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Abstract
We revisit Fourier’s approach to solve the heat equation on the circle in the context of
(twisted) reduced group C*-algebras, convergence of Fourier series and semigroups
associated to negative definite functions.We introduce some heat properties for count-
ably infinite groups and investigate when they are satisfied. Kazhdan’s property (T)
is an obstruction to the weakest property, and our findings leave open the possibility
that this might be the only one. On the other hand, many groups with the Haagerup
property satisfy the strongest version. We show that this heat property implies that the
associated heat problem has a unique solution regardless of the choice of the initial
datum.

Keywords Heat equation · Negative definite functions · Fourier series · Reduced
twisted group C∗-algebras · Property (T) · Haagerup property

Mathematics Subject Classification 22D25 · 22D55 · 43A07 · 43A35 · 43A50 ·
46L55 · 46L57

1 Introduction

About two hundred years have passed since J.B. Fourier’s treatise “Théorie analytique
de la chaleur” (“Analytical theory of heat”) was published in Paris. Few books, if any,
have had such a fundamental impact on the development of mathematics, with far

Communicated by Franz Luef.

Erik Bèdos and Roberto Conti contributed equally to this work.

B Erik Bédos
bedos@math.uio.no

Roberto Conti
roberto.conti@sbai.uniroma1.it

1 Department of Mathematics, University of Oslo, PB 1053, Blindern, N-0316 Oslo, Norway

2 Dipartimento SBAI, Sapienza Università di Roma, Via A. Scarpa 16, I-00161 Roma, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-024-10103-0&domain=pdf
http://orcid.org/0000-0002-5559-2571
http://orcid.org/0000-0003-3128-6884


46 Page 2 of 40 Journal of Fourier Analysis and Applications (2024) 30 :46

reaching consequences, both in theory and applications. Nowadays, in every under-
graduate course on partial differential equations, one discusses how to solve the heat
equation ∂t u = ∂xxu on the circle (i.e., with periodic boundary conditions) by using
Fourier series. One important aspect if one wants to give a rigorous proof is that the
potential solution u(x, t) obtained after applying the heat kernel to the initial tem-
perature f0 has a uniformly convergent Fourier series in x for each fixed time t > 0
and regardless of the regularity properties of f0. This makes it possible to handle the
technical issues that arise when proving that in fact one has put his hands on a genuine
solution.

Nowadays, a large part of recent research in operator algebras, noncommutative
harmonic analysis and noncommutative geometry deals with the study of various
properties of the reduced groupC∗-algebraC∗

r (G) of a discrete groupG, or its twisted
version C∗

r (G, σ ), where σ is a T-valued 2-cocycle on G. For the sake of clarity, we
will only consider the untwisted case in this introduction. But to gain some generality,
we will incorporate a 2-cocycle in most of our discussion in the subsequent sections.
Recall that if G is a discrete abelian group, then, by Fourier transform, C∗

r (G) may be
identified with C(̂G), the continuous complex functions on the Pontryagin dual ̂G of
G. In the case of the classical heat equation on the circle, one has G = Z and ̂G = T,
and the solution at any fixed time t > 0 is a smooth function of the space variable x
in T (hence it has a uniformly convergent Fourier series in x). From a modern point
of view, a nice feature of the heat kernel is that the assignment m �→ e−tm2

is a
positive definite function on Z for every t > 0, which by Schoenberg’s theorem is
equivalent to the fact that the function m �→ m2 is negative definite on Z. One may
now look for suitable reformulations of the heat equation directly in terms of C∗

r (G),
thus being meaningful for every (possibly noncommutative) discrete group G. In
the passage from the classical to the general setting, given a (normalized) negative
definite1 function d : G → [0,∞), the ordinary Laplacian � has to be replaced
with an operator HC

d defined on a suitable domain C in C∗
r (G) and satisfying that

HC
d (λ(g)) = −d(g)λ(g) for all g ∈ G, where λ denotes the left regular representation

of G on �2(G). An important tool is provided by the theory of multipliers on G, i.e.,
of those functions ϕ : G → C satisfying that there exists a bounded linear operator
Mϕ : C∗

r (G) → C∗
r (G) such that Mϕ(λ(g)) = ϕ(g)λ(g) for all g ∈ G. As shown by

Haagerup [35], every positive definite function ϕ on G is a multiplier satisfying that
the associated operator Mϕ is completely positive. In the context of classical Fourier
series, multipliers are often called Fourier multipliers and employed for instance in
the Fejér and the Abel-Poisson summation processes. Needless to say, Fourier series
are available also in the setting of reduced group C∗-algebras, although convergence
w.r.t. the operator norm for such series have been much less investigated than in the
classical situation, one relevant reference here being [6].

With this picture in mind, our starting point for the present paper has been to
examine to which extent Fourier’s approach to solve the heat equation on the circle
can be made rigorous when the group Z is replaced by a countably infinite group G.
More specifically, given a (normalized) negative definite function d : G → [0,∞),

1 We follow [10]. Negative definite functions on groups are sometimes called conditionally negative definite
functions, or functions (conditionally) of negative type.



Journal of Fourier Analysis and Applications (2024) 30 :46 Page 3 of 40 46

we consider the natural one-parameter semigroup (“time evolution”) of completely
positive maps {Md

t }t≥0 on C∗
r (G) associated to the positive definite functions e−td

on G, which we apply to some initial datum x0 in C∗
r (G). We then investigate the

possibility of expanding the output u(t) = Md
t (x0) at each positive time into an

operator norm-convergent Fourier series. In doing so, we were somehow inspired by
recent advances in the theory ofMarkov semigroups, noncommutative Dirichlet forms
(“energy integrals”) and potential theory (see e.g [19–21] and references therein),
and to a less extent by a wealth of ideas and techniques around noncommutative
geometry and the so-called Baum-Connes conjecture (see [18, 23, 47, 60] as a sample).
We recall that the quadratic form Q(ξ, η) := ∑

g∈G ξ(g)η(g) d(g) on �2(G) turns
out to be a Dirichlet form on C∗

r (G) w.r.t. the canonical trace, as the one-parameter
semigroup {Md

t }t≥0 can be shown to satisfy the required Markovian property. Notice
that � := √

d is then a length function which is also negative definite. If d is proper,
and D� denotes the (unbounded) multiplication operator by � on �2(G), then D�

is an example of a Dirac operator in the framework of Connes’ noncommutative
geometry [22, 23]. Moreover, the energy function E(ξ) := Q(ξ, ξ) is nothing but
〈D�ξ, D�ξ 〉 = ‖D�ξ‖2 = 〈ξ, (D�)

2ξ 〉, i.e., the corresponding expected value at ξ

of the associated (unbounded) operator on �2(G) associated with multiplication by
d = �2.

Now, consider again x0 ∈ C∗
r (G) and u(t) = Md

t (x0) ∈ C∗
r (G) for t ≥ 0. While

the uniform convergence of the Fourier series of a function in C(T) is traditionally
understood in the conditional sense, it will be more appropriate for us, as in [6], to
understand convergence of Fourier series in C∗

r (G) as unordered convergence (i.e.,
unconditional convergence, see Proposition 2.1) w.r.t. operator norm. We let CF(G)

denote the subspace of C∗
r (G) consisting of all operators having such a convergent

Fourier series. When the initial datum x0 belongs to CF(G), it is not difficult to show
that u(t) still belongs to CF(G) at any subsequent time t > 0. However, the situation
becomes more complicated when x0 /∈ CF(G). In this case, it is still conceivable
that under suitable circumstances the time evolution will produce some additional
regularization (or smoothness) so that u(t) ∈ CF(G) for all t > 0, or at least for all
t > t0 for some t0 ≥ 0. To see that this does not always happen, let us assume that G
hasKazhdan’s property (T) [9].Then, as shownbyAkemann-Walter [2], every negative
definite function on G is necessarily bounded, and this may be used to conclude that
there is no way for Md

t to regularize an “irregular” initial datum at any later time,
cf. Corollary 3.5.These observations seem to suggest an interpretation of groups with
property (T) as those for which no such regularization process can exist, i.e., as those
groups for which Fourier original intuition most likely fails. On the positive side,
we have that u(t) ∈ CF(G) for every choice of x0 as long as e−td ∈ �2(G) for
some t > 0. Also, if d is proper (so G has the Haagerup property [18]) and G has
exponential H-growth w.r.t. d (as defined in [6]), then we get that u(t) ∈ CF(G) for
all x0 ∈ C∗

r (G) and all t > 0, cf. Theorem 3.45.The class of pairs (G, d) satisfying
these last assumptions is quite large. It notably contains (Fk, | · |), where | · | denotes
the canonical word length function on the free group Fk (k ≥ 2). In general, letting
MCF(G) consists of those multipliers ϕ ofG such that Mϕ mapsC∗

r (G) intoCF(G),
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a natural and challenging problem is to find conditions ensuring that e−td belongs to
MCF(G) for some t > 0 (resp. for all t > 0).

In order to put these considerations on solid grounds, we decided to introduce
two properties for countably infinite groups among the several options expressing
different flavours of the requirement u(t) = Md

t (x0) ∈ CF(G), i.e., whether for
some d this holds for some (resp. all) t > 0, and some (resp. all) x0 ∈ C∗

r (G)\CF(G).
Namely, the weakest and the strongest possible choices, called the weak heat property
and the heat property, respectively. Groups with property (T) never have the weak
heat property. The converse is open, but we are able to show that a multitude of
groups without property (T) do have the weak heat property. Most of these groups are
actually finitely generated. Infinitely generated groups seem harder to handle and, for
instance, we don’t know if S∞ (the group of finite permutations of N) has the weak
heat property. Interestingly, familiar objects like Poincaré exponents and Sidon sets
play a rôle in our investigation of the weak heat property. Although the heat property
is much stronger, quite many groups do have it, e.g., Z

n (n ≥ 1), finitely generated
groups with polynomial growth, non-abelian free groups, and infinite Coxeter groups.
All these groups have the Haagerup property, but the exact relationship between the
heat property and the Haagerup property needs to be clarified.

Next, as an analogue of the Laplacian, we consider the operator HC
d , defined on the

domain

C = {

x ∈ C∗
r (G) :

∑

g∈G
d(g)̂x(g)λ(g) is convergent in operator norm

}

and taking its values in C∗
r (G), given by

HC
d (x) = −

∑

g∈G
d(g)̂x(g)λ(g).

Then we show in Theorem 4.7 that Fourier’s intuition was indeed a good one as long
as G has the heat property (with respect to d): for every x0 ∈ C∗

r (G), the natural heat
problem u′(t) = HC

d (u(t)) with initial datum x0 has then a unique solution given by
u(t) = Md

t (x0) for every t ≥ 0. Somewhat surprisingly, our proof is not just a simple
adaption of the classical argument, but requires some modern tools.

One of our mainmotivations for writing this article has been to point out a departure
from the classical situation. Namely for a groupwith property (T) the tentative solution
of the heat equation associated to a negative definite function cannot be expanded into
an operator norm-convergent Fourier series unless the initial datum itself admits such
an expansion. Whether this fact could eventually lead to a characterization of groups
with property (T) solely in terms of convergence properties of Fourier series remains
a challenging problem. We hope this, as well as many other questions scattered in the
main body of our paper, will stimulate further interest and investigations.

Our paper is organized as follows. Section2 contains some preliminaries about
negative definite functions on groups, convergence aspects of series in Banach spaces,
multipliers and reduced twisted group C∗-algebras, decay and growth properties of
groups. In the third section we introduce our heat properties, cf. Definition 3.6 and
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Definition 3.30, show that property (T) is an obstruction to the weak heat property in
Corollary 3.5, discuss some general facts about these notions and illustrate both by
several examples. Section4 is devoted to the study of an analogue of the heat equation
on a reduced twisted groupC∗-algebra associatedwith somenegative definite function,
where we demonstrate in Theorem 4.7 the usefulness of the heat property to guarantee
the existence of a solution, regardless of the initial datum. In the final section, we
have gathered some further questions and comments, including some indications of
possible extensions of our work.

2 Preliminaries

Throughout this paper, we assume that G is a countably infinite group with identity e,
unless otherwise specified.
2.1
We recall that a function d : G → C is called negative definite if d(g−1) = d(g) for
all g ∈ G and, for any n ∈ N, g1, . . . , gn ∈ G and b1, . . . , bn ∈ C with

∑n
i=1 bi = 0,

we have

n
∑

i, j=1

bib j d(g−1
i g j ) ≤ 0.

Such a function d is said to be normalized when d(e) = 0. We set

ND+
0 (G) := {

d : G → [0,∞) : d is negative definite and d(e) = 0
}

.

As is well known, ND+
0 (G) can be used to characterize some important properties of

groups:

• G has (Kazhdan’s) property (T) if and only if every d ∈ ND+
0 (G) is bounded, see

e.g. [2, 9, 36].
• G has the Haagerup property if and only if there exists some d ∈ ND+

0 (G) which
is proper2, see [18].

