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Abstract
In this paper, let � be homogeneous of degree zero which has vanishing moment
of order one, A be a function on R

d such that ∇A ∈ BMO(Rd), we consider a
class of nonstandard singular integral operators, T�, A, with rough kernel being of
the form �(x−y)

|x−y|d+1

(
A(x) − A(y) − ∇A(y)(x − y)

)
. This operator is closely related to

the Calderón commutator. We prove that, under the Grafakos-Stefanov minimum size
condition GSβ(Sd−1) with 2 < β < ∞ for �, T�, A is bounded on L p(Rd) for p
with 1 + 1/(β − 1) < p < β.

Keywords Singular integral operator · Calderón reproducing formula ·
Approximation · Littlewood–Paley theory

Mathematics Subject Classification Primary 42B20

1 Introduction

We will work on R
d , d ≥ 2. For x ∈ R

d and 1 ≤ n ≤ d, we denote by xn the n-th
variable of x , and x ′ = x/|x |. Let � be homogeneous of degree zero, integrable on
Sd−1, the unit sphere in R

d , and satisfy the vanishing moment condition that for all
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1 ≤ n ≤ d,

∫

Sd−1
�(x ′)x ′

ndx = 0. (1.1)

Define the d-dimensional Calderón commutator C�,a by

C�,a f (x) = p.v.
∫

Rd

�(x − y)

|x − y|d+1

(
a(x) − a(y)

)
f (y)dy,

where a is a function on R
d such that ∂na ∈ L∞(Rd) for all n with 1 ≤ n ≤ d. This

operator was introduced by Calderón [2] and plays an important role in the theory of
singular integrals. For the progress of the study of Calderón commutator, we refer the
references [1, 2, 10, 13, 17, 25–28], [14, Chapter 8] and the related references therein.

Now let A be a function onR
d such that∇A ∈ BMO(Rd), that is, ∂n A ∈ BMO(Rd)

for all n with 1 ≤ n ≤ d. Let � be homogeneous of degree zero, integrable on Sd−1,
and satisfy the vanishing moment condition (1.1). Define the operator T�,A by

T�,A f (x) = p.v.
∫

Rd

�(x − y)

|x − y|d+1

(
A(x) − A(y) − ∇A(y)(x − y)

)
f (y)dy. (1.2)

This operator is closely related to the d-dimensional Calderón commutator. For the
case of ∇A ∈ L∞(Rd), the L p(Rd) boundedness and the endpoint estimates of
T�, A can be deduced from the L p(Rd) boundedness of Calderón commutator. On
the other hand, for the case of ∇A ∈ BMO(Rd), T�, A is not a Calderón–Zygmund
operator even if � ∈ Lip(Sd−1). Cohen [6] first considered the mapping properties
of T�, A, and proved that if � ∈ Lipα(Sd−1) (α ∈ (0, 1]), then for p ∈ (1, ∞),
T�, A is a bounded operator on L p(Rd) with bound C‖∇A‖BMO(Rd ); see also [8] for
the L p(Rd) boundedness of an operator related to T�, A. Hofmann [18] improved the
result of Cohen, and showed that � ∈ L∞(Sd−1) is a sufficient condition such that
T�, A is bounded on L p(Rd). Fairly recently, Hu, Tao, Wang and Xue [22] considered
the L p(Rd) boundedness of T�,A when � satisfies certain minimum size condition,
and established the following estimates.

Theorem 1.1 Let � be homogeneous of degree zero, satisfy the vanishing condi-
tion (1.1), A be a function on R

d such that ∇A ∈ BMO(Rd). Suppose that
� ∈ L(log L)2(Sd−1). Then T�, A is bounded on L p(Rd) for all p ∈ (1, ∞).

There is, however, another typical minimum size condition for functions on Sd−1.
Let � ∈ L1(Sd−1) and β ∈ [1, ∞), we say that � ∈ GSβ(Sd−1) if

sup
ζ∈Sd−1

∫

Sd−1
|�(θ)| logβ

( 1

|ζ · θ |
)
dθ < ∞.



Journal of Fourier Analysis and Applications            (2024) 30:50 Page 3 of 40    50 

This size conditionwas introduced byGrafakos and Stefanov [15], to study the L p(Rd)

boundedness for the homogeneous singular integral operator defined by

T� f (x) = p. v.
∫

Rd

�(x − y)

|x − y|d f (y)dy (1.3)

Grafakos and Stefanov [15] proved that if � is homogeneous of degree zero and has
mean value zero on Sd−1 and � ∈ GSβ(Sd−1) for some β > 1, then the operator T�

is bounded on L p(Rd) for 1+1/β < p < 1+β. Fan, Guo and Pan [12] improved the
result of Grafakos and Stefanov, and proved that � ∈ GSβ(Sd−1) for some β > 1 is a
sufficient condition such that T� is bounded on L p(Rd) for 2β/(2β − 1) < p < 2β.

Let Pry′(x ′) be the Poission kernel on Sd−1, that is

Pry′(x ′) = 1 − r2

|r y′ − x ′|d ,

where 0 ≤ r < 1 and x ′, y′ ∈ Sd−1. For a function � ∈ L1(Sd−1), we define the
radial maximal function

P+�(x ′) = sup
0≤r<1

∣
∣∣∣

∫

Sd−1
�(y′)Prx ′(y′)dy′

∣
∣∣∣ .

The Hardy space H1(Sd−1), is a subspace of L1(Sd−1) which contains all L1(Sd−1)

functions � with the finite norms ‖�‖H1(Sd−1) = ‖P+�‖L1(Sd−1), see also [9]. As is
well known, for β ∈ [1, ∞),

H1(Sd−1) ⊂ L(log L)β(Sd−1) ⊂ GSβ(Sd−1).

Moreover, as Grafakos and Stefanov [15] showed,

( ∩β>1 GSβ(Sd−1)
)\H1(Sd−1) �= ∅.

Thus, it is natural to ask if T�, A enjoys a L p(Rd) estimate similar to the operator T�

defined as (1.3) when � ∈ GSβ(Sd−1) for some β ∈ (1, ∞). Hu [20] considered this
question and proved the following result.

Theorem 1.2 Let � be homogeneous of degree zero which satisfies the vanishing
moment condition (1.1), A be a function on R

d such that ∇A ∈ BMO(Rd). Suppose
that � ∈ GSβ(Sd−1) for some β > 3, then T�, A is bounded on L2(Rd).

In this paper, we will improve and extend Theorem 1.2. Our main result can be stated
as follows.

Theorem 1.3 Let � be homogeneous of degree zero, satisfy the vanishing moment
condition (1.1), A be a function on R

d such that ∇A ∈ BMO(Rd). Suppose that
� ∈ GSβ(Sd−1) for some β > 2. Then for p with 1 + 1/(β − 1) < p < β, T�, A is
bounded on L p(Rd).
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To prove Theorem 1.3, we will first prove that T�,A is bounded on L2(Rd) when
� ∈ GSβ(Sd−1) for some β ∈ (2, ∞). To prove the L p(Rd) boundedness of T�,A,
we will show that, there exists a sequence of operators {Rl,A}l∈N such that

(i) for p ∈ (1, 2), Rl,A is bounded on L p(Rd) with bound Cl2;
(ii) for any ε ∈ (0, 1) and l ∈ N,

‖Rl,A − T�,A‖L2(Rd )→L2(Rd ) � l−εβ+2.

This, via interpolation, leads to the desired L p(Rd) boundedness of T�,A. We remark
that in this paper, we are very much motivated by the work of Chen, Hu and Tao [4],
in which the authors established a suitable approximation for the Calderón commu-
tator with rough kernel, see also [30] for the approximation of homogeneous singular
integrals with rough kernels. However, the operator we consider in this paper is more
rough than the Calderón commutator, and the argument in this paper involves much
more complicated estimates and refined decompositions than that in [4].

This paper is organized as follows. In Sect. 2, we establish an endpoint estimate for
the operatorswhichwill be used in the approximation;we also give some facts about the
Luxemburghnorms in this section. In Sect. 3,weprove that T�, A with� ∈ GSβ(Sd−1)

for some β ∈ (2, ∞) can be approximated by a sequence of operators with smooth
kernels. Sect. 4 is devoted to the proof of Theorem 1.3.

Throughout this paper, we use the symbol A � B to denote that there exists a
positive constant C such that A ≤ CB. Constant with subscript such as C1, does not
change in different occurrences. For any set E ⊂ R

d , χE denotes its characteristic
function. For a cube I ⊂ R

d and λ ∈ (0, ∞), we use �(I ) to denote the side length
of I , and λI to denote the cube with the same center as I and whose side length is
λ times that of I . For x ∈ R

d and r > 0, B(x, r) denotes the ball centered at x and
having radius r . For a suitable function f , we denote f̂ the Fourier transform of f .
For locally integrable function f and a cube I ⊂ R

d , 〈 f 〉I denotes the mean value of
f on I , that is, 〈 f 〉I = |I |−1

∫
I f (y)dy.

2 A Preliminary Lp(Rd) Estimate

Let K be a locally integrable function on R
d\{0}, A be a function on R

d such that
∇A ∈ BMO(Rd). Let TA be an L2(Rd) bounded operator, and satisfy that, for bounded
function f with compact support and a. e. x ∈ R

d\supp f ,

TA f (x) =
∫

Rd
K (x − y)

A(x) − A(y) − ∇A(y)(x − y)

|x − y| f (y)dy. (2.1)

This operator plays a key role in the approximation of T�,A. The main purpose of
this section is establish the L p(Rd) boundedness for the operator TA whose kernel K
satisfies a minimum size conditions and minimum regularity conditions.
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2.1 Some Facts About the Luxemburgh Norms

We list some known facts about the Luxemburgh norms. Details are given in [29].
Let � : [0, ∞) → [0, ∞) be Young function, namely, � is convex and continuous
on [0, ∞), �(0) = 0 and limt→∞ �(t) = ∞. We always assume that � satisfies a
doubling condition, that is, �(2t) ≤ C�(t) for any t ∈ (0, ∞).

Let � be a Young function, and Q ⊂ R
d be a cube. Define the Luxemburg norm

‖ · ‖L�(Q) by

‖ f ‖L�(Q) = inf

{
λ > 0 : 1

|Q|
∫

Q
�
( | f (x)|

λ

)
dx ≤ 1

}
.

It is well known that

1

|Q|
∫

Q
� (| f (x)|) dx ≤ 1 ⇔ ‖ f ‖L�(Q) ≤ 1,

and

‖ f ‖L�(Q) ≤ inf

{
μ + μ

|Q|
∫

Q
�

( | f (x)|
μ

)
dx : μ > 0

}
≤ 2‖ f ‖L�(Q);

(2.2)

see see [29, p. 54] and [29, p. 69] respectively. For p ∈ [1, ∞) and γ ∈ R, set
�p, γ (t) = t p logγ (e + t). We denote ‖ f ‖L�p, γ (Q) as ‖ f ‖L p(log L)γ , Q .

