Journal of Fourier Analysis and Applications (2024) 30:45
https://doi.org/10.1007/s00041-024-10102-1

®

Check for
updates

A New Class of FBI Transforms and Applications

G. Hoepfner'® - R. Medrado?

Received: 29 November 2023 / Revised: 24 June 2024 / Accepted: 11 July 2024 /

Published online: 8 August 2024

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract

We introduce a class of FBI transforms using weight functions (which includes the
subclass of Sjostrand’s FBI transforms used by Christ in (Commun Partial Differ
Equ 22(3-4):359-379, 1997)) that is well suited when dealing with ultradifferentiable
functions (see Definition 2.3) and ultradistributions (see Definition 2.15) defined by
weight functions in the sense of Braun, Meise and Taylor (BMT). We show how to
characterize local regularity of BMT ultradistributions using this wider class of FBI
transform and, as an application, we characterize the BMT vectors (see Definition 1.2)
and prove a relation between BMT local regularity and BMT vectors.

Keywords FBI transform - Ultradifferentiable functions - Ultradistribution - Iterates
of operators

Mathematics Subject Classification 35A22 - 35A23 - 42B10 - 46F05

1 Introduction

The purpose of this paper is twofold: (i) to explore a new class of FBI transform and
show that it can be used to characterize regularity in the classes of ultradifferentiable
functions in the sense of Braun et al. [12]; and (ii) use these techniques to study
regularity of iterated hypoelliptic constant coefficient partial differential operators.
This new systematic approach has led us to a plethora of unanticipated results. We
show that the FBI transforms introduced in (i) are not only fundamental to obtain the
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results in (ii) but also allows us to extend similar results that appeared recently where
a similar program was developed with the use of the Fourier transform.

1.1 The Augmented Class of FBI Transforms

The Fourier transform can be used to characterize smoothness of distributions (Paley—
Wiener Theorem) and also can be used to characterize analyticity of distributions.
However, the analyticity characterization is significantly more difficult than the
smoothness characterization (see [22]). An alternative tool to characterize regular-
ity (smooth and analytic) is the FBI transform (see [4]).

In the next paragraphs we will recall several variations and generalizations of the
classical FBI transform. Given n € N and 0 < t < 1 consider the following form in
R" x R"

F=dxi N ANdxy Ad (& +ix1(E)) A Ad (50 +ix,(E)),

where £ = (§1,...,&,), x = (x1,...,x,) and (§) = /1 + Z?’:l 3;‘/2 Define the

function a; : R” x R" — C with the property that
F=a;(x,&dxi AN---Ndxy NdEL A --- NdE,.

Using the above form in [13] M. Christ defined the following variation of the FBI
transform (in the original article t is actually 1)

Feu, &) = (ux'y; /07000 (¢ ),

where (x,§) € R" x R", u € £'(R") (i.e., u is a compactly supported distribution)
and the pairing refers to the interaction between distributions and test functions with
respect to the variable x” € R". Moreover, among other interesting results he proved
that for a given s > 1 a distribution u € D'(R") is G* (Gevrey of order s, see next
paragraph) in a neighborhood of xy if and only if there exist T > %, v € &'(R") with
v = u in a neighborhood of xp, positive constants a, C and an open neighborhood V
of xq such that

|Fevx, )] < Ce= 1" v(x, &) e V x R".

Observe that the “limit" choice of 7 to study G* regularity is T = 1/s.

In [18] we considered a more general class of FBI transform first introduced in [3]
(see also [2] where this FBI transform plays a fundamental role) and we showed that it
can be used to characterize Denjoy—Carleman regularity as we now explain. Consider
a positive sequence M = (M) satisfying some special properties. If U C R" is an
open set and f € C®(U) we say that f is in E¥(U) (f is M-Denjoy—Carleman
in U) if for each compact set K C U there exist positive constants C, & such that
[0% f(x)] < Ch“"'Mm, foreachx € K anda € Njj. The space of compactly supported

Birkhauser



Journal of Fourier Analysis and Applications (2024) 30:45 Page3of45 45

functions in EM (U) is denoted by DM (U). We equip M (U) and DM (U) with their
usual topologies, the topological duals of these spaces are denoted by &Y /(U ) and
DM /(U ) respectively (see [26] for more information). The Gevrey spaces G* of order
s are given by choosing M = (j!*). For a fixed sequence M = (M) its associated
function is defined by M (7) = sup; log(t/ /M ).

