vπ (g �→ π(g)v)
is a frame (cf. [25, Definition 2.1]); a frame vector v ∈ Vπ is phase retrievable if the
associated frame is phase retrievable, i.e., the map

Tv : Vπ/T → L2(G)

u �→ (g �→ |〈u, π(g)v〉|)

is injective; if there exists a phase retrievable frame vector for (π, Vπ ), we say that the
representation π does phase retrieval.

An element v ∈ Vπ is called maximal spanning if

Span{π(g)v ⊗ π(g)v | g ∈ G} = HS(Vπ ),

where x⊗ y : Vπ → Vπ (u �→ 〈u, y〉x) is the one-dimensional projection andHS(Vπ )

is the space of Hilbert–Schmidt operators on Vπ .
Maximal spanning frame vectors are special as they are phase retrievable. This

property provides a method to explicitly construct phase retrievable group frames. We
refer to [3, 23] and [6, Sect. 3.2.2] for more information on the relation between phase
retrievable vectors and maximal spanning vectors. In [5, 23] Li, Han and etc. proved
that irreducible projective representations of finite abelian groups do phase retrieval.
In [6, 8] Cheng, Xu, and etc. proved that the Weyl–Heisenberg representation of
̂H × H does phase retrieval for a large class of locally compact abelian groups H ,
where ̂H is the dual of H with the Plancherel measure. In [15], Führ and Oussa
proved that irreducible representations of nilpotent Lie groups and certain nilpotent
p-groups do phase retrieval. Continuing in this direction, in this paper, we provide
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the following characterization of maximal spanning vectors for type I and square
integrable irreducible projective representations of separable locally compact abelian
groups. This result generalizes the well-known criterion for the time–frequency case.
(Cf. [4], [23, Theorem 1.7], [5, Proposition 3.11] for finite abelian groups case; [7,
Sect. 4] for compact abelian groups case; [6, Proposition 3.3] for the case of locally
compact abelian groups of type ̂H × H .)

Theorem 1.1 Let G be a separable locally compact abelian group and α be a type
I multiplier of G. Let π : G → U(Vπ ) be a square integrable irreducible α-
representation of G. Then v ∈ Vπ is a maximal spanning frame vector if and only if
the matrix coefficient (g �→ 〈π(g)v, v〉) is almost nowhere vanishing.

An ingredient in the proof of Theorem 1.1 is the projective Plancherel theorem [22,
Theorem 7.1], where we require that the locally compact groups are separable. An
immediate consequence is the following result.

Corollary 1.2 Let G and π be as in Theorem 1.1. If v ∈ Vπ is a vector such that the
matrix coefficient (g �→ 〈π(g)v, v〉) is almost nowhere vanishing, then (g �→ π(g)v)

is a phase retrievable frame and π does phase retrieval.

By showing the existence of maximal spanning vectors, we have the following
result.

Theorem 1.3 LetG bea compact abeliangroupandπ : G → U(Vπ )bean irreducible
projective representation of G. Then the set of maximal spanning frame vectors for
(π, Vπ ) is open dense in Vπ . In particular, π does phase retrieval.

The content of the paper is organised as follows. In Sect. 2, we explain that the
wavelet transform for projective representations works as well as for linear repre-
sentations. In particular, we show that square integrable irreducible α-representations
are the same as irreducible sub α-representations of the regular α-representation and
every nontrivial square integrable vector of such an α-representation is a frame vector.
Moreover, we have theDuflo–Moore operator for discrete series α-representations and
it gives the frame bounds for the tight frames generated by square integrable vectors.
In Sect. 3, by reducing to the totally skew multipliers, we prove Theorem 1.1. One
of the key ingredients is the structure of projective representations of locally com-
pact abelian groups obtained by Baggett and Kleppner [1], which holds true without
separability condition on the group. Applying the projective Plancherel theorem [22,
Theorem 7.1] to the special case of locally compact abelian groups, we translate the
maximal spanning property in HS(Vπ ) to a maximal spanning property in L2(G) and
use the Fourier transformation to obtain the expected result.