Let � be a Young function. �∗, the complementary function of �, is defined on
[0, ∞) by

�∗(t) = sup{st − �(s) : s ≥ 0}.

The generalization of Hölder inequality

1

|Q|
∫

Q
| f (x)h(x)|dx ≤ ‖ f ‖L�(Q)‖h‖L�∗

(Q) (2.3)

holds for f ∈ L�(Q) and h ∈ L�∗
(Q). see [29, p. 6].

For a cube Q ⊂ R
d and γ > 0, we also define ‖ f ‖expLγ , Q by

‖ f ‖expLγ , Q = inf

{
t > 0 : 1

|Q|
∫

Q
exp

( | f (y)|
t

)γ

dy ≤ 2

}
.

As it iswell known, for�(t) = t log(e+t), its complementary function�∗(t) ≈ et−1.
Let b ∈ BMO(Rd). The John–Nirenberg inequality tells us that for any Q ⊂ R

d and
p ∈ [1, ∞),

‖|b − 〈b〉Q |p‖expL1/p, Q � ‖b‖p
BMO(Rd )

.
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This, together with the inequality (2.3), shows that

1

|Q|
∫

Q
|b(x) − 〈b〉Q |p|h(x)|pdx � ‖h‖p

L p(log L)p, Q‖b‖p
BMO(Rd )

. (2.4)

2.2 The Lp(Rd) Estimate for TA

We need a preliminary lemma.

Lemma 2.1 Let A be a function on R
d with derivatives of order one in Lq(Rd) for

some q ∈ (d, ∞]. Then

|A(x) − A(y)| � |x − y|
(

1

|I yx |
∫

I yx
|∇A(z)|qdz

) 1
q

,

where I yx is the cube which is centered at x and has side length 2|x − y|.
Lemma 2.1 is just Lemma 1.4 in [3].
To obtain the L p(Rd) boundedness of TA, we need the following endpoint estimate.

Theorem 2.2 Let K be a locally integrable function on R
d\{0}, A be a function on

R
d such that ∇A ∈ BMO(Rd). Let TA be an L2(Rd) bounded operator with bound

no more than 1 and satisfy (2.1). Suppose that

(i) for each n with 1 ≤ n ≤ d, there exists an L2(Rd) bounded operator T n with
bound no more than 1 and satisfies that for bounded function f with compact
support and a. e. x ∈ R

d\supp f ,

T n f (x) =
∫

Rd
K (x − y)

xn − yn
|x − y| f (y)dy;

(ii) for each R with 0 < R < ∞,

∫

R<|x |<2R
|K (x)|dx ≤ 1;

(iii) for each R > 0 and y ∈ R
d with |y| < R/4,

∞∑

l=2

l
∫

2l R<|x−y|≤2l+1R
|K (x − y) − K (x)|dx ≤ 1.

Then for λ > 0 and bounded function f with compact support,

|{x ∈ R
d : |TA f (x)| > λ}| �

∫

Rd

| f (x)|
λ

log

(
e + | f (x)|

λ

)
dx .
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Proof Theorem 2.2 can be proved by mimicking the proof of Theorem 1 in [23]. For
the sake of self-contained, we present the main step of the proof here. Without loss
of generality, we assume that ‖∇A‖BMO(Rd ) = 1. For given bounded function f with
compact support and λ > 0, we apply the Calderoń-Zygmund decomposition to f at
level λ, and obtain the following decomposition of f

f = g + b = g +
∑

j

b j ,

such that

(a) ‖g‖L∞(Rn) � λ and ‖g‖L1(Rn) � ‖ f ‖L1(Rn);
(b) for each j , b j is supported on a cube Q j , and cubes {Q j } are pairwise disjoint,∫

Q j
b j (x)dx = 0 and ‖b j‖L1(Rn) � λ|Q j |;

(c)
∑

j |Q j | � λ−1‖ f ‖L1(Rn).

The inequality (2.2) now tells us that

∑

j

|Q j |‖b j‖L log L, Q j �
∑

j

|Q j |
(

λ + λ

|Q|

∫

Q j

| f (x)|
λ

log

(
e + | f (x)|

λ

)
dx

)

�
∫

Rd

| f (x)|
λ

log

(
e + | f (x)|

λ

)
dx . (2.5)

By the L2(Rd) boundedness of TA, we deduce that

|{x ∈ R
d : |TAg(x)| > λ/2}| � λ−2‖TAg‖2L2(Rd )

� λ−1‖ f ‖L1(Rd ). (2.6)

To estimate TAb, we set E = ∪ j4dQ j , and

A j (y) = A(y) −
d∑

n=1

〈∂n A〉Q j yn .

It then follows that for x, y ∈ R
d ,

A(x) − A(y) − ∇A(y)(x − y) = A j (x) − A j (y) − ∇A j (y)(x − y).

For x ∈ R
d\E , write

TAb(x) =
∑

j

∫

Rd
K (x − y)

A j (x) − A j (y)

|x − y| b j (y)dy

−
d∑

n=1

∫

Rd
K (x − y)

xn − yn
|x − y|

∑

j

(∂n A(y) − 〈∂n A〉Q j )b j (y)dy

=
∑

j

T 1
Ab j (x) −

d∑

n=1

T n
(∑

j

(∂n A − 〈∂n A〉Q j )b j

)
(x).
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Recall that T n is bounded on L2(Rd). Our assumption (ii) implies that T n is also
bounded from L1(Rd) to L1,∞(Rd). As in [23, p. 764], an argument involving
inequality (2.4) with p = 1 and (2.5) leads to that

∣∣∣∣∣
∣

⎧
⎨

⎩
x ∈ R

d :
d∑

n=1

∣∣∣T n
(∑

j

(∂n A − 〈∂n A〉Q j )b j

)
(x)
∣∣∣ > λ/4

⎫
⎬

⎭

∣∣∣∣∣
∣

≤
d∑

n=1

∣
∣∣∣∣∣

⎧
⎨

⎩
x ∈ R

d :
∣∣∣T n
(∑

j

(∂n A − 〈∂n A〉Q j )b j

)
(x)
∣∣∣ >

λ

4d

⎫
⎬

⎭

∣
∣∣∣∣∣

� 1

λ

d∑

n=1

∑

j

‖(∂n A − 〈∂n A〉Q j )b j‖L1(Rd ) � 1

λ

∑

j

|Q j |‖b j‖L log L, Q j

�
∫

Rd

| f (x)|
λ

log

(
e + | f (x)|

λ

)
dx . (2.7)

We now estimate
∑

j T
1
Ab j . For each fixed j , we choose x j ∈ 3Q j\2Q j . Observe

that

∣∣∣∣∣
K (x − y)

A j (x) − A j (y)

|x − y| − K (x − x j )
A j (x) − A j (x j )

|x − x j |

∣∣∣∣∣

≤ |K (x − y) − K (x − x j )| |A j (x) − A j (y)|
|x − y|

+|K (x − x j )|
∣∣∣
∣∣
A j (x) − A j (y)

|x − y| − A j (x) − A j (x j )

|x − x j |

∣∣∣
∣∣
.

For x ∈ R
d\E , by the vanishing moment of b j , we have that

|T 1
Ab j (x)| ≤

∫

Rd
|K (x − y) − K (x − x j )| |A j (x) − A j (y)|

|x − y| |b j (y)|dy

+|K (x − x j )||A j (x) − A j (x
j )|
∫

Rd

|y − x j |
|x − y|2 |b j (y)|dy

+|K (x − x j )|
∫

Rd

|A j (y) − A j (x j )|
|x − y| |b j (y)|dy

:= I j (x) + II j (x) + III j (x).

For each y ∈ Q j , we know that

|〈∇A〉Q j − 〈∇A〉I y
x j

| � log

(
e + |x j − y|

�(Q j )

)
.
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It then follows from Lemma 2.1 that, for y ∈ Q j ,

|A j (x
j ) − A j (y)| � |x j − y|

(
1

|I yx j |
∫

I y
x j

|∇A(z) − 〈∇A〉Q j |qdx
)1/q

≤ |x j − y|
(

1

|I yx j |
∫

I y
x j

|∇A(z) − 〈∇A〉I y
x j

|qdx
)1/q

+|x j − y||〈∇A〉Q j − 〈∇A〉I y
x j

|

� |x j − y|
(
1 + log

(
e + |x j − y|

�(Q j )

))
� �(Q j ),

since |x j − y| ≈ �(Q j ). Therefore,

∫

Rd\4dQ j

|III j (x)|dx � �(Q j )

∞∑

l=2

l
∫

Q j

∫

2l+1dQ j\2l dQ j

|K (x − x j )| |b j (y)|
|x − y|dxdy

� ‖b j‖L1(Rd ).

For l ≥ 2, x ∈ 2l+1dQ j\2ldQ j and y ∈ Q j , another application of Lemma 2.1 leads
to that

|A j (x) − A j (y)| � l|x − y|, |A j (x) − A j (x
j )| � l|x − x j |.

This, in turn, implies that

∫

Rd\4dQ j

|I j (x)|dx �
∞∑

l=2

l
∫

Q j

∫

2l+1dQ j\2l dQ j

|K (x − y) − K (x − x j )|dx |b j (y)|dy

� ‖b j‖L1(Rd ),

and

∫

Rd\4dQ j

|II j (x)|dx �
∞∑

l=2

l
∫

Q j

∫

2l+1dQ j\2l dQ j

|K (x − x j )| |y − x j |
|x − y| dx |b j (y)|dy

� ‖b j‖L1(Rd ),

Combining the estimates for I j , II j and III j leads to that

∣∣∣
{
x ∈ R

d\E : |
∑

j

T 1
Ab j (x)| > λ/4

}∣∣∣ ≤ 4λ−1
∑

j

∫

Rd\4Q j

|T 1
Ab j (x)|dx

� λ−1‖ f ‖L1(Rd ).



   50 Page 10 of 40 Journal of Fourier Analysis and Applications            (2024) 30:50 

This, alongwith estimates (2.6)–(2.7) and the fact |E | � ‖ f ‖L1(Rd ), yields our desired
conclusion. ��

We are now ready to give the L p(Rd) boundedness for TA.

Theorem 2.3 Let K be a locally integrable function on R
d\{0}, A be a function on

R
d such that ∇A ∈ BMO(Rd). Let TA be an L2(Rd) bounded operator with bound

no more than 1 and satisfy (2.1). Under the hypothesis of Theorem 2.2, TA is bounded
on L p(Rd) for all p ∈ (1, 2] with bound C.

By a standard interpolation argument (see the proof of Corollary 1.3 in [22]),
Theorem 2.3 follows from Theorem 2.2. We omit the details for brevity.

3 An Approximation of TÄ,A

In this section,wewill show thatT�, A canbe approximatedby a sequences of operators
with “smooth kernels”. We first recall the definition of Calderón–Zygmund kernel.

Definition 3.1 Let � be a locally integrable function on R
d\{0}. We say that � is a

Calderón–Zygmund kernel, if

(i) for all x ∈ R
d\{0},

|�(x)| � 1

|x |d ;

(ii) for x, y ∈ R
d with |x | ≥ 4|y|,

|�(x − y) − �(x)| � |y|
|x − y|d+1 .