The main result in [18] can now be stated as follows: for u in SM/(U), 0<t<1
and k € N denote

Fru(x, &) = <u(x’); e"(x—X’>f—'|fl"<x—X’>2">, (x,6) eR" xR".  (1.1)

Then u is EM in a neighborhood of x¢ if and only if there exist 0 < t < 1 so that
M(t) = O({")ast — oo,v € 5M/(R") with v = u in a neighborhood of xq, positive
constants a, C > 0 and an open neighborhood V of x( such that

‘]—"fv(x, s)‘ < Cem™MUED | y(x, &) € V x R". (1.2)

A natural question that arises is the following: is there a “limit" choice of 7? When
dealing with the Gevrey class of order s it follows that the choice is T = 1/s. However
this is far from being trivial when M is not a Gevrey sequence. Note that the choice
T > % is equivalent to the inclusion G!/* c G*.

Since m(t) = t* is equivalent to the associated function M of the sequence (M) =
(j!l/f), meaning there exist constants C1, C» and @ > 0 such that C1M (¢) < m(t) <
CoM(1), for all t > a (consequently, E¥ = £™ as per Definition 2.3), a naive
approach to try to answer this question is to enlarge the class of the FBI transform
considered by allowing the term [|£]|* in (1.1) to be any possible weight function as
given in Definition 2.1.

In order to justify the previous sentence we need to recall the definition of ultra-
differentiable functions by means of weight functions as introduced in [12] (see
Definitions 2.1 and 2.3).

Recall that, given two weight functions w and ¢ the condition w(t) = O (o (t)) as
t — oo implies the inclusion £7 () C £“(L2), for any open set 2 C R”.

Moving on, given any ultradifferentiable class £“ as in Definition 2.3 the augmented
class of FBI transforms announced earlier which will be suitable to study regularity
problems in £ would be those allowing weight functions o (||§]|) instead of ||&||*
in (1.2) as long as w(t) = O(o(t)) as t — oo. However, the lack of regularity on
general weight functions o make it very difficult to deal with these FBI transforms.
In order to avoid this problem we will prove that for each weight function there
exists an equivalent one possessing the desired regularity (see Definition 2.18 for
the precise meaning of equivalence used here) and therefore define the same class of
ultradifferentiable functions, see Remark 2.19.

To be more precise given a weight function o there exists u, € C! ((1, 00)) such
that o and u, are equivalent (see Proposition 2.20). Let k > 0, following [13] we
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consider the differential form in R x R”"

F=dxin-Ndxy Ad (& +ixikpg @) A Ad (& +ixprcpe(§)),
', &) e R" x R"

and the function a;,  : R" x R" — C defined by the property

F=a (' 6)dx{ A~ Adx) AdE| A - A dEy. (1.3)

Note that, fixing & € R” it follows that x’ +—> a,, (x', &) is a polynomial function
(consequently it is a £ function). Hence, for each u € D°’(R") and ¢ € D? (R") we
can define

i @u)(x,6) = (1 @ (x') e 6 ER O g (17 )
(x,&) € R" x R". (1.4)

Here the notation u,/ is to emphasize that the ultradistribution u is acting on the
function in x" and the other variables are thought as parameters. When k = 1 we
simply denote F),, = F, .

Our main resultis the following FBI characterization of ultradifferentiable functions
that can be viewed as a Paley-Wiener type theorem.