We will also often consider length functions on G. A function � : G → [0,∞)

is called a length function on G whenever �(e) = 0, �(g−1) = �(g) and �(gh) ≤
�(g)+�(h) for all g, h ∈ G. We note that ND+

0 (G) always contains length functions.
Indeed, if d ∈ ND+

0 (G), then d1/2 ∈ ND+
0 (G) and d1/2 is a length function on G

(cf. the proof of Proposition 3.3 in [10]).
Another feature of ND+

0 (G) is that it is connected to the representation theory ofG
via the Delorme-Guichardet theorem: d ∈ ND+

0 (G) if and only if there exist a unitary
(resp. orthogonal) representation π on a complex (resp. real) Hilbert space H and a
1-cocycle b : G → H associated with π such that d(g) = ‖b(g)‖2 for all g ∈ G. In
particular, the maps g �→ ‖b(g)‖2 and g �→ ‖b(g)‖ belong to ND+

0 (G) whenever b
is an homomorphism from G into some Hilbert space (real or complex).

2 A map c : G → [0,∞) is said to be proper if the set {g ∈ G : c(g) ≤ t} is finite for every t ∈ [0, ∞).
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When G acts by isometries on a metric space (X , ρ) and � is the (length) function
on G given by �(g) = ρ(gx0, x0) for some choice of base point x0 ∈ X , many authors
consider the so-called Poincaré exponent of �. The definition makes sense for any
function c : G → [0,∞): we define the Poincaré exponent δ(c) ∈ [0,∞] of c by

δ(c) := inf
{

s > 0 :
∑

g∈G
e−sc(g) < ∞}.

Poincaré exponents have been computed or estimated in many cases, see e.g. [1, 26,
32, 50, 54–56, 61]. If there exists some d ∈ ND+

0 (G) such that δ(d) < ∞, then
d is proper, hence G has the Haagerup property. Moreover, if δ(d) = 0, then G is
amenable. These facts can be deduced from different sources, e.g. [34, Theorem 5.3],
[26, Theorem 4.1] and [1, Propositions 3.7 and 3.8]).

If c, c′ : G → [0,∞), we will write c � c′ whenever there exist some a, b > 0
and some finite subset F of G such c(g) ≤ ac′(g)+b for all g ∈ G\F . The following
simple observation will be useful. Assume that c � c′ for some c : G → [0,∞)

such that δ(c) < ∞. Then an elementary computation gives that δ(c′) < ∞: for any
t > aδ(c), we have that

∑

g∈G\F
e−tc′(g) ≤

∑

g∈G
e−t( 1a c(g)−b) = etb

∑

g∈G
e− t

a c(g)∞.

Hence we get that δ(c′) ≤ aδ(c)∞.
2.2
If S is a nonempty set and {xs}s∈S is a family of elements in a normed space (X , ‖·‖), we
will say that the (formal) series

∑

s∈S xs converges to x ∈ X , and write
∑

s∈S xs = x ,
when the net

{∑

s∈F xs
}

F∈F converges to x , where F denotes the set of all finite
subsets of S, directed by inclusion: in other words, for any ε > 0, there exists Fε ∈
F such that ‖x − ∑

s∈F xs‖ < ε for every F ∈ F containing Fε. This notion of
convergence is often called unordered convergence. If X is a Banach space, then
Cauchy’s criterium says that

∑

s∈S xs is convergent if and only for any ε > 0, there
exists Eε ∈ F such that ‖∑

s∈F xs‖ < ε for every F ∈ F which is disjoint from
Eε. Also,

∑

s∈S xs is convergent whenever it is absolutely convergent, i.e., whenever
∑

s∈S ‖xs‖ is convergent, and the converse holds if X is finite-dimensional.
We will repeatedly use the equivalence between conditions i) and v) in the the

following result, connecting unordered convergence and unconditional convergence
(see for example [38, Section 3.3]).

Proposition 2.1 Assume that S is a countably infinite set, X is a Banach space, and
{xs}s∈S is a family of elements in X. Let {s j }∞j=1 be any enumeration of S (without
repetitions). Then the following statements are equivalent.

i)
∑

s∈S xs is convergent.
ii)

∑

j∈N xs j is convergent.
iii)

∑∞
j=1 xs j is unconditionally convergent, that is,

∑∞
j=1 xsσ( j) = limn→∞

∑n
j=1 xsσ( j) exists for every permutation σ of N.
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iv)
∑∞

j=1 c j xs j = limn→∞
∑n

j=1 c j xs j exists for every bounded sequence {c j }∞j=1
in C.

v)
∑

s∈S ϕ(s)xs is convergent for every ϕ ∈ �∞(S).

Proof The equivalence between i) and i i) is an easy exercise. The equivalences
between i i), i i i) and iv) are shown in [38, Theorem 3.3]. The implication v) ⇒ i) is
obvious. Finally, assume that i) holds and let ϕ ∈ �∞(S). To show that

∑

s∈S ϕ(s)xs
converges, it suffices to show that

∑∞
j=1 d j ϕ(s j )xs j exists for every bounded sequence

{d j }∞j=1 in C. But, as the sequence {d j ϕ(s j )}∞j=1 is bounded for any such choice of
{d j }∞j=1, this assertion follows from the convergence of the series

∑

s∈S xs . ��
2.3
Our notation and terminology concerning reduced twisted group C∗-algebras will
essentially be as in [6]. For the ease of the reader, we recall some of the definitions
and results that we will use. Let σ ∈ Z2(G, T), where Z2(G, T) denotes the group of
normalized 2-cocycles on G with values in the unit circle T. When σ is trivial, that is,
σ = 1, we skip it everywhere in our notation.

The left regular σ -projective representation �σ of G on �2(G) is defined by

(�σ (g)ξ)(h) = σ(g, g−1h) ξ(g−1h), ξ ∈ �2(G), g, h ∈ G.

Letting {δh}h∈G denote the canonical basis of �2(G), we have

�σ (g)δh = σ(g, h)δgh, g, h ∈ G.

In particular, �σ (g)δ = δg for all g ∈ G, where δ := δe. When σ = 1, we recover
the left regular representation of G on �2(G), which we will denote by λ.

As usual, B(�2(G)) denotes the space of all bounded linear operators from �2(G)

into itself, and, unless otherwise specified, ‖ · ‖ denotes the operator norm on
B(�2(G)).The reduced twisted group C∗-algebra C∗

r (G, σ ) (resp. the twisted group
von Neumann algebra vN(G, σ )) is the C∗-subalgebra (resp. von Neumann subalge-
bra) of B(�2(G)) generated by �σ (G). In other words, C∗

r (G, σ ) (resp. vN(G, σ )) is
the closure in the operator norm topology (resp. the weak operator topology) of the
∗-algebra C(G, σ ) :=Span(�σ (G)).

The canonical (faithful normal) tracial state τ on vN(G, σ ) is given by τ(x) =
〈xδ, δ〉, and the associated norm on vN(G, σ ) is defined by ‖x‖τ = τ(x∗x)1/2. The
map

x �→ x̂ := xδ

is an injective linear map from vN(G, σ ) into �2(G), satisfying that τ(x) = x̂(e) and
‖x‖τ = ‖x̂‖2 ≤ ‖x‖. Moreover, we have

x̂(g) = τ
(

x�σ (g)∗
)

, g ∈ G.

The Fourier series of x ∈ vN(G, σ ) is the series
∑

g∈G x̂(g)�σ (g). It always con-
verges to x w.r.t. ‖ · ‖τ . However, when x ∈ C∗

r (G, σ ), this series is not necessarily
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convergent w.r.t. operator norm. We therefore set

CF(G, σ ) :=
{

x ∈ C∗
r (G, σ ) :

∑

g∈G
x̂(g)�σ (g) is convergent in operator norm

}

.

Although we won’t need this fact in the sequel, we mention that CF(G, σ ) becomes
a Banach space w.r.t. to the norm given by

‖x‖F := sup
{ ∥

∥

∥

∑

g∈F
x̂(g)�σ (g)

∥

∥

∥ : F ∈ F
}

where the set F consists of all finite subsets of G. (This can for example be deduced
from [5, p. 231].) Moreover, as shown by Bożejko in [11, Theorem 1.2] when σ = 1,
the space CF(G) is a Banach ∗-algebra, and ‖ · ‖F is equivalent to the norm ‖ · ‖U
on CF(G) given by

‖x‖U :=
∥

∥

∥

∑

g∈G
|̂x(g)| λ(g)

∥

∥

∥.

As a Banach algebra w.r.t. ‖ · ‖U , CF(G) coincides with the algebraAmax(G) consid-
ered by V. Lafforgue in [47], where it plays an important role in his approach to prove
the Baum-Connes conjecture for a certain class of groups, cf. [47, Corollaire 0.0.3].
This gives us the opportunity to illustrate that using unordered (= unconditional) con-
vergence in the definition of CF(G) is primordial: it is for example known, cf. [46],
that the space

{

x ∈ C∗
r (Z) : lim

n→∞

n
∑

m=−n

x̂(m)λ(m) exists w.r.t. operator norm
}

is not an algebra.
We also note that Bożejko has shown that CF(G) �= C∗

r (G) (cf. [11, Proposi-
tion 3.6]). Most probably, it is also true that CF(G, σ ) �= C∗

r (G, σ ) for every σ in
Z2(G, T). When G is not periodic, i.e., it contains at least one element of infinite
order, this can be seen as follows. Since G then contains a copy of Z, and every 2-
cocycle on Z is similar to the trivial one, we get that C(T) � C∗

r (Z) � C∗
r (Z, σ ) may

be identified with a C∗-subalgebra of C∗
r (G, σ ). By considering a function in C(T)

whose Fourier series is not uniformly convergent, one easily deduces that C∗
r (G, σ )

contains at least one element not belonging to CF(G, σ ).
Next, we set

W (G, σ ) := {x ∈ C∗
r (G, σ ) : x̂ ∈ �1(G)},

which is easily seen to be a ∗-subalgebra of C∗
r (G, σ ) satisfying that

C(G, σ ) ⊆ W (G, σ ) ⊆ CF(G, σ ).
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As is well-known, W (G, σ ) is a Banach ∗-algebra w.r.t. to the norm x �→ ‖x̂‖1 and
W (G, σ ) is isometrically ∗-isomorphic to the twisted convolution algebra �1(G, σ ).
In particular, W (Z) � �1(Z) corresponds to the classical Wiener algebra. Another
result of Bożejko says that the equality W (G) = CF(G) holds if and only if G is
amenable, cf. [11, Proposition 1.3]. Whether this equivalence also holds in the twisted
case is unclear to us.

Let ϕ ∈ �∞(G). We recall that ϕ is called a σ -multiplier on G, i.e., ϕ ∈
MA(G, σ ), whenever there exists a (necessarily unique) bounded linear operator
Mϕ : C∗

r (G, σ ) → C∗
r (G, σ ) such that

Mϕ(�σ (g)) = ϕ(g)�σ (g) for all g ∈ G.

Arguing as Haagerup-de Cannière in their proof of [25, Proposition 1.2], one gets that
ϕ ∈ MA(G, σ ) if and only if there exists a (necessarily unique) normal operator ˜Mϕ

from vN(G, σ ) into itself such that ˜Mϕ(�σ (g)) = ϕ(g)�σ (g) for all g ∈ G, in which
case we have ‖ ˜Mϕ‖ = ‖Mϕ‖.

For x ∈ C∗
r (G, σ ) and g ∈ G we have that M̂ϕ(x)(g) = ϕ(g) x̂(g), so the Fourier

series of Mϕ(x) is given by

∑

g∈G
ϕ(g)̂x(g)�σ (g).

Moreover, setting

MCF(G, σ ) := {

ϕ ∈ MA(G, σ ) : Mϕ maps C∗
r (G, σ ) into CF(G, σ )

}

,

we get that

Mϕ(x) =
∑

g∈G
ϕ(g)̂x(g)�σ (g) (convergence w.r.t. operator norm)

for all x ∈ C∗
r (G, σ ) whenever ϕ ∈ MCF(G, σ ).

It is easy to see that if ϕ ∈ �2(G), then Mϕ maps C∗
r (G, σ ) into W (G, σ ), so we

have �2(G) ⊆ MCF(G, σ ), cf. [6, p. 356-357]. One may also produce elements in
MCF(G, σ ) when G satisfies some suitable decay property. Let κ : G → [1,∞).
We recall that G is said to be κ-decaying if there exists some C > 0 such that

‖x‖ ≤ C ‖x̂κ‖2
for all x ∈ C(G). Then the following result holds, cf. [6, Proposition 4.8]:

Proposition 2.2 Assume G is κ-decaying for some κ : G → [1,∞). Let ψ : G → C

be such that ψκ is bounded. Then ψ ∈ MCF(G, σ ).