Lemma 3.2 Let � be a function on R
d\{0} which satisfies the following conditions:

(i) � is a Calderón–Zygmund kernel;
(ii) for all r , R with 0 < r < R < ∞ and 1 ≤ n ≤ d,

∫

r<|x |<R
�(x)xndx = 0.

Let A be a function on R
d such that ∇A ∈ BMO(Rd), and T�,A be the operator

defined by

T�,A f (x) = p. v.
∫

Rd
�(x − y)

A(x) − A(y) − ∇A(y)(x − y)

|x − y| f (y)dy.

Then for all p ∈ (1, ∞), T�,A is bounded on L p(Rd).
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Proof Let CA be the operator defined by

CA f (x) = p. v.
∫

Rd
�(x − y)

A(x) − A(y)

|x − y| f (y)dy.

As it was pointed out in Theorem 1.1 in [24] that, under the hypothesis of Lemma 3.2,
the estimate

‖CA f ‖Lr (Rd ) � ‖∇A‖Lq (Rd )‖ f ‖L p(Rd ), (3.1)

holds true for p ∈ (1, ∞) and q ∈ (1, ∞] with 1/r = 1/q + 1/p, see also [1] for
the case that K is a homogeneous kernel. With this estimate, repeating the proof of
Corollary 1.2 in [6], we then can deduce the L p(Rd) (p ∈ (1, ∞)) boundedness of
TA. ��
Lemma 3.3 Letφ ∈ C∞

0 (Rd) be a radial function such that suppφ ⊂ {1/4 ≤ |ξ | ≤ 4}
and

∑

l∈Z
φ3(2−lξ) = 1, |ξ | > 0.

Let � = φ̂, A be a function on R
d such that ∇A ∈ BMO(Rd). Define the operator

S j;A by

S j;A f (x) =
∫

Rd
2 jd�(2 j (x − y))

(
A(x) − A(y) − ∇A(y)(x − y)

)
f (y)dy.

Then

∥∥∥
(∑

j∈Z
|2 j S j;A f |2

) 1
2
∥∥∥
L2(Rd )

� ‖ f ‖L2(Rd ), (3.2)

and

∥∥∥
∑

j∈Z
2 j S j;A f j

∥∥∥
L2(Rd )

�
∥∥∥
(∑

j

| f j |2
)1/2∥∥∥

L2(Rd )
. (3.3)

Proof We only prove (3.2), since (3.3) can be deduced from (3.2) by a standard duality
argument. On the other hand, by the well known randomization argument (see [11, p.
545]), to prove (3.2), it suffices to prove that for all {ε j } j∈Z with ε j = ±1,

∥∥∥
∑

j∈Z
ε j2

j S j; A f
∥∥∥
L2(Rd )

≤ C‖ f ‖L2(Rd ), (3.4)

and the bound C is independent of {ε j }.
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Let ε j = ±1 ( j ∈ Z), and

K1(x) =
∑

j∈Z
2 j(d+1)ε j�(2 j x). (3.5)

By the fact that

|�(2 j x)| � 1

(1 + |2 j x |)d+2 ,

we know that for each x ∈ R
d\{0},

|K1(x)| ≤
∑

j : 2 j≤|x |−1

2 j(d+1)|�(2 j x)| +
∑

j : 2 j>|x |−1

2 j(d+1)|�(2 j x)| � |x |−d−1.

(3.6)

On the other hand, by the smoothness of �, it is easy to verify that for x, h ∈ R
d with

|x | ≥ 4|h|,

|K1(x + h) − K1(x)| � |h|
|x |d+2 . (3.7)

Since � is also a radial function, it certainly enjoys vanishing moment of order one.
Thus, for all 0 < r < R < ∞ and 1 ≤ n ≤ d,

∫

r<|x |<R
K1(x)xndx = 0. (3.8)

Estimates (3.6)-(3.8), via Lemma 3.2, leads to our desired conclusion. ��
Lemma 3.4 Letφ ∈ C∞

0 (Rd) be a radial function such that suppφ ⊂ {1/4 ≤ |ξ | ≤ 4}
and

∑

l∈Z
φ3(2−lξ) = 1, |ξ | > 0.

Let S j be the operator defined by

Ŝ j f (ξ) = φ(2− jξ) f̂ (ξ).

Then

(i) for b ∈ BMO(Rd), we have that

∥
∥∥
(∑

j∈Z
|[b, S j ] f |2

)1/2∥∥∥
L2(Rd )

� ‖ f ‖L2(Rd );
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where and in what follows, for a locally integrable function b and a linear operator
T , [b, T ] denotes the commutator defined

[b, T ] f (x) = b(x)T f (x) − T (b f )(x);

(ii) for function a on R
d which satisfies that ∇a ∈ L∞(Rd), it follows that

∥∥
∥
(∑

j∈Z
|2 j [a, S j ] f |2

)1/2∥∥
∥
L2(Rd )

� ‖ f ‖L2(Rd ).

Proof Conclusion (i) is just [19, Lemma 1]. To prove conclusion (ii), let� = φ̂ and K1
be the function defined by (3.5). Estimates (3.6)-(3.8), via (3.1), leads to conclusion
(ii). ��
Remark 3.5 Conclusion (ii) of Lemma 3.4 was first proved by Chen and Ding, using
a different argument, see [5, Lemma 2.3].

Lemma 3.6 Let δ ∈ (0, 1), l ∈ Z and D > 0 be constants, m be a multiplier such
that suppm ⊂ {|ξ | ≤ D−12l}, and

‖m‖L∞(Rd ) ≤ D−1 min{(δ2l)2, log−β(e + 2l)},

and for all multi-indices γ ∈ Z
d+,

‖∂γm‖L∞(Rd ) ≤ D|γ |−1 max{1, 2−l|γ |}.

Let A be a function on R
d such that ∇A ∈ BMO(Rd), and Tm, A be the operator

defined by

Tm, A f (x) = p. v.
∫

Rd
�(x − y)(A(x) − A(y) − ∇A(y)(x − y)

)
f (y)dy,

with � the inverse Fourier transform of m. Then for any ε ∈ (0, 1),

‖Tm,A f ‖L2(Rd ) � min{(δ2l)ε/2, log−εβ+1(e + 2l)}‖ f ‖L2(Rd ). (3.9)

Proof The argument here is a variant of the proof of Lemma 3.2 in [4], together
with some refined estimates of Luxemburg norms. We assume that ‖∇A‖BMO(Rd ) =
1. Set E = min{(δ2l)2, log−β(e + 2l)}. Let φ ∈ C∞

0 (Rd) be a radial function,
suppφ ⊂ B(0, 2), φ(x) = 1 when |x | ≤ 1. Set ϕ(x) = φ(x) − φ(2x). Then
suppϕ ⊂ {1/4 ≤ |x | ≤ 4} and

∑

j∈Z
ϕ(2− j x) ≡ 1, |x | > 0. (3.10)
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Let ϕ j (x) = ϕ(2− j x) for j ∈ Z. Set

Wj (x) = �(x)ϕ j (x), j ∈ Z.

Let Tm, j be the convolution operator with kernel Wj . Observing that for all multi-
indices γ ∈ Z

d+, ∂γ ϕ(0) = 0, we thus have that

∫

Rd
ϕ̂(ξ)ξγ dξ = 0.

This, in turn, implies that for all N ∈ N and ξ ∈ R
d ,

|Ŵ j (ξ)| =
∣∣∣
∣∣∣

∫

Rd

(
m(ξ − 2− jη) −

∑

|γ |≤N

1

γ !∂
γm(ξ)(2− jη)γ

)
ϕ̂(η)dη

∣∣∣
∣∣∣

� 2− j(N+1)
∑

|γ |=N+1

‖∂γm‖L∞(Rd )

∫

Rd
|η|N+1|ϕ̂(η)|dη

� 2− j(N+1)DN max{1, 2−l(N+1)}. (3.11)

On the other hand, a trivial computation yields for j ∈ Z,

‖Ŵ j‖L∞(Rd ) ≤ ‖m‖L∞(Rd )‖ϕ̂ j‖L1(Rd ) � D−1E . (3.12)

Interpolation inequalities (3.11) and (3.12) gives us that for ε ∈ (0, 1),

‖Ŵ j‖L∞(Rd ) � 2− j(N+1)(1−ε)DN (1−ε)−ε max{1, 2−l(N+1)}1−εEε. (3.13)

We now prove (3.9). Let Tm, j;A be the operator defined by

Tm, j;A f (x) =
∫

Rd
W j (x − y)

(
A(x) − A(y) − ∇A(y)(x − y)

)
f (y)dy.

For ε ∈ (0, 1), let Fε = min{(δ2l)2ε, log−εβ+1(e + 2l)}. We claim that for all j ∈ Z

and N ∈ N and ε ∈ (0, 1),

‖Tm, j;A f ‖L2(Rd ) � (2− j D)N (1−ε)−ε log(e + 2 j D−1)Fε

×max{1, 2−l(N+1)}1−ε‖ f ‖L2(Rd ). (3.14)

Observe that suppWj ⊂ {x : |x | ≤ 2 j+2}. If I is a cube having side length 2 j , and
f ∈ L2(Rd) with supp f ⊂ I , then Tm, j f ⊂ 100d I . Therefore, to prove (3.14), we
may assume that supp f ⊂ I with I a cube having side length 2 j . Let x0 be a point
on the boundary of 200d I and A∗

I (y) = A(y) −∑d
n=1〈∂n A〉100d I yn , and

AI (y) = (A∗
I (y) − A∗

I (x0))ζI (y),
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where ζI ∈ C∞
0 (Rd), supp ζ ⊂ 150d I and ζ(x) ≡ 1 when x ∈ 100d I . Observe that

‖∇ζ‖L∞(Rd ) � 2− j . An application of Lemma 2.1 tells us that for all y ∈ 100d I ,

|AI (y) − AI (x0)| � 2 j .

This shows that

‖AI ‖L∞(Rd ) � 2 j .

Write

Tm, j;A f (x) = AI (x)Tm, j f (x) − Tm, j (AI f )(x) −
d∑

n=1

[hn, Tm, j ]( f ∂n AI )(x),

where hn(x) = xn (recall that xn denotes the nth variable of x). It then follows from
(3.13) that

‖AI Tm, j f ‖L2(Rd ) + ‖Tm, j (AI f )‖L2(Rd )

� (2− j D)N (1−ε)−ε max{1, 2− j(N+1)}1−εEε‖ f ‖L2(Rd ). (3.15)

Applying the John–Nirenberg inequality, we know that

‖|∂n AI |2‖expL1/2, I � 1.

