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Abstract

In this paper, let €2 be homogeneous of degree zero which has vanishing moment
of order one, A be a function on RY such that VA € BMO(Rd ), we consider a
class of nonstandard singular integral operators, Tq, 4, with rough kernel being of
the form % (A (x)—A@Q) —VAQY)(x — y)). This operator is closely related to
the Calderén commutator. We prove that, under the Grafakos-Stefanov minimum size
condition GSﬁ(Sd_l) with 2 < B < oo for 2, Tq, 4 is bounded on LP(RY) for p

withl1+1/(B—1) < p <§8.

Keywords Singular integral operator - Calderén reproducing formula -
Approximation - Littlewood—Paley theory

Mathematics Subject Classification Primary 42B20

1 Introduction

We will work on R4, d > 2. For x € R? and 1 < n < d, we denote by x, the n-th
variable of x, and x’ = x/|x|. Let & be homogeneous of degree zero, integrable on
§9=1_ the unit sphere in R?, and satisfy the vanishing moment condition that for all
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1<n<d,
f Q(x/)x;,dx =0. (L.1)
Sd—l

Define the d-dimensional Calder6n commutator 6, , by

Q(x —
Caaf(x) =p.v. / ) = a() f )y,

Re X — y|at!

where a is a function on R? such that 9,a € L®(R?) for all n with 1 < n < d. This
operator was introduced by Calderén [2] and plays an important role in the theory of
singular integrals. For the progress of the study of Calderén commutator, we refer the
references [1, 2, 10, 13, 17, 25-28], [14, Chapter 8] and the related references therein.

Now let A be a function on R? such that VA € BMO(RY), thatis, 9,A € BMO(RY)
for all n with 1 < n < d. Let © be homogeneous of degree zero, integrable on S9!,
and satisfy the vanishing moment condition (1.1). Define the operator T 4 by

Qx —y)

oyt (AW = AW = VAW & = ) F0dy. (12

Toaf(x) = P~V-/
Rd

This operator is closely related to the d-dimensional Calderén commutator. For the
case of VA € L®(RY), the L?(R?) boundedness and the endpoint estimates of
Tq, 4 can be deduced from the L?(R?) boundedness of Calderén commutator. On
the other hand, for the case of VA € BMO(RY), Tq, 4 is not a Calder6n—Zygmund
operator even if Q € Lip(S¢~!). Cohen [6] first considered the mapping properties
of Tq, 4, and proved that if Q € Lipa(Sd_l) (@ € (0, 1]), then for p € (1, c0),
Tq, 4 is a bounded operator on LP(R4) with bound C|IVAlpmo(rd); see also [8] for
the LP (Rd) boundedness of an operator related to Tg, 4. Hofmann [18] improved the
result of Cohen, and showed that Q € L% (59~ 1) is a sufficient condition such that
Tq, 4 is bounded on L? (Rd ). Fairly recently, Hu, Tao, Wang and Xue [22] considered
the L? (R?) boundedness of Tq. 4 when € satisfies certain minimum size condition,
and established the following estimates.

Theorem 1.1 Let Q be homogeneous of degree zero, satisfy the vanishing condi-
tion (1.1), A be a function on R such that VA € BMO(R?). Suppose that
Q € L(log L)2(S91). Then Tq, A is bounded on LP(Rd)for all p € (1, 00).

There is, however, another typical minimum size condition for functions on §¢~1.
Let Q € L1(S?!) and B € [1, 00), we say that 2 € GSp(S9~!) if

sup / 1Q(6)| log? (L)de < oo.
resd-1Jsd-1 1< - 0]
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This size condition was introduced by Grafakos and Stefanov [15], to study the L? (R¥)
boundedness for the homogeneous singular integral operator defined by

Q _
Tof(x) =p.v. /R ) SO e ay (1.3)

lx — yl4

Grafakos and Stefanov [15] proved that if €2 is homogeneous of degree zero and has

mean value zero on S9! and Q € GSg (S4=1) for some B > 1, then the operator Tq

is bounded on L?(R?) for 14+1/8 < p < 1+ B. Fan, Guo and Pan [12] improved the

result of Grafakos and Stefanov, and proved that 2 € GSg (S9-1y for some B>1lisa

sufficient condition such that T is bounded on L?(R?) for 28/(28 — 1) < p < 2.
Let P,/ (x") be the Poission kernel on $9-1 that is

1—r2

/
Pry’(x ) = |ry/ —_x/|d’

where 0 < r < 1 and x’, y’ € §9~!. For a function Q € L'(S¢~1), we define the
radial maximal function

PTQ') = sup

0<r<l1

[, 2000y,

The Hardy space H'(S% 1), isa subspace of L' (S9~1) which contains all L'(S9~1)
functions €2 with the finite norms || 2| g1 (ga-1) = ||P+Q||L1(Sd—l), see also [9]. As is
well known, for 8 € [1, 00),

H'(8471) c Log L) (577" € GSp(s47).
Moreover, as Grafakos and Stefanov [15] showed,
(Np=1 GSp(STHN\H' (871 # 0.

Thus, it is natural to ask if Tq, 4 enjoys a L” (R?) estimate similar to the operator Tq
defined as (1.3) when Q € GSg(S?~!) for some B € (1, oo). Hu [20] considered this
question and proved the following result.

Theorem 1.2 Let Q be homogeneous of degree zero which satisfies the vanishing
moment condition (1.1), A be a function on R? such that VA € BMO(R?). Suppose
that Q € GSﬂ(Sd_l)for some B > 3, then Tq, 4 is bounded on L2(Rd).

In this paper, we will improve and extend Theorem 1.2. Our main result can be stated
as follows.

Theorem 1.3 Let Q be homogeneous of degree zero, satisfy the vanishing moment
condition (1.1), A be a function on R such that VA € BMO(R?). Suppose that
Qe GS,g(Sd’l)forsome,B > 2. Thenforpwithl +1/(B—-1) <p < B, Tq als
bounded on L? (RY).

Birkhauser
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To prove Theorem 1.3, we will first prove that T 4 is bounded on L?(R?) when
Qe GSp (Sd’l) for some B € (2, 00). To prove the LP?(RY) boundedness of Tq A,
we will show that, there exists a sequence of operators {R; 4};eN such that

(i) for p € (1, 2), R, is bounded on L?(R?) with bound CI?;
(ii) forany ¢ € (0, 1) and!/ € N,

1R14 — Ta.all L2 ey p2aray S 17PH2

This, via interpolation, leads to the desired L” (Rd ) boundedness of T 4. We remark
that in this paper, we are very much motivated by the work of Chen, Hu and Tao [4],
in which the authors established a suitable approximation for the Calderén commu-
tator with rough kernel, see also [30] for the approximation of homogeneous singular
integrals with rough kernels. However, the operator we consider in this paper is more
rough than the Calderén commutator, and the argument in this paper involves much
more complicated estimates and refined decompositions than that in [4].

This paper is organized as follows. In Sect. 2, we establish an endpoint estimate for
the operators which will be used in the approximation; we also give some facts about the
Luxemburgh norms in this section. In Sect. 3, we prove that T 4 withQ € GSg (891
for some B € (2, oo) can be approximated by a sequence of operators with smooth
kernels. Sect. 4 is devoted to the proof of Theorem 1.3.

Throughout this paper, we use the symbol A < B to denote that there exists a
positive constant C such that A < C B. Constant with subscript such as Cy, does not
change in different occurrences. For any set E C RY, x g denotes its characteristic
function. For a cube I € R? and A € (0, 00), we use £(I) to denote the side length
of 1, and AI to denote the cube with the same center as I and whose side length is
 times that of I. For x € R? and r > 0, B(x, r) denotes the ball centered at x and
having radius r. For a suitable function f, we denote fthe Fourier transform of f.
For locally integrable function f and a cube I C RY, (f); denotes the mean value of

fonl, thatis, (f); = [I|7" [, f(»)dy.

