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Abstract
We introduce a class of FBI transforms using weight functions (which includes the
subclass of Sjöstrand’s FBI transforms used by Christ in (Commun Partial Differ
Equ 22(3–4):359–379, 1997)) that is well suited when dealing with ultradifferentiable
functions (see Definition 2.3) and ultradistributions (see Definition 2.15) defined by
weight functions in the sense of Braun, Meise and Taylor (BMT). We show how to
characterize local regularity of BMT ultradistributions using this wider class of FBI
transform and, as an application, we characterize the BMT vectors (see Definition 1.2)
and prove a relation between BMT local regularity and BMT vectors.

Keywords FBI transform · Ultradifferentiable functions · Ultradistribution · Iterates
of operators

Mathematics Subject Classification 35A22 · 35A23 · 42B10 · 46F05

1 Introduction

The purpose of this paper is twofold: (i) to explore a new class of FBI transform and
show that it can be used to characterize regularity in the classes of ultradifferentiable
functions in the sense of Braun et al. [12]; and (ii) use these techniques to study
regularity of iterated hypoelliptic constant coefficient partial differential operators.
This new systematic approach has led us to a plethora of unanticipated results. We
show that the FBI transforms introduced in (i) are not only fundamental to obtain the
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results in (ii) but also allows us to extend similar results that appeared recently where
a similar program was developed with the use of the Fourier transform.

1.1 The Augmented Class of FBI Transforms

The Fourier transform can be used to characterize smoothness of distributions (Paley–
Wiener Theorem) and also can be used to characterize analyticity of distributions.
However, the analyticity characterization is significantly more difficult than the
smoothness characterization (see [22]). An alternative tool to characterize regular-
ity (smooth and analytic) is the FBI transform (see [4]).

In the next paragraphs we will recall several variations and generalizations of the
classical FBI transform. Given n ∈ N and 0 < τ ≤ 1 consider the following form in
R
n × R

n

F = dx1 ∧ · · · ∧ dxn ∧ d
(
ξ1 + i x1〈ξ 〉τ ) ∧ · · · ∧ d

(
ξn + i xn〈ξ 〉τ ) ,

where ξ = (ξ1, . . . , ξn), x = (x1, . . . , xn) and 〈ξ 〉 =
√
1 +∑n

j=1 ξ2j . Define the

function aτ : Rn × R
n → C with the property that

F = aτ (x, ξ)dx1 ∧ · · · ∧ dxn ∧ dξ1 ∧ · · · ∧ dξn .

Using the above form in [13] M. Christ defined the following variation of the FBI
transform (in the original article τ is actually λ)

Fτu(x, ξ) =
〈
u(x ′); ei(x−x ′)ξ−〈ξ〉τ (x−x ′)aτ (x − x ′, ξ)

〉
,

where (x, ξ) ∈ R
n × R

n , u ∈ E ′(Rn) (i.e., u is a compactly supported distribution)
and the pairing refers to the interaction between distributions and test functions with
respect to the variable x ′ ∈ R

n . Moreover, among other interesting results he proved
that for a given s > 1 a distribution u ∈ D′(Rn) is Gs (Gevrey of order s, see next
paragraph) in a neighborhood of x0 if and only if there exist τ ≥ 1

s , v ∈ E ′(Rn) with
v ≡ u in a neighborhood of x0, positive constants a,C and an open neighborhood V
of x0 such that

|Fτ v(x, ξ)| ≤ Ce−a‖ξ‖1/s , ∀(x, ξ) ∈ V × R
n .

Observe that the “limit" choice of τ to study Gs regularity is τ = 1/s.
In [18] we considered a more general class of FBI transform first introduced in [3]

(see also [2] where this FBI transform plays a fundamental role) and we showed that it
can be used to characterize Denjoy–Carleman regularity as we now explain. Consider
a positive sequence M = (Mj ) satisfying some special properties. If U ⊂ R

n is an
open set and f ∈ C∞(U ) we say that f is in EM (U ) ( f is M-Denjoy–Carleman
in U ) if for each compact set K ⊂ U there exist positive constants C, h such that
|∂α f (x)| ≤ Ch|α|M|α|, for each x ∈ K andα ∈ N

n
0 .The space of compactly supported
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functions in EM (U ) is denoted by DM (U ). We equip EM (U ) and DM (U ) with their
usual topologies, the topological duals of these spaces are denoted by EM ′

(U ) and
DM ′

(U ) respectively (see [26] for more information). The Gevrey spaces Gs of order
s are given by choosing M = ( j !s). For a fixed sequence M = (Mj ) its associated
function is defined by M(t)

.= sup j log(t
j/Mj ).

The main result in [18] can now be stated as follows: for u in EM ′
(U ), 0 < τ ≤ 1

and k ∈ N denote

Fk
τ u(x, ξ) =

〈
u(x ′); ei(x−x ′)ξ−‖ξ‖τ (x−x ′)2k

〉
, (x, ξ) ∈ R

n × R
n . (1.1)

Then u is EM in a neighborhood of x0 if and only if there exist 0 < τ ≤ 1 so that
M(t) = O(tτ ) as t → ∞, v ∈ EM ′

(Rn) with v ≡ u in a neighborhood of x0, positive
constants a,C > 0 and an open neighborhood V of x0 such that

∣
∣∣Fk

τ v(x, ξ)

∣
∣∣ ≤ Ce−aM(‖ξ‖), ∀(x, ξ) ∈ V × R

n . (1.2)

A natural question that arises is the following: is there a “limit" choice of τ? When
dealing with the Gevrey class of order s it follows that the choice is τ = 1/s. However
this is far from being trivial when M is not a Gevrey sequence. Note that the choice
τ ≥ 1

s is equivalent to the inclusion G1/τ ⊂ Gs .
Sincem(t) = tτ is equivalent to the associated function M of the sequence (Mj ) =

( j !1/τ ), meaning there exist constants C1,C2 and a > 0 such that C1M(t) ≤ m(t) ≤
C2M(t), for all t > a (consequently, EM = Em as per Definition 2.3), a naive
approach to try to answer this question is to enlarge the class of the FBI transform
considered by allowing the term ‖ξ‖τ in (1.1) to be any possible weight function as
given in Definition 2.1.

In order to justify the previous sentence we need to recall the definition of ultra-
differentiable functions by means of weight functions as introduced in [12] (see
Definitions 2.1 and 2.3).

Recall that, given two weight functions ω and σ the condition ω(t) = O(σ (t)) as
t → ∞ implies the inclusion Eσ (	) ⊂ Eω(	), for any open set 	 ⊂ R

n .
Moving on, given any ultradifferentiable classEω as inDefinition 2.3 the augmented

class of FBI transforms announced earlier which will be suitable to study regularity
problems in Eω would be those allowing weight functions σ(‖ξ‖) instead of ‖ξ‖τ

in (1.2) as long as ω(t) = O(σ (t)) as t → ∞. However, the lack of regularity on
general weight functions σ make it very difficult to deal with these FBI transforms.
In order to avoid this problem we will prove that for each weight function there
exists an equivalent one possessing the desired regularity (see Definition 2.18 for
the precise meaning of equivalence used here) and therefore define the same class of
ultradifferentiable functions, see Remark 2.19.

To be more precise given a weight function σ there exists μσ ∈ C1((1,∞)) such
that σ and μσ are equivalent (see Proposition 2.20). Let κ > 0, following [13] we
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consider the differential form in Rn × R
n

F
.= dx ′

1 ∧ · · · ∧ dx ′
n ∧ d

(
ξ1 + i x ′

1κμσ (ξ)
) ∧ · · · ∧ d

(
ξn + i x ′

nκμσ (ξ)
)
,

(x ′, ξ) ∈ R
n × R

n

and the function aκ
μσ

: Rn × R
n → C defined by the property

F = aκ
μσ

(x ′, ξ)dx ′
1 ∧ · · · ∧ dx ′

n ∧ dξ1 ∧ · · · ∧ dξn . (1.3)

Note that, fixing ξ ∈ R
n it follows that x ′ �→ aκ

μσ
(x ′, ξ) is a polynomial function

(consequently it is a Eω function). Hence, for each u ∈ Dσ ′(Rn) and φ ∈ Dσ (Rn) we
can define

Fκ
μσ

(φ u)(x, ξ)
.=
〈
ux ′ ;φ(x ′) ei(x−x ′)·ξ−κμσ (ξ)(x−x ′)2aκ

μσ
(x − x ′, ξ)

〉
,

(x, ξ) ∈ R
n × R

n . (1.4)

Here the notation ux ′ is to emphasize that the ultradistribution u is acting on the
function in x ′ and the other variables are thought as parameters. When κ = 1 we
simply denote Fμσ = Fκ

μσ
.

Ourmain result is the followingFBI characterization of ultradifferentiable functions
that can be viewed as a Paley-Wiener type theorem.

Theorem 1.1 Fix a weight function ω (see Definition 2.1), 	 ⊂ R
n an open set and

u ∈ Dω ′(Rn). In order that u ∈ Eω in a neighborhood of x0 ∈ 	 it is necessary and
sufficient that there exist a weight function σ with ω(t) = O(σ (t)) as t → +∞ so
that for each φ ∈ Dσ (	) there exist C, c > 0 and a neighborhood V ⊂ 	 of x0 such
that

|Fμσ (φu)(x, ξ)| ≤ Ce−cω(ξ), (x, ξ) ∈ V × R
n . (1.5)

To prove Theorem 1.1 we actually show a slightly stronger result, see Theorem 4.2.
As it is customary in these Paley-Wiener type results one of the main ingredients to

prove the sufficient part of Theorem 1.1 is the inversion formula of the FBI transform.
We provide two different versions for the FBI inversion formula, see Lemmas 5.3 and
5.5. It turns out that we use the first inversion formula, Lemma 5.3, to prove the second
Lemma 5.5 and this was inspired by [32, Lemma IX.4.1].

Observe that using [12, 8.9 Remark] it follows that for each sequence (Mj ) con-
sidered in [18] there exists a function ωM satisfying Definition 2.1 such that the space
of ultradifferentiable functions defined by (Mj ) coincides with the space defined by
ωM . However, given a function ω satisfying Definition 2.1 it is necessary to impose
on ω an additional stronger condition (the existence of a constant H > 0 such that
2ω(t) ≤ ω(Ht) + H , for each t > 0) to obtain a sequence (Mj ) such that EM = Eω

(see [11]). Hence, for general weight functions one can think that the local regularity
characterization results presented here as natural extensions from the ones given in
[18].
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Previous Paley–Wiener type results for ultradifferentiable functions appeared in
the literature but with the use of the Fourier transform, [12], and this is an obstacle
to work with elements in their dual. The use of FBI transforms allow us to work also
with ultradistributions, the natural ambient.

1.2 Application to Ultradifferentiable Vectors

As an application of Theorem 1.1 we study BMT vectors (or iterates) of constant
coefficients partial differential operators P(D) = ∑

|α|≤m aαDα . To be more precise
recall that in [29] Nelson introduced the set of analytic vectors of a partial differential
operator with analytic coefficients P(x, D) in an open set U ⊂ R

n and proved that
analytic vectors are real analytic functions exactly when P(x, D) is elliptic.

Later Komatsu, in [25], as well as Kotake and Narasimhan, in [27], obtained a
slightly improvement of Nelson’s result as follows: let U ⊂ R

n and P(x, D) as
before then a function f ∈ L2

loc(U ) is real analytic in U if and only if

1. P j f ∈ L2
loc(U ) (in the sense of the distributions), for each j , and

2. ∀K ⊂ U compact there exist C, h > 0 such that

‖P j f ‖L2(K ) ≤ Ch j (hj) jm, j ∈ {0, 1, . . . }. (1.6)

Here and throughout these notes P j f
.= (P ◦ · · · ◦ P) f , for j ∈ N, and P0 f

.= f .
Newberger and Zielezny initiated an investigation in the Gevrey category Gs

(replacing j !m by j !sm in (1.6)), see [30]. It is worth mentioning the work of Baouendi
and Métivier [1] that deals with the case when P(D) is of principal type and hypoel-
liptic with analytic coefficients. They observed that if u is an s-Gevrey vector of P
(in a smaller neighborhood) then there exist s′ > s such that u is s′-Gevrey. There
is a vast literature concerning optimal regularity for such Gevrey vectors, Gs , s ≥ 1,
for instance [15, 16, 31] to cite just a few. Also, for elliptic operators a proof of the
Kotake–Narasimhan theorem in some classes of ultradifferentiable functions is given
in [7].

Recently, regularity problems for ultradifferentiable vectors defined byweight func-
tions in the sense of Braun et al. [12] for constant coefficients operators (see Definition
1.2) appeared in the literature. It turns out that completeness of these spaces is equiv-
alent to the hypoellipticity of P [23]. Additionally, there are others characterizations
in terms of the decay of the Fourier transform, [5, 8, 24]. It is worth mentioning that
in all of these results, the authors prove Paley–Wiener theorems only for distributions
when the natural object to deal with are ultradistributions (see implication (2) ⇒ (1)
at Theorem 1.3). We define BMT-vectors as follows:

Definition 1.2 For each weight function ω, open set	 ⊂ R
n and polynomial function

P(ξ) of degree m we define Eω(	; P) as the set of u ∈ C∞(	) such that for each
compact set K ⊂ 	 there exists λ > 0 satisfying

sup
j∈N0

‖P(D) j u‖L2(K )e
− 1

λ
ϕ∗(λm j) < +∞,
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where we are denoting ϕ∗(x) = ϕ∗
ω(x)

.= sup{xy − ϕ(y) : y ≥ 0}, for each x > 0
(see (2.1)).

We will call the elements of Eω(	; P) BMT vectors.

To state our main result for ultradifferentiable vectors we need to introduce some
ingredients. Let P(D) = ∑

|α|≤m aαDα be a hypoelliptic constant coefficients partial
differential operator. Then, it is well known (see [21]) that there exist constantsC, K >

0 and a positive number ρ̃ ≤ 1 such that

|P(ξ)| ≥ C‖ξ‖ρ̃m, ∀‖ξ‖ ≥ K . (1.7)

Define the hypoelliptic index by

ρ = sup
{
ρ̃ ≤ 1 so that(1.7)is valid for some positive constantsC, K

}
.

It is known that this supremum is attained and it is a rational number. In other words
there exist constants C, K > 0 such that

|P(ξ)| ≥ C‖ξ‖ρm, ‖ξ‖ ≥ K . (1.8)

We will refer to the number ρ as the Hörmander hypoellipticity index of P(D). Is is
important to mention that this condition also plays an important role in [10]. For a
fixed weight function ω we will define σ(t) = σω,ρ(t) = ω(tρ). Note that, if ω is a
weight function and 0 < ρ ≤ 1 then σ is a weight function.

The next result gives a characterization of the spaces Eω(	; P) (see Definition 1.2)
in terms of the FBI transforms introduced here. The characterization of vectors of
partial differential operators using Fourier transform was first given in [9].

Theorem 1.3 Fix a weight functionω, a hypoelliptic constant coefficient partial differ-
ential operator P(D) of order m on an open set	 ⊂ R

n along with his hypoellipticity
index ρ and define the weight function σ as before. Let ϕ(t) = ω(et ) and ϕ∗ is Young
conjugate, see (2.1). Given u ∈ Dσ ′(	) and x0 ∈ 	 the following conditions are
equivalent:

1. There exists a neighborhood U of x0 such that u ∈ Eω(U ; P).
2. There exist φ ∈ Dω(Rn) (such that φ ≡ 1 in a neighborhood of x0), C, λ, c > 0

and a neighborhood V of x0 such that

|Fμσ

(
φ [P(D)]N (u)

)
(x, ξ)| ≤ Ce

1
λ
ϕ∗(Nmλ)e−cσ(‖ξ‖),

(x, ξ, N ) ∈ V × R
n × N0. (1.9)

One of the main tools to prove Theorem 1.3 is a version of [20, Theorem 4.1]
specialized to balls on which we obtain a better estimate (see Lemma A.1). This
allows us to get rid of a strong restriction on theweight functions treated in [6, Theorem
3.3]. Specifically, in their theorem they consider weight functions ω so that ω (tγ ) =
o(σ (t)), as t → +∞, where γ is a constant that arises from the hypoellipticity of P
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and σ(t) = t1/s for some s > 1. This is equivalent to ω (t) = o(t1/γ s), as t → +∞
which in turn, implies that Gsγ ⊂ Eω.