2 TheWavelet Transform

In this sectionwe study square integrable projective representations of locally compact
groups via the wavelet transform. The strategy is the same as that in linear representa-
tions case (cf. [10, Chap. 12] and [14]). There is little doubt that the following results
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were known to the experts, but we could not find the statements in the literature. We
sketch the idea of proofs and state them explicitly.

Let G be a locally compact group with left Haar measure μ = ∫

G · d g. Let α ∈
Z2(G,T) be a multiplier and π : G → U(Vπ ) be an α-representation of G on a
Hilbert space Vπ . Given any fixed vector ξ ∈ Vπ , we obtain the wavelet transform
corresponding to π and ξ

Wξ : Vπ → Map(G,C)

η �→ (x �→ 〈η, π(x)ξ 〉).
Note that this transformation is injective if and only if ξ is a cyclic vector for π , i.e.
the closed linear span of {π(x)ξ | x ∈ G} is Vπ . If π is irreducible, this is true for any
nontrivial ξ and the injectivity of Wξ is much easier than the injectivity of Tξ .

Let Dξ be the subspace of Vπ given by

Dξ = {η ∈ Vπ | Wξ (η) ∈ L2(G)}.

The restriction of Wξ induces a linear closed operator Wξ : Dξ → L2(G) (cf. [10,
Lemma 12.1.2]).

Definition 2.1 (1) A vector ξ ∈ Vπ is called square integrable if Dξ = Vπ .
(2) Denote by Dπ the subspace of Vπ consisting of square integrable vectors. The

α-representation (π, Vπ ) is called a square integrable α-representation if Dπ is
dense in Vπ .

(3) A square integrable vector ξ ∈ Vπ is called an admissible vector if Wξ : Dξ →
L2(G) is isometric.

The results in [10, Sect. 12.1] generalize to α-representations easily. In particular,
we have the following result (cf. [10, Example 12.1.7]), which shows the existence of
nontrivial square integrable α-representations.

Lemma 2.2 Let L : G → U(L2(G)) be the left regular α-representation of G, i.e.

(L(y) f )(x) = α(y,y−1)

α(y−1,x)
f (y−1x) for f ∈ L2(G). Then every ξ ∈ Cc(G) ⊂ L2(G)

is square integrable. In particular, as Cc(G) is dense in L2(G), the left regular α-
representation is square integrable.

Proof Let R′ : G → U(L2(G)) be the right regular α−1-representation of G with
respect to the left Haar measure, i.e. R′(y) f (x) = √

�(y)α(x, y)−1 f (xy) for f ∈
L2(G), where � is the modular function of G. Put ξ̃ (y) = �(y)−1/2ξ(y). Then
ξ̃ ∈ Cc(G) ⊂ L1(G). For any η ∈ L2(G), we have

〈η, L(x)ξ 〉 =
∫

G
η(y)

α(x−1, y)

α(x, x−1)
ξ(x−1y) d y

=
∫

G
ξ̃ (y)

α(x−1, xy)

α(x, x−1)

√

�(y)η(xy) d y

=
∫

G
ξ̃ (y)R′(y)η(x) d y = (R′)∗(ξ̃ )η(x).
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Here the third identity follows from α(x−1, xy)α(x, y) = α(x−1, x)α(e, y) =
α(x−1, x) = α(x, x−1), (R′)∗ is the representation of the Banach ∗-algebra L1(G, α)

associated with R′. See Remark 2.3 for details. Hence the map (x �→ 〈η, L(x)ξ 〉) is
just (R′)∗(ξ̃ )η, which is square integrable. The lemma follows. �
Remark 2.3 In the above computation, we used a relation between projective repre-
sentations of G and modules of the twisted group algebra which we recall here. Let
L1(G, α) be the set of complex-valued integrable functions on G with multiplication
(convolution) defined by

( f1 ∗ f2)(x) =
∫

G
f1(g) f2(g

−1x)α(g, g−1x) d g

and a ∗-operator (involution) defined by

f ∗(x) = f (x−1)�(x−1)α(x, x−1)−1,

where is the complex conjugation and � is the modular function. Then L1(G, α)

is a Banach ∗-algebra. Let π : G → U(Vπ ) be an α-representation of G. The map
π �→ π∗, where

π∗ : L1(G, α) → B(Vπ )

f �→
∫

G
f (g)π(g)dg,

induces a bijection between the set of equivalent classes of α-representations ofG and
the set of equivalent classes of representations of the Banach ∗-algebra L1(G, α). See
[11, Sect. 13.3.5].