Remark 2.3 Clearly, for κ and ψ as in Proposition 2.2, we have ψ ∈ c0(G) whenever
κ is proper, which will always be the case in our later applications of Proposition 2.2.
We actually don’t know if MCF(G, σ ) is always contained in c0(G).
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Proposition 2.2 is a strengthening of a result due to Haagerup [35], where he
considers the free group Fk on k generators for some k ≥ 2 and the canonical word
length function L = | · | on Fk . After showing that Fk is (1 + L)2-decaying, he
proves that any function ψ : Fk → C satisfying that ψ(1 + L)2 is bounded gives a
multiplier on Fk . Proposition 2.2 tells us that every function ψ in this class actually
belongs to MCF(Fk). As there exist such functions which do not lie in �2(Fk) (cf.
Example 3.46), we have that �2(Fk) �= MCF(Fk). To our knowledge, not much
is known about infinite groups G satisfying that �2(G) = MCF(G) (but see
Remark 3.40).

We will also need the concept of H-growth for groups introduced in [6], which
relies on the following notion of size. Let E be a non-empty finite subset of G. The
Haagerup content of E is defined as

c(E) := sup
{

‖x‖ : x ∈ C(G), supp(̂x) ⊆ E, ‖x̂‖2 ≤ 1
}

.

We then have 1 ≤ c(E) ≤ |E |1/2, and c(E) = |E |1/2 whenever G is amenable.
Assume L : G → [0,+∞) is a proper map such that L(e) = 0. Then G is said

to have polynomial H-growth (w.r.t. L) whenever there exist positive constants K , p
such that

c
({g ∈ G | L(g) ≤ r}) ≤ K (1 + r)p

for all r ≥ 0. Similarly, G is said to have subexponential H-growth (w.r.t. L) if, for
any b > 1, there exists r1 ≥ 0 such that

c
({g ∈ G | L(g) ≤ r}) < br for all r ≥ r1.

These definitions are analogous to the classical definitions of polyno-
mial/subexponential growth (w.r.t. L), where one uses the cardinality of a set instead
of its Haagerup content to measure its size.

Note that if G has polynomial (resp. subexponential) growth (w.r.t. L), then G
has also polynomial (resp. subexponential) H-growth (w.r.t. L). Moreover, if G is
amenable, then polynomial (resp. subexponential) H-growth (w.r.t. L) reduces to
polynomial (resp. subexponential) growth (w.r.t. L). When G is finitely generated,
the function L is frequently chosen to be a word length function w.r.t. some finite
symmetric generator set. The specific choice of word length function on G is then
irrelevant, and usually dropped from the notation. As is well-known, finitely generated
groups with subexponential growth are amenable, see for example [37].

3 Some Heat Properties for Groups

Throughout this section, we assume that G is a countably infinite group, σ belongs to
Z2(G, T), and d ∈ ND+

0 (G), unless otherwise specified.
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3.1 TheWeak Heat Property

The following observation will be useful for our discussion.

Proposition 3.1 Let ϕ ∈ MA(G, σ ). Then Mϕ maps CF(G, σ ) into itself.

Proof We may assume that ϕ �= 0. Let x ∈ CF(G, σ ). We have to show that the
Fourier series of Mϕ(x) is convergent w.r.t. operator norm. Since ϕ is bounded, this
follows from Proposition 1.1. This can also be proven in an elementary way.

Indeed, let ε > 0 and set M := ‖Mϕ‖ > 0. Since x ∈ CF(G, σ ), Cauchy’s
criterium gives that there exists a finite set Fε ⊆ G such that

∥

∥

∥

∑

g∈F
x̂(g)�σ (g)

∥

∥

∥ < ε/M

for all finite subsets F of G disjoint from Fε.Thus we get that

∥

∥

∥

∑

g∈F
ϕ(g)̂x(g)�σ (g)

∥

∥

∥ =
∥

∥

∥Mϕ

(
∑

g∈F
x̂(g)�σ (g)

)∥

∥

∥ ≤ M
∥

∥

∥

∑

g∈F
x̂(g)�σ (g)

∥

∥

∥ < ε

for all finite subsets F of G disjoint from Fε. Cauchy’s criterium gives the desired
conclusion. ��
Remark 3.2 Let ϕ ∈ �∞(G). If x ∈ CF(G, σ ), then Proposition 2.1 gives that the
series

∑

g∈G ϕ(g)̂x(g)�σ (g) is convergent w.r.t. operator norm. This means that the
assignment x �→ ∑

g∈G ϕ(g)̂x(g)�σ (g) is a well-defined linear map fromCF(G, σ )

into itself. However, this map can only be extended to a bounded linear map from
C∗
r (G, σ ) into itself when ϕ belongs to MA(G, σ ), in which case it coincides with

Mϕ .

Set now ϕt := e−td for every t ∈ [0,∞). By Schoenberg’s theorem, each ϕt is positive
definite, hence belongs to MA(G, σ ). Moreover, setting Md

t := Mϕt for each t ≥ 0,
{Md

t }t≥0 is a semigroup of contractions, consisting of unital completely positive maps
on C∗

r (G, σ ) (see [35], and [6] for the twisted case).
Let x0 ∈ C∗

r (G, σ ) (thinking of it as some initial element). For each t ≥ 0, set

x(t) := Md
t (x0) ∈ C∗

r (G, σ ).

Then x(0) = x0 and the Fourier series of x(t) is
∑

g∈G e−td(g) x̂(g)�σ (g).

Proposition 3.3 Assume that x(t0) ∈ CF(G, σ ) for some t0 ≥ 0. Then x(t) ∈
CF(G, σ ) for all t ≥ t0. In particular, if x0 = x(0) ∈ CF(G, σ ), then x(t) ∈
CF(G, σ ) for all t ≥ 0.
Moreover, if 0 < s ≤ t and ϕs ∈ MCF(G, σ ), then ϕt ∈ MCF(G, σ ).

Proof Let t ≥ t0 and set u = t − t0. Then

x(t) = Md
u (Md

t0(x0)) = Mϕu (x(t0)) ∈ CF(G, σ )

by Proposition 3.1. The last assertion follows in a similar way. ��
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Set

I d,σ
x0 := {

t ≥ 0 | x(t) = Md
t (x0) ∈ CF(G, σ )

} ⊆ [0,∞).

Then Proposition 3.3 gives that I d,σ
x0 = [0,∞) whenever x0 ∈ CF(G, σ ). Moreover,

set

E(d, σ ) := {

t0 | e−td ∈ MCF(G, σ )
}

, and

ε(d, σ ) := inf E(d, σ ) ∈ [0,∞].

When σ = 1, we just write ε(d), which may be thought of as some new kind of
Poincaré exponent. Since �2(G) ⊆ MCF(G, σ ), we have

ε(d, σ ) ≤ δ(d)/2,

with equality when �2(G) = MCF(G, σ ) (see Remark 3.40 when σ = 1).
If E(d, σ ) is non-empty, i.e., ε(d, σ ) < ∞, then Proposition 3.3 gives that E(d, σ )

is of the form (ε(d, σ ),∞) or [ε(d, σ ),∞), and it then follows that [t,∞) ⊆ I d,σ
x0

for every x0 ∈ C∗
r (G, σ ) whenever t > ε(d, σ ).

Proposition 3.4 Suppose that d is bounded. Then the following conditions are
equivalent:

i) x0 ∈ CF(G, σ ).
ii) x(t) ∈ CF(G, σ ) for some t > 0.
iii) x(t) ∈ CF(G, σ ) for all t ≥ 0.

It follows that I d,σ
x0 = ∅ for every x0 /∈ CF(G, σ ). Hence, ε(d, σ ) = ∞ if σ = 1 or

G is not periodic.

Proof The implication i) ⇒ i i i) follows from Proposition 3.1, while i i i) ⇒ i i) is
trivial. Thus we have to show that i i) ⇒ i). Assume that x(t) ∈ CF(G, σ ) for
some t > 0. To show that i) holds, i.e., that the Fourier series

∑

g∈G x̂0(g)�σ (g) is
convergent w.r.t. operator norm, it suffices to show that the series

∑

g∈G
ϕ(g) x̂0(g)�σ (g)

is convergent w.r.t. operator norm for every ϕ ∈ �∞(G), cf. Proposition 2.1.
So let ϕ ∈ �∞(G). Since d is bounded, it clear that the function ψ := ϕetd

is bounded too. Now, since x(t) ∈ CF(G, σ ) and x̂(t)(g) = e−td(g) x̂0(g) for all
g ∈ G, we have that the series

∑

g∈G
e−td(g) x̂0(g)�σ (g)
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is convergent w.r.t. operator norm. Hence, using again Proposition 2.1, we get that the
series

∑

g∈G
ϕ(g) x̂0(g)�σ (g) =

∞
∑

j=1

ψ(g) e−td(g) x̂0(g)�σ (g)

is convergent w.r.t. operator norm, as desired. ��
Corollary 3.5 Assume that G has property (T ) and let x0 ∈ C∗

r (G, σ ). Then, for any
choice of d in N D+

0 (G), we have

I d,σ
x0 =

{

[0,∞) if x0 ∈ CF(G, σ ),

∅ otherwise.

One may legitimately wonder if the converse statement holds. To formulate this in
a precise way, we make the following definition.

Definition 3.6 We will say that (G, σ ) has the weak heat property whenever there
exist some d ∈ ND+

0 (G), x0 /∈ CF(G, σ ) and t > 0 such that Md
t (x0) belongs to

CF(G, σ ), i.e., such that I d,σ
x0 �= ∅. When this holds for σ = 1, we just say that G

has the weak heat property.

Thus, Corollary 3.5 implies that if G has property (T), then (G, σ ) does not have
the weak heat property. We will later consider a stronger property, called the heat
property. We now ask:

If G does not have property (T ), does G have the weak heat property? Also, does
then (G, σ ) have the weak heat property for every σ ∈ Z2(G, T)?

It is not difficult to show an �2-version of these statements. Indeed, assume that G
does not have property (T). Then there exists an unbounded function d ∈ ND+

0 (G), cf.
[2]. So we can pick a sequence {gn}∞n=1 of distincts elements in G such that d(gn) ≥ n
for every n ∈ N. For each t ≥ 0, let md

t : �2(G) → �2(G) denote the bounded
operator given by

[md
t (ξ)](g) = e−td(g)ξ(g).

Now, pick any c = {cn}∞n=1 ∈ �2 \ �1, and define ξc ∈ �2(G) \ �1(G) by ξc(g) = cn
if g = gn and ξc(g) = 0 otherwise. Then it is easy to see that we have

md
t (ξc) ∈ �1(G) for every t > 0,

i.e., md
t (ξc) corresponds to an element in W (G, σ ) ⊆ CF(G, σ ) for every t > 0.

However, this does not allow us to conclude that (G, σ ) has the weak heat property.
The problem is that it is not clear that the sequence c can be chosen such that ξc = x̂0
for some x0 inC∗

r (G, σ )\CF(G, σ ). Let us assume for simplicity that σ = 1. Setting
E = {gn : n ∈ N}, with the gn’s chosen as above, we would like to find some
x0 ∈ C∗

r (G) such that x̂0 has support in E and x0 /∈ CF(G) (i.e., x̂0 /∈ �1(G) if
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G is amenable). In Bożejko’s terminology [11], this means that E should not be an
unconditional Sidon set (see [11, Theorem 3.1] for a characterization of such sets).
We are presently not aware of any study of unconditional Sidon sets in relation with
negative definite functions on G, even when G is amenable (in which case the notions
of unconditional Sidon set and Sidon set agree)3.

Remark 3.7 Consider the following statement for an amenable group G:
Whenever E is an infinite subset of G such that e−td |E ∈ �1(E) for some t > 0

and some d ∈ ND+
0 (G), then E is a Sidon set.

In connection with the above discussion, it would be natural to ask whether there exists
an amenable group G for which this statement is true. Note that such a group G would
then satisfy that δ(d) = ∞ for every d ∈ ND+

0 (G) (asG itself is not a Sidon set, since
CF(G) �= C∗

r (G)). Moreover, it would produce a situation where the method outlined
above to show that G has the weak heat property will not work. For the moment it is
not clear to us whether groups like S∞ (= the group of finite permutations of N) or
the first Grigorchuk group [37] might have the above property. On the other hand, if
this should happen, it would give a relatively cheap way to produce Sidon sets, which
seems an interesting fact on its own.

To conclude this subsection, let us recall that a groupwith property (T) is necessarily
finitely generated [9]. We will therefore primarily be interested in finitely generated
groups. However, if G is infinitely generated, hence does not have property (T), the
question whether G has the weak heat property does still make sense. While the status
of the program of characterizing groups with the weak heat property is still uncertain,
we will present in the next subsection a long list of examples of such groups (including
some infinitely generated ones).

3.2 Groups with theWeak Heat Property

Proposition 3.8 Suppose G is non periodic or that σ = 1. Moreover, assume that
δ(d) < ∞, or, more generally, that ε(d, σ ) < ∞ for some d ∈ ND+

0 (G). Then
(G, σ ) has the weak heat property.

Proof For any t > ε(d, σ ), we have e−td ∈ MCF(G, σ ), henceMd
t (x0) ∈ CF(G, σ )

for every x0 ∈ C∗
r (G, σ ). Since we can pick some x0 /∈ CF(G, σ ), we obtain that

(G, σ ) has the weak heat property. ��
Note that G has the Haagerup property whenever δ(d) < ∞, as observed in the
preliminaries.