Another important improvement is that we allow u ∈ Dσ ′(	) while in [6, Theo-
rem 3.3] the authors considered only u ∈ D′(	). Note that both, inequality (1.5) in
Theorem 1.1 and condition (2) in Theorem 1.3 can be checked if u is only an ultra-
distribution and this will be used in a forthcoming paper to define wave front-sets for
ultradistributions.

Another application is given in Corollary 6.4 where we recover the Kotake-
Narasimhan theorem in this context. Also, it is important to recall that similar results
for global Gevrey classes were studied in [19].

In the following we will use the notation B(x, r) to denote the ball of radius r > 0
and centered at x ∈ R

n . We will also use the notation N
n
0 to denote the set of all

multiindices α = (α1, . . . , αn) with α j ∈ {0, 1, 2, . . . } for each j ∈ {1, . . . , n} and
denote |α| = α1 + · · · + αn .

The organization of this paper is as follows: in the second chapter we recall the
definitions of weight functions, ultradifferentiable functions and ultradistributions as
well aswe introduce the functionμω.We prove the necessity of Theorem1.1 in chapter
3. In chapter 4 we present inversion formulas of our class of FBI transforms andwe use
them to prove the sufficiency of Theorem 1.1. A characterization of iterates of constant
coefficients operators and a relation between ultradifferentiable functions and iterates
of constant coefficients operators using our class of FBI transforms is given in chapter
5.

2 Ultradifferentiable Functions Defined byWeight Functions

This section is devoted to recalling basic definitions concerning ultradifferentiable
functions and ultradistributions. First we establish the concept of weight functions
used throughout this work.

Definition 2.1 A continuous function ω : [0,+∞[→ [0,+∞[ with ω ≡ 0 in [0, 1]
and increasing in [0,+∞) is called a weight function when the following conditions
are satisfied:

there exists L > 1 such that ω(e t) ≤ L(ω(t) + 1), ∀ t > 0; (α)

∫ ∞

1

ω(t)

t2
dt < +∞; (β)

lim
t→+∞

log t

ω(t)
= 0; (γ )

ϕ(t) = ϕω(t)
.= ω(et ) is convex. (δ)
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Moreover, given x = (x1, . . . , xn) ∈ R
n wewillwriteω(x) = ω

((∑n
j=1 |x j |

)1/2)
.

Example 2.2 For each s > 1, let ωs ≡ 0 in [0, 1] and ωs(t) = t
1
s − 1, for t > 1. Note

that, ωs is a weight function.

2.1 Ultradifferentiable Functions

Before we introduce the notion of ultradifferentiable functions we need to recall the
notion of Young conjugate that will be used throughout this paper. Let ω be a weight
function and let ϕ be defined by (δ). The Young conjugate of ϕ, ϕ∗, is defined by

ϕ∗(x) = ϕ∗
ω(x)

.= sup{xy − ϕ(y) : y ≥ 0}. (2.1)

It is important to recall that, by (γ ) and (δ), the Young conjugate of ϕ is well defined.
Moreover, ϕ∗ is an increasing convex function, ϕ∗(0) = 0, limt→+∞ ϕ∗(t)

t = +∞
and (ϕ∗)∗ = ϕ (see [12, 1.3 Remark]).

Definition 2.3 Let K ⊂ R
n be a regular compact1 set and C∞(K ) as in [26]. For each

weight function ω and λ > 0 we define

Eω
λ (K ) =

{

f ∈ C∞(K ) : sup
x∈K

sup
α∈Nn

0

|∂α f (x)|e− 1
λ
ϕ∗(λ|α|) < +∞

}

and

Dω
λ (K ) =

{

f ∈ C∞(Rn) : sup
x∈K

sup
α∈Nn

0

|∂α f (x)|e− 1
λ
ϕ∗(λ|α|) < +∞ and supp f ⊂ K

}

.

Let 	 be an open subset of Rn , we also define

Eω(	) = proj ind Eω
λ (K ) and Dω(	) = ind ind Dω

λ (K ).←−−−
K⊂⊂	

−→
λ>0

−−−→
K⊂⊂	

−→
λ>0

Remark 2.4 Let 	 be an open subset of Rn . It follows that Eω(	) is the set of smooth
functions f : 	 → C such that for each compact set K ⊂ 	 there exist λ,C > 0
satisfying

sup
x∈K

|∂α f (x)| ≤ Ce
1
λ
ϕ∗(λ|α|), ∀α ∈ N

n
0 .

And Dω(	) is the subset of Eω(	) consisting of all compactly supported functions.

1 A compact set with a finite number of connected components each of which has the property (P) of
Whitney, i.e., “there is a number C such that any two points x and y of a connected component L are joined
by an arc in L of length less than or equal to C |x − y|”.
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Remark 2.5 For each open set 	 ⊂ R
n condition (β) guarantees that Dω(	) �= {0}

(see [12, 2.5 Corollary]).

Example 2.6 If s > 1 and ωs is given as in Example 2.2, then the space Eωs (	)

coincides with the Gevrey class of order s, Gs(	), for each open set 	 ⊂ R
n .

2.2 Technical Results onWeight Functions

This subsection is dedicated to the presentation of some technical results on weight
functions and its Young conjugate. In the end of this subsection we will prove an
important characterization of ultradistributions.

Throughout this section we will consider a fixed weight function ω (see Defini-
tion 2.1).

Remark 2.7 Using (γ ) we see that there exists A > 1 such that

1 ≤ ω(t), t ≥ A.

Thus, applying (α) it follows that

ω(et) ≤ 2Lω(t), t ≥ A. (2.2)

Next we will present some properties of ϕ∗ (see (2.1)).

Remark 2.8 Note that, ϕ∗ is an increasing function, is a convex function, ϕ∗(0) = 0,
limt→+∞ ϕ∗(t)

t = +∞,
ϕ∗(t)
t is increasing and (ϕ∗)∗ = ϕ (see [12, 1.3 Remark]).

Thus,

2λϕ∗
(
s + t

2λ

)
≤ λϕ∗ ( s

λ

)
+ λϕ∗

(
t

λ

)
≤ λϕ∗

(
s + t

λ

)
,

for every λ, s, t > 0. (2.3)

Remark 2.9 Using condition (α) and [12, 1.4 Lemma] it follows that,

Lkϕ∗
(

t

Lk

)
+ kt ≤ ϕ∗(t) +

k∑

j=1

L j , t ≥ 0, k ∈ N.

Thus, for any λ, α > 0 choosing t = αλLk we obtain

1

λ
ϕ∗ (αλ) + kα ≤ 1

λLk
ϕ∗ (αλLk

)
+ 1

λLk

k∑

j=1

L j . (2.4)
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Note that for each h > 0 there exists k ∈ N such that log h < k. Thus, considering
α = j (for any j ∈ N), it follows that

1

λ
ϕ∗( jλ) + j log h ≤ 1

λ
ϕ∗( jλ) + jk ≤ 1

λLk
ϕ∗( jλLk ) + 1

λLk

k∑

q=1

Lq , λ > 0 and j ∈ N.

Thus, denoting Ch = exp{ 1
Lk

∑k
q=1 L

q} and λh = λLk , we conclude that

h j e
1
λ
ϕ∗( jλ) ≤ Che

1
λk

ϕ∗( jλh)
, (2.5)

for each h, λ > 0 and j ∈ N.

Remark 2.10 Ifω andσ areweight functions such that there exists A,C > 0 satisfying

ω(x) ≤ Cσ(x), x ≥ A;

then there exists constants λσ , L̃ > 0 such that ϕ∗
σ (t) ≤ 1

λσ
ϕ∗

ω(λσ t) + L̃ , ∀t ≥ 0.
In order to prove the above claim we will consider L > 1 such that σ(ex) ≤

L(σ (x) + 1), for each x > 0. In particular,

σ(x) ≥ σ(ex)

L
− L ≥

σ(e2x)
L − L

L
− L ≥ σ(e2x)

L2 − 2L ≥ · · · ≥ σ(emx)

Lm
− mL,

for each m ∈ N and x > 0. Thus, considering m such that em > A

ϕ∗
σ (t) = sup

y≥0
{yt − σ(ey)} ≤ sup

y≥0

{
yt − σ(emey)

Lm
+ mL

}
≤ sup

y≥0

{
yt − ω(emey)

CLm
+ mL

}

≤ sup
y≥0

{
yt − ω(ey)

CLm

}
+ mL ≤ 1

λσ
sup
y≥0

{
ytλσ − ω(ey)

}+ mL = 1

λσ
ϕ∗
ω(λσ t) + mL.

for λσ = LmC and for each t > 0.

Remark 2.11 Since ω is increasing it follows that,

ω(t) = t
ω(t)

t
= t

∫ +∞

t

ω(t)

s2
ds ≤ t

∫ +∞

t

ω(s)

s2
ds, t > 1, (2.6)

hence, using (β), it follows that ω(t) = o(t) (t → +∞).

Remark 2.12 Using the definition of ϕ and ϕ∗, for each b ≥ 1 and λ > 0 we have,

1

λ
ϕ∗(λb) ≥ 1

λ
{λby − ϕ(y)} = by − 1

λ
ω(ey), ∀ y ≥ 0.

Thus, considering x ≥ 1 and y = log x ≥ 0,

e
1
λ
ϕ∗(λb) ≥ xbe− 1

λ
ω(x), ∀ b ≥ 1 and ∀ x ≥ 0. (2.7)
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Moreover, since ω(x) = 0 (when x ∈ [0, 1]), (2.7) also follows for x ∈ [0, 1].
Furthermore, choosing b = x , it follows that, bb ≤ e

1
λ
ϕ∗(λb)+ 1

λ
ω(b). Thus, using

Remark 2.11, there exists b∗ > 0 (independent of λ) such that

bb ≤ e
1
λ
ϕ∗(λb)e

b
λ , ∀b ∈ [b∗;+∞) λ > 0.

Therefore, for each λ > 0, there exists Cλ such that

j ! ≤ j j ≤ C j
λe

1
λ
ϕ∗(λ j), ∀ j ∈ N. (2.8)

Remark 2.13 Using (2.8) and (2.5) it follows that the space of all real analytic functions
is contained in Eω.

Remark 2.14 Observe that, using (2.7), for b = n + 1, it follows that

∫

‖ξ‖>r
e−aω(c‖ξ‖)dξ < +∞, (2.9)

for each a, c > 0 and r ≥ 1.

2.3 Ultradistributions

Definition 2.15 The continuous dual ofDω(	) is denoted byDω ′(	) and its elements
are called ultradistributions. Also, the continuous dual of Eω(	) is denoted by Eω ′(	).

Remark 2.16 It follows from the definition that a linear functional u : Dω(	) → C is
continuous if and only if u is sequentially continuous.

Lemma 2.17 Let u : Dω(	) → C be a linear functional. The following statements
are equivalent:

1. u is (sequentially) continuous;
2. For all compact K ⊂ 	 and for each δ > 0 there exists a real positive constant

Cδ,K such that

|〈u, φ〉| ≤ Cδ,K
∑

α∈Nn
0

e−δϕ∗(|α|/δ)‖∂αφ‖L∞(K ), ∀φ ∈ Dω(K )
.= Eω(	) ∩ C∞

0 (K ).

(2.10)

Proof Consider u such that (2.10) is satisfied. If φ j → 0 in Dω(	), then there exists
a compact set K ⊂ 	 such that suppφ j ⊂ K (for all j ∈ N) and there exists λ > 0
such that

sup
α∈Nn

0

sup
x∈K

|∂αφ j (x)| exp
[
−1

λ
ϕ∗ (|α|λ)

]
→ 0, j → +∞.
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Hence, for each ε > 0 there exists jε ∈ N such that

sup
α∈Nn

0

sup
x∈K

|∂αφ j (x)| exp
[
−1

λ
ϕ∗ (|α|λ)

]
< ε,

when j > jε . Thus, for each δ > 0 there exists Cδ,K > 0 such that,

∣∣〈u, φ j 〉
∣∣ ≤ Cδ,K

∑

α∈Nn
0

e−δϕ∗(|α|/δ)εe
1
λ
ϕ∗(|α|λ),

where j > jε . Considering δ = 1/(λL) (where L is the constant considered in (α)
and using (2.4) it follows that

e−δϕ∗(|α|/δ)e
1
λ
ϕ∗(|α|λ) = e− 1

λL ϕ∗(|α|λL)+ 1
λ
ϕ∗(|α|λ) ≤ eAe−|α|,

where A = A(λ) = 1
λ
. Hence,

|〈u, φ j 〉| ≤ εCδ,K e
A
∑

α∈Nn
0

e−|α|, j > jε .

Since
∑

α∈Nn
0
e−|α| < +∞, we can conclude that 〈u, φ j 〉 → 0. Therefore, u is

continuous.
Conversely, suppose by contradiction that there exist a compact set K ⊂ 	 and

δ > 0 such that for each C > 0 there exists φ = φC ∈ Dω(K ) where

|〈u, φ〉| > C
∑

α∈Nn
0

e−δϕ∗(|α|/δ)‖∂αφ‖L∞(K ).

Thus, for each j ∈ N there exists φ j ∈ Dω(K ) such that

r j
.= |〈u, φ j 〉| > j

∑

α∈Nn
0

e−δϕ∗(|α|/δ)‖∂αφ j‖L∞(K ).

Set ψ j = φ j/r j . Note that suppψ j ⊂ K and e−δϕ∗(|α|/δ)‖∂αψ j‖L∞(K ) ≤ 1
j (∀α ∈

N
n
0). Hence,ψ j → 0 inDω(	) and |〈u, ψ j 〉| = 1.This fact means that a contradiction

was obtained. Therefore, u is not continuous. ��

2.4 A Regular EquivalentWeight Function

Definition 2.18 Let ω : [0,+∞[→ [0,+∞[ and ρ : [0,+∞[→ [0,+∞[ be func-
tions. We say that ω and ρ are equivalent (ω ∼ ρ) when there exist δ, A,C > 0 such
that Aω(t) ≤ ρ(t) ≤ Cω(t), for t > δ.
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Remark 2.19 Let ω : [0,+∞[→ [0,+∞[ and ρ : [0,+∞[→ [0,+∞[ be weight
functions. If ω ∼ ρ then Eω = Eρ and Dω = Dρ (see [12, 3.4 Proposition]).

The next proposition guarantees that for each weight function ω there exists a C1

function μ such that ω ∼ μ. Therefore, we recall that by (2.2) there exist A, H > 1
such that ω(et) ≤ H ω(t), when t ≥ A. Fix h > max{2; log(He)}.

Proposition 2.20 There exists a function Q ∈ C1((1,+∞)) satisfying:

1. ω ∼ Q and lim
y→+∞ Q′(y) = 0.

2. There exist δω > 0 and D > 0 such that, ifμω(y)
.= (h−1)Q

((
δω + ‖y‖2)1/2

)
,

for y ∈ R
n, then,

μω(ξ) ≥ ω

((
δω + ‖ξ‖2

)1/2)
> 0, ∀ξ ∈ R

n; (2.11)

μω(ξ) ≤ D ω((δω + ‖ξ‖2)1/2), ∀ξ ∈ R
n; (2.12)

|∂ξ j μω(ξ)| < 1, ∀ξ ∈ R
n and j ∈ {1, . . . , n}. (2.13)

3. Denoting aκ
μω

as in (1.3) it follows that for each compact set K ⊂ R
n there exists

CK > 0 (independent of ξ ) such that supx∈K |∂α
x {aκ

μω
(x, ξ)}| ≤ CK , for each

ξ ∈ R
n and α ∈ N

n
0 .

Proof 1. Define

Q(y) =
∫ +∞

1

ω(yt)

th
dt = yh−1

∫ +∞

y

ω(s)

sh
ds, y > 0.

Since h > 2 it follows that 0 ≤ ω(s)
sh

≤ ω(s)
s2

, when s > 1. Recalling that ω ≡ 0 in
[0, 1] and using (β) we can see that the function Q is well defined. And

Q′(y) = (h − 1)yh−2
∫ +∞

y

ω(s)

sh
ds − yh−1ω(y)

yh
.