Suppose that (π, Vπ ) is an α-representation of G and let ξ ∈ Vπ be any vector. For
y ∈ G, we have

(Wξ (π(y)η))(x) = 〈π(y)η, π(x)ξ 〉
= 〈η, π(y)−1π(x)ξ 〉
= 〈η, α(y, y−1)−1α(y−1, x)π(y−1x)ξ 〉
= (L(y)Wξ (η))(x).

Therefore Dξ is a π(G)-invariant subspace of Vπ and Wξ intertwines the representa-
tion π |Dξ with the left regular α-representation. In particular if ξ is admissible, Wξ

establishes an equivalence between (π, Vπ ) and a subrepresentation of (L, L2(G)).
An irreducible α-representation is called a discrete series α-representation of G

if it is a subrepresentation of (L, L2(G)). The results in [10, Sect. 12.2] hold for α-
representations by the same argument. We have the following result that characterizes
irreducible square integrable α-representations (cf. [10, Corollary 12.2.4]).
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Proposition 2.4 Let (π, Vπ ) be an irreducible α-representation of the locally compact
group G. Then the following are equivalent:

(1) (π, Vπ ) is square integrable.
(2) There exists an admissible vector ξ ∈ Vπ .
(3) (π, Vπ ) is a discrete series α-representation, i.e. it is equivalent to a subrepresen-

tation of the left regular α-representation.

The following result on the Duflo-Moore operator is important for our study on
frames (cf. [10, Theorem 12.2.5]).

Theorem 2.5 Let (π, Vπ ) be a discrete series α-representation of the locally compact
group G. Let Dπ be the set of square integrable vectors in Vπ .

(1) There exists a closed densely defined operator Cπ : Dπ → Vπ satisfying the
orthogonality relation

〈Cπξ ′,Cπξ 〉〈η, η′〉 = 〈Wξ (η),Wξ ′(η′)〉

for all ξ, ξ ′ ∈ Dπ and η, η′ ∈ Vπ .
(2) The operator Cπ : Dπ → Vπ is injective and ξ ∈ Vπ is admissible if and only if

ξ ∈ Dπ with ||Cπξ || = 1.
(3) If G is unimodular, then all ξ ∈ Vπ are square integrable and Dπ = Vπ . In this

case, there exists a unique constant cπ ∈ R>0 such that Cπ can be chosen equal
to cπ idVπ .

Remark 2.6 (1) Let G(α) be the extension of G by T given by α. Let πα : G(α) →
U(Vπ ) be the linear unitary representation of G(α) associated with (π, Vπ ) given
by πα(t, x) = tπ(x) for all (t, x) ∈ G(α) (cf. [21, p. 220]). Then the sets of square
integrable vectors with respect to π and πα are the same and the corresponding
Duflo–Moore operators coincide.

(2) If G is compact, then irreducible α-representations of G are finite dimensional.
The twisted Peter–Weyl Theorem (cf. [7, Sect. 2]) shows that cπ = d−1/2

π , where
dπ is the dimension of the representation space Vπ .

(3) Let H be a locally compact abelian group with the Plancherel dual ̂H . Let G =
̂H × H and π : ̂H × H → U(L2(H)) be the Weyl–Heisenberg representation,
i.e. (π(h∗, h) f )(h′) = h∗(h′) f (h′h) for f ∈ L2(H). Then from the computation
in [6, Theorem 2.1], we have cπ = 1.

An immediate consequence of Theorem 2.5 is the following result.

Corollary 2.7 Let (π, Vπ ) be a discrete series α-representation of G and v ∈ Vπ be
a nontrivial vector. Then �v : G → Vπ (g �→ π(g)v) is a continuous frame if and
only if v ∈ Dπ . Moreover, if v ∈ Dπ , then �v is a tight frame with frame bounds
A = B = ||Cπv||2.