Recall that supp [hn, Tm, j ]( f ∂n AI ) ⊂ 100d I . It then follows from inequality (2.4)
that

‖[hn, Tm, j ]( f ∂n AI )‖L2(Rd ) = sup
‖g‖L2(Rd )

≤1

∣
∣
∣∣

∫

Rd
∂n AI (x) f (x)[hn, Tm, j ]g(x)dx

∣
∣
∣∣

≤ ‖ f ‖L2(Rd ) sup
‖g‖L2(Rd )

≤1
supp g⊂100d I

‖∂n AI [hn, Tm, j ]g‖L2(I )

≤ ‖ f ‖L2(Rd )

(
|I | sup

‖g‖L2(Rd )
≤1

supp g⊂100d I

‖[h, Tm, j ]g‖2L2(log L)2, I

)1/2
.

Now let g ∈ L2(Rd) with ‖g‖L2(Rd ) ≤ 1 and supp g ⊂ 100d I . Observe that

‖Wj‖L∞(Rd ) � ‖m‖L1(Rd ) � 2dl D−d−1E,

which, via Young’s inequality, implies that

‖Tm, j g‖L∞(Rd ) � ‖Wj‖L∞(Rd )‖g‖L1(Rd ) � 2dl D−d−1E‖g‖L1(Rd ),
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and so

‖χI [hn, Tm, j ]g‖L∞(Rd ) � 2dl2 j D−d−1E‖g‖L1(Rd ) � 2dl2 j D−d−1E2d j/2,

since

‖g‖L1(Rd ) � |I |1/2‖g‖L2(Rd ) � 2d j/2.

On the other hand, we deduce from (3.13) that

‖[hn, Tm, j ]g‖L2(Rd ) � 2 j‖Tm, j g‖L2(Rd )

� (2− j D)N (1−ε)−ε max{1, 2−l(N+1)}1−εEε‖g‖L2(Rd ).

Set

λ0 = [(2− j D)N (1−ε)−ε log2(e + 2 j D−1)Fε max{1, 2−l(N+1)}1−ε
]22− jd .

A straightforward computation tells us that

∫

I
|[hn, Tm, j ]g(x)|2 log2

(
e + |[hn, Tm, j ]g(x)|√

λ0

)
dx

�
(
log2(e + 2 j D−1) + max{1, l}

) ∫

I
|[hn, Tm, j ]g(x)|2dx

�
[
(2− j D)N (1−ε)−εFε max{1, 2−l(N+1)}(1−ε) log(2 + 2 j D−1)

]2

� λ02
jd ,

since Eε max{1, l} ≤ Fε, and

‖χI [hn, Tm, j ]g‖L∞(Rd )√
λ0

� (2 j D−1)d+1(2 j D−1)N (1−ε)−ε2dl F−1
ε .

This tells us that

‖[hn, Tm, j ]g‖L2(log L)2, I �
√

λ0,

and thus

‖[hn, Tm, j ]( f ∂n AI )‖L2(Rd ) � (2− j D)N (1−ε)−ε log(e + 2 j D−1)

×Fε max{1, 2−l(N+1)}1−ε‖ f ‖L2(Rd ).

(3.16)

The estimate (3.14) then follows from (3.15) and (3.16).
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We now conclude the proof of Lemma 3.6. It suffices to consider the case ε ∈
(4/5, 1). Let Gε = min{(δ2l)ε/2, log−εβ+1(e+ 2l)}. For each fixed ε ∈ (4/5, 1), we
choose N1, N2 ∈ N such that

ε

1 − ε
< N1 <

5ε/2 − 1

1 − ε
, N2(1 − ε) − ε < 0.

Observe that

Fε max{1, 2−l(N1+1)}1−ε � Gε, Fε max{1, 2−l(N2+1)}1−ε � Gε.

A straightforward computation shows that if

‖Tm,A f ‖L2(Rd ) �
∑

j : 2− j D≤1

‖Tm, j; A f ‖L2(Rd ) +
∑

j : 2− j D>1

‖Tm, j; A f ‖L2(Rd )

�
∑

j : 2− j D≤1

(2− j D)N1(1−ε)−ε log(e + 2 j D−1)Gε‖ f ‖L2(Rd )

+
∑

j : 2− j D>1

(2− j D)N2(1−ε)−ε log(e + 2 j D−1)Gε‖ f ‖L2(Rd )

� Gε‖ f ‖L2(Rd ).

This completes the proof of Lemma 3.6. ��
Lemma 3.7 Let δ ∈ (0, 1), l ∈ Z and D > 0 be constants, m be a multiplier such
that suppm ⊂ {|ξ | ≤ D−12l}, and

‖m‖L∞(Rd ) ≤ D−1 min{(δ2l)2, log−β(e + 2l)},

and for all multi-indices γ ∈ Z
d+,

‖∂γm‖L∞(Rd ) ≤ D|γ |−1 max{1, 2−l|γ |}.

Let Tm be the multiplier operator defined by

T̂m f (ξ) = m(ξ) f̂ (ξ).

Then for any b ∈ BMO(Rd) and ε ∈ (0, 1),

‖[b, Tm] f ‖L2(Rd ) � D−1 min{(δ2l)2ε, log−εβ+1(e + 2l)}‖b‖BMO(Rd )‖ f ‖L2(Rd ).

Proof Let m̃(ξ) = Dm(2l D−1ξ) and Tm̃ be the multiplier operator with multiplier m̃.
We know that supp m̃ ⊂ {|ξ | ≤ 1}, and

‖m̃‖L∞(Rd ) ≤ min{(δ2l)2, log−β(e + 2l)},
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and for all multi-indices γ ∈ Z
d+,

‖∂γ m̃‖L∞(Rd ) � 1.

Applying Lemma 2 in [19], we then obtain that

‖[b, Tm̃] f ‖L2(Rd ) � min{(δ2l)2ε, log−εβ+1(e + 2l)}‖b‖BMO(Rd )‖ f ‖L2(Rd ).

This, via dilation-invariance, implies our desired conclusion and then completes the
proof of Lemma 3.7. ��
Theorem 3.8 Let δ ∈ (0, 1) be a constant, {μ j } j∈Z be a sequence of functions on
R
d\{0}. Suppose that for some β ∈ (2, ∞),

‖μ j‖L1(Rd ) � 2− j , |μ̂ j (ξ)| � 2− j min{|δ2 jξ |2, log−β(e + |2 jξ |)},

and for all multi-indices γ ∈ Z
d+,

‖∂γ μ̂ j‖L∞(Rd ) � 2 j(|γ |−1).

Let μ(x) =∑ j∈Z μ j (x) and Tμ,A be the operator defined by

Tμ,A f (x) = p. v.
∫

Rd
μ(x − y)

(
A(x) − A(y) − ∇A(y)(x − y)

)
f (y)dy,

where A is a function on R
d such that ∇A ∈ BMO(Rd). Then for any ε ∈ (0, 1),

‖Tμ,A f ‖L2(Rd ) � log−εβ+2(e + δ−1)‖ f ‖L2(Rd ).

Proof It suffices to consider the case ε ∈ (1/2, 1). Let T be the operator defined by

T f (x) = p. v.
∫

Rd
μ(x − y) f (y)dy.

It is easy to verify that for ξ ∈ R
d ,

|μ̂(ξ)| � |ξ |
∑

j : 2 j>|ξ |−1

log−β(e + |2 jξ |) + |ξ |2
∑

j : 2 j≤|ξ |−1

2 j � |ξ |.

This in turn, gives us that

∫

Rd
|T̂ f (ξ)|2dξ � ‖ f ‖2

L̇2
1(R

d )
,
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and
∫

Rd
|ξ |−2|T̂ f (ξ)|2dξ � ‖ f ‖2L2(Rd )

,

where ‖ f ‖L̇2
1(R

d ) is the homogeneous Sobolev norm defined as

‖ f ‖2
L̇2
1(R

d )
=
∫

Rd
|ξ |2| f̂ (ξ)|2dξ.

Let Uj be the convolution operator with kernel μ j , and φ ∈ C∞
0 (Rd) such that

0 ≤ φ ≤ 1, suppφ ⊂ {1/4 ≤ |ξ | ≤ 4} and
∑

l∈Z
φ3(2−lξ) = 1, |ξ | > 0.

Set m j (ξ) = μ̂ j (ξ), and ml
j (ξ) = m j (ξ)φ(2 j−lξ). Define the operator Ul

j by

̂Ul
j f (ξ) = ml

j (ξ) f̂ (ξ).

Let Sl be the multiplier operator defined as in Lemma 3.4. We claim that for functions
f , g ∈ C∞

0 (Rd),

∫

Rd
g(x)Tμ,A f (x)dx =

∫

Rd
g(x)

∑

l

∑

j

(Sl− jU
l
j Sl− j )A f (x)dx, (3.17)

where and in what follows,

(Sl− jU
l
j Sl− j )A f (x) =

∫

Rd
L(x − y)

(
A(x) − A(y) − ∇A(y)(x − y)

)
f (y)dy,

with L the kernel of the convolution operator Sl− jUl
j Sl− j . We define Ul

j,A similarly.
To prove this, let R > 0 be large enough such that supp f ∪ supp g ⊂ B(0, R). Let
ζ ∈ C∞

0 (Rd) such that 0 ≤ ζ ≤ 1, ζ ≡ 1 on B(0, R) and supp ζ ⊂ B(0, 2R). Set

AR(y) = (A(y) −
d∑

n=1

〈∂n A〉B(0, R)yn
)
ζ(y).

Then
∫

Rd
g(x)Tμ,A f (x)dx =

∫

Rd
g(x)AR(x)T f (x)dx −

∫

Rd
g(x)T (AR f )(x)dx

−
d∑

n=1

∫

Rd
g(x)[hn, T ]( f ∂n AR)(x)dx,
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where the function hn(x) = xn . Note that hn f ∂n AR ∈ L2(Rd). It then follows that

∫

Rd
g(x)[hn, T ]( f ∂n AR)(x)dx=

∫

Rd
g(x)

∑

l

∑

j

[hn, Sl− jU
l
j Sl− j ]( f ∂n AR)(x)dx .

Since gAR , f AR ∈ L2(Rd), we also have that

∫

Rd
g(x)AR(x)T f (x)dx =

∫

Rd
g(x)AR(x)

∑

l

∑

j

Sl− jU
l
j Sl− j f (x)dx,

∫

Rd
g(x)T (AR f )(x)dx =

∫

Rd
g(x)

∑

l

∑

j

Sl− jU
l
j Sl− j ( f AR)(x)dx .

These three equalities lead to (3.17) directly.
Now we estimate (Sl− jUl

j Sl− j )A f . Obviously, suppml
j ⊂ {|ξ | ≤ 2l− j+2} and

|ml
j (ξ)| � 2− j min{(δ2l)2, log−β(e + 2l)}.

Furthermore, by the fact that

|∂γ φ(2 j−lξ)| � 2( j−l)|γ |, |∂γm j (ξ)| � 2 j(|γ |−1),

it then follows that for all γ ∈ Z
d+,

|∂γml
j (ξ)| � 2 j(|γ |−1) max{1, 2−|γ |l}.