Example 3.9 Asaveryfirst example, letG = Z andd ∈ ND+
0 (Z)be givend(m) = m2

for m ∈ Z. Then it is immediate that δ(d) = 0, so Z has the weak heat property. We
will see in Example 3.35 that (Zn, σ ) has the heat property for every n ∈ N and
σ ∈ Z2(Zn, T).

3 A subset E of G is called a Sidon set if x ∈ W (G) for all x ∈ C∗
r (G) such that x̂ has support in E .
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Example 3.10 Assume G is a discrete subgroup of SL(2, R), acting on the hyperbolic
plane H

2 = {z ∈ C : Imz > 0} by fractional linear transformations, namely

(

a b
c d

)

· z = az + b

cz + d
,

and let d : G → [0,∞) be given by d(g) = ρ(gz0, z0), where ρ denotes the
hyperbolic metric on H

2 and z0 ∈ H
2. Then it is known that d is negative definite (and

proper), cf. [18, 30]. Moreover, the Poincaré exponent δG of G, which is given by

δG := δ(d) = inf
{

s > 0 :
∑

g∈G
e−sd(g) < +∞}

,

is independent of the choice of z0 and lies in the interval [0, 1], cf. [55]. Hence we
get from Proposition 3.8 that G has the weak heat property. We will later show by a
different method that SL(2, Z) satisfies the heat property, cf. Example 3.53.

The same kind of argument as above can be applied to discrete subgroups of
SL(2, C), by considering their action by isometries on the 3-dimensional hyperbolic
space H

3.

Example 3.11 We first recall that if c � d for some c : G → [0,∞) such that δ(c) <

∞, then δ(d) < ∞ (cf. Subsection 2.1), so we can conclude from Proposition 3.8 that
(G, σ ) has the weak heat property. (Similarly, (G, σ ) will have the heat property if
δ(c) = 0).

A situation where this can be applied is the following. Let (X , ρ) be a metric space
and assume that there is a proper action of a finitely generated group G by isometries
on X (proper means that for any compact subset B of X , the set {g ∈ G : gB∩B �= ∅}
is finite). Moreover assume that the orbit space X/G has finite diameter. Let x ∈ X
and set d(g) = ρ(gx, x). Then we have | · |S � d for any finite generating subset S
of G, cf. [58, p. 338]. Since δ(| · |S) < ∞, cf. Lemma 3.36, we see that δ(d) < ∞.
Moreover, in some cases, e.g. when X is an R-tree, it turns out that d is negative
definite [14, Theorem 6.1]. Therefore, when this happens, we get that G has the weak
heat property. Examples of groups satisfying all these requirements are fundamental
groups of compact manifolds with Euler characteristic less than −1, cf. [58].

In general, given a finitely generated group G, an interesting problem is to produce
some d ∈ ND+

0 (G) such that | · |S � d for some (any) word length function | · |S on
G. When this can be achieved, we can conclude as above that G has the weak heat
property.

Remark 3.12 It is well-known that amenability of a group implies �-amenability as
defined by Lance [49], which then implies K -amenability as defined by Cuntz [24].
Moreover, every group with the Haagerup property is K -amenable, as shown by Tu
(cf. [63, Proposition 3.8 and Théorème 9.3]), and every infinite K -amenable group
does not have property (T). It seems therefore natural to ask whether all infinite K -
amenable groups have the weak heat property. Besides, one may also wonder whether
every group with the heat property is K -amenable.
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In the next statement we discuss a situation where a group inherits the weak heat
property from a subgroup.

Lemma 3.13 Assume G has a subgroup H which has the weak heat property, and let
dH ∈ ND+

0 (H), x0 ∈ C∗
r (H)\CF(H) and t > 0 be such that MdH

t (x0) ∈ CF(H).
If dH can be extended to some d ∈ ND+

0 (G), then G has the weak heat property.

Proof Assume dH can be extended to d ∈ ND+
0 (G). Let ι denote the canonical

embedding of C∗
r (H) into C∗

r (G). Then, for x ∈ C∗
r (H) and g ∈ G, we have

ι̂(x)(g) =
{

x̂(g) if g ∈ H ,

0 if g /∈ H .

Thus, if h ∈ H , we have

̂Md
t (ι(x0))(h) = e−td(h)ι̂(x0)(h) = e−tdH (h) x̂0(h) = ̂MdH

t (x0)(h),

while if g /∈ H , we get

̂Md
t (ι(x0))(g) = e−td(g)ι̂(x0)(g) = 0.

Set now y0 := ι(x0) ∈ C∗
r (G). Since

∑

h∈H
̂MdH
t (x0)(h)�H (h) is convergent

w.r.t. operator norm in C∗
r (H), we get that the Fourier series of Md

t (y0), which is
given by

∑

g∈G
̂Md
t (y0)(g)�G(g) =

∑

h∈H

̂MdH
t (x0)(h)�G(h) = ι

(
∑

h∈H

̂MdH
t (x0)(h)�H (h)

)

,

is convergent w.r.t. operator norm inC∗
r (G), i.e., Md

t (y0) ∈ CF(G). By the same kind
of argument, we also get that y0 /∈ CF(G). ��
The case where σ is not trivial can be handled in a similar way, but we leave this to
the reader.

Example 3.14 Consider G = Q and H = Z. Then the function dZ given by dZ(m) =
m2 (m ∈ Z) belongs to ND+

0 (Z) and it has an extension d ∈ ND+
0 (Q) given by the

same formula. Since δ(dZ) = 0 we can pick x0 ∈ C∗
r (Z)\CF(Z) and t > 0 such that

MdZ
t (x0) ∈ CF(Z). Thus Lemma 3.13 applies and gives that Q has the weak heat

property.

Proposition 3.15 Assume that G1 ∗G2 is the free product of two nontrivial groups G1
and G2, and that G1 has the weak heat property. Then G1 ∗ G2 has the weak heat
property.



Journal of Fourier Analysis and Applications (2024) 30 :46 Page 17 of 40 46

Proof By assumption, there exist d1 ∈ ND+
0 (G1), x1 ∈ C∗

r (G1) and t1 > 0 as in the
definition of weak heat property. Pick any d2 ∈ ND+

0 (G2). Let then d be the function
on G1 ∗ G2 induced by d1 and d2, i.e., d(e) = 0 and

d(g) = di1(s1) + di2(s2) + · · · + din (sn)

whenever g = s1s2 . . . sn , where each s j ∈ Gi j for some i j ∈ {1, 2}, and i j+1 �= i j
for each j < n. Then d ∈ ND+

0 (G1 ∗ G2). Indeed, let t > 0. Then each fk := e−tdk

is positive definite on Gk (k = 1, 2). Hence, for g as above, we have

e−td(g) =
n

∏

j=1

e−tdi j (s j ) =
n

∏

j=1

fi j (s j ) =: ( f1 ∗ f2)(g)

Then, by [57, Theorem 1] (see also [12, Theorem 1] and [13, Corollary 3.2]), we
get that e−td = f1 ∗ f2 is positive definite on G. Since this is true for every t > 0,
Schoenberg’s theorem gives that d is negative definite.

Moreover, d coincides with d1 on G1. The conclusion now follows immediately
from Lemma 3.13. ��
This proposition implies that every finitely generated non-abelian free group has the
weak heat property. In fact, we will see in Example 3.39 that they have the heat
property.

Proposition 3.16 Let G = � � K be the semidirect product of a group � by some
action of a group K , and assume that K has the weak heat property. Then G has the
weak heat property.

Proof By assumption, we can pick dK ∈ ND+
0 (K ), x0 ∈ C∗

r (K )\CF(K ) and t > 0

such that MdK
t (x0) ∈ CF(K ). Define d on G by d = dK ◦ π where π : G → K

is the canonical map. Then d is an extension of dK and d ∈ ND+
0 (G). (Since dK is

unbounded, d is unbounded too, and it is not proper if � is infinite.) It follows from
Lemma 3.13 that G has the weak heat property. ��
Remark 3.17 We note that if K has the heat property, then G will have some kind of
relative heat property which is stronger than the weak heat property (cf. Example 3.53
about Z

2
� SL(2, Z)).

Example 3.18 Let G be the discrete 3-dimensional Heisenberg group. Then it is well-
known that G may be written as a semidirect product Z2

� Z. Hence Proposition 3.16
gives that G has the weak heat property. Now, it is also known that G has polynomial
growth, and thiswill imply thatG has the heat property, aswewill see in Example 3.51.

Example 3.19 Let G = Z2 � Z denote the lamplighter group, i.e., G is the semidirect
product (

⊕

Z
Z2) � Z, where Z acts by translation on the index set Z (see e.g. [37,

p. 103]). Since Z has the weak heat property, we get from Proposition 3.16 that G has
the weak heat property. This argument applies to any wreath product H � K as long as
K has the weak heat property.
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Example 3.20 For n ≥ 2, let Pn denote the pure braid group on n strings [48,
Section 1.3]. Then P2 � Z and Pn � Fn−1 � Pn−1 for n ≥ 3, so we get

Pn � Fn−1 � (Fn−2 � (· · · � (F2 � Z) · · · ))

for n ≥ 3. Hence, by using Proposition 3.16 repeatedly, we get that Pn has the weak
heat property.

Similarly, letting Bn denote the braid group on n strings,wewill see inExample 3.28
that they also have the weak heat property.

Remark 3.21 Proposition 3.16 may clearly be applied to a direct product � × K .
Choosing K with the weak heat property, e.g., K = Z, we can producemany examples
of groups with the weak heat property, including amenable ones, and also infinitely
generated ones. If � has intermediate growth (e.g., the first Grigorchuk group [37]),
we get that � × Z has intermediate growth and the weak heat property. Similarly, one
can produce amenable groups having exponential growth and the weak heat property.

Example 3.22 Consider G = SL(3, Z)×Z. Then G has the weak heat property, while
its subgroup SL(3, Z) does not (since it has property (T)). This example shows that
the weak heat property does not necessarily pass to subgroups.

Remark 3.23 One may wonder how to deal with the general situation where G has a
quotient group which has the weak heat property. Will G then also have this property?
In lack of a positive answer for themoment, one could say thatG has the ultraweak heat
property if G has at least one quotient group with the weak heat property. Obviously,
any group with the weak heat property will then have the ultraweak heat property.
Note that if G has the ultraweak heat property, then G does not have property (T).
Instead of trying to prove that a group without property (T) has the weak heat property,
it might turn out to be easier to show that it has the ultraweak heat property. Of course,
this will not help to handle simple groups or groups with only finite quotients.

Example 3.24 For p ≥ 2, let BS(p, p) denote the Baumslag-Solitar group with
presentation

BS(p, p) = 〈a, b | ab p = b pa〉.

Then its center Z(p) is the cyclic subgroup 〈b p〉, and BS(p, p)/Z(p) is clearly
isomorphic to K := Z ∗ Zp. So there is a homomorphism π from BS(p, p) onto K .
Letting π ′ : K → Z be the natural surjective homomorphim, we get that π ′ ◦ π is a
homomorphism from BS(p, p) onto Z. Since Z is free, this homomorphism splits, so
we have BS(p, p) � H � Z, where H := ker(π ′ ◦ π). Thus BS(p, p) has the weak
heat property.

Using the same kind of argument as in the example above, we get:

Proposition 3.25 Assume Gab := G/[G,G] is finitely generated and infinite.4 Then
G has the weak heat property.

4 This assumption implies that G does not have property (T), cf. [9].
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Proof Since Gab is an infinite finitely generated abelian group, there exists a homo-
morphism from Gab onto Z, so we may write G � H � Z for some normal subgroup
H of G. Hence the assertion follows from Proposition 3.16. ��
This proposition can be used to give more examples of groups without property (T)
having the weak heat property.

Example 3.26 Let F be the Thompson group with presentation

F = 〈a, b : [ab−1, a−1ba] = [ab−1, a−2ba2] = 1〉,

see e.g. [17]. Since Fab is isomorphic to Z
2, we get that F has the weak heat property.

Example 3.27 Let G be the fundamental group of a closed orientable surface of genus
g ≥ 1.Then it is known that Gab is isomorphic to Z

2g , cf. [37], so it follows that G
has the weak heat property. A similar argument can be applied in the non-orientable
case if the genus is ≥ 2.

Example 3.28 Let G = Bn be the braid group on n strings (n ≥ 2). Then Gab is
isomorphic to Z (see e.g. [48, Section 1.1]). Hence G has the weak heat property.

Example 3.29 Let B∞ denote the braid groups on infinitely many strands, which may
be written as the inductive limit B∞ = lim→ Bn where the embedding Bn → Bn+1 is

determined by adding one string connecting n + 1 to itself, cf. [48]. Then it is easy
to see that B∞ has Z as a quotient group, so it follows that B∞ has the weak heat
property. Letting P∞ denote the pure braid group on infinitely many strings, i.e., P∞ is
the kernel of the canonical homomorphism from B∞ onto the infinite symmetric group
S∞, then we also get that P∞ has Z as a quotient, so it has the weak heat property.