Theorem 1.1 Fix a weight function w (see Definition 2.1), 2 C R" an open set and
u € D?(R"). In order that u € £ in a neighborhood of xo € K it is necessary and
sufficient that there exist a weight function o with w(t) = O(o(t)) ast — +00 so
that for each ¢ € D () there exist C, ¢ > 0 and a neighborhood V- C Q of x¢ such
that

| Fou, (Pu)(x, &) < Ce™ @) (x,&) € V x R". (1.5)

To prove Theorem 1.1 we actually show a slightly stronger result, see Theorem 4.2.

As it is customary in these Paley-Wiener type results one of the main ingredients to
prove the sufficient part of Theorem 1.1 is the inversion formula of the FBI transform.
We provide two different versions for the FBI inversion formula, see Lemmas 5.3 and
5.5. It turns out that we use the first inversion formula, Lemma 5.3, to prove the second
Lemma 5.5 and this was inspired by [32, Lemma IX.4.1].

Observe that using [12, 8.9 Remark] it follows that for each sequence (M) con-
sidered in [18] there exists a function wy satisfying Definition 2.1 such that the space
of ultradifferentiable functions defined by (M) coincides with the space defined by
wpy - However, given a function w satisfying Definition 2.1 it is necessary to impose
on w an additional stronger condition (the existence of a constant H > 0 such that
2w(t) < w(Ht) + H, for each t > 0) to obtain a sequence (M) such that EM = go
(see [11]). Hence, for general weight functions one can think that the local regularity
characterization results presented here as natural extensions from the ones given in
[18].
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Previous Paley—Wiener type results for ultradifferentiable functions appeared in
the literature but with the use of the Fourier transform, [12], and this is an obstacle
to work with elements in their dual. The use of FBI transforms allow us to work also
with ultradistributions, the natural ambient.

1.2 Application to Ultradifferentiable Vectors

As an application of Theorem 1.1 we study BMT vectors (or iterates) of constant
coefficients partial differential operators P (D) = Z‘ al<m Qo D“. To be more precise
recall that in [29] Nelson introduced the set of analytic vectors of a partial differential
operator with analytic coefficients P (x, D) in an open set U C R" and proved that
analytic vectors are real analytic functions exactly when P (x, D) is elliptic.

Later Komatsu, in [25], as well as Kotake and Narasimhan, in [27], obtained a
slightly improvement of Nelson’s result as follows: let U C R" and P(x, D) as
before then a function f € L? (U) is real analytic in U if and only if

loc

1. Pife LIZOC(U ) (in the sense of the distributions), for each j, and
2. VK C U compact there exist C, h > 0 such that

1P iy < CH/ ()™, j € {0.1,...}. (1.6)

Here and throughout these notes P/ f = (P o---o P)f,for j € N, and PO f = f.

Newberger and Zielezny initiated an investigation in the Gevrey category G*
(replacing j!" by j!** in (1.6)), see [30]. It is worth mentioning the work of Baouendi
and Métivier [1] that deals with the case when P (D) is of principal type and hypoel-
liptic with analytic coefficients. They observed that if u is an s-Gevrey vector of P
(in a smaller neighborhood) then there exist s’ > s such that u is s’-Gevrey. There
is a vast literature concerning optimal regularity for such Gevrey vectors, G*, s > 1,
for instance [15, 16, 31] to cite just a few. Also, for elliptic operators a proof of the
Kotake—Narasimhan theorem in some classes of ultradifferentiable functions is given
in [7].

Recently, regularity problems for ultradifferentiable vectors defined by weight func-
tions in the sense of Braun et al. [12] for constant coefficients operators (see Definition
1.2) appeared in the literature. It turns out that completeness of these spaces is equiv-
alent to the hypoellipticity of P [23]. Additionally, there are others characterizations
in terms of the decay of the Fourier transform, [5, 8, 24]. It is worth mentioning that
in all of these results, the authors prove Paley—Wiener theorems only for distributions
when the natural object to deal with are ultradistributions (see implication (2) = (1)
at Theorem 1.3). We define BMT-vectors as follows:

Definition 1.2 For each weight function w, open set 2 C R” and polynomial function

P (&) of degree m we define £°(2; P) as the set of u € C*°(£2) such that for each
compact set K C 2 there exists A > 0 satisfying

. ) :
sup || P(D) ullp2gye” +¢ M < 400,
Jj€Ng
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where we are denoting ¢*(x) = ¢} (x) = sup{xy — ¢(y) : y > 0}, foreachx > 0
(see (2.1)).
We will call the elements of £2(2; P) BMT vectors.