This, via Lemma 3.6, tells us that

‖Ul
j, A f ‖L2(Rd ) � min{(δ2l) ε

2 , log−εβ+1(e + 2l)}‖ f ‖L2(Rd ). (3.18)

Also, we have that

‖Ul
j f ‖L2(Rd ) � 2− j min{(δ2l)2, log−β(e + 2l)}‖ f ‖L2(Rd ). (3.19)

For fixed j, l ∈ Z, write

(Sl− jU
l
j Sl− j )A f (x) = Sl− j,A(Ul

j Sl− j f )(x) + S j (U
l
j Sl− j )A f (x)

+
d∑

n=1

[hn, Sl− j ]([∂n A, Ul
j Sl− j ] f )(x)

:= Ilj f (x) + IIlj f (x) +
d∑

n=1

IIIl,nj f (x).
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We now estimate terms Ilj , II
l
j and III

l,n
j . Inequality (3.3) in Lemma 3.3, along with

(3.19) leads to that

∥∥∥
∑

j

Sl− j,A(Ul
j Sl− j f )

∥∥∥
2

L2(Rd )
�
∑

j

22( j−l)
∥∥Ul

j Sl− j f
∥∥2
L2(Rd )

� 2−2l min{(δ2l)2, log−β(e + 2l)}2‖ f ‖2L2(Rd )
.

Therefore,

∑

l

∥∥
∥
∑

j

Ilj f
∥∥
∥
L2(Rd )

�
( ∑

l>log 1√
δ

l−β + δ2
∑

l≤log 1√
δ

2l
)
‖ f ‖L2(Rd )

� log−β+1(e + δ−1)‖ f ‖L2(Rd ).

For each fixed j, l ∈ Z and n with 1 ≤ n ≤ d, it follows from Lemma 3.7 and (3.19)
that

∥∥[∂n A, Ul
j Sl− j ] f

∥∥
L2(Rd )

≤ ∥∥[∂n A, Ul
j ]Sl− j f

∥∥
L2(Rd )

+ ∥∥Ul
j [∂n A, Sl− j ] f

∥∥
L2(Rd )

� 2− j min{(δ2l)2ε, log−εβ+1(e + 2l)}‖Sl− j f ‖2L2(Rd )

+2− j min{(δ2l)2, log−β(e + 2l)}‖[∂n A, Sl− j ] f ‖L2(Rd ),

which, along with Lemma 3.4, implies that

∥
∥∥
∑

j

|[hn, Sl− j ]([∂n A, Ul
j Sl− j ] f )|

∥
∥∥
2

L2(Rd )
�
∑

j

22( j−l)
∥∥[∂n A, Ul

j Sl− j ] f
∥∥2
L2(Rd )

� 2−2l min{(δ2l)2ε, log−εβ+1(e + 2l)}2‖ f ‖2L2(Rd )
.

Thus,

∑

l

∥∥
∥
∑

j

IIIl,nj f
∥∥
∥
L2(Rd )

�
( ∑

l>log 1√
δ

l−εβ+1 + δ2
∑

l≤log 1√
δ

2(4ε−2)l
)
‖ f ‖L2(Rd )

� log−εβ+2(e + δ−1)‖ f ‖L2(Rd ).

As for term IIlj , write

(Ul
j Sl− j )A f = Ul

j,ASl− j f +Ul
j Sl− j, A f +

d∑

n=1

[hn, Ul
j ]([∂n A, Sl− j ] f ).



   50 Page 22 of 40 Journal of Fourier Analysis and Applications            (2024) 30:50 

It follows from Littlewood–Paley theory and (3.18) that

∥∥∥
∑

j

Sl− jU
l
j, ASl− j f

∥∥∥
2

L2(Rd )
�
∑

j

‖Ul
j, ASl− j f ‖2L2(Rd )

� min{(δ2l)ε/2, log−εβ+1(e + 2l)}2‖ f ‖2L2(Rd )
.

Again by Lemma 3.3 and (3.19), we deduce that

∥∥∥
∑

j

Sl− jU
l
j Sl− j,A f

∥∥∥
2

L2(Rd )
�
∑

j

‖Ul
j Sl− j,A f ‖2L2(Rd )

� 2−2l min{(δ2l)2, log−β(e + 2l)}2‖ f ‖2L2(Rd )
.

Similar to the term IIIl,nj , we have that for each 1 ≤ n ≤ d,

∥∥∥
∑

j

Sl− j [hn, Ul
j ]([∂n A, Sl− j ] f )

∥∥∥
2

L2(Rd )

�
∑

j

‖[hn, Ul
j ]([∂n A, Sl− j ] f )‖2L2(Rd )

� 2−2l min{(δ2l)2ε, log−εβ+1(e + 2l)}2‖ f ‖2L2(Rd )
.

Therefore,

∑

l

∥∥∥
∑

j

IIlj f
∥∥∥
L2(Rd )

� log−εβ+2(e + δ−1)‖ f ‖L2(Rd ).

The estimates for Ilj , II
l
j and IIIl,nj above, via (3.17), leads to our desired conclusion.

��
We are now ready to establish our main result in this section.

Theorem 3.9 Let � be homogeneous of degree zero, satisfy the vanishing moment
condition (1.1) and � ∈ GSβ(Sd−1) for some β ∈ (2, ∞). Let A be a function on R

d

such that ∇A ∈ BMO(Rd). Then there exists a sequence of operators {Rl,A}l∈N such
that

(i) Rl, A is defined as

Rl,A f (x) = p. v.
∫

Rd
K̃ l(x − y)

A(x) − A(y) − ∇A(y)(x − y)

|x − y| f (y)dy,

the function K̃ l satisfies the size condition that for 0 < R < ∞,

∫

R<|x |<2R
|K̃ l(x)|dx � 1,
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and the regularity that for all R > 0 and y ∈ R
d ,

∞∑

m=2

m
∫

2m R<|x−y|≤2m+1R
|K̃ l(x − y) − K̃ l(x)|dx � l2;

(ii) for each fixed n with 1 ≤ n ≤ d, the operator Wn
l defined by

Wn
l f (x) = p. v.

∫

Rd
K̃ l(x − y)

xn − yn
|x − y| f (y)dy

is bounded on L2(Rd) with bound independent of l;
(iii) for each fixed ε ∈ (0, 1),

‖Rl, A − T�,A‖L2(Rd ) � l−εβ+2. (3.20)

Proof For j ∈ Z, let K j (x) = �(x)
|x |d+1 χ{2 j−1≤|x |<2 j }(x). Let ψ ∈ C∞

0 (Rd) be a
nonnegative radial function such that

suppψ ⊂ {x : |x | ≤ 1/4},
∫

Rd
ψ(x)dx = 1.

For j ∈ Z, set ψ j (x) = 2−d jψ(2− j x). For a positive integer l, define

Hl(x) =
∑

j∈Z
K j ∗ ψ j−l(x).

Let Rl be the convolution operator with kernel Hl . For a function A on R
d with

∇A ∈ BMO(Rd), denote

Rl,A f (x) = p. v.
∫

Rd
Hl(x − y)

(
A(x) − A(y) − ∇A(y)(x − y)

)
f (y)dy.

Now we prove (3.20). Write

∑

j∈Z
K j (x) − Hl(x) =

∑

j∈Z

(
K j (x) − K j ∗ ψ j−l(x)

) =:
∑

j∈Z
μ j,l(x).

The fact ψ is radial, implies that, for n with 1 ≤ n ≤ d,

∫

Rd
ψ(x)xndx = 0.

From this we know that for all n with 1 ≤ n ≤ d, ∂nψ̂(0) = 0. By Taylor series
expansion and the fact that ψ̂(0) = 1, we deduce that

|ψ̂(2 j−lξ) − 1| � min{1, |2 j−lξ |2}.
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On the other hand, as it was proved in [15], we know that when � ∈ GSβ(Sd−1) for
some β ∈ (1, ∞),

|K̂ j (ξ)| � 2− j min{1, log−β(e + |2 jξ |)},

which, in turn leads to following Fourier transform estimate

|̂μ j,l(ξ)| = |K̂ j (ξ)||ψ̂(2 j−lξ) − 1| � 2− j min{log−β(e + |2 jξ |), |2 j−lξ |2}.
(3.21)

On the other hand, a trivial computation shows that for all multi-indices γ ∈ Z
d+,

‖∂γ K̂ j‖L∞(Rd ) � ‖�‖L1(Sd−1)2
(|γ |−1) j ,

and so for all ξ ∈ R
d ,

|∂γ μ̂ j,l(ξ)| �
∑

γ1+γ2=γ

|∂γ1 K̂ j (ξ)||∂γ2ψ̂(2 j−lξ)| � ‖�‖L1(Sd−1)2
j(|γ |−1).

(3.22)

Let K̃ l(x − y) = Hl(x − y)|x − y|. The Fourier transforms (3.21) and (3.22), via
Theorem 3.8 with δ = 2−l , lead to (3.20) directly.

We now verify conclusion (i). For each fixed R > 0,

∫

R<|x |<2R
|Hl(x)|dx �

∑

j : 2 j≈R

‖K j‖L1(Rd )‖ψ j−l‖L1(Rd ) � R−1.

On the other hand, for R > 0 and y ∈ R
d with |y| < R/4,

∫

2m R<|x−y|≤2m+1R

∣∣Hl(x − y)|x − y| − Hl(x)|x |
∣∣dx

≤
∫

2m R<|x−y|≤2m+1R
|Hl(x − y) − Hl(x)||x − y|dx

+|y|
∫

2m−1R<|x |≤2m+2R
|Hl(x)|dx

� 2m R
∫

2m R<|x−y|≤2m+1R
|Hl(x − y) − Hl(x)|dx + |y|

2m R
.

Observe that

‖ψ j−l(· − y) − ψ j−l(·)‖L1(Rd ) � min{1, 2l− j |y|}.
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Young’s inequality now tells us that

∫

2m R<|x−y|≤2m+1R
|Hl(x − y) − Hl(x)|dx

�
∑

j : 2 j≈2m+1R

‖K j‖L1(Rd )‖ψ j−l(· − y) − ψ j−l(·)‖L1(Rd )

� (2m R)−1 min{1, 2l−m}.

This, in turn, implies that

∞∑

m=2

m
∫

2m R<|x−y|≤2m+1R
|K̃ l(x − y) − K̃ l(x)|dx

�
∞∑

m=2

mmin{1, 2l−m} +
∞∑

m=2

m2−m � l2.

Finally, for each fixed n with 1 ≤ n ≤ d, let

Yn
l f (x) = p. v.

∫

Rd

(∑

j∈Z
K j (x − y) − Hl(x − y)

)
(xn − yn) f (y)dy.

The estimates (3.21) and (3.22), via [4, Theorem 3.4], state that

‖Yn
l f ‖L2(Rd ) � ‖ f ‖L2(Rd ).

For 1 ≤ n ≤ d, let T n
� be the operator defined by

T n
�h(x) = p. v.

∫

Rd

�(x − y)(xn − yn)

|x − y|d+1 h(y)dy. (3.23)

It is well known that T n
� is bounded on L2(Rd). Note that

p. v.
∫

Rd

∑

j∈Z
K j (x − y)(xn − yn) f (y)dy = T n

� f (x).