2 A Preliminary LP (R9) Estimate

Let K be a locally integrable function on R?\{0}, A be a function on R such that
VA € BMO(RY). Let T be an L*(R?) bounded operator, and satisfy that, for bounded
function f with compact support and a. e. x € R¢\supp f,

A — A — VA -
Taf(x) = f K(x -y 20— AD) W& royay. @)
R X —yl

This operator plays a key role in the approximation of T 4. The main purpose of
this section is establish the L? (R?) boundedness for the operator T4 whose kernel K
satisfies a minimum size conditions and minimum regularity conditions.
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2.1 Some Facts About the Luxemburgh Norms

We list some known facts about the Luxemburgh norms. Details are given in [29].
Let ¥ : [0, o0) — [0, co) be Young function, namely, W is convex and continuous
on [0, 00), ¥(0) = 0 and lim;_, 5, ¥ (#) = co. We always assume that W satisfies a
doubling condition, that is, W(2¢) < CW(¢) for any ¢ € (0, 00).

Let W be a Young function, and Q C R? be a cube. Define the Luxemburg norm
I IlLv o) by

|f(x)|
1f v = 1nf{k>0 |Q|/ )dx 51}_

It is well known that

1
@fQ‘P(If(x)I)dx <1 fllpwg <1,

and

(If(X)|>dx: i 0} = 20/ v (o)

(WA FR7%)) <1nf{u+ "

10|
2.2)

see see [29, p. 54] and [29, p. 69] respectively. For p € [1, o0) and y € R, set
Wy, y (1) = tPlog (e 4 1). We denote || f1l vy, oy as | fllLrog L), 0-
Let W be a Young function. W*, the complementary function of W, is defined on
[0, o0) by
W*(t) = sup{st — W(s): s > 0}.

The generalization of Holder inequality

ol / | FERIdx < [1f v gy 1Al v+ g, (2.3)

holds for f € LY(Q) and h € LY (Q). see [29, p. 6].
For acube O C R and y > 0, we also define Il fllexprr, 0 by

1 lesptr. Q_mf{t>o |Q|/ ('f(”') dyfz},

Asitis well known, for W (¢) = ¢ log(e+t), its complementary function W*(r) ~ e’ —1.
Let b € BMO(R?). The John—Nirenberg inequality tells us that for any 0 ¢ R? and
p € [l, 00),

|||b - <b>Q|p||expL1/l’,Q 5 ”ngMO(Rd)

Birkhauser
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This, together with the inequality (2.3), shows that

ol f Ibx) = (B) ol 1h()IPdx S AT pog e o Wolyomey 24

2.2 The LP(RY) Estimate for T4

We need a preliminary lemma.

Lemma 2.1 Let A be a function on R? with derivatives of order one in L1(R?) for
some q € (d, oo]. Then

|[AG) =AW S e —y <|Iy / IVA(z)quz) ;

where 1} is the cube which is centered at x and has side length 2|x — y|.

Lemma 2.1 is just Lemma 1.4 in [3].
To obtain the L? (R?) boundedness of T4, we need the following endpoint estimate.

Theorem 2.2 Let K be a locally integrable function on R?\{0}, A be a function on
R? such that VA € BMO(R?). Let Ty be an L*(R?) bounded operator with bound
no more than 1 and satisfy (2.1). Suppose that

(i) for each n with 1 < n < d, there exists an L2(RY) bounded operator T"™ with
bound no more than 1 and satisfies that for bounded function f with compact
support and a. e. x € R¥\supp f,

n Xn — Yn
T"f(x) = / K(x—y) Fdy;
Rd lx — yl

(ii) for each R with) < R < 09,

/ |K (x)|dx < 1;
R<|x|<2R

(iii) for each R > 0 and y € R? with |y| < R/4,

e8]

ZZ/ K (x — y) — K (x)|dx
1= J2R<|x—y|<2I+1R

IA

Then for ). > 0 and bounded function f with compact support,

|fE\X)| log (e+ IfiX)l)d

x e RY : T4 f (o)) >A}|</
Rd

Birkhduser
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Proof Theorem 2.2 can be proved by mimicking the proof of Theorem 1 in [23]. For
the sake of self-contained, we present the main step of the proof here. Without loss
of generality, we assume that ||V A|gpore) = 1. For given bounded function f with
compact support and A > 0, we apply the Calderon-Zygmund decomposition to f at
level A, and obtain the following decomposition of f

f=g+b=g+) b
J
such that
@) llgllro@ny S Aand llgllpirey S IFIL RnyS

(b) for each j, b; is supported on a cube Q;, and cubes {Q;} are pairwise disjoint,
fQj bj(x)dx =0and ||bj|lL1gn S A Qjls

(C) Z] |Qj| S, )"_l”f”Ll(Rn).
The inequality (2.2) now tells us that

. N e
;|Q1|||b]||LlogL,QjS;lQﬂ(A‘l‘|Q o, A log<e+ 3 )dx)

5/ [EACYI T <e+ |f(x)|)dx. 2.5)
]Rd A, )\

By the L2(R?) boundedness of T4, we deduce that

(x € RY: |Tag@)] > /2l S A2 NTagljoay S 27 N F ey (2:6)

To estimate T4b, we set E = U;4d Q;, and
d

Aj() =AQ) =Y (9nA)Q;Vn-
n=1
It then follows that for x, y € R4,
Ax) = AQY) — VAW —y)=A;(x) —Aj(y) = VA; () (x — y).

For x € R4\ E, write

Aj A;
Tab(x) = Z f K(x (T)—y((”bm)dy

—Z/ —y) = S @A) — (9aA)g,)bj (dy
J
— ZTAb (x) — ZT”(Z(& A — (3,A)0,)b; )(x).

Birkhauser
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Recall that 7" is bounded on L2(R?). Our assumption (ii) implies that 7" is also
bounded from Ll(Rd) to L% (RY). As in [23, p. 764], an argument involving
inequality (2.4) with p = 1 and (2.5) leads to that

xeRY: T”(Z(B,,A _ (anA)Qj)bj)(x)‘ > 1/4
n=1 Jj
d
<Y |ixer?: T"(Z(anA - (8nA)Qj)bj>(x)‘ "
n=1 j
ZZn(a A= (82A)0))bj |l 1 iy S ZlQ,mb lztogz, 0;
n=1 j
5/ [EAC2 e <e+ |f(x)|>dx. 2.7)
Rd )\. )\

We now estimate ) _; T1b;. For each fixed j, we choose x/ € 30;\2Q ;. Observe
that

Kx— MO ZAD) _XJ)M
|X—Y| IX—xJ|
<K — y)— K(x — xR =AW
lx =yl
HIK (x — x%)] Ajx) —A;(y)  Ajx) —A'j(x/) .
lx — vl |lx — x/|

For x € R?\E, by the vanishing moment of b 7» we have that

A _A:
IT)b; ()] sf K= y) — K(x — )AL Z A,
R4 [x —yl

+HIK(x —x)IIAj(x) — Aj (xj)l/ |2| iMldy
,)|/ |A; (y) Aj (xj)l

+IK(x —
= 1) 411 (x) +IH](x).

1bj(y)ldy

For each y € O, we know that

Ix/ — yl
(VA)g, = (VA) | < log (e+ W) .

Birkhduser
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It then follows from Lemma 2.1 that, for y € Q,

xJ

1/q
|Aj(x)) — A S Ix/ =yl ( /1 IVA(z) — <VA>Qj|qu>

y
7

1/q
. 1
<l =yl — / VAR) — (VA)» [dx
1l

xJ/

+ixl = yIl(VA) g, = (VA) |

; Ix/ — |
J _ - 7 .
S =yl (1 + log <e+ Q) )) SQ)),

since |x/ — y| & €(Q ;). Therefore,
|K (x — x/)|ﬂdxdy
lx—y

o0
I () dx < €00 1/
Ad\4de ! g g Q/ |

j \/Z‘H'ldQ_j\zlde
S Bl Ray-

Forl > 2,x € 2!t1g Qj\ZZd Q;jandy € Q;, another application of Lemma 2.1 leads
to that

|Aj(x) — A0 Sllx —yl, 1Aj(x) — A; ()] Sllx — x7).