If G is unimodular, then Dπ = Vπ and every nontrivial vector of Vπ is a frame
vector. Therefore to find maximal spanning frame vectors, we only need to focus on
the maximal spanning property.

Combining Corollary 2.7 and the argument of [5, Sect. 2.2] (see also [7, Sect. 3.2],
[9], [14, Theorem 2.31]), we have the following result.
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Proposition 2.8 Let (π, Vπ ) be an α-representation of G. Assume that (π, Vπ ) is a
finite direct sum of discrete series α-representations. Write the irreducible decompo-
sition as (π, Vπ ) = ⊕i∈I (πi , Vi ). Let v ∈ Vπ be a nontrivial vector and let vi be the
projection of v in Vi . Then �v : G → V (g �→ π(g)v) is a continuous tight frame if
and only if vi ∈ Dπi for i ∈ I and the following two conditions are satisfied

(1) ||Cπi vi || = ||Cπ j v j || for all i, j ∈ I ;
(2) 〈Cπ j σvi ,Cπ j v j 〉 = 0 for i, j ∈ I and σ ∈ HomRepα

(Vi , Vj ).

It is possible to generalize the above proposition from direct sum case to direct integral
case (cf. [14, Sect. 4.3]). Since here we are interested in the phase retrieval property
of irreducible α-representations, we leave the generalization to the readers.

3 Locally Compact Abelian Groups

In this section G is a separable locally compact abelian group. Let α ∈ Z2(G,T) be a
type I multiplier, i.e. all the α-representations of G are of type I (cf. [13, p. 229], [18,
19]). Let π : G → U(Vπ ) be a discrete series α-representation of G. For u, v ∈ Vπ ,
denote by cπ

u,v the matrix coefficient (g �→ 〈π(g)u, v〉). We have the following result.

Theorem 3.1 With the above notation, v ∈ Vπ is a maximal spanning frame vector if
and only if cπ

v,v(g) �= 0 for almost all g ∈ G.

Proof Because G is unimodular, every nontrivial element v ∈ Vπ is a frame vector by
Theorem 2.5(3) and we focus on the maximal spanning property. The following two
observations enable us to simplify the situation.

(1) Suppose thatπ : G → U(Vπ ) andπ ′ : G → U(Vπ ′) are equivalent, i.e. there exist
a measurable function μ : G → T and a unitary isomorphism M : Vπ → Vπ ′
with Mπ(g)M−1 = μ(g)π ′(g). Let v ∈ Vπ and v′ = Mv ∈ Vπ ′ , then

π ′(g)v′⊗π ′(g)v′ = M(π(g)v⊗π(g)v)M−1, 〈π ′(g)v′, v′〉 = μ(g)−1〈π(g)v, v〉.

Therefore

M(Span{π(g)v ⊗ π(g)v | g ∈ G})M−1 = Span{π ′(g)v′ ⊗ π ′(g)v′ | g ∈ G},

and
cπ
v,v(g) = 0 if and only if cπ ′

v′,v′(g) = 0.

Hence proving the theorem for π is equivalent to proving the theorem for π ′.
(2) If H � G is a closed subgroup, π1 : G/H → U(V ) is a projective representation

and π : G → U(V ) is the composition of π1 with the natural projection G →
G/H , then π(g) = π1(gH). Therefore

Span{π(g)v ⊗ π(g)v | g ∈ G} = Span{π1(ḡ)v ⊗ π1(ḡ)v | ḡ ∈ G/H}
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and
cπ
v,v(g) = 0 if and only if cπ1

v,v(gH) = 0.

By the quotient integral formula (cf. [10, Theorem 1.5.3]), to prove the theorem
for (π,G, V ), it suffices to prove the theorem for (π1,G/H , V ).