Therefore, Q′ is a continuous function. Moreover, since ω is increasing and h > 2 we
have

Q(y) ≥ ω(y)
∫ +∞

1

1

th
dt = 1

h − 1
ω(y), y > 0. (2.14)
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And, since h > log(He) we obtain eh/(He) > 1. Consequently, C =
∑+∞

j=0

(
He
eh

) j
< +∞. Thus,

Q(y) =
∫ +∞

1

ω(yt)

th
dt =

+∞∑

j=0

∫ e j+1

e j

ω(yt)

th
dt ≤

+∞∑

j=0

ω(e j+1y)

e jh
e j (e − 1) (2.15)

≤
+∞∑

j=0

H j+1ω(y)

e jh
e j (e − 1) ≤ H(e − 1)ω(y)

+∞∑

j=0

(
He

eh

) j

= CH(e − 1)ω(y)

(2.16)

when y ≥ A. Moreover, recalling that h > 2

|Q′(y)| ≤ (h − 1)yh−2
∫ +∞
y

ω(s)

s2
s2−hds + ω(y)

y
≤ (h − 1)

∫ +∞
y

ω(s)

s2
ds + ω(y)

y
, y > 1.

Thus using (β) and (2.6) it follows that limy→+∞ |Q′(y)| = 0.
2. Since limy→+∞ |Q′(y)| = 0 there is δω > A such that |Q′(y)| < 1

h−1 when

y > δ
1/2
ω . Hence, if μω is as being defined above then, |∂ξ j μω(ξ)| < 1, for each

ξ ∈ R
n and j ∈ {1, . . . , n}. Moreover, using (2.14) it follows that μω(ξ) = (h −

1)Q
((

δω + ‖ξ‖2)1/2
)

≥ ω
((

δω + ‖ξ‖2)1/2
)

,∀ξ ∈ R
n .And, using (2.15)weobtain

μω(ξ) ≤ D ω((δω + ‖ξ‖2)1/2) where D = (h − 1)CH(e − 1).
3. It follows from (2.13) and the definition of aκ

μω
. ��

Remark 2.21 Since ω satisfies (δ), it follows that the Q function defined in the proof
of Proposition 2.20 also satisfies (δ).

Remark 2.22 The Q function defined in the proof of Proposition 2.20 was inspired
by the proof of [28, 1.3. Proposition]. The function presented there is χ(y) =∫ +∞
1

ω(yt)
t2

dt . In their work, the authors establish a similar inequality to (2.15) by
assuming a stronger hypothesis than ours: the existence of K > 1, T > 0, and
0 < ε < 1 such that ω(Kt) ≤ (K − ε)ω(t) for each t ≥ T . However, since we do
not have this hypothesis, we considered the power h instead of 2.

3 Technical Results on FBI Transforms

This chapter is dedicated to the presentation of some technical results. Using Faà di
Bruno’s formula we will obtain estimates for derivatives of FBI terms. At the end
of this section we will present a general inequality for the FBI transform acting on
ultradistributions.

Lemma 3.1 Let ω be a weight function (see Definition 2.1) and κ > 0. If μω and
δ = δω are defined as in Proposition 2.20 then, there exist δ, D > 0 such that,

∣
∣∣∂my

{
e−κμω(ξ)(x−y)2

}∣∣∣ ≤ Dmθ−m/2m!e− κ
2 ω((‖ξ‖2+δ)1/2)‖x−y‖2e

θ
2ω((‖ξ‖2+δ)1/2),

(3.1)
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for all ξ ∈ R
n x, y ∈ R, m ∈ N0 and θ > 0.

Proof Note that, using Faà di Bruno’s formula (see [14, Corollary 2.11]) it follows
that

∂my

{
e−κμω(ξ)(x−y)2

}
=

m∑

r=1

e−κμω(ξ)(x−y)2
∑

p(m,r)

m!
m∏

j=1

[∂ j
y {−κμω(ξ)(x − y)2}]k j

k j ![ j !]k j
,

where p(m, r) =
{
(k1, . . . , km) ∈ N

m
0 : ∑m

j=1 k j = r ,
∑m

j=1 jk j = m
}

.

Since ∂
j
y {−κμω(ξ)(x − y)2} = 0, for j ≥ 3, we will be able to consider the sum

over a subset of p(q, r), considering only derivatives of order less than three. Hence,
denoting p2(m, r) = {

(k1, k2) ∈ N
2
0 : k1 + k2 = r , k1 + 2k2 = m

}
, we have

∣
∣∣∂my

{
e−κμω(ξ)(x−y)2

}∣∣∣ ≤
m∑

r=1

∣
∣∣e−κμω(ξ)(x−y)2

∣
∣∣
∑

p2(m,r)

m!κr |2μω(ξ)(x − y)|k1 |2μω(ξ)|k2
k1!k2!1!k12!k2 .

And, using that r = k1 + k2 = k1
2 + m

2 , k1 ≤ m, m! ≤ 2mr !k2! and k2!k1!1/2 =
(k2!2k1!)1/2 ≤ m!1/2 we obtain,

∣∣∂my
{
e−κμω(ξ)(x−y)2}∣∣ ≤

m∑

r=1

κr
∑

p2(m,r)

m!2k1
k1!k2!

[
e−2κμω(ξ)(x−y)2

∣∣∣μω(ξ)(x − y)2
∣∣∣
k1
] 1

2 |μω(ξ)| m2

≤ Dm
m∑

r=1

κ
m
2

∑

p2(m,r)

m!2k1
k1!k2!

[
e−2κμω(ξ)(x−y)2e

κ
D |μω(ξ)(x−y)2 |k1!

] 1
2 |μω(ξ)| m2

≤ [Dκ
1
2 ]mm!1/24m

[
e−2κμω(ξ)(x−y)2e

κ
D |μω(ξ)|(x−y)2

] 1
2 |μω(ξ)| m2

×
m∑

r=1

r !
∑

p2(m,r)

1

k1!k2!

≤ [Dκ
1
2 ]mm!1/24m

[
e−2κμω(ξ)(x−y)2e

κ
D |μω(ξ)|(x−y)2

] 1
2 |μω(ξ)| m2

×
m∑

r=1

r !
∑

p(m,r)

m∏

j=1

1

k j ! ,

where D > 1 is as in (2.12). Recalling that (see [14, p. 515]),

r !
∑

p(m,r)

m∏

j=1

1

k j ! =
(
m − 1

r − 1

)
≤
(
m

r

)

and

m∑

r=0

(
m

r

)
= 2m,
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using (2.11) and (2.12) it follows that

∣∣
∣∂my

{
e−κμω(ξ)(x−y)2

}∣∣
∣ ≤ [D 3

2 κ
1
2 ]m4mm!1/2e− κ

2 ω((‖ξ‖2+δ)1/2)(x−y)2 [ω((‖ξ‖2 + δ)1/2)]m2 2m .

(3.2)

Thus, for each θ > 0 it follows that,

∣∣
∣∂my

{
e−κμω(ξ)(z−y)2

}∣∣
∣ ≤ [D 3

2 κ
1
2 16]mθ− m

2 m!e− κ
2 ω((‖ξ‖2+δ)1/2)(x−y)2e(θ/2)ω((‖ξ‖2+δ)1/2).

��
Remark 3.2 Observe that ∂y

{
e−κμω(ξ)(x−y)2

}
= −∂x

{
e−κμω(ξ)(x−y)2

}
, for ξ ∈ R

n

and y, x ∈ R. Thus, we can rewrite (3.1) by

∣
∣∣∂�
x ∂

m
y

{
e−κμω(ξ)(x−y)2

}∣∣∣ ≤ Dm+�θ−(m+�)/2(m + �)!e− κ
2 ω((‖ξ‖2+δ)1/2) |x−y|2e(θ/2)ω((‖ξ‖2+δ)1/2),

(3.3)

for all ξ ∈ R
n , x, y ∈ R, �,m ∈ N0 and θ > 0.

Remark 3.3 Observe that

∂α
y

{
e−κμω(ξ)(x−y)2

}
=

n∏

j=1

∂
α j
y j

{
e−κμω(ξ)(x j−y j )2

}
,

for each x, ξ, y = (y1, . . . , yn) ∈ R
n and α = (α1, . . . , αn) ∈ N0. Thus, it follows

from Lemma 3.1,

∣∣∣∂α
y

{
e−κμω(ξ)(x−y)2

}∣∣∣ ≤ D|α|θ−|α|/2α!e− κ
2 ω((‖ξ‖2+δ)1/2)‖x−y‖2e

θn
2 ω((‖ξ‖2+δ)1/2),

(3.4)

Next we will present bounds on the derivatives of the FBI phase.

Lemma 3.4 Ifω is aweight function,μω and δ = δω are defined as in Proposition 2.20,
κ > 0 and Qκ

ω(z, y, ξ) = i(x − y) · ξ −κμω(ξ)(x − y)2, then for each θ, λ > 0 there
exists D = Dθ,λ such that

|∂γ
x ∂α

y

{
eQ

κ
ω(x,y,ξ)

}
| ≤ D|α|+|γ |e

1
λ
ϕ∗(λ|(α,γ )|) ×

× e
1
λ
ω((‖ξ‖2+δ)1/2)+ nθ

2 ω((‖ξ‖2+δ)1/2)e− κ
2 ω((‖ξ‖2+δ)1/2) (x−y)2 ,

(3.5)

for (γ, α, x, y, ξ) ∈ N
n
0 × N

n
0 × R

n × R
n × R

n.
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Proof From Leibniz rule it follows that,

∂
γ
x ∂α

y

{
eQ

κ
ω(x,y,ξ)

}
= ∑

β≤(γ,α)

(
γ

β ′
)(

α

β ′′
)

(iξ)γ−β ′
(−iξ)α−β ′′

ei(x−y)ξ

×
n∏

k=1
∂

β ′
k

xk ∂
β ′′
k

yk

{
e−κμω(ξ)(xk−yk )2

}
,

where β = (β ′, β ′′), β ′ = (β ′
1, . . . , β

′
n) ∈ N

n
0 and β ′′ = (β ′′

1 , . . . , β ′′
n ) ∈ N

n
0.

Therefore, using (3.3), (2.3), (2.7) and (2.8) there exists C, D > 1 such that,

|∂γ
x ∂α

y

{
eQω(z,y,ξ)

}
| ≤

∑

β≤(γ,α)

(
γ

β ′

)(
α

β ′′

)
‖ξ‖|(γ,α)−β|D|β|θ− |β|

2 β! e− κ
2 ω((‖ξ‖2+δ)1/2) (x−y)2

× e
nθ
2 ω((‖ξ‖2+δ)1/2)

≤
∑

β≤(γ,α)

(
γ

β ′

)(
α

β ′′

)
e

1
λ
ϕ∗(λ|(γ,α)−β|)e

1
λ
ω((‖ξ‖2+δ)1/2)

× C |β|θ− |β|
2 e

1
λ
ϕ∗(λ|β|)e

|β|
λ

× e− κω((‖ξ‖2+δ)1/2)
2 (x−y)2e

nθ
2 ω((‖ξ‖2+δ)1/2)

≤ (1 + Cθ−1/2e
1
λ )|γ |+|α|e

1
λ
ϕ∗(λ|(γ,α)|)e

1
λ
ω((‖ξ‖2+δ)1/2)

× e− κω((‖ξ‖2+δ)1/2)
2 (x−y)2e

nθ
2 ω((‖ξ‖2+δ)1/2)

for each λ, θ > 0. ��

The following result consists of a general domination of the FBI transform for
ultradistributions.

Lemma 3.5 Let	 ⊂ R
n be an open subset. Ifω is aweight function,μω and δ = δω are

defined as in Proposition 2.20, κ > 0, u ∈ Dω ′(	) and φ ∈ Dω(	)with K = suppφ.
Then, there exists λ > 0 such that for each θ > 0 we can find C = Cθ > 0 such that

|∂γ
x Fκ

μω
(φu)(x, ξ)| ≤ Ce(1/λ)ϕ∗(λ|γ |)eθω((‖ξ‖2+δ)1/2) sup

y∈K
e− κ

2 (x−y)2ω((‖ξ‖2+δ)1/2),

for each (x, ξ) ∈ R
n × R

n and γ ∈ N
n
0 .

Proof Observe that denoting e1 = (1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1) and consid-
ering a real sequence {h j }∞j=1 such that h j → 0 it follows that, ifψ ∈ Eω(Rn ×R

n) is
such that ψ(x, y) = ψ1(y)ψ2(x, y) (where ψ1 ∈ Dω(Rn) and ψ2 ∈ Eω(Rn × R

n)),
then

ψ(x + h j ek, ·) − ψ(x, ·)
h j

→ ∂xkψ(x, ·),
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in Dω, for each k ∈ {1, . . . n} and x ∈ R
n . Thus, using the continuity of u

lim
h→0

〈uy;ψ(x + hek, y)〉 − 〈uy;ψ(x, y)〉
h

= lim
h→0

〈
uy; ψ(x + hek, y) − ψ(x, y)

h

〉

= 〈uy; ∂xkψ(x, y)〉.

Hence, it follows that

∂
γ
x Fκ

μω
(φu)(x, ξ) =

〈
u(y);φ(y)∂γ

x

{
ei(x−y)·ξ−κμω(ξ)(x−y)2aμω(x − y, ξ)

}〉

where γ ∈ N
n
0 . Moreover, from Lemma 2.17 for each ε > 0 there exists Cε > 0 such

that

|∂γ
x Fκ

μω
u(x, ξ)| ≤ Cε

∑

α

e−εϕ∗(|α|/ε) sup
y∈K

∣∣∣∂α
y ∂

γ
x

{
φ(y)ei(x−y)·ξ−κμω(ξ)(x−y)2aμω (x − y, ξ)

}∣∣∣ .

Since φ ∈ Dω, there exists λ1 > 0 such that ‖∂β ′′
φ‖∞ ≤ e

1
2λ1

ϕ∗(2λ1|β ′′|)
, for each

β ′′ ∈ N
n
0 . Moreover, using Leibniz rule, (2.3), Lemma 3.4 and Proposition 2.20, for

each λ, θ > 0 there exist D > 0 such that

|∂γ
x Fκ

μω
u(x, ξ)| ≤ CCε

∑

α

e
−εϕ∗( |α|

ε

)

sup
y∈K

∑

β≤(α,γ )

(
(α, γ )

β

)
D|β|

× e
1

2λ2
ϕ∗(2λ2|(α,γ )|)+

(
1
λ
+ nθ

2

)
ω((|ξ‖2+δ)1/2)

e−
κ
2 ω((‖ξ‖2+δ)1/2)(x−y)2

≤ CCεe
1
λ2

ϕ∗(λ2|γ |)∑

α

e
−εϕ∗( |α|

ε

)

e
1
λ2

ϕ∗(λ2|α|)
(1 + D)|α+γ |e

(
1
λ
+ nθ

2

)
ω((‖ξ‖2+δ)1/2)

× sup
y∈K

e−
κ
2 ω((‖ξ‖2+δ)1/2)(x−y)2

,

where λ2 = max{λ, λ1}. Next we will consider ε = 1
λ2Lk , where k ∈ N is chosen such

that e−k(1 + D) < 1 and L is as in (α). From, (2.4),

|∂γ
x Fκ

μω
u(x, ξ)| ≤ CCεe

1
λ2

ϕ∗(λ2|γ |)
e

1
λLk

∑k
j=1 L j ∑

α

e−k|α|(1 + D)|α+γ |e
(
1
λ
+ nθ

2

)
ω((‖ξ‖2+δ)1/2)

× sup
y∈K

e−
κ
2 ω((‖ξ‖2+δ)1/2)(x−y)2

≤ C ′e
1
λ2

ϕ∗(λ2|γ |)
(1 + D)|γ |e

(
1
λ
+ nθ

2

)
ω((‖ξ‖2+δ)1/2)

sup
y∈K

e−
κ
2 ω((‖ξ‖2+δ)1/2)(x−y)2

,

for some C ′ > 0. From the arbitrariness of λ and θ the proof is completed. ��
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4 Proof Theorem 1.1: Necessity

The aim of this section is to prove the necessary condition of Theorem 1.1 i.e, when
given an ultradistribution u such that u is Eω regular in a neighborhood of a given point
x0, then (1.5) is satisfied. To do so we will prove a more general result, Theorem 4.2,
in which the necessity part of Theorem 1.1 will be a particular case (just choose α = 0
and κ = 1 in Theorem 4.2).