This, in turn, implies that

o0
f I (0)ldx S Zl/ / K (x — y) = K (x — x/)|dx|b; (y)|dy
R\4dQ; 1= JQ;J2tdQ;\2dQ,

S Bl L Rays

and

ly — x|
—dxlb; ()ldy

(0.¢]
f |IIj<x)|dx§ZIf / K (x —x7)|
RI\4dQ, = Jo; Jaragp2lao; lx — yl

S D11 rays
Combining the estimates for I;, II; and III; leads to that
Hx eRNE: Y Thbj(x)] > ,\/4}‘ < 437! Z/ T} b (x)ldx
: — JRN\4Q;
J J

-1
S AT I ray-

Birkhauser
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This, along with estimates (2.6)—(2.7) and the fact |E| < || fl .1 (Rd) Yields our desired
conclusion. O

We are now ready to give the L? (R?) boundedness for T4.

Theorem 2.3 Let K be a locally integrable function on R?\{0}, A be a function on
R? such that VA € BMO(R?). Let Ty be an L*(R?) bounded operator with bound
no more than 1 and satisfy (2.1). Under the hypothesis of Theorem 2.2, Ty is bounded
on LP(R?) for all p € (1, 2] with bound C.

By a standard interpolation argument (see the proof of Corollary 1.3 in [22]),
Theorem 2.3 follows from Theorem 2.2. We omit the details for brevity.

3 An Approximation of Tg 4

In this section, we will show that T, 4 can be approximated by a sequences of operators
with “smooth kernels”. We first recall the definition of Calderén—Zygmund kernel.

Definition 3.1 Let I' be a locally integrable function on R¢\{0}. We say that T is a
Calder6n—Zygmund kernel, if

(i) forall x € R9\{0},

1
rel S —s
P@IS o

(i) for x, y € R? with |x| > 4]y],

[yl

— — < 7
P& =0 =TS

Lemma 3.2 Let " be a function on R4\ {0} which satisfies the following conditions:

(1) T is a Calderon—Zygmund kernel;
(i) forallr, RwithO <r < R <ooand1 <n <d,

/ I'(x)x,dx = 0.
r<|x|<R

Let A be a function on R? such that VA € BMO(RY), and Tr.a be the operator
defined by

A(x) —AQy) - VA —y

)f(y)dy-
|x — ¥

Traf(x)= P-V-/ F(x—y)
R4
Then for all p € (1, 00), Tt 4 is bounded on LP(RY).

Birkhduser
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Proof Let C4 be the operator defined by

Alx) —A®)

Caf(x) = p.v. / P —y) FO)dy.
R4 [x — y|

As it was pointed out in Theorem 1.1 in [24] that, under the hypothesis of Lemma 3.2,
the estimate

ICAf NI ey S NV AllLaway I f | Lp ey, (3.1

holds true for p € (1, oo) and g € (1, oo] with 1/r = 1/g + 1/p, see also [1] for
the case that K is a homogeneous kernel. With this estimate, repeating the proof of
Corollary 1.2 in [6], we then can deduce the L? (R%) (p € (1, o0)) boundedness of
Ta. O

Lemma3.3 Let¢ € Cg° (R?) be a radial function such that suppo C {1/4 < |E] < 4}
and

Y #ee =1, |5 >0.

leZ

Let ® = a, A be a function on RY such that VA € BMO(R?). Define the operator
Sj;A by

Sjaf(x) = /R M) (x — (A — AG) ~ VAG) & — 1) f(dy.

Then
ooy
(1278500 )| s S 1 i2ca), (3:2)
JEZ L®%
and
. 12
Jjg. . < 12
H %2 S’;Af" L2Rd) ™~ H(Z 1751 ) ‘ L2(RY)’ 3:3)
j j

Proof We only prove (3.2), since (3.3) can be deduced from (3.2) by a standard duality
argument. On the other hand, by the well known randomization argument (see [11, p.
545]), to prove (3.2), it suffices to prove that for all {;} ez with e; = £1,

H Zszij;Af‘

JEZ

2wl S Cllfll 2wy (3.4)

and the bound C is independent of {¢;}.

Birkhauser
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Lete; = %1 (j € Z), and

Ki(x) =) 2/ D020 x). 3.5
JEZ
By the fact that
: 1
|22/ S

(1 + [27x])d+2’
we know that for each x € R?\{0},

Kil < Y 2o+ Y 29T elin) S kTl
ji2i<lx|~! ji2i>|x|~!

(3.6)

On the other hand, by the smoothness of @, it is easy to verify that for x, & € R4 with
|x| > 41hl,

h
|K1(X+h)—K1(X)I§|x||T|+2- (3.7

Since @ is also a radial function, it certainly enjoys vanishing moment of order one.
Thus, forall0 <r < R<oocand 1 <n <d,

/ Ki(x)x,dx = 0. (3.8)
r<|x|<R

Estimates (3.6)-(3.8), via Lemma 3.2, leads to our desired conclusion. m]

Lemma3.4 Let¢p € C° (R?) be a radial function such that supp ¢ C {1/4 < |€| < 4}
and

Y #ee =1, |g>0.

leZ

Let S; be the operator defined by

S @) =078 F (&)

Then
() for b € BMO(RY), we have that

(X si1r7) "

JEZ

Sz ray;

L2(RY)

Birkhduser
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where and in what follows, for a locally integrable function b and a linear operator
T, [b, T] denotes the commutator defined

[b, T1f(x) =b(x)Tf(x) —T(bf)(x);

(i) for function a on RY which satisfies that Va € L™ (R?), it follows that

H(Z 12/]a, Sj]f|2)l/2‘
JEZ

S F N2 way-

L2(RY)

Proof Conclusion (i) is just[19, Lemma 1]. To prove conclusion (ii), let ® = a and K
be the function defined by (3.5). Estimates (3.6)-(3.8), via (3.1), leads to conclusion
(>i1). O

Remark 3.5 Conclusion (ii) of Lemma 3.4 was first proved by Chen and Ding, using
a different argument, see [5, Lemma 2.3].

Lemma3.6 Let§ € (0, 1), € Z and D > 0 be constants, m be a multiplier such
that suppm C {|&| < D™'2%}, and

Il oo gey < D™ min{(62")%, log~# (e + 2"},
and for all multi-indices y € 74 ,
107 m |l oo (may < D= max(1, 2711},

Let A be a function on R? such that VA € BMO(Rd), and Ty a be the operator
defined by

T af(x)=p.v. /Rl O(x — y)(A(x) — A(y) — VAW (x — y)) f(»)dy,
with © the inverse Fourier transform of m. Then for any ¢ € (0, 1),

T4 f Nl 2 ey S min{ (829572, Tog =T (e + 2D} £1l 12 gay - (3.9)

Proof The argument here is a variant of the proof of Lemma 3.2 in [4], together
with some refined estimates of Luxemburg norms. We assume that ||V A|lgpore) =
1. Set E = min{(62))%, log™P(e + 2))}. Let ¢ € C{°(R?) be a radial function,
supp¢p C B(0, 2), ¢(x) = 1 when |x| < 1. Set p(x) = ¢(x) — ¢(2x). Then
suppe C {1/4 < |x| <4} and

Z(p(Z_jx) =1, |x| > 0. (3.10)
JEZ

Birkhauser
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Let ¢;(x) = @(27/x) for j € Z. Set
W;(x) = 0x)g;(x), j €

Let T, ; be the convolution operator with kernel W;. Observing that for all multi-
indices y € Z%, 37 ¢(0) = 0, we thus have that

f P&)E7ds = 0.
R4

This, in turn, implies that for all N € Nand &€ € R,

W= [ (ne=27m— X Zarm© " oy

lyl<n "~

<2 /ED 3 ||an||Loo(Rd)/d|n|N“|$(n)|dn
ly|l=N+1 R

<27 INED DN max (1, 27/ N+Dy, (3.11)
On the other hand, a trivial computation yields for j € Z,
||W//\j||Loo(Rd) = ||m||Lw(Rd)||@||Ll(Rd) 5 DilE- (3.12)
Interpolation inequalities (3.11) and (3.12) gives us that for ¢ € (0, 1),
”ﬁ/\j”Lm(Rd) < o i(N+D(=e) pNU=e)=e () p~I(N+Dyl=epe (3 13)

We now prove (3.9). Let T, ;. o be the operator defined by
T f @ = [ Wyt = 3)(A00) = 40) = VAG)x = ) f ).