To state our main result for ultradifferentiable vectors we need to introduce some
ingredients. Let P(D) = ZIaISm aq D* be a hypoelliptic constant coefficients partial
differential operator. Then, it is well known (see [21]) that there exist constants C, K >
0 and a positive number p < 1 such that

|P&)| = ClIEIP", VIEN = K. (1.7)
Define the hypoelliptic index by
0 = sup {,5 < 1 so that(1.7)is valid for some positive constantsC, K}.

It is known that this supremum is attained and it is a rational number. In other words
there exist constants C, K > 0 such that

IP&)] = CIEN™, &l = K. (1.8)

We will refer to the number p as the Hormander hypoellipticity index of P(D). Is is
important to mention that this condition also plays an important role in [10]. For a
fixed weight function @ we will define o (t) = 0 ,(t) = @ (t”). Note that, if @ is a
weight function and 0 < p < 1 then o is a weight function.

The next result gives a characterization of the spaces £%(2; P) (see Definition 1.2)
in terms of the FBI transforms introduced here. The characterization of vectors of
partial differential operators using Fourier transform was first given in [9].

Theorem 1.3 Fix a weight function w, a hypoelliptic constant coefficient partial differ-
ential operator P(D) of order m on an open set Q@ C R" along with his hypoellipticity
index p and define the weight function o as before. Let ¢(t) = w(e") and ¢* is Young
conjugate, see (2.1). Given u € D°'(Q) and xo € Q the following conditions are
equivalent:

1. There exists a neighborhood U of xo such that u € £*(U; P).
2. There exist ¢ € D®(R™) (such that ¢ = 1 in a neighborhood of xg), C,  ,c > 0
and a neighborhood V of xo such that

o ($TPONN ) (x, )] < Cele (Nmhrgmeo D),
(x,&,N) e V x R" x Np. (1.9

One of the main tools to prove Theorem 1.3 is a version of [20, Theorem 4.1]
specialized to balls on which we obtain a better estimate (see Lemma A.1). This
allows us to get rid of a strong restriction on the weight functions treated in [6, Theorem
3.3]. Specifically, in their theorem they consider weight functions w so that w (1) =
o(o(t)), ast — 400, where y is a constant that arises from the hypoellipticity of P
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and o (t) = 1'/* for some s > 1. This is equivalent to w (¢) = o(tV7%), ast — 400
which in turn, implies that GV C £¢.

Another important improvement is that we allow u € D?’(2) while in [6, Theo-
rem 3.3] the authors considered only u € D’(£2). Note that both, inequality (1.5) in
Theorem 1.1 and condition (2) in Theorem 1.3 can be checked if « is only an ultra-
distribution and this will be used in a forthcoming paper to define wave front-sets for
ultradistributions.

Another application is given in Corollary 6.4 where we recover the Kotake-
Narasimhan theorem in this context. Also, it is important to recall that similar results
for global Gevrey classes were studied in [19].

In the following we will use the notation B(x, r) to denote the ball of radius r > 0
and centered at x € R". We will also use the notation Njj to denote the set of all
multiindices o = (ay, ..., a,) witha; € {0,1,2,...} foreach j € {1,...,n} and
denote |o| = a1 + - - - + .

The organization of this paper is as follows: in the second chapter we recall the
definitions of weight functions, ultradifferentiable functions and ultradistributions as
well as we introduce the function 11,,. We prove the necessity of Theorem 1.1 in chapter
3. In chapter 4 we present inversion formulas of our class of FBI transforms and we use
them to prove the sufficiency of Theorem 1.1. A characterization of iterates of constant
coefficients operators and a relation between ultradifferentiable functions and iterates
of constant coefficients operators using our class of FBI transforms is given in chapter
5.