The reasons to present this more general result are the following. First, we need
the result for arbitrary α �= 0 for the FBI inversion formula for ultradifferentiable
functions presented in Sect. 5.1, see Lemma 5.2 and its consequences, Lemma 5.3 and
Lemma 5.5.

Second, we deal with any parameter κ > 0 since in the proof of Lemma 5.5 we
consider a general κ and use Lemma 5.3 with κ/2 (see (5.14)). For this reason it is
required to allow arbitrary κ > 0. Moreover, Lemma 5.5 is important in the proof of
the sufficiency part of Theorem 1.1.

Following the main ideas of [18] we start by presenting a characterization of ultra-
distributions vanishing in a neighborhood of a given point. And then we will use this
fact to prove the main result of this section.

Lemma 4.1 Let σ be a weight function, κ > 0, x0 ∈ R
n, 	 ⊂ R

n be an open
neighborhood of x0 and u ∈ Dσ ′(	). If u vanishes in a neighborhood of x0, then for
each φ ∈ Dσ (	) there exist constants C, c, λ > 0 and a neighborhood V ⊂ 	 of x0
such that

|∂α
x Fκ

μσ
(φu)(x, ξ)| ≤ Ce

1
λ
ϕ∗

σ (λ|α|)e−cσ(ξ), (x, ξ, α) ∈ V × R
n × N

n
0 . (4.1)

Proof Given φ ∈ Dσ (	) it follows that φ ∈ Dσ (Rn) and there exists R > 0 such
that suppφ ⊂ B(x0, R). Considering u ∈ Dσ ′(	) vanishing in a neighborhood of
x0, we can assume that there exists 0 < r < R/3 such that u ≡ 0 in B(x0, 3r).
Also, consider a function ψ ∈ Dσ (B(x0, 3r)) such that ψ ≡ 1 in B(x0, 2r). Then,
supp{φψ} ⊂ B(x0, 3r) and supp{φ(1 − ψ)} ⊂ B(x0, R)\B(x0, r). Thus, using
Lemma 3.5, there exists λ > 0 such that for each θ > 0 there exists C = Cθ > 0 such
that

|∂α
x Fκ

μσ
(φu)(x, ξ)| =|∂α

x Fκ
μσ

(φ(1 − ψ)u)(x, ξ)|
≤Ce

1
λ
ϕ∗

σ (λ|α|)eθσ ((‖ξ‖2+δ)1/2) sup
r<‖y−x0‖<R

e−aσ((‖ξ‖2+δ)1/2)(x−y)2 ,

for every (x, ξ, α) ∈ R
n ×R

n ×N
n
0 where a = κ

2 . Moreover, if ‖x−x0‖ < r/2 and
‖y−x0‖ > r then ‖x− y‖ > r/2.Thus, since δ > 0 (here δ denotes the constant δσ as
defined in Proposition 2.20.), recalling that σ is an increasing function and considering
θ = ar2

8 we obtain

|∂α
x Fκ

μσ
(φu)(x, ξ)| ≤ Ce

1
λ
ϕ∗

σ (λ|α|)e− ar2
8 σ((‖ξ‖2+δ)1/2) ≤ Ce

1
λ
ϕ∗

σ (λ|α|)e− ar2
8 σ(ξ),

for all ‖x − x0‖ < r
2 , ξ ∈ R

n and α ∈ N
n
0 .
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Thus setting V = B(x0, r/2) finishes the proof. ��
Next we shall present the main result of this section whose consequence is the

necessity part of Theorem 1.1. Note that if σ and ω are weight functions with ω(t) =
O(σ (t)) as t → +∞ then Dσ (	) ⊂ Dω(	) (see Remark 2.10) and Dω ′(	) ⊂
Dσ ′(	).

Theorem 4.2 Letω and σ be weight functions such thatω(t) = O(σ (t)) as t → +∞,
κ > 0, 	 ⊂ R

n be an open set and u ∈ Dσ ′(	). If u is Eω in a neighborhood of
x0 ∈ 	 then for each φ ∈ Dσ (	) there exist C, c, λ > 0 and a neighborhood V ⊂ 	

of x0 such that

|∂α
x Fκ

μσ
(φu)(x, ξ)| ≤ Ce

1
λ
ϕ∗(λ|α|)e−cω(ξ), (x, ξ, α) ∈ V × R

n × N
n
0, (4.2)

where ϕ∗ = ϕ∗
ω is the Young conjugate of ϕ(t) = ω(et ).

Proof Fix R > 0 such that u ∈ Eω(B(x0, R)) and B(x0, R) ⊂ 	. Consider ψ ∈
Dσ (B(x0, R)) such that ψ ≡ 1 in B(x0,

R
2 ) and write

Fκ
μσ

(φu)(x, ξ) = Fκ
μσ

(ψφu)(x, ξ) + Fκ
μσ

((1 − ψ)φu)(x, ξ), (x, ξ) ∈ R
n × R

n .

(4.3)

Now we use Lemma 4.1 to obtain constants C, a, λ > 0 and a bounded neighborhood
V of x0 such that

|∂α
x Fκ

μσ
((1 − ψ)φu)(x, ξ)| ≤ Ce

1
λ
ϕ∗

σ (λ|α|)e−aσ(ξ), (x, ξ) ∈ V × R
n .

Furthermore, since ω(t) = O(σ (t)) as t → +∞ there exist A, c > 0 so that ω(ξ) ≤
cσ(ξ) for ‖ξ‖ > A and by the continuity of ω, for each c > 0 there exists Cc > 0
such that 1 = ecω(ξ)e−cω(ξ) ≤ Cce−cω(ξ) for ‖ξ‖ ≤ A. Thus, we use Remark 2.10,
define a1 = a

c , increase λ,C > 0, if necessary, and obtain

|∂α
x Fκ

μσ
((1 − ψ)φu)(x, ξ)| ≤ Ce

1
λ
ϕ∗(λ|α|)e−a1ω(ξ), (x, ξ) ∈ V × R

n . (4.4)

Next we will fix ξ = (ξ1, . . . , ξn) ∈ R
n\{0} and consider j ∈ {1, . . . , n} such that

‖ξ‖ ≤ n|ξ j |. Moreover, given an arbitrary N ∈ N0, integrating by parts with respect
to y j , we can write

Fκ
μσ

(ψφu)(x, ξ) = (−1)N

(−iξ j )N

∫
ei(x−y)ξ ∂Ny j

{
u(y)ψ(y)φ(y)e−κμσ (ξ)(x−y)2aμσ (x − y, ξ)

}
dy,

for x, ξ ∈ R
n, where it was used that ψφu ∈ Dω(B(x0, R)) ⊂ Dω(Rn). Given

α ∈ N
n
0, we have

∂α
x Fκ

μσ
(ψφu)(x, ξ) = (−1)N

(−iξ j )N

∫ ∑

γ≤α

(
α

γ

)
(iξ)α−γ ei(x−y)ξ ×

× ∂
γ
x ∂Ny j

{
u(y)ψ(y)φ(y)e−κμσ (ξ)(x−y)2aμσ (x − y, ξ)

}
dy (4.5)
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Now, Remark 2.8, (2.5), (2.8) together with Leibniz’s rule and Proposition 2.20
(where it is proved that the derivatives of aμσ are uniformly bounded in compact sets)
show that there exist C2, λ2 > 0 (independent of x and ξ ) such that

|∂β1
x ∂

β2
y
{
u(y)ψ(y)φ(y)aμσ (x − y, ξ)

} | ≤ C2e
1
λ2

ϕ∗(λ2|β2|),
∀β1, β2 ∈ N

n
0 and ∀ y, ξ ∈ R

n and x ∈ V .
(4.6)

Furthermore, it follows from inequality (3.2) that there exist D > 0 such that

∣
∣∣∂β1

x ∂
β2
y

{
e−κμσ (ξ)(x−y)2

}∣∣∣ =
∣∣
∣∣
∏n

j=1 ∂
β
j
1

x j ∂
β
j
2

y j

{
e−κμσ (ξ)(x j−y j )2

}∣∣
∣∣

≤ D|β1|+|β2|e− κ
2 σ((‖ξ‖2+δσ )1/2)(x−y)2 [σ((‖ξ‖2 + δσ )

1
2 )] |β1+β2 |

2 |β1 + β2|! 12 ,
for all β1, β2 ∈ N

n
0 and x, y, ξ ∈ R

n .

(4.7)

Denote ξσ
.= σ((‖ξ‖2 + δσ )1/2), increase D (if necessary) and use (2.7) to obtain

∣∣
∣
∣∂

β1
x ∂

β2
y

{
e−κμσ (ξ)(x−y)2

}∣∣
∣
∣ ≤ D|β1+β2 ||β1|

|β1|
2 |β2|

|β2 |
2 (ξ

|β1+β2 |
σ )

1
2

≤ e
ϕ∗(λ0 |β1|)

2λ0 e
1

2λ0
ω(D2 |β1|)

e
ϕ∗(λ1|β2 |)

2λ1 e
1

2λ1
ω(D2 |β2 |)

e
ϕ∗(λ1|β2 |)

2λ1 e
1

2λ1
ω(ξσ )

e
ϕ∗(λ0 |β1|)

2λ0 e
1

2λ0
ω(ξσ )

,

for all λ0, λ1 > 0, β1, β2 ∈ N
n
0 and x, y ∈ R

n .. (4.8)

Using Remark 2.11 we can find D1 > D such that ω(t) ≤ t, for each t > D2
1 and

since ω is increasing we can write

∣∣∣∂β1
x ∂

β2
y

{
e−κμσ (ξ)(x−y)2

}∣∣∣ ≤ e
ϕ∗(λ0 |β1|)

λ0 e
ϕ∗(λ1|β2 |)

λ1 e
D2
1 |β1|
2λ0 e

D2
1 |β2 |
2λ1 e

(
1

2λ0
+ 1

2λ1

)
ω(ξσ )

,

for all λ0, λ1 > 0, β1, β2 ∈ N
n
0 and x, y ∈ R

n .

(4.9)

Thus, using Leibniz’s rule, Remark 2.8, (4.6) and (4.9) there exists m = m(n) > 0
such that

∣∣∣∂β1
x ∂β2

y

{
u(y)ψ(y)φ(y)e−κμσ (ξ)(x−y)2aμσ (x − y, ξ)

}∣∣∣

≤
∑

γ≤β

(
β

γ

)
C2e

1
λ2

ϕ∗(λ2|β2−γ2|)e
ϕ∗(λ0 |γ1 |)

λ0 e
ϕ∗(λ1 |γ2 |)

λ1 e
D2
1 |γ1 |
2λ0 e

D2
1 |γ2 |
2λ1 e

(
1

2λ0
+ 1

2λ1

)
ω(ξσ )

≤ C2 e
1
λ1

ϕ∗(λ1|β2|)e
1
λ0

ϕ∗(λ0|β1|)
(

m + me
D2
1

2λ0

)|β1| (
m + me

D2
1

2λ1

)|β2|
e

(
1

2λ0
+ 1

2λ1

)
ω(ξσ )

≤ C2 e
1
λ1

ϕ∗(λ1|β2|)e
1
λ0

ϕ∗(λ0|β1|)C |β1|
λ0

C |β2|
λ1

e

(
1

2λ0
+ 1

2λ1

)
ω(ξσ )

,

for all λ0 > 0, β1, β2 ∈ N
n
0, x ∈ V and y ∈ R

n, (4.10)



45 Page 22 of 45 Journal of Fourier Analysis and Applications (2024) 30 :45

where we considered λ1 = λ2, used the notation β = (β1, β2), γ = (γ1, γ2) ∈
N
n
0 × N

n
0 and denoted Cλ = m + me

D2
1

2λ (for λ > 0).
Hence, recalling that ‖ξ‖ ≤ n|ξ j |, denoting C̃ = C2 |suppψ φ| (where

|suppψ φ| = ∫
supp (ψ φ)

1 dy) and using (4.10) one can estimate the expression in
(4.5) by

∣∣∂α
x Fκ

μσ
(ψφu)(x, ξ)

∣∣ ≤ C̃nN

‖ξ‖N
∑

γ≤α

(
α

γ

)
C2‖ξ‖|α−γ | e

1
λ1

ϕ∗(λ1N )
e

1
λ0

ϕ∗(λ0 |γ |)
C |γ |

λ0
CN

λ1
e

(
1

2λ0
+ 1

2λ1

)
ω(ξσ )

for all N ∈ N0, λ0 > 0, x ∈ V and ξ ∈ R
n \ {0}. (4.11)

Denoting a = 1
nCλ1

and using Remark 2.8, (2.7) and (2.3) there exists kλ0 = k(λ,a) >

0 such that

∣∣∂α
x Fκ

μσ
(ψφu)(x, ξ)

∣∣ ≤C̃
1

(a‖ξ‖)N k|α|
λ0

e
1
λ1

ϕ∗(λ1N )
e

1
λ0

ω(a‖ξ‖)
e

1
λ0

ϕ∗(λ0|α|)
e

(
1

2λ0
+ 1

2λ1

)
ω(ξσ )

for all λ0 > 0, x ∈ V and ξ ∈ R
n \ {0}.

Taking the infimum in N ∈ N0 in the last inequality we obtain

∣∣∂α
x Fκ

μσ
(ψφu)(x, ξ)

∣∣ ≤C̃ inf
N∈N0

e
1
λ1

ϕ∗(λ1N )

(a‖ξ‖)N k|α|
λ0

e
1
λ0

ϕ∗(λ0|α|)
e

1
λ0

ω(a‖ξ‖)
e

(
1

2λ0
+ 1

2λ1

)
ω(ξσ )

for all λ0 > 0, x ∈ V and ξ ∈ R
n \ {0}. (4.12)

Recalling that infN∈N0 t
−Ne

1
λ1

ϕ∗(λ1N ) ≤ elog t e
− 1

λ1
ω(t)

for each t ≥ 1, see [12, page
218],then by increasing C̃ if necessary, it follows that one can further estimate the
expression in (4.12) by

∣∣∂α
x Fκ

μσ
(ψφu)(x, ξ)

∣∣ ≤C̃e
log(a‖ξ‖)− 1

λ1
ω(a‖ξ‖)

k|α|
λ0
e

1
λ0

ϕ∗(λ0|α|)
e

1
λ0

ω(a‖ξ‖)
e

(
1

2λ0
+ 1

2λ1

)
ω(ξσ )

for all λ0 > 0, x ∈ V and ‖ξ‖ ≥ 1.

Now, we take advantage of γ ) and Remark 2.11 to obtain A1 > 0 such that
ξσ = σ((‖ξ‖2 + δσ )1/2) ≤ a‖ξ‖ and log(a‖ξ‖) ≤ 1

4λ1
ω(aξ), when ‖ξ‖ > A1.

Thus, choosing λ0 = 12λ1

∣∣∂α
x Fκ

μσ
(ψφu)(x, ξ)

∣∣ ≤ C̃e
− 1

8λ1
ω(a‖ξ‖)

k|α|
λ0

e
1
λ0

ϕ∗(λ0|α|)
, (4.13)

for each x ∈ V and ‖ξ‖ > A1. Now, we choose k ∈ N satisfying e−k ≤ a. Hence,
using (2.2) we see that there exists A2 ≥ A1 such that

−ω(aξ) ≤ −ω(e−kξ) ≤ −(2L)−kω(ξ), ‖ξ‖ > A2.
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Thus, using (2.5) there exist a1 > 0 and λ3 > 0 such that one can further estimate
(4.13) by

∣
∣∂α

x Fκ
μσ

(ψφu)(x, ξ)
∣
∣ ≤ C̃e−a1ω(ξ)e

1
λ3

ϕ∗(λ3|α|)
, ∀x ∈ V , ‖ξ‖ > A2. (4.14)

This concludes the proof when ‖ξ‖ > A2. For ξ small, we go back to (4.5) and use
(4.10) to get (possibly by increasing m)

|∂α
x Fκ

μσ
(ψφu)(x, ξ)| =

∣
∣∣∣
∣∣

∑

γ≤α

(
α

γ

)∫
ei(x−y)ξ ∂

γ
x ∂

α−γ
y

{
u(y)ψ(y)φ(y)e−κμσ (ξ)(x−y)2aμσ (x − y, ξ)

}
dy

∣
∣∣∣
∣∣

≤C̃e
1
λ1

ϕ∗(λ1(|α|))
⎛

⎝m + me
D2
1

2λ1

⎞

⎠

|α|
e

1
2λ1

ω(ξσ )
.