For e € (0, 1), let F, = min{(62/)¢, log~¢f*!(e 4 2)}. We claim that for all j € Z
and N e Nand e € (0, 1),

1T jia fll2gay S @7/ DYNU= " log(e + 2/ D™ F,
x max{1, 27/ NVHEDY=EY £ gy (3.14)
Observe that supp W; C {x : |x| < 2/2}. If I is a cube having side length 2/, and
f e L*(RY) with supp f C I, then Tn,j f C 100d1. Therefore, to prove (3.14), we

may assume that supp f C I with I a cube having side length 2/. Let x( be a point
on the boundary of 20047 and A} (y) = A(y) — ZZ:I (9, A) 10041 Yn», and

Ar(y) = (A7) — A7 xo) 1 (),
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where ¢; € CSO(R‘{), supp¢ C 150d1 and ¢ (x) = 1 when x € 100d1. Observe that
V¢l Looray S 277 An application of Lemma 2.1 tells us that for all y € 100d1,

|A1(y) — Ar(x)| S 27.
This shows that
1AL oo ey S 27

Write

d

T, jsaf () = Ap(0) T, j f (x) = T, j (A1 f)(x) — Z[hn, T, j1(f 3, AD(x),

n=1

where h,, (x) = x, (recall that x,, denotes the nth variable of x). It then follows from
(3.13) that

NA1 T, j fllz2@way + 1T, j (A1 L2
S @ DM max(1, 27N E fll gy (315)

Applying the John—Nirenberg inequality, we know that

2
100 At lexpri2, 1 S 1.

Recall that supp [h,, Ty, j1(f0, A7) C 100d1. It then follows from inequality (2.4)
that

”[hm Tm’]](fanAI)”Lz(Rd) = sup
”g”LZ(]Rd)Sl
< ”f”LZ(Rd) sup ||8nA1[h,,, Tm,j]g”LZ([)
”g“LZ(R([)S]
supp gC 10041

/R AL f ). Tyl ()

1/2
2
< I/ g2geay (111 sup ]||[h,Tm,j]ganaogL)z,,) :
Hg”LZ(Rd)S
supp g C100d 1

Now let g € L2(R9) with lgllz2rey < 1 and supp g C 100d1. Observe that
IWjll ooy S llmllprgay S 24D~ E,
which, via Young’s inequality, implies that
1Tm, &l ooy S W)l ooy gl L1 ey S 2 D™ Ellgllp grays
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and so
10U, Ton 518 ooty S 2927 D47 Ellgl 1 gy S 292/ D471 E2U2,
since
el ey S 2 llgl p2@ey S 2972,

On the other hand, we deduce from (3.13) that

s T 18N 2y S 2701 Tm, 8 1l 12 ey
< @I DYNI=O=E max{1, 27NV B2 o] 15 oy

Set
o =[@ D)V~ 1082 (e + 2/ D) Fy max{1, 27/ (V+DyI=e]Pp-id,
A straightforward computation tells us that

[[An, Tm,j]g(x)|>
—m dx

< (1og2(e+2fD—1)+max{1, l})/|[hn, T, j18(0)|2dx
1

/ s Ty 115 (0P log? <e+
1

< [@ D)V F, max{1, 27/ VD179 1002 4 21'13—1)]2
< )L()Zjd,

~

since E¢ max{l, I} < F,, and

I x1lhn, T, ;18 oo ey

7o

5 (ZjD_l)d+l(2jD_1)N(1_8)_€2d1F8_1.

This tells us that
”[hm Tm, j]g”L2(10g L2, 1 /S \/)T’
and thus

1, T 100 AD N 2Ray S @7/ DYV Tog(e +2/ D7)
x F, max{1, 2_I(N+l)}l_8||f||L2(Rd)'
(3.16)

The estimate (3.14) then follows from (3.15) and (3.16).
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We now conclude the proof of Lemma 3.6. It suffices to consider the case ¢ €
(4/5, 1). Let G, = min{(62))¢/2, log~¢#*+1(e 4+ 2!)}. For each fixed ¢ € (4/5, 1), we
choose Ni, N> € N such that

& 5¢/2 -1
< Ni <4 Ny(1—¢)—¢e <.
—¢

1—¢
Observe that
F, max{1, 27/ Mi+)1=¢ < G F max{1,27/MH+D)l-¢ < G,

A straightforward computation shows that if

Twaflzes S D, T jafliees+ Y. 1T afll2e)
j:2=iD<1 j:27iD>1

S ) @Dy logle + 2D HGe |l Il 12 ray
j:2-iD<1

+ Y @D log(e + 2/ DGl f 1 2o
ji2=iD>1
S Gell fll 2wy

This completes the proof of Lemma 3.6. O

Lemma3.7 Let§ € (0, 1), ] € Z and D > 0 be constants, m be a multiplier such
that suppm C {|§] < D12}, and

lmll oo gey < D™ min{(62')%, log™F (e + 2"},
and for all multi-indices y € 7.4,
197 mll oo ey < D1~ max{1, 27171y,
Let Ty, be the multiplier operator defined by
Tuf (&) = mE)F&).
Then for any b € BMO(R?) and ¢ € (0, 1),
116, Tl fll2rey S D' min{(82)%*, log=#*! (e + 2)}1bllpmoma I f Il 22y -

Proof Leti(£) = Dm(2' D~'£) and Tj; be the multiplier operator with multiplier 7.
We know that supp i C {|§] < 1}, and

||"~1||L00(Rd) < min{(52l)2, l()g_/S (e + 21)}’
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and for all multi-indices y € Zd,
197 7l oo may S 1-
Applying Lemma 2 in [19], we then obtain that
16, Tl fll 2 ey < min{(82)%¢, log™* (e + 20} 1Bl pmogea I £ 1l 2 gre)-

This, via dilation-invariance, implies our desired conclusion and then completes the
proof of Lemma 3.7. O

Theorem 3.8 Let 6 € (0, 1) be a constant, {11} ez be a sequence of functions on
R4\ {0}. Suppose that for some B € (2, 00),

Il ey S 277, 15 E)] < 277 min{|827& %, log ™ (e + [27&])},

T d

and for all multi-indices y € Z+,
||aVﬁ7||LOO(Rd) < 2JjyI=D

Let u(x) = Zjez wj(x) and T, A be the operator defined by

Tyuaf(x) =p.v. /Rd px = y)(A) = AQ) = VA (x = y)) f(»)dy,
where A is a function on R? such that VA € BMO(R?). Then for any € € (0, 1),
1T af 2 eay S log™ P2 (e + 87 DIfll2re)-
Proof 1t suffices to consider the case ¢ € (1/2, 1). Let T be the operator defined by
Tf(x)=p.v. /Rd px —y) f(y)dy.
It is easy to verify that for & € R?,

BOISEL Y log Ple+2Ep+1E2 > 2 Sl

Jji27>[g7! j:2<lglt

This in turn, gives us that

fw IT7@Pds 1172 gy
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and
fRd E12ITF O PdE S 1117y

where || f|| L2(Rd) is the homogeneous Sobolev norm defined as

1175 gy = /R HERGIRS

Let U; be the convolution operator with kernel ;, and ¢ € Cg° (R?) such that
0<¢ =<1, suppep C{l/4 <|§] <4}and

Y #e e =1, gl >0.

leZ

Setm (§) = [, (§), and mll/.(é) = mj($)¢>(2j’1$). Define the operator Uj. by

UL F @) = mh@ F6).