Therefore, Wn
l is bounded on L2(Rd) with bound independent of l. This completes

the proof of Theorem 3.9. ��
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4 Proof of Theorem 1.3

Let ϕ ∈ C∞
0 (Rd) be a radial function which satisfies (3.10), ϕ j (x) = ϕ(2− j x). For

each fixed j ∈ Z, set

T�, A; j f (x) =
∫

Rd
KA, j (x, y) f (y)dy,

where

KA, j (x, y) = �(x − y)

|x − y|d+1

(
A(x) − A(y) − ∇A(y)(x − y)

)
ϕ j (|x − y|).

Let ω ∈ C∞
0 (Rd) be a radial function, have integral zero and suppω ⊂ B(0, 1).

Note that ω̂ is also a radial function onR
d . Let Qs be the operator defined by Qt f (x) =

ωt ∗ f (x), where ωt (x) = t−dω(t−1x) for t > 0. We assume that

∫ ∞

0
[ω̂(s)]4 ds

s
= 1.

The Calderón reproducing formula

∫ ∞

0
Q4

s
ds

s
= I (4.1)

then holds true. Moreover, the classical Littlewood–Paley theory tells us that for all
p ∈ (1, ∞),

∥∥∥
( ∫ ∞

0
|Qs f |2 ds

s

) 1
2
∥∥∥
L p(Rd )

� ‖ f ‖L p(Rd ). (4.2)

It is well know that for b ∈ BMO(Rd) and p ∈ (1, ∞),

∥∥
∥
( ∫ ∞

0
|[b, Qs] f |2 ds

s

) 1
2
∥∥
∥
L p(Rd )

� ‖b‖BMO(Rd )‖ f ‖L p(Rd ). (4.3)

For a function � ∈ L1(Sd−1), define the operators W�, j and U�,n, j by

W�, j h(x) =
∫

Rd

�(x − y)

|x − y|d+1 ϕ j (x − y)h(y)dy,

U�,n, j h(x) =
∫

Rd

�(x − y)(xn − yn)

|x − y|d+1 ϕ j (x − y)h(y)dy, 1 ≤ n ≤ d.

Lemma 4.1 Let � be homogeneous of degree zero, and � ∈ GSβ(Sd−1) for some
β ∈ (1, ∞), then for j ∈ Z and s ∈ (0, 2 j ],

‖QsW�, j f ‖L2(Rd ) � 2− j log−β(e + 2 j/s)‖ f ‖L2(Rd ), (4.4)
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and

‖QsU�, n, j f ‖L2(Rd ) � log−β(e + 2 j/s)‖ f ‖L2(Rd ). (4.5)

Furthermore, for b ∈ BMO(Rd), j ∈ Z and s ∈ (0, 2 j ],
∥
∥[b, QsU�,n, j ] f

∥
∥
L2(Rd )

� log−β+1(e + 2 j/s)‖ f ‖L2(Rd ). (4.6)

Proof Inequalities (4.4) and (4.5) were proved in [4]. We now prove (4.6). We may
assume that ‖b‖BMO(Rd ) = 1. By dilation-invariance, it suffices to consider the case
j = 0 and s ∈ (0, 1]. Let Rd = ∪l Il , where Il are cubes having disjoint interiors, and
side length 1. For each fixed l, let fl = f χIl .Observing that supp QsU�,0 fl ⊂ 20d Il ,
and QsU�,n,0 fl have bounded overlaps, we then have that

‖[b, QsU�,n,0] f ‖2L2(Rd )
�
∑

l

‖[b, QsU�,n,0] fl‖2L2(Rd )
.

Thus, we may assume that supp f ⊂ I , with I a cube having side length 1. An
application of the inequality (2.4) gives us that

∫

Rd
|b(x) − 〈b〉I |2|QsU�,n,0 f (x)|2dx � ‖QsU�,n,0 f ‖2L2(log L)2,20d I .

Now let λ0 = log−β+1(e + 1/s), h be a function on R
d such that supp h ⊂ 20d I and

‖h‖L2(Rd ) = 1. Observing that ‖h‖L1(Rd ) � 1, we then get that

‖QsU�,n,0h‖L∞(Rd ) � s−d‖U�,n,0h‖L1(Rd ) � s−d‖h‖L1(Rd ) � s−d ,

and for any x ∈ 20d I and s ∈ (0, 1],

|QsU�,n,0h(x)|
λ0

� s−d logβ−1(e + 1/s) � s−d−1.

A straightforward computation involving estimate (4.5) leads to that

∫

20d I

( |QsU�,n,0h(x)|
λ0

)2
log2
(
e + |QsU�,n,0h(x)|

λ0

)
dx

� 1

λ20
‖QsU�,n,0h‖2L2(Rd )

log2(e + 1/s) � 1,

Therefore,

‖QsU�,n,0h‖L2(log L)2,20d I � λ0.
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This, via inequality (2.4), yields

‖|b − 〈b〉I |QsU�,n,0h‖L2(Rd ) � λ0‖h‖L2(Rd ). (4.7)

We also have that

‖QsU�,n,0((b − 〈b〉I ) f )‖L2(Rd ) � λ0‖ f ‖L2(Rd ). (4.8)

In fact, a standard computation leads to that

‖QsU�,n,0((b − 〈b〉I ) f )‖L2(Rd )

= sup
‖g‖L2(Rd )

≤1

∣∣∣∣

∫

Rd
QsU�,n,0((b − 〈b〉I ) f )(x)g(x)dx

∣∣∣∣

= sup
‖g‖L2(Rd )

≤1

∣∣∣∣

∫

I
QsU�,n,0(gχ20d I )(x)(b(x) − 〈b〉I ) f (x)dx

∣∣∣∣

≤ sup
‖g‖L2(Rd )

≤1
‖ f ‖L2(Rd )‖(b − 〈b〉I )QsU�,n,0(gχ20d I )‖L2(Rd ),

which, alongwith (4.7), implies (4.8). Combining estimates (4.7) and (4.8) yields (4.6)
for the case of j = 0, and completes the proof of Lemma 4.1. ��

Proof of Theorem 1.3 The procedure follows two steps. At first, we prove the L2(Rd)

boundedness of TA, by following the argument in the proof of Theorem 1.3 in [17],
together with some refined decomposition and estimates for T�,A. Then we prove
the L p(Rd) boundedness, using the approximation established in Sect. 3. Again, we
assume that ‖∇A‖BMO(Rd ) = 1.

We now prove the L2(Rd) boundedness of T�, A. By the Calderón reproducing
formula (4.1), it suffices to prove that for f , g ∈ C∞

0 (Rd),

∣∣∣∣

∫ ∞

0

∫ t

0

∫

Rd
Q4

s T�, AQ
4
t f (x)g(x)dx

ds

s

dt

t

∣∣∣∣ � ‖ f ‖L2(Rd )‖g‖L2(Rd ); (4.9)

and
∣∣∣∣

∫ ∞

0

∫ ∞

t

∫

Rd
Q4

s T�, AQ
4
t f (x)g(x)dx

ds

s

dt

t

∣∣∣∣ � ‖ f ‖L2(Rd )‖g‖L2(Rd ). (4.10)

We first prove (4.9). Let α ∈ ( d+1
d+2 , 1) be a constant. For each fixed j ∈ Z, let

Fj,1 = {(s, t) : 0 < t ≤ 2 j , 0 < s ≤ t},

Fj,2 = {(s, t) : 2 j < t < ∞, 0 < s ≤ (2 j tα−1)1/α},
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and

Fj,3 = {(s, t) : 2 j < t < ∞, (2 j tα−1)1/α < s ≤ t}.

For k = 1, 2, 3, set

Ek( f , g) =
∑

j∈Z

∫ ∫
χFj,k

∫

Rd
QsT�, A; j Q4

t f (x)Q
3
s g(x)dx

ds

s

dt

t
,

with

T�,A; j =
∫

Rd

�(x − y)

|x − y|d+1 ϕ j (|x − y|)(A(x) − A(y) − ∇A(y)(x − y)
)
f (y)dy.

It was proved in [22] that

‖E3( f , g)‖L2(Rd ) � ‖�‖L1(Sd−1)‖ f ‖L2(Rd )‖g‖L2(Rd ).

Then the proof of (4.9) is reduced to proving that for k = 1, 2,

‖Ek( f , g)‖L2(Rd ) � ‖ f ‖L2(Rd )‖g‖L2(Rd ). (4.11)

The proofs of (4.11) for k = 1 and k = 2 are similar, so we only prove (4.11)
for the case of k = 2. For each fixed j ∈ Z, let {Il} be the sequence of cubes
having disjoint interiors and side lengths 2 j , such that R

d = ⋃l Il . For fixed l, let
hs,l(x) = Qsg(x)χIl (x), ζl ∈ C∞

0 (Rd) such that supp ζl ⊂ 48d Il , 0 ≤ ζl ≤ 1 and
ζl(x) ≡ 1 when x ∈ 32d Il . Let xl be a point on the boundary of 100d Il . Let

Ãl(y) = A(y) −
d∑

m=1

〈∂m A〉Il ym, Al(y) = ( Ãl(y) − Ãl(x
l))ζl(y).

It follows from Lemma 2.1 that for all y ∈ R
d ,

|Al(y)| � 2 j , |∇Al(y)| � 1 + |∇A(y) − 〈∇A〉Il |. (4.12)

Note that for x ∈ 48d Il and y ∈ R
d with |x − y| ≤ 2 j+2,

A(x) − A(y) − ∇A(y)(x − y) = Al(x) − Al(y) − ∇Al(y)(x − y).

Write

T�, A; j h(x) = AlW�, j h(x) − W�, j (Alh)(x) −
d∑

n=1

U�,n, j (∂n Alh)(x).
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Set

D1 =
∣
∣∣∣∣∣

∑

j

∑

l

∫ ∫
χFj,2

∫

Rd
AlW�, j Q

4
t f (x)Q

3
s hs,l(x)dx

ds

s

dt

t

∣
∣∣∣∣∣
,

D2 =
∣∣
∣∣∣∣

∑

j

∑

l

∫ ∫
χFj,2

∫

Rd
W�, j (Al Q

4
t f )(x)Q

3
s hs,l(x)dx

ds

s

dt

t

∣∣
∣∣∣∣
,

and for 1 ≤ n ≤ d,

D3,n =
∣∣∣
∑

j

∑

l

∫ ∫
χFj,2

∫

Rd
U�,n, j (∂n Al Q

4
t f )(x)Q

3
s hs,l(x)dx

ds

s

dt

t

∣∣∣.

It then follows that

|E2( f , g)| ≤ D1 + D2 +
d∑

n=1

D3,n .