Since ω and σ are continuous function (consequently sup‖ξ‖≤A2
e

1
2λ1

ω(ξσ )
< +∞),

using (2.5), there exists λ2, C̃1, C̃2 > 0 such that

|∂α
x Fκ

μσ
(ψφu)(x, ξ)| ≤C̃1e

1
λ2

ϕ∗(λ2(|α|)) ≤ C̃2e
1
λ2

ϕ∗(λ2(|α|))
e−a1ω(ξ) (4.15)

for ‖ξ‖ ≤ A2, C̃2 ≥ C̃1 sup‖ξ‖≤A2
ea1ω(ξ). Therefore, it follows from (4.3), (4.4),

(4.14) and (4.15) that the proof is completed. ��
An immediate consequence is the necessity of Theorem 1.1.

Corollary 4.3 Fix a weight function ω, an open set 	 ⊂ R
n and u ∈ Dω ′(	). If

u ∈ Eω in a neighborhood of x0 ∈ 	 then there exist a weight function σ such that
ω(t) = O(σ (t)) as t → +∞, so that for each φ ∈ Dσ (	) there exist C, c > 0 and
a neighborhood x0 ∈ V ⊂ 	 such that

|Fμσ (φu)(x, ξ)| ≤ Ce−cω(ξ), (x, ξ) ∈ V × R
n . (4.16)

Proof Under the corollary hypothesis one can select any weight function ω(t) =
O(σ (t)) as t → +∞ then the proof of Theorem 4.2 will work for u ∈ Dω ′(	) ⊂
Dσ ′(	). ��

5 Proof Theorem 1.1: Sufficiency

In order to prove the sufficiency part of Theorem 1.1 we shall prove an inversion
formula for the FBI transform Fκ

μω
defined in (1.4).

5.1 Inversion Formula for Ultradifferentiable Functions

Throughout this section we will consider a weight function ω and we will denote by
μω the function defined in Proposition 2.20. In order to prove the sufficient condition
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of Theorem 1.1 in this section we will present two inversion formulas of Fκ
μω

u when
u is in Eω, κ > 0 and ω is any weight function.

Lemma 5.1 If u ∈ Cn+1
c (Rn) then

u(x) = (2π)−n
∫

Rn
Fκ

μω
u(x, ξ)dξ, ∀x ∈ R

n .

Proof Let R > 1 be such that supp u ⊂ B(0, R). Since u ∈ Cn+1
c (Rn) it follows that

supξ∈Rn {(1 + ‖ξ‖)n+1|û(ξ)|} < +∞. Thus, using the Fourier inversion formula we
can write

u(x) = (2π)−n lim
ε→0

∫ ∫
u(x ′)ei(x−x ′)·ξ−εξ2dξdx ′. (5.1)

Define � = �(x, x ′, ξ, t)
.= ξ + i t κ μω(ξ) (x − x ′), for x, x ′, ξ ∈ R

n and t ∈ R.
Since μω ≥ 0,

R{i(x − x ′) · � − ε · �2} ≤ −ε
[
ξ2 − t2 κ2 [μω(ξ)]2‖x − x ′‖2] ,

for all (x, x ′, ξ, t) ∈ R
n × R

n × R
n × [0, 1].

This, together with the fact that the function ω is increasing and (2.12) we see that
there exist constants D, δ > 0 such that

R{i(x − x ′) · �(x, x ′, ξ, t) − ε · [�(x, x ′, ξ, t)]2}
≤ − ε

(
ξ2 − κ2[Dω(‖ξ‖ + δ

1
2 )]2|(R + r)2

)
,

for 0 ≤ t ≤ 1, ‖x ′‖ ≤ R, ‖x‖ < r and ξ ∈ R
n,

for an arbitrary r > 0.
Moreover, using (2.6) there exists a positive constant Ã such that one can further

estimate the last expression as follows

R{i(x − x ′) · �(x, x ′, ξ, t) − ε · [�(x, x ′, ξ, t)]2} ≤ −ε

(
1 − 1

2

)
‖ξ‖2 = −ε

2
‖ξ‖2,

for 0 ≤ t ≤ 1, ‖x ′‖ ≤ R, ‖x‖ < r and ‖ξ‖ > Ã. (5.2)

Since ξ �→ e−εã‖ξ‖2 is a L1 function for each ε > 0, using (5.2) it follows that

u(x) = (2π)−n lim
ε→0

lim
S→+∞

∫

Rn

∫

‖ξ‖≤S
u(x ′)ei(x−x ′)·ξ−εξ2dξdx ′.

Now, using that ζ �→ u(x ′)ei(x−x ′)·ζ−εζ 2 is holomorphic, we may apply Stokes’
theorem together with the definition of aμω (see (1.3)) to obtain,

u(x) = (2π)−n lim
ε→0+ lim

S→+∞

∫

Rn

∫

‖ξ‖≤S
u(x ′)ei(x−x ′)·�(x,x ′,ξ,1)−ε[�(x,x ′,ξ,1)]2aκ

μω
(x − x ′, ξ)dξdx ′.

(5.3)
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Thus, as a consequence of the third item in Proposition 2.20, inequality (5.2) and
Fubini’s theorem, we can further express (5.3) as

u(x) = (2π)−n lim
ε→0+

∫

Rn

∫

Rn
u(x ′)ei(x−x ′)·�(x,x ′,ξ,1)−ε[�(x,x ′,ξ,1)]2aκ

μω
(x − x ′, ξ)dx ′dξ

= (2π)−n lim
ε→0+

∫ ∫
u(x ′)ei(x−x ′)ξ−κμω(ξ)(x−x ′)2aκ

μω
(x − x ′, ξ)e−ε(ξ+iκμω(ξ)(x−x ′))2dx ′dξ.

(5.4)

Now, we will show that we can use the dominated convergence theorem in the
right-hand side of (5.4).

The goal is to bound the integral in x ′ uniformly in ε by an L1 function in ξ . Let
Qκ(x, x ′, ξ)

.= −ε(ξ + iκμω(ξ)(x − x ′))2 and note that it follows from (2.6) that
there exist constants Ã, a > 0 so that

R{Qκ(x, x ′, ξ)} = −ε(ξ2 − [κμω(ξ)]2‖x − x ′‖2) ≤ −εa‖ξ‖2,
for x ′ ∈ B(0, R), x ∈ B(0, r), ‖ξ‖ > Ã.

(5.5)

Therefore, the trivial bound is not good enough for our purpose. The trick here is to
use integration by parts and to do so fix ξ ∈ R

n and assume without loss of generality
that |ξ1| = max{|ξk | : k ∈ {1, . . . , n}}. Then it follows that

‖ξ‖ = 2

(
‖ξ‖ − ‖ξ‖

2

)
≤ 2

(√
n|ξ1| − ‖ξ‖

2

|x1 − x ′
1|

R + r

)
(5.6)

for x ′ ∈ B(0, R) and x ∈ B(0, r). Moreover, using (2.6) and (2.12) and increasing
Ã > 0 (if necessary) we have

‖ξ‖
2

1

R + r
≥ κ2

√
nD ω

(
(‖ξ‖2 + δ)1/2

) ≥ κ2
√
n |μω(ξ)|, ‖ξ‖ ≥ Ã (5.7)

where D is the constant appearing in (2.12). Thus one can use (5.7) to continue
estimating (5.6) as

‖ξ‖ ≤ 2
(√

n|iξ1| − κ2
√
n|μω(ξ)||x ′

1 − x1|
) ≤ 2

√
n
∣∣− iξ1 + 2(x1 − x ′

1)κμω(ξ)
∣∣,

for x ′ ∈ B(0, R), x ∈ B(0, r) and ‖ξ‖ > Ã (increasing Ã, if necessary).

(5.8)

Thus, integrating by parts the integral in x ′ in the right-hand side of (5.4) multiplied
by ‖ξ‖n+1, we have

‖ξ‖n+1
∣∣∣∣

∫

Rn
u(x ′)ei(x−x ′)ξ−κμω(ξ)(x−x ′)2aκ

μω
(x − x ′, ξ)e−ε(ξ+iκμω(ξ)(x−x ′))2dx ′

∣∣∣∣

≤ ‖ξ‖n(4n)
1
2

∣∣∣∣

∫

Rn
∂x ′

1

{
ei(x−x ′)ξ−κμω(ξ)(x−x ′)2

}
u(x ′)aκ

μω
(x − x ′, ξ)e−ε(ξ+iκμω(ξ)(x−x ′))2dx ′

∣∣∣∣

≤ (4n)
n+1
2

∣∣∣∣

∫

Rn
ei(x−x ′)ξ−κμω(ξ)(x−x ′)2∂n+1

x ′
1

{
u(x ′)aκ

μω
(x − x ′, ξ)e−ε(ξ+iκμω(ξ)(x−x ′))2

}
dx ′

∣∣∣∣,

(5.9)
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for x ′ ∈ B(0, R), x ∈ B(0, r) and ‖ξ‖ > Ã.

Moreover, for each q ∈ {1, . . . , n + 1}, using Faà di Bruno’s formula (see [14,
Corollary 2.11])

∂
q
x ′
1

{
eQκ (x,x ′,ξ)

}
=

q∑

r=1

eQκ (x,x ′,ξ)
∑

p(q,r)

q!
q∏

p=1

[∂ p
x ′
1
Qκ(x, x ′, ξ)]kp
kp![p!]kp

and

p(q, r) =
⎧
⎨

⎩
(k1, . . . , kq) : kp ≥ 0,

q∑

p=1

kp = r ,
q∑

p=1

pkp = q

⎫
⎬

⎭
.

It is easy to see that there exists a constant c > 0 such that

|∂x ′
1
Qκ(x, x ′, ξ)| ≤ εc‖ξ‖2, |∂2x ′

1
Qκ(x, x ′, ξ)| ≤

εc‖ξ‖2, and ∂
p
x ′
1
Qκ(x, x ′, ξ) = 0 (p ≥ 3),

for x ′ ∈ B(0, R), x ∈ B(0, r) and ‖ξ‖ > Ã.
Consequently, wewill be able to consider the sum over a subset of p(q, r), consider-

ing only derivatives of order less than three. Moreover, since

r !
∑

p(q,r)

∏q

p=1

1

kp! =
(
q − 1

r − 1

)
(see [14, p. 515]), it follows that

∣∣
∣∂qx ′

1

{
eQκ (x,x ′,ξ)

}∣∣
∣ ≤

q∑

r=1

e−εa‖ξ‖2 ∑

p2(q,r)

q! (εc‖ξ‖2)r
k1!k2!2k2

≤ q!
q∑

r=1

r !
∑

p2(q,r)

(c/a)r

k1!k2!2k2

≤ q!
q∑

r=1

(c/a)r r !
∑

p(q,r)

q∏

p=1

1

kp!

= q!
q∑

r=1

(c/a)r
(
q − 1

r − 1

)

≤ (1 + c/a)qq! (5.10)

where p2(q, r) = {(k1, k2) : k1 + k2 = r and k1 + 2k2 = q}, for x ′ ∈ B(0, R),
x ∈ B(0, r) and ‖ξ‖ > Ã. Thus using the Leibniz rule and (5.10) one can bound the
term in (5.9) by an uniform constant Cn > 0 independent of ε,

‖ξ‖n+1
∣
∣∣
∣

∫

Rn
u(x ′)ei(x−x ′)ξ−κμω(ξ)(x−x ′)2aμω (x − x ′, ξ)e−ε(ξ+i tκμω(ξ)(x−x ′))2dx ′

∣
∣∣
∣ ≤ Cn ,

for allx ∈ B(0, r)and ‖ξ‖ > Ã.

(5.11)
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Since u is compactly supported, considering (5.4) and taking into account (5.11) we
can use the dominated convergence theorem in the right-hand side of (5.4) to conclude
that

u(x) = (2π)−n
∫

Rn
Fκ

μω
u(x, ξ)dξ, ‖x‖ < r

for a arbitrary r > 0 as we wished to prove. ��

Lemma 5.2 If κ > 0 and u ∈ Dω(Rn) then, for x ∈ R
n :

u(x) = (2π)−n lim
j→+∞

∫
e− ‖ξ‖2

j Fκ
μω

u(x, ξ)dξ, in Eω(Rn).

Proof Observe that, from Theorem 4.2 for each compact subset K ⊂ R
n there exist

an open neighborhood V of K and a, λ,C > 0 such that

|∂α
x Fκ

μω
u(x, ξ)| ≤ Ce−aω(ξ)e

1
λ
ϕ∗(|α|λ), x ∈ V and ξ ∈ R

n . (5.12)

Moreover, using Lemma 5.1 it follows that u(x) = (2π)−n
∫
Rn Fκ

μω
u(x, ξ)dξ.

Thus, from (5.12),

∣∣∣
∣∂

α
x

{
u(x) − (2π)−n

∫
e
− ‖ξ‖2

j Fκ
μω

u(x, ξ)dξ

}∣∣∣
∣ =

∣∣
∣∣∣
∂α
x

{

(2π)−n
∫ (

1 − e
− ‖ξ‖2

j

)

Fκ
μω

u(x, ξ)dξ

}∣∣
∣∣∣

≤ (2π)−n
∫

(1 − e
− ‖ξ‖2

j )Ce
1
λ
ϕ∗(|α|λ)e−aω(ξ)dξ

≤ (2π)−nCe
1
λ
ϕ∗(|α|λ)

∫
(1 − e

− ‖ξ‖2
j )e−aω(ξ)dξ, x ∈ K .

The lemma now follows from (2.9) and the dominated convergence theorem. ��

5.2 FBI Inversion Formulas for Ultradistributions

The aim of this section is to present two inversion formulas for ultradistributions.

Lemma 5.3 Let κ > 0 be arbitrary. If u ∈ Dω ′(Rn) and ψ ∈ Dω(Rn) then

〈u j ;φ〉 → 〈u;ψφ〉, j → +∞ for each φ ∈ Dω(Rn)

where u j (x)
.= (2π)−n

∫
e− ‖ξ‖2

j Fκ
μω

(ψu)(x, ξ)dξ.

Remark 5.4 Note that from Lemma 3.5 and Remark 2.11 it follows that u j is well
defined.
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Proof For each φ ∈ Dω(Rn) using Lemma 5.2 and the notation φ̌(x) = φ(−x) we
have

〈u j , φ〉 =(2π)−n
∫ ∫

e
− ‖ξ‖2

j
〈
ux ′ , ψ(x ′)ei(x−x ′)ξ−κμω(ξ)(x−x ′)2aμω (x − x ′, ξ)

〉
dξφ(x)dx

=
〈

ux ′ , ψ(x ′)(2π)−n
∫ ∫

e
− ‖ξ‖2

j ei(x−x ′)ξ−κμω(ξ)(x−x ′)2aμω (x − x ′, ξ)dξφ(x)dx

〉

=
〈

ux ′ , ψ(x ′)(2π)−n
∫

e
− ‖ξ‖2

j Fκ
μω

φ̌(−x ′, ξ)dξ

〉

→ 〈u, ψφ〉, as j → +∞.

Where in the second equality we can apply similar arguments as in the proof of
Lemma 3.4 to obtain the convergence of the Riemann integral in Dω−topology.

Also, in the second and third equality, it was used that e− ‖·‖2
j ∈ L1(Rn) and that

the support of ψ and φ are compact subsets of Rn . ��
Next we will use Lemma 5.3 to obtain another inversion formula which will be

used in the proof of Theorem 5.6.

Lemma 5.5 Let κ > 0 be arbitrary. If u ∈ Dω ′(Rn) ψ ∈ Dω(Rn) then

〈ũ j ;φ〉 → 〈uψ;φ〉, j → +∞ for each φ ∈ Dω(Rn);

where ũ j (x)
.= (2π3)−n/2

∫ ∫
eiξ(x−t)−κμω(ξ)(x−t)2e− ‖ξ‖2

j Fκ
μω

(uψ)(t, ξ)
(
κμω

(ξ)
)n/2

dtdξ.