Let S; be the multiplier operator defined as in Lemma 3.4. We claim that for functions
f. 8 €CPMY),

/R 8T af(0dx = fR dg(X);Z(Szijszfj)Af(x)dx, (3.17)
J

where and in what follows,
(Sl—jU/l'Sl—j)Af(x) = /Rd L(x —y)(A(x) — A(y) = VA (x — ) f(»)dy,

with L the kernel of the convolution operator S ; U]l. S;—j. We define U ]l 4 similarly.
To prove this, let R > 0 be large enough such that supp f U suppg C B(0, R). Let
¢ e C(‘)’O(]Rd) suchthat0 < ¢ <1,¢ =1o0on B(0, R) and supp¢ C B(0, 2R). Set

d
AR() = (A®) = Y _(9nA)B0. RYYn)E ().

n=1

Then

/ g(X)Tu,Af(X)dx:/ g(X)AR(X)Tf(X)dX—/ 8T (AR f)(x)dx
Rd Rd Rd

d
-y / g(0)[h, T1(fd,AR)(x)dx,
n=1 R?
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where the function £, (x) = x,. Note that 4, f9,Ag € Lz(Rd ). It then follows that

/R 8, TI(f I AR)(x)dx = /R dg(x)leZ[hn, Si—jU}S1-j1(f 3, AR) (x)d>x.

J

Since gAg, fAR € L%(RY), we also have that
/R [ 8WARCTS (x)dx = /R JEWARC) Y Y S jUSI-j f(x)dx,
Lo

/R 8T (AR f)(x)dx = /l‘& L 8) le Z Si—jUS1-j(fAR)(x)dx.
J

These three equalities lead to (3.17) directly. _
Now we estimate (S;_; Uj. Si—j)a f. Obviously, supp mlj c {|g] <2/77*2} and

m’,(&)] < 27/ min{(82")%, log™# (e + 2")}.
Furthermore, by the fact that
|3V¢(2j*lé)| < 2(]*1)|V|7 |3J/mj(§)| < 2j(\}/|71)’
it then follows that for all y € Z4,
|8lej(§)| < 2j(|V|_l)max{1, 2—|yll}_

This, via Lemma 3.6, tells us that

U o fll2@ey S min{(82)2, log™#* e + 20} fll 2y (3.18)
Also, we have that

UL fll2@ay < 277 min{(82))%, log ™" (e + 2} £l 12 ra)- (3.19)
For fixed j, [ € Z, write

(S USSI-Daf(x) = Si—jaUiSI—j /)(x) + S;US1-j)af (x)

d
+ ) Tha, S 100, A, USSi—i1)(x)

n=1

d
=100 + 10 () + )" f(x).

n=1
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We now estimate terms Ilj, IIlj and IIIlj’". Inequality (3.3) in Lemma 3.3, along with
(3.19) leads to that

HZSI ]A(U S ;f)‘ <222(1 l)”U Si- Jf||L2(R”’)

L2(RY)
< 2‘21 min{(82)?, log ™" (e + 201 £ 117 ga)-

Therefore,

3{po]
J

Y !
pan S (2 P48 2 D)l

l>logf [<log%
—B+1 -1
Slog Pt (e + 87 I Il 2 ay-

For each fixed j,! € Z and n with 1 < n < d, it follows from Lemma 3.7 and (3.19)
that

||[8nA U St J]f||L2(Rd) ” [9n A, U 181 Jf||L2(Rd)+ “U [0, A, Si— J]f“L2(Rd)
< 277 min{(82)%7, Tog™ "+ (e + 20181 £ 172y
+27/ min{(82")*, log™# (e + 2)}I[8n A, Si— /1 £l 2Ry

which, along with Lemma 3.4, implies that

HD[hn, S 10,4, VLS 11

LZ(R"') < 222(j ) H[a”A U Sl ]]f”LZ(Rd)

< 27 min{(62)%, log™#* (e + 2DV f117 > -

Thus,

22w

g S ( Z [EB+l 4 s2 Z 2(46_2)l)||f”L2(]R‘1)

I>log -1 7 I<log %
Slog 2 + 8 DI fll 2 ma)-

As for term IIlj , write

d
WULSIpaf = Ul oS i f +ULSZjaf + D [hn, USN(00A, Si—1f).

n=1
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It follows from Littlewood—Paley theory and (3.18) that

2
I 1 2
| 221U aSi=i |y 20N S
J J
< min{(62)°72, Tog™ "+ e + 221 f 172 gy

Again by Lemma 3.3 and (3.19), we deduce that

2
7! . l . 2
H E $i-jUjSi=.AT| 2 gy < E NU5S1—j.a f 72 gay
J J

< 27 min{(82)?, log ™" (e + 2D P11 £ 17 2 ay -

Similar to the term IIIlj’", we have that foreach 1 <n <d,

2
L2(RY)

| 3 si-stha, UliG004, 12519
J

S D M, USIA0,A, S 16172 gay
J
< 27 min{(82)*, log=*! (e + 2011 £ 17 2 ey -

Therefore,

< log~#*t2(e + 5_1)||f”L2(]Rd)'

L2(Rd)

a{pot]
J

The estimates for Ilj, Hlj and IIIlj’” above, via (3.17), leads to our desired conclusion.

We are now ready to establish our main result in this section.

Theorem 3.9 Let Q be homogeneous of degree zero, satisfy the vanishing moment
condition (1.1) and Q € GSg (Sd_l)for some B € (2, 00). Let A be a function on R4
such that VA € BMO(Rd). Then there exists a sequence of operators {Rj a}ien such

that
(1) Ry, 4 is defined as

Ax) —AQY) — VA (x —y)
|x — ¥l

Riaf(x) =p.v. fR | K'(x—y) Fdy,

the function K! satisfies the size condition that for 0 < R < 09,

/ 1K' (x)ldx S 1,
R<|x|<2R

Birkhduser



Journal of Fourier Analysis and Applications (2024) 30:50 Page230f40 50

and the regularity that for all R > 0 and y € R¢,

o0

o[ Rl —y) — Rl )ldx S 1%
2

m=2

MR <|x—y|<2mtIR
(ii) for each fixed n with 1 < n < d, the operator W;' defined by

Xn — Yn
> fdy
|x — ¥

W/ f(x) =p.v. / K'x—y)
]Rd

is bounded on L*(R?) with bound independent of I;
(iii) for each fixed ¢ € (0, 1),

IR, A — Ta,all 2gey S 1PF2 (3.20)

Proof For j € 7, let K;(x) = uﬂ%x{wﬂxky}(m. Let ¥ € CP(RY) be a
nonnegative radial function such that

Supp ¥ C [x : |x| < 1/4), /d Yoy = 1.
R
For j € Z,set yj(x) = 2_dj1p(2_jx). For a positive integer [, define

Hi(x) =Y Kj 9 1(x).

JjEZ

Let R; be the convolution operator with kernel Hj. For a function A on R with
VA € BMO(RY), denote

Riaf@ =pv. [ HiG =A@ = AG) = VAG) =) f0)d.
Now we prove (3.20). Write

DK — Hix) =Y (Kj(x) — Kj# ¥ (0) =) juji(x).