We first consider term D1. To this aim, we split it into two parts as

D1 =
∣∣∣∣∣∣

∑

j

∑

l

∫ ∫
χFj,2

∫

Rd
Q4

t f (x)W�, j (Al Q
3
s hs,l)(x)dx

ds

s

dt

t

∣∣∣∣∣∣

≤
∣
∣∣∣∣∣

∑

j

∑

l

∫ ∫
χFj,2

∫

Rd
Q4

t f (x)W�, j ([Al , Q
3
s ]hs,l)(x)dx

ds

s

dt

t

∣
∣∣∣∣∣

+
∣∣
∣∣∣∣

∑

j

∑

l

∫ ∫
χFj,2

∫

Rd
Q4

t f (x)W�, j Q
3
s (Alhs,l)(x)dx

ds

s

dt

t

∣∣
∣∣∣∣

:= D11 + D12.

An application of Hölder’s inequality leads to that

D11 �

⎛

⎝
∑

j∈Z

∑

l

∫ ∫
χFj,2

∥∥χ64d Il Q
4
t f
∥∥2
L2(Rd )

(2− j s)
1
2
ds

s

dt

t

⎞

⎠

1/2

×
⎛

⎝
∑

j∈Z

∑

l

∫ ∫
χFj,2

∥∥W�, j ([Al , Q
3
s ]hs,l)

∥∥2
L2(Rd )

(2− j s)−
1
2
ds

s

dt

t

⎞

⎠

1/2

:= I1I2.
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A straightforward computation gives that

I1 �

∥∥∥∥∥
∥∥

⎛

⎝
∫ ∞

0
|Q4

t f |2
∫ t

0

∑

j : 2 j≥sα t1−α

(2− j s)
1
2
ds

s

dt

t

⎞

⎠

1/2
∥∥∥∥∥
∥∥
L2(Rd )

� ‖ f ‖L2(Rd ).

Lemma 2.1, along with estimate (4.12), tells us that for x, y ∈ R
d with |x − y| ≤ s ≤

2 j ,

|Al(x) − Al(y)| � |x − y|
(

1

|I yx |
∫

I yx
|∇A(z) − 〈∇A〉Il |qdz

)1/q

� |x − y|
(
1 + log

(
2 j

|x − y|
))

� 2 j (2− j s)
1
2 ,

since �(t) = t log(e + t) is increasing and �(t) ≤ t1/2 when t ≤ 1. Therefore,

|[Al , Q
3
s ]h(x)| �

∫

Rd
ω̃s(x − y)|Al(x) − Al(y)||h(y)|dy � 2 j (2− j s)

1
2 Mh(x),

where ω̃s(x) = s−d ω̃(s−1x) and ω̃(x) = ω∗ω∗ω(x). LetM� be the operator defined
by

M�h(x) = sup
r>0

r−d
∫

|x−y|<r
|�(x − y)h(y)|dy.

We then have that

I2 �

⎛

⎝
∑

j∈Z

∑

l

∫ ∫
χFj,2

∥∥M�Mhs,l
∥∥2
L2(Rd )

(2− j s)
1
2
ds

s

dt

t

⎞

⎠

1/2

�

⎛

⎝
∑

j∈Z

∑

l

∫ ∫
χFj,2‖hs,l‖2L2(Rd )

(2− j s)
1
2
ds

s

dt

t

⎞

⎠

1/2

� ‖g‖L2(Rd ),

since

∫ ∞

s

∑

j : 2 j≥sα t1−α

(2− j s)
1
2
dt

t
� 1.

Therefore,

D11 � ‖ f ‖L2(Rd )‖g‖L2(Rd ).
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For term D12, another application of Hölder’s inequality yields

D12 �

⎛

⎝
∑

j∈Z

∫ ∫
χFj,2

∥
∥Q2

s Q
3
t f
∥
∥2
L2(Rd )

log−σ1 (e + 2 j/s)
ds

s

dt

t

⎞

⎠

1/2

×

∥
∥
∥∥
∥
∥
∥

⎛

⎝
∑

j∈Z

∫ ∫
χFj,2

∣∣
∣QsW�, j Qt

(∑

l

Alhs,l
)∣∣
∣
2
logσ1(e + 2 j/s)

ds

s

dt

t

⎞

⎠

1
2
∥
∥
∥∥
∥
∥
∥
L2(Rd )

:= I3I4,

where 1 < σ1 < 2β − 1 is a constant. Observe that

∑

j :2 j≥s

log−σ1(e + 2 j/s) � 1.

It then follows that

I3 �
∥∥
∥
( ∫ ∞

0

∫ ∞

0
|QsQ

3
t f |2

ds

s

dt

t

)1/2∥∥
∥
L2(Rd )

� ‖ f ‖L2(Rd ).

From (4.3) and (4.4) in Lemma 4.1, we know that

I4 �

⎛

⎝
∑

j∈Z

∫ 2 j

0

∥∥W�, j Qs

(∑

l

Alhs,l
)
(x)
∥∥2
L2(Rd )

logσ1(e + 2 j/s)
ds

s

⎞

⎠

1/2

�

⎛

⎝
∑

j∈Z

∫ 2 j

0
2− j
∥∥∥
∑

l

Alhs,l
∥∥∥
2

L2(Rd )
log−2β+σ1(e + 2 j/s)

ds

s

⎞

⎠

1/2

�

⎛

⎝
∫ ∞

0
‖Qsg‖2L2(Rd )

∑

j : 2 j≥s

log−2β+σ1(e + 2 j/s)
ds

s

⎞

⎠

1/2

� ‖g‖L2(Rd ),

where in the third inequality, we have invoked the fact that the supports of functions
{Alhs,l}l have bounded overlaps, and

∣∣
∣
∑

l

Alhs,l
∣∣
∣
2

� 2 j
∑

l

|hs,l |2 = 2 j |Qsg|2.

Therefore,

D12 � ‖ f ‖L2(Rd )‖g‖L2(Rd ).
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We turn our attention to term D2. Observe that QsW�, j = W�, j Qs . It then follows
that

D2 ≤
∣∣∣
∑

j

∑

l

∫ ∫
χFj,2

∫

Rd
QsW�, j ([Al , Q

2
s ]Q4

t f )(x)hs,l(x)dx
ds

s

dt

t

∣∣∣

+
∣∣
∣
∑

j

∑

l

∫ ∫
χFj,2

∫

Rd
QsW�, j (Al Q

2
s Q

4
t f )(x)hs,l(x)dx

ds

s

dt

t

∣∣
∣

:= D21 + D22.

Similar to term D11 and term D12 respectively„ we have that

D21 � ‖ f ‖L2(Rd )‖g‖L2(Rd ), D22 � ‖ f ‖L2(Rd )‖g‖L2(Rd ).

To consider D3,n , we write

∂n Al Q
4
t f (x) = [∂n A, Qt ]Q3

t f (x) + Qt [∂n A, Qt ]Q2
t f (x) + Q2

t (∂n Ãl Q
2
t ) f (x),

and

D3,n ≤
∑

j

∫ ∫
χFj,2

∣∣∣
∑

l

∫

Rd
Q3

s hs,l(x)U�,n, j ([∂n A, Qt ]Q3
t f )(x)dx

∣∣∣
ds

s

dt

t

+
∑

j

∫ ∫
χFj,2

∣
∣∣
∑

l

∫

Rd
Q3

s hs,l(x)U�,n, j Qt ([∂n A, Qt ]Q2
t f )(x)dx

∣
∣∣
ds

s

dt

t

+
∑

j

∫ ∫
χFj,2

∣∣∣
∑

l

∫

Rd
Q3

s hs,l(x)U�,n, j Q
2
t (∂n Ãl Q

2
t ) f (x)dx

∣∣∣
ds

s

dt

t

:=
3∑

i=1

Di
3,n .

Let 2 < σ2 < 2β − 2. It follows from Hölder’s inequality that

D1
3,n =

∑

j

∫ ∫
χFj,2

∣∣∣
∑

l

∫

Rd
Q2

sU�,n, j ([∂n A, Qt ]Q3
t f )(x)Qshs,l(x)dx

∣∣∣
ds

s

dt

t

�

⎛

⎝
∑

j

∫ ∫
χFj,2

∥∥Q2
sU�,n, j ([∂n A, Qt ]Q3

t f )
∥∥2
L2(Rd )

logσ2(e + 2 j

s
)
ds

s

dt

t

⎞

⎠

1
2

×
⎛

⎝
∑

j

∫ ∫
χFj,2

∥∥∥Qs
(∑

l

hs,l
)∥∥∥

2

L2(Rd )
log−σ2(e + 2 j/s)

ds

s

dt

t

⎞

⎠

1/2

:= J1J2.
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We have that

J2 ≤
⎛

⎝
∫ ∞

0
‖Q2

s g‖2L2(Rd )

∫ ∞

s

∑

j :2 j≥sα t1−α

log−σ2(e + 2 j/s)
dt

t

ds

s

⎞

⎠

1
2

�
∥∥∥
( ∫ ∞

0
|Q2

s g|2
ds

s

) 1
2
∥∥∥
L2(Rd )

� ‖g‖L2(Rd ),

where in the second inequality, we have invoked the fact that

∫ ∞

s

∑

j :2 j≥sα t1−α

log−σ2(e + 2 j/s)
dt

t
�
∫ ∞

s
log−σ2+1(e + t/s)

dt

t
� 1.

On the other hand, it follows from (4.5) in Lemma 4.1 that

J1 ≤
⎛

⎝
∑

j

∫ ∫
χFj,2 log

−2β+σ2(e + 2 j/s)‖[∂n A, Qt ]Q3
t f ‖2L2(Rd )

ds

s

dt

t

⎞

⎠

1
2

�

⎛

⎝
∫ ∞

0
‖[∂n A, Qt ]Q3

t f ‖2L2(Rd )

dt

t

∑

j :2 j≤t

∫ (2 j tα−1)1/α

0
log−2β+σ2(e + 2 j

s
)
ds

s

⎞

⎠

1
2

� ‖ f ‖L2(Rd ),

since β > 2 and

∑

j :2 j≤t

∫ (2 j tα−1)1/α

0
log−2β+σ2(e + 2 j/s)

ds

s
≤
∑

j :2 j≤t

log−2β+σ2+1 (e + t/2 j ) � 1.

Therefore,

D1
3,n � ‖ f ‖L2(Rd )‖g‖L2(Rd ).

Similarly, we have that

D2
3,n � ‖g‖L2(Rd )‖ f ‖L2(Rd ).

To estimate D3
3,n , write

∫

Rd
Q3

s hs,l(x)U�,n, j Q
2
t (∂n Ãl Q

2
t ) f (x)dx

=
∫

Rd
Q2

t hs,l(x)U�,n, j Q
3
s (∂n Ãl Q

2
t ) f (x)dx
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= −
∫

Rd
Q2

t hs,l(x)U�,n, j Q
2
s ([∂n A, Qs]Q2

t f )(x)dx

+
∫

Rd
Q2

t hs,l(x)U�,n, j Q
2
s (∂n Ãl QsQ

2
t f )(x)dx := Il1(s, t) + Il2(s, t).