Since replacingαwith a similarmultiplier gives us equivalent projective representa-
tions, by the first observation, we may assume that α is normalized (i.e. α(x, x−1) = 1
for all x ∈ G) as in [1]. Let λ : G ×G → T be the map λ(x, y) = α(y,x)

α(x,y) . Then λ is a

bicharacter and it induces a homomorphism λα : G → ̂G with λα(x)(y) = λ(x, y).
Let Sα be the kernel of λα . We call α totally skew if Sα is trivial. By [1, Theorem 3.1], α
is similar to amultiplier which is lifted from a totally skewmultiplierα′ onG/Sα , i.e.α
is similar to the composition ofG×G → G/Sα ×G/Sα and α′ : G/Sα ×G/Sα → T.
Moreover, π is equivalent to a projective representation of the form γ ⊗ π ′

1, where
γ ∈ ̂G is a linear character of G, π1 is an α′-representation of G/Sα , π ′

1 is the projec-
tive representation of G induced from π1 via the natural quotient map G → G/Sα .
By the second observation, we may assume that α is totally skew at the beginning.
In this case λα : G → ̂G is injective and has dense image. Moreover, because of the
type I assumption, λα is bicontinuous by [1, Theorem 3.2] and the image of λα is open
dense in ̂G. Therefore, λα is an isomorphism.

By [1, Theorem 3.3], up to isomorphism, (π, Vπ ) is the unique α-representation of
G. The projective Plancherel theorem [22, Theorem 7.1] tells us that in this special
case we have an isomorphism

Vπ ⊗ Vπ → L2(G)

u ⊗ v �→ cπ
u,v. (3.1)

Here we identify V with V ∗ in the usual way if V is a Hilbert space. Hence for v ∈ Vπ ,

Span{π(g)v ⊗ π(g)v | g ∈ G} = Vπ ⊗ Vπ (3.2)

⇐⇒Span{cπ
π(g)v,π(g)v | g ∈ G} = L2(G).

Since α is normalized and G is abelian, the cocycle condition tells us

α(g−1, hg)α(g, h) = α(g−1, gh)α(g, h) = α(g−1, g)α(e, h) = 1.

We then have

π(g)∗π(h)π(g) = π(g−1)π(h)π(g) = α(g−1, hg)α(h, g)π(g−1hg)

= α(h, g)

α(g, h)
π(h) = λα(g)(h)π(h).

Hence

cπ
π(g)v,π(g)v(h) = 〈π(h)π(g)v, π(g)v〉 = 〈π(g)∗π(h)π(g)v, v〉

= 〈λα(g)(h)π(h)v, v〉 = λα(g)(h)cπ
v,v(h),
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and we have cπ
π(g)v,π(g)v = λα(g)cπ

v,v . Therefore the second identity in (3.2) is
equivalent to

Span{λα(g)cπ
v,v | g ∈ G} = L2(G). (3.3)

Via Fourier transform, identity (3.3) is equivalent to

Span{(λα(g)cπ
v,v)

̂ | g ∈ G} = L2(̂G) ⇐⇒ Span{̂cπ
v,v(λα(g)•) | g ∈ G} = L2(̂G).

(3.4)

Since λα : G → ̂G is surjective, by Lemma 3.2, the second identity in (3.4) is
equivalent to

cπ
v,v(g) �= 0 for almost all g ∈ G. (3.5)

The theorem follows. �
Lemma 3.2 Let D ⊂ G be a subset with μ(G − D) = 0 and f ∈ L2(G). Let
SD ⊂ L2(G) be the closed linear span of the translates of f by elements of D. Then
SD = L2(G) if and only if ̂f (χ) �= 0 for almost all χ ∈ ̂G.

Proof This is essentially [13, Proposition 4.72]. Let g ∈ L2(G). Let Lx be the left
translation operator on L2(G), i.e. (Lx f )(y) = f (x−1y). Then g ⊥ SD if and only
if

∫

(Lx f )g = 0 for all x ∈ D. This is equivalent to

0 =
∫

̂G
(Lx f )

̂(χ)ĝ(χ) d χ

=
∫

̂G
χ(x) ̂f (χ)ĝ(χ) d χ

= ( ̂f ĝ)̂(x)

for all x ∈ D. Then it is equivalent to ̂f ĝ = 0 almost everywhere. The lemma follows.
�

To apply Theorem 3.1, we start with the following lemma.