JEZL JEL JEL

The fact ¥ is radial, implies that, for n with 1 <n <d,
/ Y (x)x,dx = 0.
R4

From this we know that forA allnwithl <n <d, 8,11//7 (0) = 0. By Taylor series
expansion and the fact that ¥ (0) = 1, we deduce that

[y (27 ~'g) — 1] < minfl, 277 ¢]?).
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On the other hand, as it was proved in [15], we know that when Q € GSﬁ(Sd’l) for
some B € (1, 00),

;&) S 277 min{1, log™# (e + 27&))},
which, in turn leads to following Fourier transform estimate

&) = 1K;@&NP Q) — 1] S 277 min{log™# (e + [27&]), 1277 ?).
(3.21)

On the other hand, a trivial computation shows that for all multi-indices y € Zf{_,
107 K1l ooty S 18201 1 g1y 271704,
and so for all £ € R,

YIS D KO0 QTE)] S 1 ga-1y 2 YD
Vi+y2=y
(3.22)

Let El(x —y) = H;(x — y)|x — y|. The Fourier transforms (3.21) and (3.22), via
Theorem 3.8 with § = 27/, lead to (3.20) directly.
We now verify conclusion (i). For each fixed R > 0,

—1
[ @IS Y UK -l S R
R<|x|<2R ji2i~R

On the other hand, for R > 0 and y € R? with |y| < R/4,

/ | Hi e — y)lx — yl — Hy(olx]|dx
2mR<|x—y|<2m+1R

<

/ [Hi(x —y) — H(x)|lx — yldx
2mR<|x—y|<2m+1R

+yl |H(x)|dx
2=l R<[x|<2m+2R

52’"Rf Hi(x — y) — Hi(oldx + 220
2’"R<|x—y|§2m+lR 2mR

Observe that
W= = ¥) = YOl ey S minfl, 2777 y[}.
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Young’s inequality now tells us that

f Hi(x — y) — Hi(0)ldx
2mR<|x—y|<2m+1R

SO K@ lvi—iC = ¥) = YOl ge)

j:2j%2’”+1R
< @"R)" ' minf1, 2/7™}.

This, in turn, implies that

o0
S Rl — ) — Rl () ld
2’"R<\x7y|§2’"+]R

m=2

o0 o0
<Y mmin{l, 27" 4+ > w2 <12
m=2

m=2

Finally, for each fixed n with 1 <n <d, let

Y/ ) =pov. /R (XK =) = Hilr = )@ = 3) F0)dy.

JEL
The estimates (3.21) and (3.22), via [4, Theorem 3.4], state that
1Y fll 2y S 1N L2way-

For 1 <n <d, let T be the operator defined by

Toh(x) = p.V./ R =)0 = In) i (3.23)

R Jx —yldt

It is well known that T is bounded on Lz(Rd). Note that

p.v. /Rd ZKj(x = V) — yn) f(Ndy = Tg f (x).

JEZ

Therefore, W is bounded on L2(R9) with bound independent of /. This completes
the proof of Theorem 3.9. O
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4 Proof of Theorem 1.3

Letp € Cgo (R9) be a radial function which satisfies (3.10), pjx) = (p(Z_j x). For
each fixed j € Z, set

To, a1 (X) = /Hé Ko ) FOM,
where

Qx —y)

Ky, jx, y) = PprE (A@) = AQY) = VAW (x = »)e; (1x — ).

Letw € Cgo (R?) be a radial function, have integral zero and suppw C B(0, 1).
Note that @ is also a radial function on R¢. Let Q, be the operator defined by O, f (x) =
w; * f(x), where w;(x) = t 4w (t~'x) for t > 0. We assume that

/ [@(m@ =1
0 N

The Calderén reproducing formula

/ Q4ds = @1

then holds true. Moreover, the classical Littlewood—Paley theory tells us that for all

p € (1, 00),
d 1
() 10 )’

It is well know that for b € BMO(R?) and p € (1, 00),

([T 0522’

For a function Q € Ll(Sd_l), define the operators W ; and Ug ,, j by

f, ||f||LI’(Rd)~ 4.2)

LP(R4)

< d . .
Ll Ibllsmo®a) 1 f Il r (e 4.3)

20— y)
Wa. ih = _ h(y)dy,
a0 = [ s = ho)dy

Qx —y)(xn — yn)
Ug.n ih(x) = i(x —y)h(y)dy, 1 <n<d.
o) = [ FED I oy, 1<

Lemma 4.1 Let Q2 be homogeneous of degree zero, and Q € GS,g(Sd_l) for some
B € (1, 00), then for j € Z and s € (0,27],

10sWa, j fll2@ay S 277 log (e + 27 /) £l 12 ey (4.4)
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and
1QsUq, i f 2@y < log P (e +27 /) Fll 2 gay- 4.5)
Furthermore, for b € BMO(R?), j€Zands € (0, 271,
|6, QsUgn, 1] 12ray S log™#F (@ + 27 /)11 Fll 2 ray. 4.6)
Proof Inequalities (4.4) and (4.5) were proved in [4]. We now prove (4.6). We may
assume that ||b|lgvo(rey = 1. By dilation-invariance, it suffices to consider the case
j=0ands € (0, 1]. Let R4 = U, I;, where ; are cubes having disjoint interiors, and

side length 1. For each fixed /, let f; = f x;,. Observing that supp Q,Uq o fi C 20d1;,
and Q;Ugq .0 f; have bounded overlaps, we then have that

1B, QsUg n 01 f 17250y S D 1B, QsUn01 fill7 2y
1

Thus, we may assume that suppf C I, with I a cube having side length 1. An
application of the inequality (2.4) gives us that

f 1bG) = )1 P10 U of () Pdx < 1QsUn0f 17205 12 20a1-
. :

Now let 1o = log™#*1(e + 1/s), h be a function on R? such that supp & C 2041 and
A1l L2ray = 1. Observing that ||| 11 gey S 1, we then get that

1QsUqnohll gy S 5~ NUqmohlligay S s Al ey S 579
and for any x € 20dI and s € (0, 1],

| Qs UQ,n,Oh(x)| S

s~ logf e+ 1/s) <5791
A0

A straightforward computation involving estimate (4.5) leads to that
Ug noh()]\* Ug n0h
f <|Qv Q,n,0 (x)|) 10g2 (e+ [0sUq.n,0 (X)|)dx
20d1 Ao Ao
1
S ﬁHQsUsz,n,ohH%z(Rd) log*(e +1/s) < 1.
0

Therefore,

1QsUq.n,0ll L2008 1)2,20a1 S H0-
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This, via inequality (2.4), yields
116 — (b)11 QU ohll 2 gy < Rolllll 2gey- @.7)
We also have that
105 Um0 — BYD) Pll 2y S 2ol £ll 2 ge)- 4.8)
In fact, a standard computation leads to that
195U n,0((b — (D)) )l 12(ra)

/ QsUq.n,0((b — (b)) f)(x)g(x)dx

Hg”LZ(Rd)

= / OsUq 0,008 x20a1)(x) (b(x) — (b)) f (x)dx
HgIIL2<Rd)

< sup ([ fllLz@ay I — (D)) QsUq n.0(8 x20a1) |l L2 (Rd)s
gl 2 ga) =1

which, along with (4.7), implies (4.8). Combining estimates (4.7) and (4.8) yields (4.6)
for the case of j = 0, and completes the proof of Lemma 4.1. O

Proof of Theorem 1.3 The procedure follows two steps. At first, we prove the L2(R%)
boundedness of T4, by following the argument in the proof of Theorem 1.3 in [17],
together with some refined decomposition and estimates for Tg 4. Then we prove
the L” (RY) boundedness, using the approximation established in Sect.3. Again, we
assume that ||VA|lgyomaey = 1.