3.3 The Heat Property for Groups

Although we have no definite answer to the question whether every group without
property (T) has the weak heat property, this line of thought opens the door to some
interesting development.

We recall that d ∈ ND+
0 (G). An immediate consequence of the definition of

MCF(G, σ ) is that the following two conditions are equivalent:

(H1) Md
t (x0) belongs to CF(G, σ ) for every x0 ∈ C∗

r (G, σ ) and every t > 0.
(H2) ε(d, σ ) = 0, that is, ϕt = e−td ∈ MCF(G, σ ) for all t > 0.

Definition 3.30 We will say that (G, σ ) has the heat property w.r.t. d when any of the
equivalent conditions (H1) and (H2) holds. Moreover, we will say that (G, σ ) has the
heat property if there exists some d ∈ ND+

0 (G) such that (G, σ ) has the heat property
w.r.t. d. If σ = 1, we skip it in our terminology.

Remark 3.31 Since e−td converges pointwise to 1 as t → 0+, and ‖Md
t ‖ = 1 for

all t > 0, we have that Md
t (x) → x as t → 0+ for every x ∈ C∗

r (G, σ ). Hence,
saying that (G, σ ) has the heat property w.r.t. d is equivalent to requiring that the net
{e−td}t>0 is a Fourier summing net for (G, σ ) as defined in [6].
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Using Proposition 3.3, we get that (G, σ ) has the heat property w.r.t. d if and only
if I d,σ

x0 = (0,∞) for every x0 /∈ CF(G, σ ). We also note that, by Corollary 3.5, the
heat property fails (for all σ and d) whenever G has property (T). It is also clear that
the heat property implies the weak heat property.

Remark 3.32 If d is bounded, then there exists no t > 0 such that ϕt = e−td belongs to
MCF(G, σ ), at least when σ = 1 or G is non-periodic. Indeed, if such t > 0 exists,
then we can pick some x0 ∈ C∗

r (G, σ )\CF(G, σ ) and get that x(t) = Md
t (x0) ∈

CF(G, σ ), contradicting Proposition 3.4.

Remark 3.33 Assume that H is an infinite subgroup of G and (G, σ ) has the heat
property. Then (H , σ ) has the heat property. Indeed, assume (G, σ ) has the heat
property w.r.t. d, and let dH denote the restriction of d to H . Clearly, dH is negative
definite and normalized. Moreover, (H , σ ) has the heat property w.r.t. dH . Indeed, it
is not difficult to check that e−tdH belongs to MCF(H , σ ) for all t > 0 (using similar
arguments as in Lemma 3.13).

It follows that a group without property (T) does not necessarily have the heat
property. Indeed, G = SL(3, Z) × Z neither has property (T) (cf. [9, Proposition
1.7.8]) nor the heat property (since its subgroup SL(3, Z) has property (T)). On the
other hand, it has the weak heat property (by Proposition 3.16).

As a consequence of Remark 3.32, we only consider unbounded d in the rest of
this subsection. One may actually wonder if the heat property (w.r.t. d) implies that d
must be proper, i.e., e−td ∈ c0(G) for some (hence all) t > 0. This would imply that
G must have the Haagerup property, cf. [18]. This will be the case in all the examples
we are going to exhibit.

We now turn our attention to providing conditions for the heat property to hold.
We examine two possible situations. The first one is that δ(d) = 0, which is only
applicable when G is amenable. The second one requires that G satisfies a suitable
decay property, cf. Proposition 3.42.

As pointed out in the preliminaries, the first two statements of the following
proposition are known.

Proposition 3.34 Assume that δ(d) = 0. Then G is amenable, d is proper, and (G, σ )

has the heat property w.r.t. d.

Proof The assumption gives that {ϕt }t>0 is a net of normalized positive definite func-
tions in �2(G) converging pointwise to 1 as t → 0+, so it follows that G is amenable
(cf. the proof of [26, Theorem 4.1]). It is obvious that d is proper. Finally, for every
t > 0, we have that ϕt ∈ MCF(G, σ ) (since ϕt ∈ �2(G)). ��
Example 3.35 Assume that Gd

0 := {g ∈ G | d(g) = 0} is finite and
∑

g∈G\Gd
0
d(g)−p < ∞ for some p ∈ [1,∞). We note that δ(d) = 0.

Indeed, let t > 0. Then for every g ∈ G \ Gd
0 we have

e−td(g) = d(g)pe−td(g) 1

d(g)p
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As the function g �→ d(g)pe−td(g) is bounded on G, say by Mt,p, we get that

∑

g∈G
e−td(g) ≤ |Gd

0 | + Mt,p

∑

g∈G\Gd
0

1

d(g)p
< ∞.

Thus it follows from Proposition 3.34 that G is amenable and (G, σ ) has the heat
property w.r.t. d.

This applies for example to G = Z
n (n ∈ N) and d = | · |1, d = | · |2 or d = | · |22

(with a suitably chosen value of p in each case), where |m|1 := |m1| + · · · + |mn|
and |m|2 := (m2

1 + · · · + m2
n)

1/2 for m = (m1, . . . ,mn) ∈ Z
n . It is well-known that

d ∈ ND+
0 (Zn) for all these choices (see for example [6, Theorem 5.7] and references

therein).
Up to similarity, any σ ∈ Z2(Zn, T) is of the form σ(m,m′) = ei m

t�m′
for

m,m′ ∈ Z
n for some skew-symmetric n × n matrix � with coefficients in [0, 2π).

When � = 0, we have C∗
r (Zn, σ ) � C(Tn), and if d = | · |22, this is precisely

the situation one meets in connection with the classical heat equation on T
n , i.e., on

boxes in R
n with periodic boundary conditions. If � �= 0, then C∗

r (Zn, σ ) is the
noncommutative n-torus A� associated to �.

Similar examples arise when considering other finitely generated groups.

Lemma 3.36 Assume G is finitely generated and S is a (finite) symmetric generator
set for G. Let L = | · |S be the associated word length function on G.

a) Set t0 := ln(|S|)/2. Then e−t L belongs to �2(G) whenever t > t0. Hence, δ(L) <

∞.
b) Assume G has subexponential growth. Then e−t L lies in �2(G) for all t > 0.

Hence, δ(L) = 0.

Proof a) Set Ln = {g ∈ G : L(g) = n} for each n ∈ N. Then, for any t > 0, we
have

∑

g∈G

(

e−t L(g))2 =
∞
∑

n=1

|Ln| rn,

where r := e−2t ∈ (0, 1). The radius of convergence R of this power series in
r is given by R−1 = lim supn |Ln|1/n . Since |Ln| ≤ |S|n for every n, we get
R ≥ |S|−1, so the series above is always convergent whenever e−2t < |S|−1, i.e.,
t > t0 := ln(|S|)/2. Setting s = 2t , we get that

∑

g∈G e−sL(g) < ∞ whenever
s > ln(|S|), so δ(L) < ∞.

b) The assumption gives that for any b > 1, there exists n0 ∈ N such that |Ln| < bn

for every n ≥ n0. This clearly implies that R−1 ≤ b for every b > 1, hence that
R ≥ 1. It follows that e−t L lies in �2(G) for all t > 0, hence that δ(L) = 0.

��
Proposition 3.37 Let G, S and L = | · |S be as in the previous lemma, and let x0 ∈
C∗
r (G, σ ).
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i) Assume that L is negative definite and set x(t) = ML
t (x0), t ≥ 0. Then we have

that x(t) ∈ CF(G, σ ) for all t > ln(|S|)/2.
Moreover, if G has subexponential growth, then (G, σ )has the heat propertyw.r.t. L.

i i) Assume that L2 is negative definite. Then G is amenable and (G, σ ) has the heat
property w.r.t. L2.

Proof i) Let t > ln(|S|)/2. Then part a) of Lemma 3.36 gives that e−t L ∈ �2(G),
hence that e−t L ∈ MCF(G, σ ). Thus, x(t) = Me−t L (x0) ∈ CF(G, σ ).

Similarly, part b) of Lemma 3.36 in combination with Proposition 3.34 gives the
second statement.

i i) Since e−t L2
lies in �1(G), hence in �2(G), for every t > 0 (cf. the proof of [22,

Proposition 24]), we can apply Proposition 3.34 with d = L2. ��
A typical situation where both i) and i i) in Proposition 3.37 can be applied is when

G = Z and L(m) = |m|. In general, if L is a word length function on a finitely
generated group, it is not clear under which conditions L , or L2 (if G is amenable), is
negative definite.

Remark 3.38 Assume G is amenable. If G is finitely generated, it is natural to wonder
whether one can always find a negative definite word length function L on G, so that
Proposition 3.37 can be applied. Of course, a more general question is whether there
always exists some d ∈ ND+

0 (G) such that (G, σ ) has the heat property w.r.t. d.
When G is finitely generated and has polynomial growth w.r.t. some (hence any) word
length function, it follows from a result of Cipriani and Sauvageot [20] that the answer
to this question is positive, cf. our discussion in Example 3.51. The square root of the
function d constructed in their paper is then a proper negative definite length function
(but not a word length).

Example 3.39 Let Fk = 〈a1, . . . , ak〉 be a non-abelian free group (k ≥ 2), and let L =
|·| denote the canonical word length function onFk associated to S = {a±1

1 , . . . , a±1
k },

which is negative definite [35]. As every σ ∈ Z2(Fk, T) is similar to 1, wemay assume
that σ = 1. Then Lemma 3.36 tells us that e−t L ∈ �2(Fk) whenever t > ln(2k)/2. In
fact, since |{g ∈ Fk : |g| = n}| = 2k(2k − 1)n−1, a look at the proof of this lemma
gives that e−t L ∈ �2(Fk) if and only if t > ln(2k − 1)/2. Proposition 3.37 gives
that x(t) = ML

t (x0) ∈ CF(G) for every x0 ∈ C∗
r (Fk) and every t > ln(2k − 1)/2.

However, we will see in see Example 3.46 that ε(| · |) = 0, i.e., that Fk has the heat
property w.r.t. | · |.
Remark 3.40 One may wonder if there exists some (nonabelian) group G such that

MCF(G) = �2(G). (1)

When G is amenable, using Bojzeko’s result thatCF(G) = W (G), it would suffice to
show that if ϕ ∈ MA(G) is such that ϕ x̂ ∈ �1(G) for all x ∈ vN(G), then ϕ ∈ �2(G).

For G abelian, it is in fact true that the equality (1) holds. Indeed, as shown in
[28, Theorem 2.1] (see also [39, Theorem 2]), if ̂G denotes the dual group of G and
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ϕ : G → C is such that ϕ ̂f ∈ �1(G) for all f ∈ C(̂G), then ϕ ∈ �2(G). Since C∗
r (G)

is canonically isomorphic to C(̂G), the assertion follows. It is conceivable that (1)
holds for every amenable group, but for the time being we will not delve any further
into this topic.

We note that if (1) holds, then ε(d) = δ(d)/2, so G has the heat property w.r.t. d
if and only if δ(d) = 0, and that if δ(d) > 0, then we have

(δ(d)

2
,∞

)

⊆ I dx0 ⊆
[δ(d)

2
,∞

)

for every x0 /∈ CF(G).

To handle the case where δ(d) > 0, and include nonamenable groups in our
discussion, we will exploit the decay behavior of groups as studied in [6].

Proposition 3.41 Assume (G, σ ) has κ-decay for some κ : G → [1,∞) satisfying
that κ ≤ Cet0d for some C > 0 and some t0 > 0. Then ϕt = e−td ∈ MCF(G, σ )

and x(t) = Md
t (x0) ∈ CF(G, σ ) for every t ≥ t0 and every x0 ∈ C∗

r (G, σ ).

Proof As ϕt0κ = e−t0dκ ≤ C , we get from Proposition 2.2 that ϕt0 ∈ MCF(G, σ ).
This implies that x(t0) = Md

t0(x0) ∈ CF(G, σ ) for every x0 ∈ C∗
r (G, σ ). It follows

then from Proposition 3.3 that both assertions hold for any t ≥ t0. ��
Proposition 3.42 Suppose that G is etd -decaying for every t > 0. Then ε(d, σ ) = 0,
i.e., (G, σ ) has the heat property w.r.t. d.

Proof Given any t0 > 0, setting κ = et0d and C = 1, we can apply Proposition 3.41
to obtain the desired conclusion. ��
Remark 3.43 If we only assume that G is et0d -decaying for some t0 > 0, then we get,
essentially as in the above proof, that (G, σ ) has the weak heat property.

Remark 3.44 Proposition 3.42 can easily be generalized as follows. Assume that for
each t > 0, (G, σ ) has κt -decay for some function κt : G → [1,∞) satisfying that
κt e−td is bounded. Then (G, σ ) has the heat property w.r.t. d.

The concept of H-growth was introduced in [6] as a useful replacement of the usual
notion of growth for nonamenable groups. The relevance of subexponential H-growth
is illustrated here by the following result.

Theorem 3.45 Assume that d is proper and G has subexponential H-growth w.r.t. d.
Then ε(d, σ ) = 0, i.e., (G, σ ) has the heat property w.r.t. d.