Lemma 3.3 Let V be a Hilbert space and T ∈ U(V ) be a unitary operator. Let
N (T ) = {u ∈ V | 〈Tu, u〉 = 0}. Then V − N (T ) is open dense in V .

Proof If V is finite dimensional, the lemma is easy as by fixing a basis, the condition
〈Tu, u〉 = 0 is given by polynomials on the real and imaginary parts of the coordinates
of u (cf. [23, Lemma 2.2]). We assume that V is infinite dimensional.

Suppose that 〈Tu, u〉 = 0 for all u ∈ V . Then by the polarization identity (cf. [13,
A.1 Theorem]), 〈Tu, v〉 = 0 for all u, v ∈ V , which is impossible as T is unitary.
Therefore N (T ) is a proper subset of V . The same argument shows that for any proper
subspace V ′ of V , N (T ) ∩ V ′ is a proper subset of V ′.
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If 〈Tu, u〉 �= 0, then for any w ∈ V with ||w|| sufficiently small, we have

|〈T (u + w), u + w〉| ≥ |〈Tu, u〉| − |〈Tu, w〉| − |〈Tw, u〉| − |〈Tw,w〉|
≥ |〈Tu, u〉| − 2||w|| · ||u|| − ||w||2 > 0.

Therefore N (T ) is closed.
If 〈Tu, u〉 = 0, from the above discussion, there exists a w ∈ V such that

〈Tw,w〉 �= 0 and 〈T ∗u, w〉 = 〈Tu, w〉 = 0, where T ∗ is the adjoint of T . For
any positive integer n, we have

〈

T

(

u + 1

n
w

)

, u + 1

n
w

〉

=
〈

T

(

1

n
w

)

,
1

n
w

〉

�= 0.

Therefore V − N (T ) is dense. The lemma follows. �
Proof of Theorem 1.3 Assume first that G is a finite abelian group. Let g ∈ G and
define

P(g) = {u ∈ Vπ | 〈π(g)u, u〉 �= 0}.
Then P(g) ⊂ Vπ is open dense by Lemma 3.3. SinceG is finite, by the Baire category
theorem, ∩g∈G P(g) ⊂ Vπ is open dense in Vπ . By Theorem 3.1, ∩g∈G P(g) is the set
of maximal spanning frame vectors and the theorem follows in this case.

Assume that G is compact. Then ̂G is discrete. In the proof of Theorem 3.1, the
kernel Sα of λα : G → ̂G is open and hence G/Sα is a finite group. By the second
observation in the proof of Theorem 3.1, to prove the property of maximal spanning
vectors for projective representations of compact abelian groups, it suffices to prove the
property of maximal spanning vectors for projective representations of finite abelian
groups. The theorem then follows from the above discussion or [23, Theorem 1.7]. �

Note that if v ∈ Vπ is a maximal spanning vector for (π, Vπ ), then v⊗v ∈ Vπ ⊗Vπ

is a cyclic vector for the linear representation π ⊗ π∗ : G → Vπ ⊗ Vπ , where π∗ is
the contragredient representation of π . We hence obtain the following result.

Corollary 3.4 Let π : G → U(Vπ ) be an irreducible projective representation of a
compact abelian group G. The representation π ⊗ π∗ is cyclic and it admits cyclic
vectors of the form v ⊗ v.

Remark 3.5 (Aquestion on zero sets ofmatrix coefficients) LetG be a separable locally
compact group and π : G → U(Vπ ) be a discrete series projective representation. Let
cv,v be the matrix coefficient associated with v ∈ Dπ . Suppose that cv,v is nonzero in
a dense subset of G, is it true that c−1

v,v(0) has measure zero? The motivation of this
question is the close relation with phase retrieval property of certain group frames.
More precisely, assume that G is abelian as in Theorem 1.1 and suppose that the
question has a positive answer in this case. Let I ⊂ G be a countable dense subset
and consider ∩g∈I P(g). Then the same proof of Theorem 1.3 shows that the set of
maximal spanning frame vectors for (π, Vπ ) is dense in Vπ and in particular π does
phase retrieval.
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Example 3.6 (The Heisenberg group) Let R be a commutative topological ring. Let
H(R) be the Heisenberg group over R, i.e. H(R) = R3 with group law

( j, k, l)( j ′, k′, l ′) = ( j + j ′, k + k′, l + l ′ + jk′).