We now prove the L>(R) boundedness of To 4. By the Calderén reproducing
formula (4.1), it suffices to prove that for f, g € Cgo (Rd),

o0 t d d
4 4 s dt
A Ad QXTQ,AQtf(x)g(x)dx?T‘ S I @y ligl 2 @ey;  (4.9)

and

i (O TQ,AQtf(x)g(x)deT S I ll2@ayllglp2gay-  (4.10)

We first prove (4.9). Let o € (Z—ié, 1) be a constant. For each fixed j € Z, let

Fii=1{(s,0):0<t<2/,0<s<t},

Fio={(s,0):2 <t <o00,0<s< @ Hl/ey,
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and
Fiz={(s,0):2 <t <oo, @ Hhle <5<}

Fork =1, 2, 3, set

dsd
Eclf, &) = Z//XFM /Rd QsTsz,A;ijf(X)Qfg(x)deSTt,

J€EZ

with
Qx—y)
Tq 4 = fRd m(ﬁj(lx —yD(A(x) — A(y) = VA (x — »)) f(»)dy.
It was proved in [22] that

IE3(fs @lr2@dy S N2 Lsa—n) 1 2y 1812wy

Then the proof of (4.9) is reduced to proving that for k = 1, 2,

1Ec(f, @)l2@ay S IS IL2@ay gl may- (4.11)

The proofs of (4.11) for k = 1 and k = 2 are similar, so we only prove (4.11)
for the case of k = 2. For each fixed j € Z, let {I;} be the sequence of cubes
having disjoint interiors and side lengths 2/, such that R? = \U; I For fixed I, let
hsi(x) = Qsg(X) x5 (x), &1 € C§°(Rd) such that supp §; C 48d1;, 0 < ¢ < 1 and
g1(x) = 1 when x € 32d1;. Let x* be a point on the boundary of 100d1;. Let

d
A1) = AG) = D (OnA) yym, Al = (A1) — Al a ).
m=1
It follows from Lemma 2.1 that for all y € R?,
A S 27, VAW S T+ IVAQW) = (VA) . (4.12)

Note that for x € 4841; and y € R? with |x — y| < 2/12,

A(x) —A(y) — VA (x —y) = Ai(x) — Ai(y) — VA (x — »).

Write

d
Tq, a;jh(x) = AiWq, jh(x) — Wq, j(Aih)(x) — Z Uq,n,j (0 Ath) (x).

n=1
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Set
ds dt
Dl - ;;//XFJZ /]‘Qd AIWQJQ?f(x)Q?hs,[(x)desT N
d
D2 = ZZ//XFN/RIWQ,j(Afof)(x)Q3 Az(x)dx—sTt ,
i1

andforl <n <d,
ds dt
b, =LY [ [ 25 [ vans@aotnmoin ma S,
J

It then follows that
d
|Ex(f, @)l <D1+D2+ ) Di,.

n=1

We first consider term Dj. To this aim, we split it into two parts as

dsd
Dy = ZZ//XFj,Z /Rd Q?f(X)WQ,j(AzQ?hs,l)(x)dx?sTt
j o1

A

ds dt
ZfoxF,Z/ 0 f()Wa; (1AL Qs ) (0)dx— =

ZZ/[;@,Z/ Q! f(x)We,; 0} (Alhvl)(x)dx——

=Dy +Dp.

An application of Holder’s inequality leads to that

12
1 ds dt
D S ~ ZZ/fXF,z”X64d[1Q f“LZ(Rd)(z 5)2?7
JEZ 1
12
_7ds dt
ZZ/foﬂHWQ,([AI,Q Vae) |32 ey @779 72 ==
JjeZ 1 !
= 111,
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A straightforward computation gives that

1/2

1dsd
L < /OIQ,fIf DR D S 1f 2@y

2]> apl—a
ji2lzs L2(Rd)

Lemma 2.1, along with estimate (4.12), tells us that for x, y € R? with x—y| <s <
2/,

1/q
3 /,IVA(Z)—WA)I,quZ)
|1x| I\‘

2J . .
St (1+ioe () ) s 2@k,

since @ (r) = tlog(e + t) is increasing and P (1) < /2 when t < 1. Therefore,

1
A1) = Al S Ix =yl (

AL, Q3 1h(x)| < /Rd s (x — ) Ax) — ARy < 2/ (27 5)2 Mh(x),

where @ (x) = s~ (s~ 'x) and @(x) = w*xw*w(x). Let M be the operator defined
by

Mqh(x) = supr—? / 12(x — Y)h()|dy.
r>0 [x—yl<r

We then have that

P> Mo [} gy @752 25
Xsz Q s,1 L2(R4) s ¢

Jjez 1
1/2
j 1ds dt
S|ZX [ [ o @ 9t S
JEL 1
< lgll2gay
since
/ > o@ fs)z— <L
) j 2/>satl—a
Therefore,

Dit S 1 l2way gl L2 wey-
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For term D15, another application of Holder’s inequality yields

1/2
ds dt
D12N (Z//XFJ2||Qthf||L2(Rd)log dl(e+2]/s)st)

JEZ

(z//”ﬂ

JEZ

OsWa JQl‘(ZAlhsl)‘ log®! (e + 2/ /s )d“i’)
L2(RY)

=Dy,

where 1 < 01 < 28 — 1 is a constant. Observe that

> log™ (e +27/5) S 1.

ji2i>s

It then follows that

S H(/OOO/OOO|QSQ?f|2‘fT“It—I)W\

From (4.3) and (4.4) in Lemma 4.1, we know that

@) S 1 2 ey

1/2
2/
L (> / |Wa. ;0 (ZAzhvz)<x>||Lz(Rd)log‘“(e+2f/s>—
JjEZ
1/2
_ . ds
S / 2- ])ZAI | 2y log 2’BJ”"(evLZ]/S)?
JjEZ

1/2

o _ . ds
S fo 10581 72gay D log 24 (e +27/5)—

ji2i>s

S gl ray,s

where in the third inequality, we have invoked the fact that the supports of functions
{A;h 1} have bounded overlaps, and

‘ZAlhs,l ’
I

$20) hea? = 2710481
1

Therefore,

Di2 S 1 f 2wy llgll p2may-
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We turn our attention to term D;. Observe that Qs Wq ; = Wq_ ; Oy. It then follows
that

‘ZZf/xF,Z/ 04 Wa; (A1, 0210} )k ()dx >
2 4
+| ;X,: / f XE;» /R [ OsWa, j(AzQXQ,f)(X)hs,z(X)deT‘
:= Dy + Dao.
Similar to term Dy and term Dy, respectively,, we have that

Do1 S 1fll2@ayllgllp2ways Doz S LIz 181l 2wy

To consider D3 ,, we write

9, A1 0% f(x) = [0,4, 0107 F(x) + Qi[8,A, Q107 f(x) + 0(3,A10%) f(x),

and

D3p < ;//XF_,-;
2 [ [
+2/ [

3
= ZDgn

i=1

ds d
3 / Qs 1) Ugn (A, 010} H()dx| =2
] R4 s t

3 2 ds dt
Z fR 031 () Ug.n; 01([0,4, 01107 H(x)dx| =%

ds dt
Z/ O3y (00U 0, O} @0 T 01 f (00x]

Let2 < 0o < 28 — 2. It follows from Holder’s inequality that

D%,n Z/fXF,z

ds dt
Z/ Q2 Us (10,4, Q1107 F)() Qshs ()|~

2) dsd
< Z//meQ Ugun,j (80 A, Q103 1) 725 log™ <e+—>§7t
1/2
2 —o» ds dt
Z//XF,,Z QY(th,l) L2(Rd (e+2//s )——
J
= J1]s.
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We have that

= 0%l > —op j,ndrds
| ) 108l Y. log e+ n——
N

ji2i>sotl-a
[ele) ds 1
2 .2 2
<|([ ezt
0 s

where in the second inequality, we have invoked the fact that

L2(RY) S ||g||L2(]Rd),

o . dt o dt
/ Y. g Re+2/s)— S / log™™* e +1/9)— S 1.
N S

ji2i>sarl-a

On the other hand, it follows from (4.5) in Lemma 4.1 that

_ . ds dt
ne |y / / X2 10874 e 29 90 A, Q1O gy
J

1

o0 dt @/l 2 ds
< /0 10,4, Q1O f 72y D fo log™ 27 (e + =) —

ji2i<t
S f 2 ey,

since § > 2 and

(zjtafl)l/a ) ds )
log= 2P+ (e + 2/ /s)— < Z log= 22t (e 4 1/27) < 1.
R

ji2i<t

j2i<t 0

Therefore,

1
D3,n S ||f||L2(Rd)||g||L2(Rd)~

Similarly, we have that
D2, S gl 2yl £l 2 gay-
To estimate D%yn, write
/ ) Q3 hs 1(X)Ugq . QX(3,A102) f (x)dx
R
= [, 0¥hes0)Ua; 020, A0 Fa1dx
R
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- / Q%hs 1 (x)Uq . Q2[00 A, Q5107 f)(x)dx

/ Q7 hs 1()Ug.n, j Q3 (9 A1 Qs Q7 £)(x)dx =T (s, 1) +Ty(s, 1).