Proof Since, e−μω(ξ)(x−·)2 ∈ L1(Rn) (for each fixed x, ξ ∈ R
n) we can rewrite ũ j (x)

as

ũ j (x) = (2π3)−
n
2

∫∫
e−κμω(ξ)(x−t)2e− ‖ξ‖2

j

〈
u, ψ(·)ei(x−·)ξ−κμω(ξ)(t−·)2aκ

μω
(t − ·, ξ)

〉 (
κμω(ξ)

) n
2 dtdξ

= (2π3)−
n
2

∫
e− ‖ξ‖2

j

〈
u, ψ(·)

∫
ei(x−·)ξ−κμω(ξ)[(t−·)2+(x−t)2]aκ

μω
(t − ·, ξ)dt

〉 (
κμω(ξ)

) n
2 dξ,

where it was used that the Riemann sum converges to the Riemann integral in the
Dω-topology with respect to the variable t . Using the equations

2

[
t − 1

2
(x + x ′)

]2
= 1

2
[(t − x) + (t − x ′)]2 = 1

2
(t − x)2 + (t − x)(t − x ′) + 1

2
(t − x ′)2

and

1

2
(x − x ′)2 = 1

2
(x − t)2 + (x − t)(t − x ′) + 1

2
(t − x ′)2
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it follows that

ũ j (x) = (2π3)
−n
2

∫
e

−‖ξ‖2
j

〈
u, ψ

∫
e
i(x−·)ξ−κμω(ξ)

[
1
2 (x−·)2+2(t− 1

2 (x+·))2
]

aκ
μω

(t − ·, ξ)dt

〉(
κμω(ξ)

) n
2 dξ.

(5.13)

Since e−2κμω(ξ)(·− 1
2 (x+x ′))2 ∈ L1(Rn) (for each ξ, x, x ′, κ) we consider the change

of variables, −w = t − 1
2

(
x + x ′) to write

∫
e
−κμω(ξ)

{
2[t− 1

2 (x+x ′)]2
}

aκ
μω

(t − x ′, ξ)dt =
∫
e−κμω(ξ)2w2

aκ
μω

( 1
2 (x − x ′) − w, ξ

)
dw.

Moreover, using the identity (see [32, (IX.4.6)])

( z

π

) 1
2
∫ +∞

−∞
e−zy2 [A + B(λ − y)]dy = A + Bλ, z, A, B, λ ∈ C and R z > 0,

Observe thataκ
μω

(
z, ξ

)
is a polynomial of degreenwith respect to z ∈ R

n (see (1.3)).
Additionally, it is a polynomial of degree 1 as a function of z j for each j ∈ {1, . . . , n},
depending on the parameters zk for k �= j . Since κ > 0 and μω(y) > 0 we obtain

(
2κμω(ξ)

π

) n
2
∫
e−κμω(ξ)2w2

aκ
μω

( 1
2 (x − x ′) − w, ξ

)
dw = aκ

μω

( 1
2 (x − x ′), ξ

)
.

This together with (5.13) allow us to rewrite ũ j (x) as

ũ j (x) = (2π)−n
∫

e− ‖ξ‖2
j

〈
ux ′ , ψ(x ′)ei(x−x ′)ξ− κ

2 μω(ξ)(x−x ′)2aκ
μω

( x
2 − x ′

2 , ξ
)〉
dξ.

= (2π)−n
∫

e− ‖ξ‖2
j

〈
ux ′ , ψ(x ′)ei(x−x ′)ξ− κ

2 μ(ξ)(x−x ′)2aκ/2
μ

(
x − x ′, ξ

)〉
dξ

= (2π)−n
∫

e− ‖ξ‖2
j Fκ/2

μω
(ψu)(x, ξ)dξ. (5.14)

Where in the second equality we used that aκ
μω

( x
2 , ξ

) = aκ/2
μω (x, ξ). Therefore the

result follows from Lemma 5.3. ��

5.3 Sufficient Condition of Theorem 1.1

In this section we will use the inversion formula presented in the previous section
to prove that a certain decay of the FBI transform in all directions implies Eω local
regularity.

Theorem 5.6 Let x0 ∈ R
n, ω and σ be weight functions such that ω(t) = O(σ (t))

(for t → +∞), and u ∈ Dσ ′(Rn). If there exist ψ ∈ Dσ (Rn) and C, c, κ, r > 0 such
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that

|Fκ
μσ

(ψu)(t, ξ)| ≤ Ce−cω(ξ), (t, ξ) ∈ B(x0, r) × R
n (5.15)

then u ∈ Eω in a neighborhood of x0.

Proof We first note that it follows from Remark 2.11 and inequality (2.12) that there
exists A1 > 1 such that |σ((‖ξ‖2 + δσ )1/2)| ≤ e−c‖ξ‖ and |μσ (ξ)| ≤ ‖ξ‖, for
‖ξ‖ > A1. Moreover, using (2.7) we obtain

∫

‖ξ‖>A1

e−cω(ξ)dξ ≤ e
cϕ∗

(
n+1
c

) ∫

‖ξ‖>A1

1

‖ξ‖n+1 dξ < +∞.

Moving on we want to apply Lemma 5.5 and in order to do so we write

�(x, t, ξ, j) = (2π3)−n/2eiξ(x−t)−κμσ (ξ)(x−t)2e− ‖ξ‖2
j Fκ

μσ
(ψu)(t, ξ) [κμσ (ξ)]n/2,

and

∫ ∫
�(x, t, ξ, j)dtdξ =

∫

U1

�(x, t, ξ, j)dtdξ +
∫

U2

�(x, t, ξ, j)dtdξ +
∫

U3

�(x, t, ξ, j)dtdξ

where, U1 = {(t, ξ) : ‖t − x0‖ < r , ‖ξ‖ > A1}, U2 = {(t, ξ) : ‖t − x0‖ <

r , ‖ξ‖ ≤ A1}, U3 = {(t, ξ) : ‖t − x0‖ ≥ r , ξ ∈ R
n}. Next we will prove that for

each � ∈ {1, 2, 3} there exists a function I� ∈ Eω in a neighborhood U0 of x0 such

that lim
j→+∞

∫

U�

�(x, t, ξ, j)dtdξ = I�(x) in Eω(U0). Therefore, using Lemma 5.5

we will obtain u = I1 + I2 + I3 in a neighborhood of x0, concluding the proof.
Observe that

∫
‖t−x0‖<r

∫
‖ξ‖>A1

e−cω(ξ)dξdt < +∞. Thus, we can use the domi-
nated convergence theorem to conclude that

∫

U1

�(x, t, ξ, j)dtdξ → I1(x)
.=
∫

U1

(2π3)−n/2eiξ(x−t)−κμσ (ξ)(x−t)2Fκ
μσ

(ψu)(t, ξ) [κμσ (ξ)]n/2dtdξ,

as j → ∞. Moreover, using (3.2) and (5.15) there exists D > 0 such that, for every
x ∈ R

n and every α ∈ N
n
0 it holds

|∂α
x I1(x)| =

∣∣
∣∣∣

∫

U1

(2π3)−n/2∂α
x

{
eiξ(x−t)−κμσ (ξ)(x−t)2

}
Fκ

μσ
(ψu)(t, ξ) [κμσ (ξ)]n/2dtdξ

∣∣
∣∣∣

≤
∫

U1

(2π3)−
n
2
∑

β≤α

(
α

β

)
‖ξ‖|α−β|D|β|β! 12 [σ((‖ξ‖2 + δσ )

1
2 )] |β|

2 Ce−cω(ξ)[κμσ (ξ)] n2 dtdξ.
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Since |σ((‖ξ‖ + δσ )1/2)| ≤ e−c‖ξ‖ and |μσ (ξ)| ≤ ‖ξ‖, for ‖ξ‖ > A1, using
(2.3), (2.7) and (2.8) there exists D0 > 0 such that

D|β||β|! 12 [σ((‖ξ‖ + δσ )1/2)] |β|
2 e−cω(ξ)|κμσ (ξ)| n2 ≤ D|β|κ

n
2 |β|! 12 e−|β|c/2‖ξ‖ |β|+n

2 e−cω(ξ)

≤ D|β|κ
n
2 (|β| + n)! 12 e−|β|c/2e

c
2 ϕ∗(

|β|+n
c )e−

c
2ω(ξ)

≤ D|β|+n
0 ecϕ

∗(
|β|+n

c )e−
c
2ω(ξ)

≤ D|β|+n
0 e

(c/2)ϕ∗( n
c/2 )

e
(c/2)ϕ∗(

|β|
c/2 )

e−
c
2ω(ξ)

.

(5.16)

Thus, using (2.7) there exists C1, D1 > 0 such that

|∂α
x I1(x)| ≤ C1

∑
β≤α

(
α

β

)
D|β|
1

∫
‖ξ‖>A1

‖ξ‖|α−β|e(c/2)ϕ∗
( |β|
c/2

)

e− c
2 ω(ξ)dξ

≤ C1
∑

β≤α

(
α

β

)
D|β|
1

∫
‖ξ‖>A1

e
c
4 ϕ∗

(
4
c |α−β|

)

e
c
2 ϕ∗

(
2
c |β|

)

e− c
4 ω(ξ)dξ,

for every x ∈ R
n and every α ∈ N

n
0 .

Since t �→ ϕ∗(t)
t is increasing, using (2.3), the last inequality can be further esti-

mated as follows

|∂α
x I1(x)| ≤C1

∑

β≤α

(
α

β

)∫

‖ξ‖>A1

D|β|
1 e

c
4ϕ∗

(
4
c |α−β|

)

e
c
4ϕ∗

(
4
c |β|

)

e− c
4ω(ξ)dξ

≤C1(D1 + 1)n|α|e
c
4ϕ∗

(
4
c |α|

) ∫

‖ξ‖>A1

e− c
4ω(ξ)dξ,

for every x ∈ R
n and every α ∈ N

n
0 .

Now we invoke (2.5) to obtain D2 > 0 and λ1 > 0 such that |∂α
x I1(x)| ≤

D2e
1
λ1

ϕ∗(λ1|α|)
, for each (x, α) ∈ R

n × N
n
0 . Thus I1 ∈ Eω(Rn). Moreover, reasoning

analogously we see that,

∣∣
∣∣
∣
∂α
x

{∫

U1

�(x, t, ξ, j)dtdξ − I1(x)

}∣∣
∣∣
∣
≤ C1(D1 + 1)n|α|e

c
4 ϕ∗( 4

c |α|
) ∫

‖ξ‖>A1
e−

c
4ω(ξ)

∣∣
∣∣
∣
e
− ‖ξ‖2

j − 1

∣∣
∣∣
∣
dξ.

Therefore,

∫

U1

�(·, t, ξ, j)dtdξ → I1, as j → +∞, in Eω(Rn). (5.17)

Next we will study U2. Since U2 is bounded for each x ∈ R
n it follows that

∫

U2

�(x, t, ξ, j)dtdξ → I2(x)
.=
∫

U2

(2π3)−
n
2 eiξ(x−t)−κμσ (ξ)(x−t)2Fκ

μσ
(ψu)(t, ξ) [κμσ (ξ)] n2 dtdξ.
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Also using (3.2) and (5.15) there exist constants C, D > 0 such that for every
α ∈ N

n
0 we have

|∂α
x I2(x)| =

∣∣
∣∣∣

∫

U2

(2π3)−n/2∂α
x

{
eiξ(x−t)−κμσ (ξ)(x−t)2

}
Fκ

μσ
(ψu)(t, ξ) [κμσ (ξ)]n/2dtdξ

∣∣
∣∣∣

≤
∫

U2

(2π3)−
n
2 Ce−cω(ξ)[μσ (ξ)] n2

∑

β≤α

(
α

β

)
‖ξ‖|α−β|D|β|β! 12 [σ((‖ξ‖2 + δσ )

1
2 )] |β|

2 dtdξ

≤
∫

U2

(2π3)−n/2C[ sup
‖ξ‖≤A1

|μσ (ξ)|]n/2
∑

β≤α

(
α

β

)
A|α−β|
1 D|β|β!1/2[σ((A21 + δσ )1/2)]|β|/2dtdξ.

Hence, there exist D3, D4 > 0 such that ‖∂α
x I2‖ ≤ D3D

|α|
4 |α|!, for every α ∈ N

n
0 .

Therefore, using Remark 2.12 it follows that I2 ∈ Eω(Rn). Moreover, one can see
that

∣∣
∣∣∂

α
x

{∫

U2

�(x, t, ξ, j)dtdξ − I2(x)

}∣∣
∣∣ ≤ D3D

|α|
4 |α|!

∫

‖ξ‖≤A1

∣∣
∣∣e

− ‖ξ‖2
j − 1

∣∣
∣∣ dξ.

Thus,

∫

U2

�(·, t, ξ, j)dtdξ → I2, as j → +∞ in Eω(Rn). (5.18)

Next, in order to study the integral in the region U3, observe that

‖x − t‖ ≥ ‖t − x0‖ − ‖x − x0‖ ≥ r − r

2
= r

2

for ‖t − x0‖ ≥ r and ‖x − x0‖ < r
2 .

Thus, using (2.11), (2.12) and Lemma 3.5 there exists D > 0 such that,

∣∣∣∣e
iξ(x−t)−κμσ (ξ)(x−t)2e− ‖ξ‖2

j Fκ
μσ

(ψu)(t, ξ) [κμσ (ξ)] n
2

∣∣∣∣ ≤ De− κ
2 σ(δ

1
2 )(x−t)2e− κ

2 σ̃ (ξ) r
2
4 e

κr2
16 σ̃ (ξ)|σ̃ (ξ)| n2

= D

[
(κr2σ̃ (ξ))n

16nn!
n!16n
(κr2)n

] 1
2

e− κr2
16 σ̃ (ξ)e− κ

2 σ(δ
1
2 )(x−t)2

≤ n! 12 16 n
2

κ
n
2 rn

De−κσ̃ (ξ) r
2
32 e−κσ(δ

1
2 )(x−t)2

for σ̃ (ξ) = σ((δσ + ‖ξ‖2)1/2), (t, ξ) ∈ U3 and ‖x − x0‖ < r
2 , where it was used

that
[

(κr2σ̃ (ξ))n

16nn!
] 1
2 ≤

[
e

κr2 σ̃ (ξ)
16

] 1
2

. Hence, using the dominated convergence theorem

(recalling that
∫
e−κ r2

16 σ̃ (ξ)dξ < +∞ and
∫
e−κσ(δ1/2)(x−t)2dt < +∞),
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∫

U3

�(x, t, ξ, j)dtdξ → I3(x)

=
∫

U3

(2π3)−n/2eiξ(x−t)−κμσ (ξ)(x−t)2Fκ
μσ

(ψu)(t, ξ) [μσ (ξ)]n/2dtdξ,

whenever ‖x − x0‖ <
r

2
. (5.19)

Moreover, using the Leibniz rule, Remark 3.3, Lemma 3.5, (2.3), (2.7) and (2.8),
for each θ, λ > 0 to be chosen there exist D3, D4, D5 > 0 such that

∣∣∣∂α
x

{
eiξ(x−t)−κμσ (ξ)(x−t)2Fκ

μσ
(ψu)(t, ξ) [κμσ (ξ)] n2

}∣∣∣

≤
∑

β≤α

(
α

β

)
‖ξ‖|α−β|D|β|

3 β!e− κ
2 σ((‖ξ‖2+δσ )1/2)‖x−t‖2eθσ ((‖ξ‖2+δσ )1/2)[μσ (ξ)] n2

≤
∑

β≤α

(
α

β

)
e
1
λ
ϕ∗(λ|α|)e

1
λ
ω(ξ)D|β|

4 [μσ (ξ)] n2 e− κr2
16 σ((‖ξ‖2+δσ )1/2)

e− κ
16σ(

√
δσ )‖x−t‖2eθσ ((‖ξ‖2+δσ )1/2)

≤ D|α|
5 e

ϕ∗(λ|α|)
λ e

ω(ξ)
λ e− κr2

32 σ((‖ξ‖2+δσ )1/2)e−κσ ‖x−t‖2 [μσ (ξ)] n2 ,
for ‖t − x0‖ ≥ r and ‖x − x0‖ <

r

2

where in the last inequality we fixed θ
.= κr2

32 and κσ
.= κ

16σ(
√

δ). Moving on using
(2.5) we see that there exist D6 > 0 and λ∗ > 0 such that the last inequality can be
further estimated as

∣∣∣∂α
x

{
eiξ(x−t)−κμσ (ξ)(x−t)2Fκ

μσ
(ψu)(t, ξ) [κμσ (ξ)] n2

}∣∣∣

≤ D6 e
ϕ∗(λ∗|α|)

λ∗ e
ω(ξ)

λ e− κr2
32 σ((‖ξ‖2+δ)1/2)e−κσ ‖x−t‖2 |μσ (ξ)| n2

for ‖t − x0‖ ≥ r and ‖x − x0‖ <
r

2
. (5.20)

Moreover, from the fact that

∫

‖t−x0‖>r
e−κσ ‖x−t‖2dt ≤

∫

Rn
e−κσ y2dy < +∞

and considering A3, c1 > 0 so that ω(ξ) ≤ c1σ(ξ), for ‖ξ‖ > A3, it follows that

∫
e

ω(ξ)
λ e− κr2n

32 σ((‖ξ‖2+δ)1/2)|μσ (ξ)| n2 dξ ≤
∫

‖ξ‖≤A3

e
ω(ξ)

λ e− κr2
32 σ((‖ξ‖2+δ)1/2)|μσ (ξ)| n2 dξ

+
∫

‖ξ‖>A3

e
c1σ((‖ξ‖2+δ)1/2 )

λ e− κr2
32 σ((‖ξ‖2+δ)1/2)|μσ (ξ)| n2 dξ.
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Note that, the first integral is finite and choosing λ
.= 64 c1

κr2
it follows from (2.12),

(2.7) and Remark 2.11, that

∫

‖ξ‖>A3

e
c1σ((‖ξ‖2+δ)1/2)

λ e− κr2
32 σ((‖ξ‖2+δ)1/2)|μσ (ξ)| n2 dξ

=
∫

‖ξ‖>A3

e− κr2
64 σ((‖ξ‖2+δ)1/2)|μσ (ξ)| n2 dξ < +∞. (5.21)

Thus, summing up (5.19), (5.20) and (5.21) we see that there exists D7, λ∗ > 0
such that

|∂α
x I3(x)| ≤ D7e

1
λ∗ ϕ∗(λ∗|α|)

, ∀(x, α) ∈ B
(
x0,

r
2

)× N
n
0 .