The center and the commutator subgroup of H(R) are both equal to

Z = {(0, 0, l) | l ∈ R} ∼= R.

Let χ : R → T be a character of R and we also regard it as a character of Z . Let
H(R) := R × R × T with group law

( j, k, t)( j ′, k′, t ′) = ( j + j ′, k + k′, t t ′χ( jk′)).

Let G = R × R be the direct product of two copies of R. Then G(α) = H(R), where
α : G × G → T is the multiplier defined by

α(( j, k), ( j ′, k′)) = χ( jk′).

Let ρ : H(R) → U(Vρ) be an irreducible linear representation of H(R) with
central character χ . Then it induces an irreducible linear representation ρ′ : R ×
R × T → U(Vρ) with ρ′( j, k, t) = tρ( j, k, 0) and an irreducible α-representation
π : R × R → U(Vρ) with π( j, k) = ρ( j, k, 0).

To check the phase retrieval property of ρ and ρ′, it suffices to check the phase
retrieval property of π . We discuss some special cases in the following.

(1) R = Fq is a finite field with q elements. If the central character χ is trivial, then
ρ is one-dimensional and it is from a character of Fq × Fq × {0}. If the central
character χ is not trivial, then ρ is induced from a character of {0} × Fq × Fq

and is q-dimensional. This is the Gabor case. Fix an isomorphism Vρ
∼= C

q

such that each π(g) ∈ C
q×q (g ∈ Fq × Fq ) has algebraic entries. Then the

Lindemann–Weierstrass theorem provides an easy way to write down a maximal
spanning vector. E.g. let pi (1 ≤ i ≤ q) be different prime numbers, then v =
(e

√
p1 , . . . , e

√
pq )′ ∈ C

q satisfies 〈π( j, k)v, v〉 �= 0 for all ( j, k) ∈ Fq × Fq ,
hence it is a maximal spanning vector.

(2) R = Z is the additive group of integers with discrete topology. In this case χ(l) =
wl for some w ∈ T. If w has infinite order, then α is not of type I (cf. [13, Sect.
6.8, Chap. 7 (Example 4)]).
If w has finite order, i.e. it is a root of unity, say wq = 1. In this case ρ is a finite
dimensional representation from a representation of the quotient Z×Z× (Z/qZ)

(cf. [13, Theorem 6.58]). It is easy to see that the associated α-representation π of
Z × Z is not square integrable.
In other words, the results in this paper does not apply to the discrete Heisenberg
group H(Z).

(3) R is a local field. If χ : Z → T is trivial, then ρ : H(R) → U(Vρ) factors through
R × R × {0}, hence it is one-dimensional. In this case ρ is not square integrable.
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If χ : Z → T is not trivial, then R → ̂R (r �→ χ(r ·)) is an isomorphism of
topological groups. In this case, by the Markey machine, ρ is induced from a
character of {0} × R × R and π : R × R → U(Vρ) is an irreducible square
integrable α-representation (cf. [13, Sect. 6.6] and [10, Proposition 12.3.2]). We
may take Vρ = L2(R) and take the group action to be

π( j, k) f (l) = χ(kl) f ( j + l),

for f ∈ L2(R). Then f ∈ L2(R) is a maximal spanning vector if and only if
∫

χ(bx) f (a + x) f (x) d x �= 0 for almost all (a, b) ∈ R × R. Such f has been
constructed explicitly in [6, 8]. Therefore if ρ is an infinite dimensional irreducible
representation of H(R), then ρ does phase retrieval. If R = R or R = C, this is a
special case of [15]. Note that the case R = R is well-known (cf. [6, 14, 16]), the
Gauss and Hermite windows satisfy the condition from Theorem 3.1.
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