Proof Using Remark 3.31, the result follows from the last statement in [6, Theorem
5.9] Alternatively, we have that G is etd -decaying for all t > 0, cf. [6, Theorem 3.13,
part 2)], so the conclusion follows from Proposition 3.42. ��
Example 3.46 Let’s go back to Example 3.39 dealing with a non-abelian free group
Fk (2 ≤ k < ∞) and its canonical word length function L = | · |, as considered by
Haagerup in his seminal paper [35]. Since Fk has subexponential H-growth (in fact,
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polynomial H-growth) w.r.t. | · |, cf. [6, Example 3.12], we may apply Theorem 3.45
and obtain that ε(| · |) = 0, i.e., Fk has the heat property w.r.t. | · |.This means that for
any x0 ∈ C∗

r (Fk), the Fourier series

∑

g∈Fk
e−t |g| x̂0(g) λ(g), (2)

converges in operator norm to x(t) = ML
t (x0) for every t > 0, even if the Fourier series

of x0 is not convergent in operator norm. It is worth pointing out again that the function
g �→ e−t |g| belongs to �2(Fk) only when t is sufficiently large (cf. Example 3.39).

Example 3.47 LetG be an infinite Coxeter group with a finite generator set S such that
(G, S) is a Coxeter system, and let L be the word length function onG associated to S.
Then L is negative definite and G has polynomial H-growth w.r.t. L , cf. [6, Example
5.10] and references therein. Thus Theorem 3.45 gives that G has the heat property
w.r.t. L .

In view of Example 3.46, it is natural to look at the case of free products.

Proposition 3.48 Assume that G1 ∗ G2 is the free product of two nontrivial groups
G1 and G2, and that each G j has polynomial H-growth w.r.t. some proper, negative
definite, integer-valued length function L j satisfying {g ∈ G j : L j (g) = 0} = {e}.

Let then L be the length function on G1 ∗G2 induced by L1 and L2, i.e., L(e) = 0
and

L(g) = Li1(s1) + Li2(s2) + · · · + Lin (sn)

whenever g = s1s2 . . . sn, where each s j ∈ Gi j for some i j ∈ {1, 2}, and i j+1 �= i j
for each j < n.

Then L is negative definite and (G1 ∗G2, σ ) has the heat property w.r.t. L for every
σ in Z2(G1 ∗ G2, T).

Proof It is essentially already known that L is negative definite; indeed, this can be
deduced in the same way as in the proof of Proposition 3.15.

It is not difficult to check that L is proper. Moreover, G has polynomial H-growth
w.r.t. L . This can be deduced from [41], as was very briefly mentioned in [6, Example
3.12; 4)]. For the ease of the reader, we provide some more details below. For k ∈
N ∪ {0}, set Ak = {g ∈ G : L(g) = k}. Then we claim that there exist K , p > 0 such
that c(Ak) ≤ K (1 + k)p for all k ∈ N (which will show the desired assertion, cf. [6,
Lemma 3.11]). By definition of c(Ak), this amounts to showing that there exists some
K , p > 0 such that

‖λ( f )‖ ≤ K (1 + k)p‖ f ‖2
whenever f ∈ Cc(G) has support in Ak .

We note that, as each G j has polynomial H-growth w.r.t. L j , each G j has Jolis-
saint’s property (RD) w.r.t. L j (this follows from [6, Theorem 3.13, part 1)]). Thus
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the assumptions of [41, Theorem 2.2.2] are satisfied. From the proof of [41, Theorem
2.2.2] (cf. the bottom of page 184) we deduce that there exist C, s > 0 such that for
any nonnegative integers k, l,m satisfying |k−l| ≤ m ≤ k+l, any f ∈ Cc(G) having
support in Ak and any ξ having support in Al , we have

‖( f ∗ ξ)χm‖2 ≤ C (1 + k)s+2 ‖ f ‖2 ‖ξ‖2,
where χm denote the characteristic function of Am . Now, set r = s + 2. Then, using
this observation, we get, as in the proof of [41, Proposition 1.2.6, (4) ⇒ (1)], that
there exists K > 0 (depending on C) such that for any f ∈ Cc(G) having support in
Ak and any ξ ∈ Cc(G), we have

‖ f ∗ ξ‖2 ≤ K (1 + k)r+1 ‖ f ‖2 ‖ξ‖2.
Since λ( f )ξ = f ∗ ξ , where λ( f ) = ∑

g∈G f (g)λ(g), it follows that

‖λ( f )‖ ≤ K (1 + k)r+1‖ f ‖2
for any f ∈ Cc(G) with support in Ak , which shows the desired assertion (with
p = r + 1 = s + 3).

Theorem 3.45 can now be applied to give the conclusion. ��
We note that the results of Jolissaint we have been using in the proof of Proposi-

tion 3.48 actually hold for an amalgamated free product G = G1 ∗A G2 of groups,
with A finite, if one further assumes that A � {g ∈ G j : L j (g) = 0} and L j is
bi-A-invariant for each j = 1, 2. When the induced length function L on G is bi-A-
invariant, one can then deduce from [57, Theorem 1] that L is negative definite on G,
and (G, σ ) will have the heat property w.r.t. L .

We also note that one may associate a product 2-cocycle σ1 ∗ σ2 on G1 ∗ G2 to
each pair (σ1, σ2), where σ j ∈ Z2(G j , T) for j = 1, 2. Moreover, every σ belonging
to Z2(G1 ∗ G2, T) arises in this way, up to similarity. We refer e.g. to [52] for details
about these facts.

Example 3.49 To illustrate Proposition 3.48, let us assume that G1 and G2 are finite
and nontrivial. Let then L j be the trivial length function on G j given by L j (g) = 1
if g ∈ G j\{e j } and L j (e j ) = 0 for j = 1, 2. It is obvious that each L j is proper and
negative definite on G j . Hence the induced length function L on G1 ∗ G2 is negative
definite. (This could also be deduced from the discussion in [14, Section 6].) We note
that L(g) = n whenever g = s1s2 . . . sn , where each s j ∈ Gi j for some i j ∈ {1, 2},
and i j+1 �= i j for each j < n, so L is sometimes called the block length function
on G1 ∗ G2. Since each G j , being finite, has polynomial growth w.r.t. L j , we can
conclude from Proposition 3.48 that (G1 ∗ G2, σ1 ∗ σ2) has the heat property w.r.t. L
for every choice of σ1 ∈ Z2(G1, T) and σ2 ∈ Z2(G2, T).

As a concrete example, for j = 1, 2, pick n j ∈ N, n j ≥ 2, set G j = Zn j × Zn j ,
and let σ j ∈ Z2(G j , T) be given by

σ j ((p, q), (r , s)) = e
i 2πn j

ps
, p, q, r , s ∈ Zn j .
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Then it is well-known that C∗
r (G j , σ j ) � Mn j (C) and

C∗
r (G1 ∗ G2, σ1 ∗ σ2) � C∗

r (G1, σ1) ∗ C∗
r (G2, σ2) � Mn1(C) ∗ Mn2(C).

Example 3.50 Let G = SL(2, Z) � Z4 ∗Z2 Z6, where

Z2 � {m ∈ Z4 : m ∈ {0, 2}} � {n ∈ Z6 : n ∈ {0, 3}}

Define length functions L1 on Z4 and L2 on Z6 by

L1(m) =
{

1 if m = 1 or 3,
0 if m = 0 or 2

, L2(n) =
{

1 if n = 1, 2, 4 or 5,
0 if n = 0 or 3.

Then Z2 = {m ∈ Z4 : L1(m) = 0} = {n ∈ Z6 : L2(n) = 0}, and L1 and L2 are
clearly Z2-invariant. So adapting the proof given in the case of a free product (Propo-
sition 3.48), we get that G has polynomial H-growth w.r.t. L , where L is the length
function on G induced by L1 and L2. As L1 and L2 are both negative definite (since
1 − L j = χZ2 is positive definite), L is negative definite (being bi-Z2-invariant). We
can therefore conclude from (the extended version of) Proposition 3.48 that SL(2, Z)

has the heat property w.r.t. L .

Example 3.51 If G is amenable and d is proper, then Theorem 3.45 says that (G, σ )

has the heat property w.r.t. d whenever G has subexponential growth w.r.t. d. Assume
that G is finitely generated and has polynomial growth w.r.t. some (hence any) word
length function L . Wewould like to apply Theorem 3.45 in this context, but is not clear
under which conditions L can be chosen to be negative definite. However, Cipriani
and Sauvageot have shown, cf. [20, Theorem 1.1], that for any δ > δh (where δh
denotes the homogeneous dimension of G), there exists a proper d ∈ ND+

0 (G) and
some k0 ∈ N such that

|{g ∈ G : d(g) ≤ k}| ≤ O(kδ) whenever k ≥ k0.

Thus it follows that G has polynomial growth w.r.t. d, and we can conclude from
Theorem 3.45 that (G, σ ) has the heat property w.r.t. d. This said, it is not clear to us
whether the Poincaré exponent δ(d) is equal to zero in this situation. If not, this would
imply that MCF(G, σ ) �= �2(G).

Remark 3.52 In view of Example 3.51, the following problem seems natural. Assume
that G is finitely generated and has subexponential growth, but not polynomial growth
(w.r.t. some word length function), i.e., G has intermediate growth (G could for
instance be the first Grigorchuk group [37]). Then we ask:
Does there exists a proper d ∈ ND+

0 (G) such that G has subexponential growth
w.r.t. d ?

A positive answer would mean that we can apply Theorem 3.45 and obtain that
G has the heat property w.r.t d. Note that if one can find some d in ND+

0 (G) such
that | · |S � d for some finite generating set S, then d will be proper and G will have
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subexponential growth w.r.t. d. However, when this happens, we will also have that
δ(| · |S) = 0 by Lemma 3.36 b), which will imply that δ(d) = 0, hence proving that
G has the heat property w.r.t d in a more direct way.

Curiously enough, by a suitable modification of the arguments given in the proof
of [20, Theorem 1.1], we are able to show that the answer to the question above is
affirmative for any finitely generated group G with finite symmetric generator set S
satisfying that

|{g ∈ G : |g|S ≤ k}| ≤ eCkα

for all k ∈ N

for some C > 0 and some 0 < α < 1/2. However, the proof breaks down if one
assumes instead that 1/2 ≤ α < 1. According to some longstanding conjecture, any
such group with 0 < α < 1/2 must have polynomial growth (see for instance [33,
Section 10]).

Example 3.53 Consider G = Z
2

� SL(2, Z), which is a group without the Haagerup
property and without property (T), cf. [18]. Combining Example 3.50 with Proposi-
tion 3.16, we get thatG has the weak heat property. We can in fact show that it satisfies
a stronger property.

Indeed, let π : Z
2
� SL(2, Z) → SL(2, Z) denote the natural quotient map and let

L be the negative definite length function on SL(2, Z) constructed in Example 3.50.
We can then extend L to a length function L ′ on G = Z

2
� SL(2, Z) by setting L ′ :=

L ◦π . This length function is clearly unbounded and negative definite, but not proper.
However, since SL(2, Z) has the heat property w.r.t. L , we can use the proof of Lemma
3.13 (with H = SL(2, Z) and dH = L) to get that for each x0 ∈ C∗

r (SL(2, Z)) ⊆
C∗
r (Z2

� SL(2, Z)) and every t > 0, we have that ML ′
t (x0) ∈ CF(Z2

� SL(2, Z)),
i.e., we have (0,∞) ⊆ I L

′
x0 . This shows that Z

2
� SL(2, Z) satisfies (a strong form

of) the weak heat property, which could be thought as some kind of “relative heat
property”.

Besides, we note that Z
2

� SL(2, Z) is K -amenable (as follows from [42,
Proposition 3.3 and Corollary 4.2]).

4 Around the Heat Equation

Throughout this section, we consider a countably infinite group G and some σ ∈
Z2(G, T).
4.1
Let C(G, σ ) denote the ∗-subalgebra of C∗

r (G, σ ) generated by �σ (G), and consider
a function d : G → [0,∞). Then the assignment

x �→ −
∑

g∈G
d(g) x̂(g)�σ (g)

gives a linear operator Hd from C(G, σ ) into itself. LetD be a subspace of C∗
r (G, σ )

containing C(G, σ ) (so D is dense in C∗
r (G, σ )), and let HD

d : D → C∗
r (G, σ ) be
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a linear operator (usually unbounded) which extends Hd . We stress that we consider
C∗
r (G, σ ) as a normed space w.r.t. the operator norm ‖ · ‖ in the definition below.
We will say that a function u : [0,∞) → C∗

r (G, σ ) is a solution of the heat
problem on C∗

r (G, σ ) associated to HD
d and x0 ∈ C∗

r (G, σ ), whenever u satisfies the
following conditions:

• u(0) = x0,
• u(t) ∈ D for every t > 0,
• u is differentiable on (0,∞) and u′(t) = HD

d (u(t)) for every t > 0,
• limt→0+ ‖u(t) − x0‖ = 0 (i.e., u is continuous at t = 0).