This shows that I3 ∈ Eω. In addition to that and similarly as before it follows that

∣
∣∣∣∂

α

{∫

U3

�(x, t, ξ, j)dtdξ − I3(x)

}∣∣∣∣ ≤ D7e
1
λ∗ ϕ∗(λ∗|α|)

∫

‖ξ‖≤A1

∣
∣∣∣e

− ‖ξ‖2
j − 1

∣
∣∣∣ dξ.

Hence

∫

U3

�(·, t, ξ, j)dtdξ → I3, as j → +∞, in Eω(B(x0,
r
2 )). (5.22)

Therefore, using (5.17), (5.18), (5.22) and Lemma 5.5 it follows that u = I1 + I2 + I3
in B(x0,

r
2 ), which concludes the proof. ��

6 A Characterization of Ultradifferentiable Iterates of Constant
Coefficients Operators

Let P(ξ) = ∑
|α|≤m aαξα be a polynomial function of degree m. This section is

dedicated to the characterization of the space Eω(	; P) (see Definition 1.2) using a
FBI transform.

Remark 6.1 From now on we will consider 0 < ρ ≤ 1 such that (1.8) is satisfied and
denote σ(t) = σω,ρ(t) = ω(tρ). It is important to note that, if ω is a weight function
and 0 < ρ ≤ 1 then σ is a weight function.

Theorem 6.2 Let x0 ∈ R
n, ω be a weight function and P(D) be a constant coefficient

hypoelliptic linear operator of orderm togetherwith its hypoelliptic indexρ (satisfying
(1.8)). Let σ(t) = ω(tρ) and u ∈ Dσ ′(Rn) ⊂ Dω ′(Rn). The following conditions are
equivalent:
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1. There exists a neighborhood 	 of x0 such that u ∈ Eω(	; P).
2. There exist φ ∈ Dω(Rn) (such that φ ≡ 1 in a neighborhood of x0), C, λ, c > 0

and a neighborhood V of x0 such that

|Fμσ

(
φ [P(D)]N (u)

)
(x, ξ)| ≤ Ce

1
λ
ϕ∗(Nmλ)e−cω(‖ξ‖ρ), (x, ξ, N ) ∈ V × R

n × N0,

(6.1)

where we are denoting ϕ∗(x) = ϕ∗
ω(x)

.= sup{xy − ϕ(y) : y ≥ 0}, for each x > 0
and μσ is the function obtained from Proposition 2.20 when applied to σ instead of
ω.

Proof (1) ⇒ (2): Let R ∈ (0, 1/3) be such that B(x0, 3R) ⊂ 	. Set 0 < r <

R and φ ∈ Dω(B(x0, R)) such that φ ≡ 1 in B(x0, r). Also, considering ψ ∈
Dω(B(x0, 2R)) such that ψ ≡ 1 in B(x0, R), it follows that

Fμσ

(
φ[P(D)]N (u)

)
(x, ξ) =

∫
φ(y)[P(D)]N (u)(y)ei(x−y)ξ−μσ (ξ)(x−y)2aμσ (x − y, ξ)dy

=
∫

φ(y)[P(D)]N (u)(y) ψ(y)ei(x−y)ξ−μσ (ξ)(x−y)2aμσ (x − y, ξ)dy

=
∫

[φ(y) − 1][P(D)]N (u)(y) ψ(y)ei(x−y)ξ−μσ (ξ)(x−y)2aμσ (x − y, ξ)dy

+
∫

[P(D)]Nu(y) ψ(y)ei(x−y)ξ−μσ (ξ)(x−y)2aμσ (x − y, ξ)dy

=:I1(x, ξ) + I2(x, ξ),

where x, ξ ∈ R
n ,

I1(x, ξ)
.=
∫

[φ(y) − 1][P(D)]N (u)(y) ψ(y)ei(x−y)ξ−μσ (ξ)(x−y)2aμσ (x − y, ξ)dy

(6.2)

and

I2(x, ξ)
.=
∫

[P(D)]Nu(y) ψ(y)ei(x−y)ξ−μσ (ξ)(x−y)2aμσ (x − y, ξ)dy. (6.3)

Next wewill study I1 and I2. First, denoting K = suppψ and using Hölder inequal-
ity,

|I1(x, ξ)| ≤ ‖[P(D)]Nu‖L2(K )

[∫

r≤|y−x0 |≤2R

∣∣∣[φ(y) − 1] ψ(y)ei(x−y)ξ−μσ (ξ)(x−y)2aμσ (x − y, ξ)

∣∣∣
2
dy

] 1
2
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Since u ∈ Eω(	; P) and K ⊂ 	, recalling Definition 1.2, there exists C1,C > 0 and
λ > 0 such that

|I1(x, ξ)| ≤ C1e
1
λ
ϕ∗(λmN )

[∫

r≤|y−x0|≤2R

∣
∣∣[φ(y) − 1] ψ(y)e−μσ (ξ)(x−y)2aμσ (x − y, ξ)

∣
∣∣
2
dy

]1/2

≤ Ce
1
λ
ϕ∗(λmN )

[

sup
r≤|y−x0|≤2R

e−2σ(‖ξ‖)(x−y)2
]1/2

≤ Ce
1
λ
ϕ∗(λmN )e−ω(‖ξ‖ρ) r

2
4

for each x satisfying |x − x0| ≤ r
2 and ξ ∈ R

n; where we also use Proposition 2.20.
Next we will consider the term I2 given by (6.3). Let � be an arbitrary positive

integer. Using (1.8) we obtain for ‖ξ‖ ≥ K , with K the constant appearing in (1.8),
and un := [P(D)]Nu

|I2(x, ξ)| =
∣∣∣
∣

∫
ei(x−y)ξ uN (y) ψ(y)e−μσ (ξ)(x−y)2aμσ (x − y, ξ)dy

∣∣∣
∣

≤ 1

(C‖ξ‖ρm )�

∣∣∣
∣

∫
[P(ξ)]�ei(x−y)ξ uN (y)ψ(y)e−μσ (ξ)(x−y)2aμσ (x − y, ξ)dy

∣∣∣
∣

= 1

(C‖ξ‖ρm )�

∣∣∣
∣

∫
[P(−Dy)]�

{
ei(x−y)ξ

}
uN (y)ψ(y)e−μσ (ξ)(x−y)2aμσ (x − y, ξ)dy

∣∣∣
∣

= 1

(C‖ξ‖ρm )�

∣∣
∣∣

∫
ei(x−y)ξ [P(Dy)]�

{
uN (y)ψ(y)e−μσ (ξ)(x−y)2aμσ (x − y, ξ)

}
dy

∣∣
∣∣ .

(6.4)

In order to study the above integral we first recall that

P(D)( f g) =
∑

|β|≤m

1

β! P
(β)g × Dβ f , ∀ f , g ∈ C∞,

where we denote P(β)g
.= (∂

β
ξ P)(D)g for each β ∈ N

n
0. Using the linearity of P(D)

it follows that

P(D) ◦ P(D)( f g) =
∑

|β|≤m

1

β! P(D)
{
P(β)g × Dβ f

}
, ∀ f , g ∈ C∞.

Hence,

[P(D)]�( f g) =
∑

|β1|≤m

1

β1! · · ·
∑

|β�|≤m

1

β�! [P
(β1) ◦ · · · ◦ P(β�)]g

× Dβ1+···+β� f , ∀ f , g ∈ C∞.
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Thus, inserting the last expression in (6.4) it follows that,

|I2(x, ξ)| ≤ 1

(C‖ξ‖ρm)�

∑

|β1|≤m

1

β1! . . .
∑

|β�|≤m

1

β�!
∫

B(x0,2R)

∣
∣∣[P(β1) ◦ · · · ◦ P(β�)uN (y)

∣
∣∣

×
∣
∣∣∂β1+···+β�

y

{
ψ(y)e−μσ (ξ)(x−y)2aμσ (x − y, ξ)

}∣∣∣ dy

≤ 1

(C‖ξ‖ρm)�

∑

|β1|≤m

1

β1! · · ·
∑

|β�|≤m

1

β�! ‖[P
(β1) ◦ · · · ◦ P(β�)]uN‖L2(B(x0,2R))

×
∥
∥∥∂β1+···+β�

y

{
ψ(·)e−μσ (ξ)(x−·)2aμσ (x − ·, ξ)

}∥∥∥
L2(B(x0,2R))

(6.5)

where ‖ξ‖ > K . Observe that, sinceσ is increasing it follows thatσ((‖ξ‖2+δσ )1/2) ≤
σ(‖ξ‖+ δ

1/2
σ ), for each ξ ∈ R

n . Thus, using Remark 3.3 for σ instead of ω, Leibniz’s
rule and the fact that ψ ∈ Dω we obtain that for each θ > 0 there exist λ1, D > 0
such that

∣
∣∣∂η

y

{
ψ(y)e−μσ (ξ)(x−y)2aμσ (x − y, ξ)

}∣∣∣ ≤
∑

β≤η

(
η

β

)
e

1
λ1

ϕ∗(λ1|η−β|)
D|β|β!eθσ (‖ξ‖+δ

1/2
σ ),

for each η ∈ N
n
0 . Thus, using (2.3), (2.5) and (2.8), there exist C2, λ2 > 0 such that

∣∣∣∂η
y

{
ψ(y)e−μσ (ξ)(x−y)2aμσ (x − y, ξ)

}∣∣∣ ≤ C2e
1
λ2

ϕ∗(λ2|η|)
eθσ (‖ξ‖+δ

1/2
σ ).

Hence, using (2.3)

∥∥∥∂β1+···+β�
y

{
ψ(·)e−μσ (ξ)(x−·)2aμσ (x − ·, ξ)

}∥∥∥
L2(x0,2R)

≤ C2e
∑�

j=1
1

2 j λ2
ϕ∗(2 jλ2 |β j |)

eθσ(‖ξ‖+δ
1/2
σ ).

(6.6)

Moreover, using Corollary 6.7 there exists C > 1 such that,

‖[P(β1) ◦ · · · ◦ P(β�)]uN‖L2(B(x0,2R))

≤ Cε
|β1|
1 sup

j∈{0,1}

{
‖[P j ◦P(β2)◦. . .◦P(β�)]uN‖L2(B(x0,2R+ε1))

}

≤ Cε
|β1|
1 sup

j∈{0,1}

{
‖[P(β2) ◦ · · · ◦ P(β�) ◦ P j ]uN‖L2(B(x0,2R+ε1))

}

≤ C�ε
|β1|
1 . . . ε

|β�|
� sup
j1,... j�∈{0,1}

‖[P j� ◦ · · · ◦ P j1 ]uN‖L2(B(x0,2R+ε1+···+ε�))

≤ C�ε
|β1|
1 . . . ε

|β�|
� sup
j1,... j�∈{0,1}

‖[P(D)] j�+···+ j1+Nu‖L2(B(x0,2R+ε1+···+ε�))
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for ε j =
[

β j !
e[1/(2 j λ2)]ϕ∗(2 j λ2 |β j |)

]1/|β j |
R

�e1/(2
j λ2)C

1/(2 j λ2 |β j |)
ω

, where j ∈ {1, . . . , �} and

Cω > 1 is such that eω(t) ≤ Cωet (for each t ≥ 0). Observe that using (2.7) it follows

ε j ≤
[
e

1
2 j λ2

ω(|β j |)
] 1

|β j | R

�e
1

2 j λ2 C

1
2 j λ2 |β j |
ω

≤
[

C
1

2 j λ2
ω e

1
2 j λ2

|β j |
] 1

|β j | R

�e
1

2 j λ2 C

1
2 j λ2 |β j |
ω

= R

�
,

where j ∈ {1, . . . , �}. Thus, R

�e1/(2
j λ2)C

1/(2 j λ2 |β j |)
ω

< 1 (for j ∈ {1, . . . , �}). Moreover,

since B(x0, 3R) ⊂ 	 and u ∈ Eω(	; P) there exist C1, λ > 0 such that

‖[P(β1)◦· · ·◦P(β�)]uN ‖L2(B(x0,2R)) ≤ C�ε
|β1 |
1 · · · ε|β� |

� sup
j1,... j�∈{0,1}

‖[P(D)] j�+···+ j1+N u‖L2(B(x0,3R))

≤ C� β1!
e[1/(21λ2)]ϕ∗(21λ2 |β1 |) · · · β�!

e[1/(2�λ2)]ϕ∗(2�λ2 |β� |) C1e
1
λ
ϕ∗(λm(�+N )).

(6.7)

Hence, putting (6.5), (6.6) and (6.7) together we obtain,

|I2(x, ξ)| ≤ 1

(C‖ξ‖ρm)�

∑

|β1|≤m

1

β1! · · ·
∑

|β�|≤m

1

β�!C1C
� β1!
e[1/(21λ2)]ϕ∗(21λ2 |β1|) · · · β�!

e[1/(2�λ2)]ϕ∗(2�λ2 |β�|)

× e
1
λ
ϕ∗(λm(�+N ))C2e

∑�
j=1

1
2 j λ2

ϕ∗(2 jλ2 |β j |)
eθσ(‖ξ‖+δ

1/2
σ )

= 1

‖ξ‖ρm�

∑

|β1|≤m

· · ·
∑

|β�|≤m

C1e
1
λ
ϕ∗(λm(�+N ))C2e

θσ(‖ξ‖+δ
1/2
σ ). (6.8)

Moreover, using (2.3) and (2.5) we see that denoting C4 = C1C2 and C5 = ∑
|β|≤m 1

there exist positive constants C6, λ3, λ4 such that,

|I2(x, ξ)| ≤ 1

‖ξ‖ρm�
C4C

�
5e

1
λ
ϕ∗(λm(�+N ))eθσ (‖ξ‖+δ

1/2
σ ) ≤ e

1
λ3

ϕ∗(λ3m�)

‖ξ‖ρm�
C6e

1
λ4

ϕ∗(λ4mN )
eθσ (‖ξ‖+δ

1/2
σ )

=
⎛

⎝ e
1

mλ3
ϕ∗(mλ3�)

‖ξ‖ρ�

⎞

⎠

m

C6e
1
λ4

ϕ∗(λ4mN )
eθσ (‖ξ‖+δ

1/2
σ ). (6.9)

Since (6.9) holds true for every � ∈ N one can take the infimum in � and use [17,
Lemma 1.4] to obtain,

|I2(x, ξ)| ≤
(
elog ‖ξ‖ρ

e
− 1

mλ3
ω(‖ξ‖ρ)

)m

C6e
1
λ4

ϕ∗(λ4mN )
eθσ (‖ξ‖+δ

1/2
σ ).