For the integral corresponding to I, we choose o3 with 1 < o3 < 28 — 1, and deduce
from (4.5) in Lemma 4.1 that

> o

_ ds dt 2
< (Z//xan%ngniz(Rd) log™ (e +2/ /s >t)
J

1 del
le(s,t)‘——
7 st

1

2/ dsd
(Z// 121U, Q30 A, 05107 F125 g Tog™ (e + =) f)

1

2
< lgl L2 ey ( f f [0,4, 0107 f |72y D log—2ﬁ+"*(e+2f/s))

]2/>¥
ds dt
<||g||Lz(Rd)(// 004, 0107 £ [}z 0y t) S 12y I8l 2 rey:

To estimate the integral corresponding to IZZ, write

I = fR 0,02 F@IinA, Ug ;0,103 0:h ()i
+ A‘& L0 Q% f(x)Uq . ; Os[8n A, QF1Qshs 1(x)dx
+ fR L9 0% f(x)Ugq.n.j Qs Q180 A, Qslhs 1(x)dx

+ / 0, 02 F ()Uan; Qs 020 (3 Aths 1) (x)dx

=V (s )+ Ve (5,0 + Vi (5,0 + Vi (s, 1).

The estimates for the part of V% ; and V?1 ; are similar to the estimate for the term

corresponding to Il1 , and are omitted. As for Vi [» We choose 1 < g4 < 28 —3. Itthen
follows from Lemma 4.1 that

=

2/ dsd
Z / / xFi2 |Uun.j Qs O (Z Qs (B Aths 1)) 72 gy 1087 (e + —)f{
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=

~ 2 _ 2) dsdt
; / / X | Q%(; Qs OnAhs, )| 2 o) log ™+ e + —) ===

1

2/ )
A 2 - 27 ds
;/(; H ; Os (anAlhs,l) “ L2(RY) lOg 2p+oq (e + ?)T

A

N

Let x € 48d1; and g € (1, 2). A straightforward computation involving Holder’s
inequality and the John-Nirenberg inequality gives us that

|05 (3 Arh) (x)| S Myh(x) + log(e + 2/ /s)Mh(x),

where I (x, s) is the cube centered at x and having side length s. This implies that

2/ ~ g
Z]:A || ZI: QS(a"Alhs’[)Hiz(Rd) log_2ﬂ+(f4(e + 2J /S)Ts

o0 B . ds
S /0 105872y D log 2 2 +27/9)—= S lighra),

ji2i>s

since —28 + o4 + 2 < —1. Therefore,

ds dt
> f f X2 D Vo501
j I
ds dt)%

< (Z / f XF; 21 Q5 OF FI72 gy log ™% (e + 27 /) ===
J

i 2 dsdiy}
X(Z//XF_;',Z “UQ,n,stQ[Z(Z Qs(anAthJ))|‘i2(Rd) 10g‘74(e+7)7s7)2
J 1

S ”f”LZ(Rd) ”g”Lz(]Rd)'

Now, we consider the part corresponding to Vrll ;- Invoking (4.6) in Lemma 4.1, we
deduce that

ds dt\3
)

[(S [ [ r,alton. U 0,107 02eP g™ e 427 5)
J

L2(R4)

1

2 _ : ds dt 2
(X f / 1,21 Q2 Q2|2 g log 2 2 e +27/5) =)
J

S NgllL2way-
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Therefore,

Z/fo,ZDV,,,(s r)|——

S H(Z/ / XFf‘z'Q‘vQ?flzlog“”((e+2f/s)d—sﬂ)
J

L2(RY)
ds dt
2,2 12
x H ( Z/ / XF;2 00 A, U, Q107 Q5 81% log™ (e + 2/ /S)__) L2(Rd)
J
Sz wayligl L2 may-
Combining the estimates for Ill, and th ;@ =1, 2, 3, 4), yields
D3, < gl 2l fll2 ).

which, along with the estimates for Dy, D, D3, and D2 leads to (4.11) with k = 2.

This verifies the inequality (4.9).
Now we turn our attention to inequality (4.10). Let P be the operator defined by

o ,dt
Ps = Qt T
s

It was proved in [16] that

ds
0 ”P f||L2(Rd) = ”f”Lz(Rd)'

Let TQ 4 be the adjoint of Tg, 4, that is,

_ By —
o af @ =pv. [ 20D (40 - AG) - VA = ) 7).
Rd |x — y|7t

with fZ(x) = Q(—x). Obviously,
N d
Ta. ah(x) = T 4h(0) + Y [8,A, TEIA(x), (4.13)

n=1

where Tg’% is defined as in (3.23), but with Q2 replaced by Q. As the inequality (4.9),
we have that

oot 4 4 ds dt
| QiT5, 407 F(DZWIdx =] S 11l 2gr gl 2
0 0 JRrd st
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Foreachn with 1 < n < d, we know from [21, Theorem 2] that [0,, A, TS’Z’] is bounded
on L?(R?) provided that 1 + 1/(8 — 1) < p < B. A straightforward computation
yields

sd
| / / 0ltinA, 210 (g(dx >
R4 t

dsd
=[] [ etrwmma. miotswa s
0 s R4 t

ds\1/2 ds~\1/2
< ( /O 184, T31Q18 1520 <) ( /0 1P F 12 ey )
Sl way 812 ey -

Therefore,

oot ar 4 ds dt
| 00, 40 F()g(0)dx = 2| S 111l e I8 2y
0 0 JRrd st

This, via dulaity argument, gives (4.10).

With the L2(R¢) boundedness of Tq, 4 in hand, we now verify the L? (R9) bound-
edness of T 4 for the case of 1 + 1/(8 — 1) < p < 2. Let R; 4 be the operator
defined as in Theorem 3.9, and ¢ € (0, 1) be a constant which will be chosen later.
An application of Theorem 3.9 gives us that

| Ryt af = Ryt a f ] o gy S 20D £ 12 ey (4.14)

Therefore, the series

o]

TQ,A = RZ, AT Z(R2I+I,A — R21,A) (415)
=1

converges in L>(R?) operator norm and for f, g € Cce RY),
o0
fR (Ta.n = Ron) f()g(0dx = ) fR (Rt g = Ry ) f(¥)g(x)dx. (4.16)
=1

On the other hand, from Theorem 3.9 we know that R; 4 is bounded on L2(Rd) with
bound independent of /. This, via Theorem 2.3, (ii) and (iii) of Theorem 3.9, shows
that for p € (1, 2], R; 4 is bounded on L? (Rd) with bound CI2. Thus, we have that

| Ryt af = Ryt af |l oy S 22N f oy, p € (1, 21 (4.17)

Let 1 < p < 2 and o € (0, 1). Interpolation between the inequalities (4.14) and
(4.17) leads to that

< 2( 2eB/p'+2+0)l

” Ry af — Ry AfHLI’(R‘[) I f N Lp ray-
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Foreach pwith14+1/8 < p < 2, we choose ¢ > 0 close to 1 sufficiently, and o > 0
close to 0 sufficiently, such that 2¢8/p’ > 2 + @, and then obtain that

oo
Z ||R2/,Af - RZH",Af”LP(Rd) /S ”f”LI’(Rd)'
=1

This, along with (4.16), shows that T 4 is bounded on LP(Rd).
It remains to consider the L? (Rd ) boundedness of T 4 for the case of 2 < p < B.
Observe that the operator Ty , is also bounded on LPRY) for 1+ 1/ < p < 2.

Thus by (4.13), we know that Tgy A, the adjoint operator of Tq, 4, is also bounded on
LP(RY) for 1+ 1/B < p < 2, and so Tq, 4 is bounded on LP(RY) for2 < p < B.
This finishes the proof of Theorem 1.3. O
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