4.2
Let� denote the Laplace operator onC∞(T), f0 ∈ C(T), and consider the associated
heat problem, i.e.,

v(0) = f0, v′(t) = �(v(t)) for every t > 0, and lim
t→0+ ‖v(t) − f0‖∞ = 0.

As is well known (see for example [27, p. 63–65]), Fourier’s original approach can be
made rigorous in this case, and the unique solution v is given by v(0) = f0, and for
each t > 0 by the uniformly convergent series

v(t) =
∑

m∈Z
e−tm2

̂f0(m) em,

where em(θ) := eimθ for m ∈ Z and θ ∈ [0, 2π).
Let � denote the canonical isomorphism between C(T) and C∗

r (Z), mapping em
to λ(m) for each m ∈ Z. Then � maps C∞(T) onto the Schwartz space S = {

x ∈
C∗
r (Z) : x̂ is rapidly decreasing

}

, so the heat problem above corresponds to the heat
problem on C∗

r (Z) associated to HS
d and x0 := �( f0) ∈ C∗

r (Z), where d : Z →
[0,∞) is (the negative definite function) given by d(m) = m2. The (unique) solution
of this problem is then given by

u(t) =
∑

m∈Z
e−tm2

x̂0(m)λ(m),

the series being convergent in operator norm for every t > 0.
4.3
We recall (see for example [3, 15]) that a family {Tt }t≥0 of bounded linear operators
on a Banach space X is called a C0-semigroup if it satisfies that

a) Ts+t = TsTt for all s, t ≥ 0,
b) T0 = idX ,
c) the map t �→ Tt (x) from [0,∞) to X is (norm-) continuous for every x ∈ X .

Note that if a) and b) are satisfied, then c) holds if and only if ‖Tt (x) − x‖ → 0 when
t → 0+ for every x ∈ X , cf. [3, Section 1.2]. Moreover, if supt≥0 ‖Tt‖ is finite, then
it suffices to check that this holds on a dense subspace of X .
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Note also that c) holds if one only assumes that the map t �→ Tt (x) is weakly
continuous for every x ∈ X (see [15, Section 3.1.2]).

Assume now that d ∈ ND+
0 (G). For each t ≥ 0, we let Md

t denote the bounded
operator on C∗

r (G, σ ) associated to the multiplier e−td .Then, as is well-known,
{Md

t }t≥0 is a C0-semigroup on C∗
r (G, σ ). Indeed, one easily sees that a) and b) hold.

Further, if x ∈ C(G, σ ), then it is elementary to check that limt→0+ Md
t (x) = x . As

each Md
t is unital and completely positive, we have ‖Md

t ‖ = Md
t (I ) = 1 for all t ≥ 0.

Thus it follows that c) also holds.
The general theory of C0-semigroups gives that

˜D :=
{

x ∈ C∗
r (G, σ ) : lim

t→0+
Md

t (x) − x

t
exists in C∗

r (G, σ )
}

is a dense subspace of C∗
r (G, σ ). Moreover, the generator H

˜D
d : ˜D → C∗

r (G, σ ) of
{Md

t }t≥0, which is defined by

H
˜D
d (x) = lim

t→0+
Md

t (x) − x

t
for every x ∈ ˜D,

is a closed linear operator, and we have

• Md
t (˜D) ⊆ ˜D and Md

t (H
˜D
d (x)) = H

˜D
d (Md

t (x)) for all t ≥ 0 and all x ∈ ˜D,
• for each x0 ∈ ˜D, the map u : [0,∞) → C∗

r (G, σ ) given by u(t) := Md
t (x0) is

the (unique) solution of the initial value problem

u′(t) = H
˜D
d (u(t)) for t > 0, u(0) = x0.

An alternative description of ˜D is that it consists of those x ∈ C∗
r (G, σ ) for which

there exists a y ∈ C∗
r (G, σ ) such that

lim
t→0+ ψ

(Md
t (x) − x

t

)

= ψ(y)

for all ψ ∈ Cr (G, σ )∗, in which case we have H ˜D
d (x) = y (cf. [15, Corollary 3.1.8]).

Now, if x ∈ C(G, σ ), so x = ∑

g∈F x̂(g)�σ (g) for a finite subset F of G, we
have

H
˜D
d (x) = lim

t→0+
1

t

∑

g∈F

(

e−td(g) − 1
)

x̂(g)�σ (g) = −
∑

g∈F
d(g)̂x(g)�σ (g) = Hd(x),

i.e., H
˜D
d extends Hd . Thus the function u, defined on [0,∞), is a solution of the heat

problem on C∗
r (G, σ ) associated to H

˜D
d and x0 whenever x0 lies in ˜D.

However, if x0 /∈ ˜D and t > 0, then it is not clear when u(t) = Md
t (x0) belongs to

˜D.We are interested in solving the heat problem for every initial datum x0 ∈ C∗
r (G, σ ).
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As it is not easy to give a concrete description of the domain ˜D one would like to find
a core for H

˜D
d (that is, a subspace C of ˜D such that H

˜D
d is the closure of its restriction

to C). Since {Md
t }t≥0 is aC0-semigroup, [3, Theorem 1.3.18], or [15, Corollary 3.1.7],

tells us that it suffices to find a dense subspace C of C∗
r (G, σ ) such that C ⊆ ˜D and

Md
t (C) ⊆ C for all t > 0. We discuss such a core C in the next subsection.

4.4
Set

C := {

x ∈ C∗
r (G, σ ) :

∑

g∈G
d(g)̂x(g)�σ (g) is convergent

}

.

Clearly, C is a subspace of C∗
r (G, σ ) such that C(G, σ ) ⊆ C, and the operator HC

d :
C → C∗

r (G, σ ) defined by

HC
d (x) := −

∑

g∈G
d(g)̂x(g)�σ (g)

is a linear map.
Wenote thatMd

t (C) ⊆ C for all t > 0. Indeed, if x0 ∈ C, t > 0, andu(t) := Md
t (x0),

then

∑

g∈G
d(g)̂u(t)(g)�σ (g) =

∑

g∈G
e−td(g) d(g)x̂0(g)�σ (g)

is convergent by Proposition 2.1. Thus, u(t) ∈ C.
It follows that C will be a core for H

˜D
d whenever C ⊆ ˜D. We will use this fact in

the proof of Proposition 4.2.
Now, let x ∈ C and set y(t) := 1

t (M
d
t (x)− x) for each t > 0. Define k : [0,∞) →

R by

k(a) =
{

1
a (1 − e−a) if a > 0,

1 if a = 0.

It is easy to see that 0 ≤ k(a) ≤ 1 for every a ≥ 0. Thus, the map ηt : G → R given
by ηt (g) := −k(td(g)) is bounded for every t > 0. Let now t > 0. Note that

ŷ(t)(g) = e−td(g) − 1

t
x̂(g) = ηt (g) d(g)̂x(g) for all g ∈ G. (3)

Further, since
∑

g∈G d(g) x̂(g)�σ (g) is convergent (by definition of C), Proposi-
tion 2.1 gives that the series

∑

g∈G
ηt (g) d(g)̂x(g)�σ (g) is also convergent.
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As this series is the Fourier series of y(t), cf. (3), we get that

y(t) =
∑

g∈G

1

t
(e−td(g) − 1) x̂(g)�σ (g)

the series on the right-hand side being convergent. Thus, we have shown the following
lemma.

Lemma 4.1 Assume that x ∈ C. Then for every t > 0 we have

1

t
(Md

t (x) − x) =
∑

g∈G

1

t
(e−td(g) − 1) x̂(g)�σ (g)

(where the series on the right-hand side is convergent).

Proposition 4.2 C is a core for H ˜D
d , and HC

d is the restriction of H
˜D
d to C.

Proof Let x ∈ C and set y := −∑

g∈G d(g) x̂(g)�σ (g) ∈ CF(G, σ ). To show that

C ⊆ ˜D, it suffices to show that

lim
t→0+ ψ

(Md
t (x) − x

t

)

= ψ(y)

for every ψ ∈ Cr (G, σ )∗. Using Lemma 4.1, this amounts to show that

lim
t→0+

∑

g∈G

(1

t
(e−td(g) − 1) + d(g)

)

x̂(g) ψ
(

�σ (g)
) = 0 (4)

for every ψ ∈ Cr (G, σ )∗. So let ψ ∈ Cr (G, σ )∗ and consider any sequence {tn} in
(0,∞) converging to 0. Then, for each n ∈ N, define fn : G → C by

fn(g) =
( 1

tn
(e−tnd(g) − 1) + d(g)

)

x̂(g) ψ
(

�σ (g)
)

.

Since limn→∞ 1
tn

(e−tnd(g) − 1) = −d(g), we have that

lim
n→∞ fn(g) = 0.

Further, since −1 ≤ ηtn (g) ≤ 0 for every g ∈ G, we get that

| fn(g)| = |(ηtn (g) + 1)d(g) x̂(g) ψ
(

�σ (g)
)| ≤ d(g) |̂x(g)ψ(

�σ (g)
)|

for all n ∈ N and g ∈ G.
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Now, since
∑

g∈G d(g) x̂(g)�σ (g) is convergent in C∗
r (G, σ ), the series

∑

g∈G d(g) x̂(g) ψ
(

�σ (g)
)

is convergent in C, and this is equivalent to

∑

g∈G
d(g) |̂x(g)ψ(

�σ (g)
)| < ∞.

Thus we may invoke the dominated convergence theorem and get that

lim
n→∞

∑

g∈G
fn(g) =

∑

g∈G
lim
n→∞ fn(g) = 0

It follows that (4) holds. ��
4.5
In this subsection, we let x0 ∈ C∗

r (G, σ ) and u : [0,∞) → C∗
r (G, σ ) be the function

given by u(t) := Md
t (x0) for each t ≥ 0.

Lemma 4.3 Assume u′(t) exists and belongs to CF(G, σ ) for some t > 0. Then we
have u(t) ∈ C and u′(t) = HC

d (u(t)).

Proof Let g ∈ G. Since u′(t) exists in C∗
r (G, σ ), we have that

û′(t)(g) = lim
h→0

[u(t + h) − u(t)

h
δe

]

(g)

= lim
h→0

[
̂Md
t+h(x0) − ̂Md

t (x0)

h

]

(g)

= lim
h→0

1

h

(

e−(t+h)d(g) x̂0(g) − e−td(g) x̂0(g)
)

= lim
h→0

1

h

(

e−hd(g) − 1
)

e−td(g) x̂0(g)

= −d(g)e−td(g) x̂0(g).

Hence, since u′(t) ∈ CF(G, σ ) (by assumption), we have that

u′(t) = −
∑

g∈G
d(g)e−td(g) x̂0(g)�σ (g) = −

∑

g∈G
d(g) û(t)(g)�σ (g).

Thus, u(t) ∈ C and u′(t) = HC
d (u(t)). ��

Using this lemma, we readily get:

Proposition 4.4 The function u is a solution of the heat problem associated to HC
d and

x0 if and only if u is differentiable on (0,∞) and u′(t) ∈ CF(G, σ ) for all t > 0.

The following uniqueness result is reminiscent of its classical counterpart, going
back to Fourier.
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Proposition 4.5 Assume that v : [0,∞) → C is a solution of the heat problem
associated to HC

d and x0.Then v(t) = Md
t (x0) for every t ≥ 0.

Proof Let t > 0. Since v(t) ∈ C, we have v′(t) = −∑

g∈G d(g)̂v(t)(g)�σ (g), hence

v̂′(t)(g) = −d(g)̂v(t)(g) for every g ∈ G. Now, for each g ∈ G, setwg(t) := v̂(t)(g).
Then we have

lim
h→0

wg(t + h) − wg(t)

h
= lim

h→0

̂v(t + h)(g) − v̂(t)(g)

h

= lim
h→0

τ
(1

h

(

v(t + h) − v(t)
)

�σ (g)∗
)

= τ
(

v′(t)�σ (g)∗
) = v̂′(t)(g),

which gives that

(wg)
′(t) = v̂′(t)(g) = −d(g)̂v(t)(g) = −d(g) wg(t)

for each g ∈ G. Thus we get that v̂(t)(g) = wg(t) = cge−td(g) for all t > 0 for some

cg ∈ C. As limt→0+ v(t) = x0, we readily get that cg = limt→0+ v̂(t)(g) = x̂0(g).
Hence, for any t > 0, we have

v̂(t)(g) = e−td(g) x̂0(g) = û(t)(g)

for all g ∈ G, which implies that v(t) = u(t) = Md
t (x0). ��

We now consider the case where (G, σ ) has the heat property w.r.t. d.

Lemma 4.6 Assume that (G, σ ) has the heat property w.r.t. d. Then u(t) ∈ C for all
t > 0.