For the integral corresponding to I1l , we choose σ3 with 1 < σ3 < 2β − 1, and deduce
from (4.5) in Lemma 4.1 that

∑

j

∫ ∫
χFj,2

∣
∣
∣
∑

l

Il1(s, t)
∣
∣
∣
ds

s

dt

t

�

⎛

⎝
∑

j

∫ ∫
χFj,2‖Q2

t Qsg‖2L2(Rd )
log−σ3(e + 2 j/s)

ds

s

dt

t

⎞

⎠

1
2

×
⎛

⎝
∑

j

∫ ∫
χFj,2‖U�,n, j Q

2
s [∂n A, Qs ]Q2

t f ‖2L2(Rd )
logσ3

(
e + 2 j

s

)ds
s

dt

t

⎞

⎠

1
2

� ‖g‖L2(Rd )

⎛

⎝
∫ ∞
0

∫ ∞
0

∥
∥[∂n A, Qs ]Q2

t f
∥
∥2
L2(Rd )

∑

j :2 j≥s

log−2β+σ3(e + 2 j/s)
ds

s

dt

t

⎞

⎠

1
2

� ‖g‖L2(Rd )

(∫ ∞
0

∫ ∞
0

∥
∥[∂n A, Qs ]Q2

t f
∥
∥2
L2(Rd )

ds

s

dt

t

) 1
2

� ‖ f ‖L2(Rd )‖g‖L2(Rd ).

To estimate the integral corresponding to Il2, write

Il2 =
∫

Rd
QsQ

2
t f (x)[∂n A,U�,n, j Qs]Q2

t Qshs,l(x)dx

+
∫

Rd
QsQ

2
t f (x)U�,n, j Qs[∂n A, Q2

t ]Qshs,l(x)dx

+
∫

Rd
QsQ

2
t f (x)U�,n, j Qs Q

2
t [∂n A, Qs]hs,l(x)dx

+
∫

Rd
QsQ

2
t f (x)U�,n, j Qs Q

2
t Qs(∂m Ãlhs,l)(x)dx

:= V1
n,l(s, t) + V2

n,l(s, t) + V3
n,l(s, t) + V4

n,l(s, t).

The estimates for the part of V2
n,l and V3

n,l are similar to the estimate for the term

corresponding to Il1, and are omitted. As for V4
n,l , we choose 1 < σ4 < 2β −3. It then

follows from Lemma 4.1 that

⎛

⎝
∑

j

∫ ∫
χFj,2

∥∥U�,n, j Qs Q
2
t (
∑

l

Qs(∂n Ãlhs,l))
∥∥2
L2(Rd )

logσ4(e + 2 j

s
)
ds

s

dt

t

⎞

⎠

1
2
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�

⎛

⎝
∑

j

∫ ∫
χFj,2

∥
∥Q2

t (
∑

l

Qs(∂n Ãlhs,l))
∥
∥2
L2(Rd )

log−2β+σ4(e + 2 j

s
)
ds

s

dt

t

⎞

⎠

1
2

�

⎛

⎝
∑

j

∫ 2 j

0

∥∥
∑

l

Qs(∂n Ãlhs,l)
∥∥2
L2(Rd )

log−2β+σ4(e + 2 j

s
)
ds

s

⎞

⎠

1
2

.

Let x ∈ 48d Il and q ∈ (1, 2). A straightforward computation involving Hölder’s
inequality and the John-Nirenberg inequality gives us that

|Qs(∂n Ãlh)(x)| � Mqh(x) + log(e + 2 j/s)Mh(x),

where I (x, s) is the cube centered at x and having side length s. This implies that

∑

j

∫ 2 j

0

∥∥
∑

l

Qs(∂n Ãlhs,l)
∥∥2
L2(Rd )

log−2β+σ4(e + 2 j/s)
ds

s

�
∫ ∞

0
‖Qsg‖2L2(Rd )

∑

j :2 j≥s

log−2β+σ4+2(e + 2 j/s)
ds

s
� ‖g‖L2(Rd ),

since −2β + σ4 + 2 < −1. Therefore,

∑

j

∫ ∫
χFj,2

∑

l

|V4
n,l (s, t)|

ds

s

dt

t

�
(∑

j

∫ ∫
χFj,2‖QsQ

2
t f ‖2L2(Rd )

log−σ4 (e + 2 j/s)
ds

s

dt

t

) 1
2

×
(∑

j

∫ ∫
χFj,2

∥
∥U�,n, j Qs Q

2
t (
∑

l

Qs(∂n Ãl hs,l ))
∥
∥2
L2(Rd )

logσ4 (e + 2 j

s
)
ds

s

dt

t

) 1
2

� ‖ f ‖L2(Rd )‖g‖L2(Rd ).

Now, we consider the part corresponding to V1
n,l . Invoking (4.6) in Lemma 4.1, we

deduce that

∥∥∥
(∑

j

∫ ∫
χFj,2 |[∂n A,U�,n, j Qs]Q2

t Q
2
s g|2 logσ4(e + 2 j/s)

ds

s

dt

t

) 1
2
∥∥∥
L2(Rd )

�
(∑

j

∫ ∫
χFj,2

∥
∥Q2

t Q
2
s g
∥
∥2
L2(Rd )

log−2β+σ4+2(e + 2 j/s)
ds

s

dt

t

) 1
2

� ‖g‖L2(Rd ).



Journal of Fourier Analysis and Applications            (2024) 30:50 Page 37 of 40    50 

Therefore,

∑

j

∫ ∫
χFj,2

∑

l

|V1
n,l(s, t)|

ds

s

dt

t

�
∥∥∥
(∑

j

∫ ∫
χFj,2 |QsQ

2
t f |2 log−σ4((e + 2 j/s)

ds

s

dt

t

) 1
2
∥∥∥
L2(Rd )

×
∥
∥∥
(∑

j

∫ ∫
χFj,2 |[∂n A,U�,n, j Qs]Q2

t Q
2
s g|2 logσ4(e + 2 j/s)

ds

s

dt

t

) 1
2
∥
∥∥
L2(Rd )

� ‖ f ‖L2(Rd )‖g‖L2(Rd ).

Combining the estimates for I1l , and Vi
n,l (i = 1, 2, 3, 4), yields

D3
3,n � ‖g‖L2(Rd )‖ f ‖L2(Rd ).

which, along with the estimates for D1, D2, D1
3,n and D

2
3,n leads to (4.11) with k = 2.

This verifies the inequality (4.9).
Now we turn our attention to inequality (4.10). Let Ps be the operator defined by

Ps =
∫ ∞

s
Q4

t
dt

t
.

It was proved in [16] that

∫ ∞

0
‖Ps f ‖2L2(Rd )

ds

s
≤ ‖ f ‖L2(Rd ).

Let T̃�, A be the adjoint of T�, A, that is,

T̃�, A f (x) = p. v.
∫

Rd

�̃(y − x)

|x − y|d+1

(
A(x) − A(y) − ∇A(x)(x − y)

)
f (y)dy,

with �̃(x) = �(−x). Obviously,

T̃�, Ah(x) = T�̃, Ah(x) +
d∑

n=1

[∂n A, T n
�̃
]h(x), (4.13)

where T n
�̃
is defined as in (3.23), but with � replaced by �̃. As the inequality (4.9),

we have that

∣
∣∣
∫ ∞

0

∫ t

0

∫

Rd
Q4

s T�̃, AQ
4
t f (x)g(x)dx

ds

s

dt

t

∣
∣∣ � ‖ f ‖L2(Rd )‖g‖L2(Rd );
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For each n with 1 ≤ n ≤ d, we know from [21, Theorem 2] that [∂n A, T n
�] is bounded

on L p(Rd) provided that 1 + 1/(β − 1) < p < β. A straightforward computation
yields

∣∣∣
∫ ∞

0

∫ t

0

∫

Rd
Q4

s [∂n A, T n
�̃
]Q4

t f (x)g(x)dx
ds

s

dt

t

∣∣∣

=
∣∣
∣
∫ ∞

0

∫ ∞

s

∫

Rd
Q4

t f (x)[∂n A, T n
�̃
]Q4

s g(x)dx
ds

s

dt

t

∣∣
∣

�
( ∫ ∞

0
‖[∂n A, T n

�̃
]Q4

s g‖2L2(Rd )

ds

s

)1/2( ∫ ∞

0
‖Ps f ‖2L2(Rd )

ds

s

)1/2

� ‖ f ‖L2(Rd )‖g‖L2(Rd ).

Therefore,

∣∣
∣
∫ ∞

0

∫ t

0

∫

Rd
Q4

s T̃�, AQ
4
t f (x)g(x)dx

ds

s

dt

t

∣∣
∣ � ‖ f ‖L2(Rd )‖g‖L2(Rd ).

This, via dulaity argument, gives (4.10).
With the L2(Rd) boundedness of T�, A in hand, we now verify the L p(Rd) bound-

edness of T�, A for the case of 1 + 1/(β − 1) < p < 2. Let Rl,A be the operator
defined as in Theorem 3.9, and ε ∈ (0, 1) be a constant which will be chosen later.
An application of Theorem 3.9 gives us that

∥∥R2l ,A f − R2l+1,A f
∥∥
L2(Rd )

� 2(−εβ+2)l‖ f ‖L2(Rd ). (4.14)

Therefore, the series

T�,A = R2, A +
∞∑

l=1

(R2l+1,A − R2l , A) (4.15)

converges in L2(Rd) operator norm and for f , g ∈ C∞
0 (Rd),

∫

Rd
(T�,A − R2,A) f (x)g(x)dx =

∞∑

l=1

∫

Rd
(R2l+1,A − R2l ,A) f (x)g(x)dx . (4.16)

On the other hand, from Theorem 3.9 we know that Rl,A is bounded on L2(Rd) with
bound independent of l. This, via Theorem 2.3, (ii) and (iii) of Theorem 3.9, shows
that for p ∈ (1, 2], Rl,A is bounded on L p(Rd) with bound Cl2. Thus, we have that

∥
∥R2l ,A f − R2l+1,A f

∥
∥
L p(Rd )

� 22l‖ f ‖L p(Rd ), p ∈ (1, 2]. (4.17)

Let 1 < p < 2 and � ∈ (0, 1). Interpolation between the inequalities (4.14) and
(4.17) leads to that

∥∥R2l ,A f − R2l+1,A f
∥∥
L p(Rd )

� 2(−2εβ/p′+2+�)l‖ f ‖L p(Rd ).
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For each p with 1+ 1/β < p < 2, we choose ε > 0 close to 1 sufficiently, and � > 0
close to 0 sufficiently, such that 2εβ/p′ > 2 + �, and then obtain that

∞∑

l=1

∥∥R2l , A f − R2l+1, A f
∥∥
L p(Rd )

� ‖ f ‖L p(Rd ).

This, along with (4.16), shows that T�, A is bounded on L p(Rd).
It remains to consider the L p(Rd) boundedness of T�,A for the case of 2 < p < β.

Observe that the operator T�̃, A is also bounded on L p(Rd) for 1 + 1/β < p < 2.
Thus by (4.13), we know that T̃�, A, the adjoint operator of T�, A, is also bounded on
L p(Rd) for 1 + 1/β < p < 2, and so T�, A is bounded on L p(Rd) for 2 < p < β.
This finishes the proof of Theorem 1.3. ��
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