Now one can use (γ ) to get A > 0 such that log ‖ξ‖ρ ≤ ω(‖ξ‖ρ)
2mλ3

, when ‖ξ‖ > A.

Thus m log(‖ξ‖ρ) − 1
λ3

ω(‖ξ‖ρ) ≤ − 1
2λ3

ω(‖ξ‖ρ), when ‖ξ‖ > A. This, together
with the fact that 0 < ρ ≤ 1, that ω is a increasing and (α)implies that σ(‖ξ‖ +
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δ
1/2
σ ) = ω([‖ξ‖ + δ

1/2
σ ]ρ) ≤ ω(‖ξ‖ρ + δ

ρ/2
σ ) ≤ ω(e‖ξ‖ρ) ≤ L[ω(‖ξ‖ρ) + 1], when

‖ξ‖ ≥ δ
1/2
σ

(e−1)1/ρ
. Hence, choosing θ = 1

4λ3L
it follows that

|I2(x, ξ)| ≤ e
− 1

2λ3
ω(‖ξ‖ρ )

C6e
1
λ4

ϕ∗(λ4mN )
eθL[ω(‖ξ‖ρ )+1]= C6e

θLe
1
λ4

ϕ∗(λ4mN )
eθLω(‖ξ‖ρ )e

− 1
2λ3

ω(‖ξ‖ρ )

≤ C6e
θLe

1
λ4

ϕ∗(λ4mN )
e
− 1

4λ3
ω(‖ξ‖ρ )

,

for ‖ξ‖ ≥ max
{
A; δ

(e−1)1/ρ

}
. Therefore, there exists C7 > 0 such that

|I2(x, ξ)| ≤ C7e
−aω(‖ξ‖ρ)e

1
λ4

ϕ∗(λ4mN )
, ∀ξ ∈ R

n .

(2) ⇒ (1) :Consider 0 < r < R, φ ∈ Dω(B(x0, R)) (such that φ ≡ 1 in B(x0, r))
and C, λ, c > 0 such that

|Fμσ

(
φ[P(D)]N (u)

)
(x, ξ)| ≤ Ce

1
λ
ϕ∗(Nmλ)e−cω(‖ξ‖ρ), (x, ξ, N ) ∈ B(x0, r) × R

n × N0.

(6.10)

First, observe that,
from Theorem 1.1 we can conclude that there exists 0 < δ < r such that

u ∈ Eσ (B(x0, δ)). In order to prove that u ∈ Eω(B(x0, δ); P) we will consider a
compact set K ⊂ B(x0, δ). Since φ ≡ 1 in K it follows that [P(D)]N (u)(y) =
φ(y)[P(D)]N (u)(y), for each y ∈ K .

Moreover, given v ∈ Dσ ′(Rn) and denoting

v
φ
j (x) = (2π)−n

∫
e− ‖ξ‖2

j Fμσ (φv)(x, ξ)dξ (6.11)

it follows from Lemma 5.3 that 〈vφ
j ;ψ〉 → 〈vφ;ψ〉 (for each ψ ∈ Dσ (Rn)).

Furthermore for each N ∈ N0 it follows from (6.10) that

(2π)−n
∫

e− ‖ξ‖2
j Fμσ (φ[P(D)]N (u))(x, ξ)dξ

→ (2π)−n
∫

Fμσ (φ[P(D)]N (u))(x, ξ)dξ, ∀x ∈ K .

Thus,

[P(D)]N (u)(x) = φ(x)[P(D)]N (u)(x)

= (2π)−n
∫

Fμσ (φ[P(D)]N (u))(x, ξ)dξ, x ∈ K .

Hence, using (6.10),

∣
∣[P(D)]N (u))(x)

∣
∣ ≤ (2π)−nC

∫
e−cω(‖ξ‖ρ)dξ e

1
λ
ϕ∗(Nmλ) = C1e

1
λ
ϕ∗(Nmλ), x ∈ K
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where C1 = (2π)−nC
∫
e−cω(‖ξ‖ρ)dξ . Therefore,

∥∥[P(D)]N (u))
∥∥
L2(K )

≤ C1

∫

K
1 dx e

1
λ
ϕ∗(Nmλ) = C2e

1
λ
ϕ∗(Nmλ)

where C2 = C1|K | and |K | = ∫
K 1dx denotes the Lebesgue measure of K , hence

concluding that Eω(B(x0, δ); P). ��
Next, as an immediate consequence of the previous theoremwe prove that an iterate

of a constant coefficient hypoelliptic operator is a ultradifferentiable function.

Corollary 6.3 Let ω be a weight function, 	 ⊂ R
n be an open set and P(D) be a

constant coefficient hypoelliptic linear partial differential operator of order m. Then,
denoting σ(t) = ω(tρ), it follows that Eω(	; P) ⊂ Eσ (	).

Proof If u ∈ Eω(	; P) then, using Theorem 6.2 it follows that u satisfies (6.1). Using
Theorem 5.6, for N = 0, it follows that u ∈ Eσ . ��

The next result is the so called Denjoy-Carleman Kotake-Narasimhan theorem for
constant coefficients operator and the proof given here is different from the one in [7].

Corollary 6.4 Let ω be a weight function and 	 ⊂ R
n be an open set. If P(D) is

a constant coefficient elliptic linear partial differential operator of order m, then
Eω(	; P) ⊂ Eω(	).

Proof Since P(D) is a constant coefficient elliptic linear partial differential operator
it follows that ρ = 1 in (1.8). Thus, the result now follows from Corollary 6.3. ��
Theorem 6.5 Let ω be a weight function and 	 ⊂ R

n be an open set. If P(D) is a
constant coefficient linear partial differential operator of order m (non necessarily
hypoelliptic), then Eω(	) ⊂ Eω(	; P).

Proof Considering u ∈ Eω(	), for each K ⊂ 	 compact there exist C, λ > 0 such
that

|∂αu(x)| ≤ Ce
1
λ
ϕ∗(λ|α|),

for each x ∈ K and α ∈ N
n
0 . Moreover, denoting P(D) = ∑

|α|≤m aαDαu it follows
that

∥∥[P(D)] j u∥∥L2(K )
≤

∑

|α1|≤m

|aα1 | · · ·
∑

|α j |≤m

|aα j |‖∂α1+···+α j u‖L2(K )

≤
∑

|α1|≤m

|aα1 | · · ·
∑

|α j |≤m

|aα j |C |K | e 1
λ
ϕ∗(λ|α1+···+α j |).

where |K | = ∫
K 1dx denotes the Lebesgue measure of K . Since t �→ ϕ∗(t)

t is increas-

ing, by denoting h =
∑

|α|≤m

|aα| it follows that

‖[P(D)] j u‖L2(K ) ≤ h jC‖K‖e 1
λ
ϕ∗(λ jm).
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Therefore, using (2.5) there exist C1 > 0 and λ∗ > 0 such that

∥∥[P(D)] j u∥∥L2(K )
≤ C |K |

(
h1/m

)mj
e
1
λ
ϕ∗(λ jm) ≤ C |K |e 1

λ∗ ϕ∗(λ∗ jm)
.

Thus we conclude that u ∈ Eω(	; P). ��
Remark 6.6 It is important to observe that using Corollary 6.4 and Theorem 6.5 we
can prove that if f ∈ Eω(	), P(D) is a constant coefficient elliptic linear partial
differential operator of order m and u ∈ L2

loc(	) is a solution of the equation

P(D)u = f , in 	 (6.12)

then, u ∈ Eω(	).

Analogously, we can prove that if P(D) is a non-elliptic operator but it is a constant
coefficient hypoelliptic linear partial differential operator of order m satisfying (1.8)
and u ∈ L2

loc(	) satisfies (6.12) then u ∈ Eσ (	) (where σ(t) = ω(tρ)).

Appendix: SomeProperties for aConstantCoefficientHypoelliptic Lin-
ear Operator

Throughout this section we will consider x0 ∈ R
n , 0 < R < 1, m > 0 and a constant

coefficient hypoelliptic linear operator P(D) of order m, defined in B(x0, R). Also,
we will denote ∂αP = P(α) and P(α)(D) f = P(α) f , for each α ∈ N

n
0 and f ∈

C∞(B(x0, R)). Moreover, in order to simplify the notation we will denote ‖ f ‖r =
‖ f ‖L2(B(x0,r)) < ∞, for each 0 < r < R. In the proof of the next theorem we shall
use [20, inequality (4.5)’]. To be more precise, there exist C, γ > 0 such that,

ε−|α|‖P(α)φ‖R ≤ C
(‖Pφ‖R + (1 + ε−γ )‖φ‖R

)
, (A.1)

for each ε > 0, φ ∈ Cm
c (B(x0, R)) and α ∈ N

n
0 (such that 0 < |α| ≤ m). Furthermore,

following [20, Lemma 4.1] for each ε, ε1 > 0 such that R > ε1 + ε there exists
φ(ε1,ε) ∈ C∞

c (B(x0, R − ε)) such that φε1,ε ≡ 1 in B(x0, R − ε1 − ε) and there exists
C > 0 dependent of R > 0 but not on (ε1, ε) satisfying,

‖∂αφε1,ε‖L∞ ≤ Cε
−|α|
1 , (A.2)

for |α| ≤ m. We will use the following notation,

Nk,r ( f ) = sup
r>δ>0

δk‖ f ‖r−δ,

for r ≤ R, f ∈ L2(B(x0, r)) and k ∈ R.



45 Page 42 of 45 Journal of Fourier Analysis and Applications (2024) 30 :45

Lemma A.1 Let u ∈ Cm(B(x0, R)) and γ > 0. Then there exists D > 0 (dependent
of γ, P, R) such that,

Nγ−|α|,R−δ1(P
(α)u) ≤ D[Nγ,R−δ1(Pu) + ‖u‖R−δ1 ],

for each R >δ1 > 0 and α ∈ N
n
0, where |α| ≤ m.

Proof Consider arbitrary 0 < δ and δ1 such that δ1 + δ < R. By (A.2) there exists
φδ,δ1 ∈ C∞

c

(
B(x0, R − δ1 − δ

2 )
)
, φδ,δ1 ≡ 1 in B(x0, R − δ1 − δ) and

‖∂αφδ,δ1‖L∞ ≤ C

(
δ

2

)−|α|
,

for each α ∈ N
n
0 such that |α| ≤ m. Moreover, for each ε > 0 and β ∈ N

n
0 such that

|β| ≤ m it follows that,

ε−|β|‖P(β)u‖R−δ1−δ = ε−|β|‖P(β)(φδ,δ1u)‖R−δ1−δ ≤ ε−|β|‖P(β)(φδ,δ1u)‖R .

Using (A.1) it follows that,

ε−|β|‖P(β)u‖R−δ1−δ ≤ C(‖P(φδ,δ1u)‖R + (1 + ε−γ )‖φδ,δ1u‖R).

Next we recall that, P(D)( f g) = ∑
|α|≤m

1
α! P

(α)g × ∂α f for f , g ∈ C∞. Hence,

ε−|β|‖P(β)u‖R−δ1−δ ≤ C

⎛

⎝

∥∥
∥
∥∥
∥

∑

|α|≤m

1

α! P
(α)u ∂αφδ,δ1

∥∥
∥
∥∥
∥
R

+ (1 + ε−γ )‖φδ,δ1‖∞‖u‖
R−δ1− δ

2

⎞

⎠

≤ C2

⎛

⎝
∑

|α|≤m

δ−|α|2|α|
α!

∥
∥∥P(α)u

∥
∥∥
R−δ1− δ

2
+ (1 + ε−γ )‖u‖

R−δ1− δ
2

⎞

⎠

≤ C2

⎛

⎝
∑

|α|≤m

(
δ

2

)−γ ( δ

2

)γ−|α| ∥∥
∥P(α)u

∥∥
∥
R−δ1− δ

2
+ (1 + ε−γ )‖u‖R−δ1

⎞

⎠

≤ C2

⎛

⎝
∑

|α|≤m

(
δ

2

)−γ

Nγ−|α|,R−δ1 (P(α)u) + (1 + ε−γ )‖u‖R−δ1

⎞

⎠ .

Thus,

δγ ε−|β|‖P(β)u‖R−δ1−δ ≤ C2

⎛

⎝
∑

|α|≤m

2γ Nγ−|α|,R−δ1 (P
(α)u) +

(
δγ +

(
δ

ε

)γ)
‖u‖R−δ1

⎞

⎠ .

Next, considering an arbitrary χ > 0 and defining ε = δ
χ
it follows that,

χ |β|δγ−|β|‖P(β)u‖R−δ1−δ ≤ C2

⎛

⎝
∑

|α|≤m

2γ Nγ−|α|,R−δ1 (P
(α)u) + (

δγ + χγ
) ‖u‖R−δ1

⎞

⎠ .
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Since 0 < δ < R < 1 and γ > 0 we have δγ < 1. Considering the supremum in
δ > 0 in the above inequality, we have

χ |β|Nγ−|β|;R−δ1

(
P(β)u

)
≤ C2

⎛

⎝
∑

|α|≤m

2γ Nγ−|α|,R−δ1(P
(α)u) + (

1 + χγ
) ‖u‖R−δ1

⎞

⎠ ,

for each β ∈ N
n
0 such that 0 < |β| ≤ m. Summing in β the last inequality we see that,

there exists C1 > 0 such that

∑

0<|α|≤m

χ |α|Nγ−|α|;R−δ1

(
P(α)u

)
≤ C1

⎛

⎝
∑

|α|≤m

2γ Nγ−|α|,R−δ1 (P
(α)u) + (

1 + χγ
) ‖u‖R−δ1

⎞

⎠ .

Thus,

∑

0<|α|≤m

(
χ |α| − C12

γ
)
Nγ−|α|;R−δ1

(
P(α)u

)
≤ C1

(
2γ Nγ,R−δ1(u) + (

1 + χγ
) ‖u‖R−δ1

)
.

Choosing χ > 1, such that χ − C12γ > 1, it follows that,

Nγ−|α|;R−δ1

(
P(α)u

)
≤ C1

(
2γ Nγ,R−δ1(u) + (

1 + χγ
) ‖u‖R−δ1

)
,

for each α ∈ N
n
0 such that 0 < |α| ≤ m. Therefore, denotingC2 = max{2γ ; (1+χγ )}

and D = C1C2, it follows that,

Nγ−|α|;R−δ1

(
P(α)u

)
≤ D

(
Nγ,R−δ1(u) + ‖u‖R−δ1

)
,

for each α ∈ N
n
0 such that 0 < |α| ≤ m. ��

Corollary 6.7 Let u ∈ Cm(B(x0, R)). There exists CP > 0 such that,

‖P(α)u‖r ≤ CPε|α| (‖Pu‖r+ε + ‖u‖r+ε) ,

for each ε, r > 0 (such that r + ε ≤ R < 1) and α ∈ N
n
0 where |α| < m. Let us recall

the notation ‖u‖r+ε = ‖u‖L2(B(x0,r+ε)).

Proof Using Lemma A.1 it follows that,

δγ−|α|‖P(α)u‖R−δ1−δ ≤ D

[

sup
0<η<R−δ1

ηγ ‖Pu‖R−δ1−η + ‖u‖R−δ1

]

≤ D
(
Rγ ‖Pu‖R−δ1 + ‖u‖R−δ1

)

for each δ, δ1 > 0 such that δ+δ1 < R and α ∈ N
n
0, such that 0 < |α| ≤ m.Therefore,

for each 0 < r < R and 0 < ε ≤ R − r it follows that

εγ−|α|‖P(α)u‖r = εγ−|α|‖P(α)u‖R−(R−r−ε)−ε ≤ D
(
Rγ ‖Pu‖r+ε + ‖u‖r+ε

)
.
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Hence, using that 0 < R < 1

‖P(α)u‖r ≤ ε−γ Dε|α| (‖Pu‖r+ε + ‖u‖r+ε) ≤ CPε|α| (‖Pu‖r+ε + ‖u‖r+ε) ,

where CP = εγ D. ��
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