Proof Let t > 0 and pick s such that 0 < s < t . Then we have

∑

g∈G
d(g)̂u(t)(g)�σ (g) =

∑

g∈G
d(g)e−td(g) x̂0(g)�σ (g)

=
∑

g∈G
d(g)e−(t−s)d(g) e−sd(g) x̂0(g)�σ (g)

As r �→ re−ar is a bounded function on [0,∞) whenever a > 0, we get that the func-
tion g �→ d(g)e−(t−s)d(g) is bounded on G. Further, since e−sd ∈ MCF(G, σ ) (by
assumption), the series

∑

g∈G e−sd(g) x̂0(g)�σ (g) is convergent. It therefore follows

from the expression above that the series
∑

g∈G d(g)̂u(t)(g)�σ (g) is convergent, i.e.,

u(t) ∈ C.5 ��
5 A similar argument gives that if e−t0d ∈ MCF(G, σ ) for some t0 > 0, then u(t) ∈ C for every t > t0.
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This means that HC
d (u(t)) is defined for every t > 0 whenever (G, σ ) has the heat

property w.r.t. d.

Theorem 4.7 Assume (G, σ ) has the heat property w.r.t. d, and let x0 be any element
of C∗

r (G, σ ). Then the function u given by u(t) = Md
t (x0) for each t ≥ 0, which has

a convergent Fourier series for every t > 0, is the unique solution of the heat problem
associated to HC

d and x0.

Proof Let t > 0. Lemma 4.6 gives that u(t) ∈ C, hence that u(t) ∈ ˜D by Proposition
4.2. Then, by definition of ˜D and H

˜D
d , we get that

u′(t) = lim
h→0+

1

h

(

u(t + h) − u(t)
) = lim

h→0+
1

h

(

Md
h (u(t)) − u(t)

)

exists in C∗
r (G, σ )

and is equal to H
˜D
d (u(t)) = HC

d (u(t)). Since u(0) = x0 and ‖u(t) − x0‖ → 0 as
t → 0+, this shows that u is a solution of the heat problem associated to HC

d and x0.
The uniqueness part follows from Proposition 4.5. ��
Remark 4.8 Assume that (G, σ ) does not have the heat property w.r.t. d, and let x0 ∈
CF(G, σ ). Then u(t) = Md

t (x0) ∈ CF(G, σ ) for every t > 0 by Proposition 3.1, so
the proof of Lemma 4.6 gives that u(t) ∈ C for every t > 0. Moreover, the proof of
Theorem 4.7 also goes through, and we can conclude that the function u is the unique
solution of the heat problem associated to HC

d and x0. However, this may not be true
if x0 /∈ CF(G, σ ) (cf. Proposition 4.13).

Theorem 4.7 may be applied to all the examples we have exhibited in the previous
section. We illustrate this with a couple of cases.

Example 4.9 Let d ∈ ND+
0 (Zn) be given by d(m) := m2

1 + · · · + m2
n and � ∈

Mn([0, 2π)) be a skew-symmetric matrix. We consider the heat problem on A� =
C∗
r (Zn, σ�) associated to HC

d and x0 ∈ A�. Then the domain C clearly contains

{

x ∈ A� :
∑

m∈Zn

(m2
1 + · · · + m2

n) |̂x(m1, . . . ,mn)| < ∞
}

,

hence also A∞
� := {x ∈ A� : x̂ is rapidly decreasing on Z

n}, and HC
d coincides with

the Laplace operator � = δ21 + · · · + δ2n when restricted to A∞
� . (See [59] for a study

of the associated Laplace equation and its variants when n = 2.) Since Z
n has the

heat property w.r.t. d, we get that the unique solution of the heat problem is given by
u(0) = x0 and

u(t) =
∑

m∈Zn

e−t(m2
1+···+m2

n) x̂0(m)�σ�(m), t > 0,

which actually belongs to A∞
� for every t > 0. Here, instead of d = | · |22, one could

also consider d = | · |1 or d = | · |2.
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Example 4.10 Let G = Fk (k ≥ 2) and L = | · | be the canonical word-length on Fk ,
as in Example 3.46. Then H := HC

L is given by

H(x) = −
∑

g∈Fk
|g| x̂(g)λ(g)

whenever
∑

g∈Fk |g| x̂(g)λ(g) is convergent. Since Fk has the heat property w.r.t. | · |,
we get that the heat problem associated to H and x0 ∈ C∗

r (Fk) has a unique solution
u, where u(t) is given for each t > 0 by the convergent Fourier series in (2).

Under some mild assumption on d, we can show that if the heat problem associated
to HC

d has a solution for every choice of initial value in C∗
r (G, σ ), then (G, σ ) must

have the heat property w.r.t. d. We will use the following lemma, where

Gd
0 := {g ∈ G | d(g) = 0}.

Lemma 4.11 Assume Gd
0 is finite and inf

{

d(g) : g ∈ G\Gd
0

}

> 0. Then C ⊆
CF(G, σ ).

Proof Let x ∈ C. Since the function 1
d is bounded on G \ Gd

0 , we get that

∑

g∈G\Gd
0

x̂(g)�σ (g) =
∑

g∈G\Gd
0

1

d(g)
d(g)̂x(g)�σ (g)

is convergent by Proposition 2.1. Thus
∑

g∈G x̂(g)�σ (g) is convergent too. ��

Proposition 4.12 Assume Gd
0 is finite and inf

{

d(g) : g ∈ G\Gd
0

}

> 0. Suppose that
the heat problem associated to HC

d and x0 has a solution for every x0 in C∗
r (G, σ ).

Then (G, σ ) has the heat property w.r.t. d.

Proof Let t > 0. Then for any x0 ∈ C∗
r (G, σ ), we have Md

t (x0) ∈ C, so Md
t (x0)

belongs to CF(G, σ ) by Lemma 4.11. ��

On the other hand, the heat problem does not always have a solution:

Proposition 4.13 Assume that Gd
0 is finite and inf

{

d(g) : g ∈ G\Gd
0

}

> 0. If G has
property (T ) and x0 ∈ C∗

r (G, σ )\CF(G, σ ), then the heat problem associated to HC
d

and x0 has no solution.

Proof Assume that the heat problem associated to HC
d and x0 ∈ C∗

r (G, σ ) has a
solution v. Proposition 4.5 gives that v(t) = Md

t (x0) for all t ≥ 0. Moreover, using
Lemma4.11,we getMd

t (x0) ∈ C ⊆ CF(G, σ ) for every t > 0.Now, ifG has property
(T ), then d is bounded, and Proposition 3.4 then implies that x0 ∈ CF(G, σ ). ��
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5 Further Questions and Comments

5.1 Let d in ND+
0 (G). Proposition 3.4 shows that ε(d) = ∞ if G has property (T).

On the other hand, we have that ε(d) = 0 if and only ifG has the heat property w.r.t. d,
and this happens for example when d is proper and G has subexponential H-growth
w.r.t. d, cf. Theorem 3.45. It is not difficult to find examples where 0 < ε(d) < ∞.
For instance, if G = Z and d(n) = log(1 + |n|), then ∑

n∈Z e−td(n) = ∑

n
1

(|n|+1)t

is convergent if and only if t > 1, so δ(d) = 1. Hence, using Remark 3.40, we get
that ε(d) = δ(d)/2 = 1/2. However, Z has the heat property. It would be interesting
to know if there are examples of groups without the heat property such that for some
d ∈ ND+

0 (G) we have 0 < ε(d) < ∞, while δ(d) = ∞.
Suppose now G does not have property (T). It may well happen that ε(d) is infinite

for some unbounded d (consider for exampleG = Z and d(n) = log(1+log(1+|n|))).
One may then ask: when does it exist some d ∈ ND+

0 (G) such that ε(d) < ∞ ?
Clearly, any suchgroupwill have theweakheat property. In the casewhereG is abelian,
this amounts to asking when there exists some d ∈ ND+

0 (G) such that δ(d) < ∞.
5.2 All the groups with the heat property we have met in this article also have the
Haagerup property. Does this hold in general?

The converse seems also open: does there exist a group with the Haagerup property
not having the heat property ? For instance, what about the Thompson’s groups F, T
and V (which are known to have the Haagerup property [31], see also [16] for F and
T ) ? Actually, we don’t know if every amenable, or even abelian, group has the heat
property (or at least the weak heat property).
5.3 In view of our previous works [7, 8] on Fourier series and discrete C∗-crossed
products, it is tempting to guess that some of our results in the present paper might be
extended to this more general setting, or even to Fell bundle over discrete groups [29].
5.4 In this paper, we have considered a function d : G → [0,∞) such that d(e) = 0
and assumed that d negative definite. One may relax this assumption and require
instead that d satisfies the following conditions:

(i) e−td is a multiplier of C∗
r (G, σ ) for every t > 0;

(ii) supt>0 ‖Md
t ‖ < ∞ (where Md

t = Me−td ).

Then one may for instance say that (G, σ ) has the heat property w.r.t. d whenever
e−td belongs toMCF(G, σ ) for every t > 0. (This amounts to requiring that {e−td }t>0
is a bounded Fourier summing net in the sense of [6].)

Let then G be a Gromov hyperbolic group and d = | · | be the word length function
on G w.r.t. some finite set of generators. Then it follows from [53, Theorem 1] (and
[6, Proposition 4.3] when σ �= 1) that conditions (i) and (ii) are satisfied, although | · |
is not necessarily negative definite. (In fact, Ozawa shows that each Md

t is completely
bounded and supt>0 ‖Md

t ‖cb < ∞. As shown by Mei and de la Salle in [51], Ozawa’s
result can be generalized to the case where d = | · |r for any r > 0.) Moreover, [6,
Theorem 5.12] gives that G has the heat property w.r.t. | · |.

As there exist Gromov hyperbolic groups having property (T), we see that this leads
to a theory where property (T) is no longer an obstruction to heat properties. On the
other hand, one readily checks that the proof of Theorem 4.7 goes through whenever
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G has the heat property w.r.t. d in this broader sense, hence that the heat problem
associated to HC

d and x0 ∈ C∗
r (G, σ ) always has a (unique) solution in this case.

5.5 When considering the heat equation on the circle, it is well-known that the assump-
tion on the initial datum f0 can be relaxed, e.g., one can require f0 to be only piecewise
continuous (cf. [62, Section 10.2]). A general set-up including this case is as follows.

Assume that d ∈ ND+
0 (G), or more generally, that d satisfies the same assump-

tions as in 5.4. Let the domain C ⊆ C∗
r (G, σ ) and HC

d : C → CF(G, σ ) be as in
subsection 4.4.

A function u : [0,∞) → vN(G, σ ) is then said to be a solution of the heat problem
associated to HC

d and x0 ∈ vN(G, σ ) whenever u satisfies the following conditions:

• u(0) = x0,
• u(t) ∈ C for every t > 0,
• u is differentiable on (0,∞) and u′(t) = HC

d (u(t)) for every t > 0,
• limt→0+ ‖u(t) − x0‖τ = 0 (where ‖x‖τ = τ(x∗x)1/2).

For each t ≥ 0, let ˜Md
t : vN(G, σ ) → vN(G, σ ) be given by ˜Md

t := ˜Me−td . Let us
say that (G, σ ) has the strong heat property w.r.t. d whenever ˜Md

t maps vN(G, σ ) into
CF(G, σ ) for every t > 0. Then it is not difficult to see that our approach for proving
Theorem 4.7 may be adapted to establish the following result:

Theorem 5.1 Assume that (G, σ ) has the strong heat property w.r.t. d, and let x0 be
any element of vN(G, σ ). Then the function u given by u(t) = ˜Md

t (x0) for every t ≥ 0
is the unique solution of the heat problem associated to HC

d and x0.

Now, one can check (using results from [6]) that (G, σ ) has the strong heat property
w.r.t. d whenever δ(d) = 0 or G has subexponential H-growth w.r.t. d. Thus, all
examples in subsections 3.3 and 5.4 of pairs (G, σ ) having the heat property w.r.t. d
also satisfy the strenghtened version, so Theorem 5.1 applies to all these cases.

We also note, as pointed out to us by the referee, that one may here also consider
{ ˜Md

t }t≥0 as a CP-semigroup (in the sense of Arveson) on the von Neumann algebra
vN(G, σ ), whose generator L may be thought as a noncommutative Laplacian, see
[4, Chapter 7]. However, the focus in [4] is very different from ours, and the space C,
which is a subspace of the domain of L , is not discussed in [4].
5.6 In another direction, it is not difficult to see that our arguments leading to Corol-
lary 3.5 can be adapted to deduce that ifG has property (T), then it is not possible to find
d ∈ ND+

0 (G), x0 ∈ vN(G, σ )\CF(G, σ ) and t > 0 such that ˜Md
t (x0) ∈ CF(G, σ ).

It is conceivable that this is always possible whenever G does not have property (T).
Of course, this will be the case if one can show that if G does not have property (T),
then (G, σ ) has the weak heat property, cf. our discussion in subsection 3.1.
5.7 Let 1 < p < ∞. Then each multiplier ϕ on G gives also rise to a bounded map on
the L p-space associated to vN(G) with respect to the canonical tracial state τ . Many
authors have studied such maps, with a particular interest in the case where ϕt = e−td

for some d ∈ ND+
0 (G), see e.g. [43–45] and references therein. We are not aware

of any direct connection between these works and ours. But let us mention that it is
observed in [45, Section 3.3] that property (T) is an obstruction to ultracontractivity
estimates.
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