2 Ultradifferentiable Functions Defined by Weight Functions

This section is devoted to recalling basic definitions concerning ultradifferentiable
functions and ultradistributions. First we establish the concept of weight functions
used throughout this work.

Definition 2.1 A continuous function w : [0, +00[— [0, +oo[ with @ = 0 in [0, 1]
and increasing in [0, +00) is called a weight function when the following conditions
are satisfied:

there exists L > 1 such that w(et) < L(w(t) +1), Vt > 0; (@)
o
t

/ OPdr < +oc: B)

1 t
im log ¢ _ o o)
t—+00 w(t) - 4
@(1) = @u(t) = w(e') isconvex. (8)
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1/2
Moreover, givenx = (xq, ..., x,) € R? wewill write w (x) = w <<Z;’=1 |xj|> )

Example 2.2 Foreachs > 1,let w; = 0in [0, 1] and wy(t) = t% — 1, fort > 1. Note
that, w; is a weight function.

2.1 Ultradifferentiable Functions

Before we introduce the notion of ultradifferentiable functions we need to recall the
notion of Young conjugate that will be used throughout this paper. Let w be a weight
function and let ¢ be defined by (). The Young conjugate of ¢, ¢*, is defined by

9" (x) = ¢, (x) = sup{xy — () : y = O} 2.1

It is important to recall that, by () and (6), the Young conjugate of ¢ is well defined.
Moreover, ¢* is an increasing convex function, ¢*(0) = 0, lim;_, oo WT(” = 400
and (¢™)* = ¢ (see [12, 1.3 Remark]).

Definition 2.3 Let K C R” be aregular compact1 setand C*°(K) as in [26]. For each
weight function w and A > 0 we define

E2(K)y = f e C®K): sup sup 9% f(x)e”+¢ D < 400
xekK aENg

and

DL(K) = {f € C®(R™) : sup sup [3% F(x)le +* *D < 400 and supp f C K} .

xeK aeNj
Let €2 be an open subset of R”, we also define

£°(Q) = proj ind E2(K) and D*(RQ) = ind ind DO(K).

<«— —> —> —>
KccQ >0 KccQ x>0

Remark 2.4 Let 2 be an open subset of R”. It follows that £ (£2) is the set of smooth
functions f : 2 — C such that for each compact set K C €2 there exist A, C > 0
satisfying

sup [9% £ (x)] < Cer?" oD yo e NJ.
xekK

And D® (L) is the subset of £2(2) consisting of all compactly supported functions.

A compact set with a finite number of connected components each of which has the property (P) of
Whitney, i.e., “there is a number C such that any two points x and y of a connected component L are joined
by an arc in L of length less than or equal to C|x — y|”.
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Remark 2.5 For each open set Q C R” condition () guarantees that D“(2) # {0}
(see [12, 2.5 Corollary]).

Example2.6 1f s > 1 and wy is given as in Example 2.2, then the space £ (R2)
coincides with the Gevrey class of order s, G*(£2), for each open set 2 C R”".

2.2 Technical Results on Weight Functions
This subsection is dedicated to the presentation of some technical results on weight
functions and its Young conjugate. In the end of this subsection we will prove an
important characterization of ultradistributions.

Throughout this section we will consider a fixed weight function w (see Defini-
tion 2.1).

Remark 2.7 Using (y) we see that there exists A > 1 such that
1 <w(), t=>A.
Thus, applying («) it follows that
w(et) <2Lw(t), t=> A. (2.2)

Next we will present some properties of ¢* (see (2.1)).

Remark 2.8 Note that, ¢* is an increasing function, is a convex function, ¢*(0) = 0,

lim; s o0 &2 (t) = +o0, &2 ( ) is increasing and (p*)* = ¢ (see [12, 1.3 Remark]).

Thus,

s+t Ky t s+t
2t (21 <A*<—> a* (L) < rp* ,
w(m)_warwk_w Py

for every A, s, t > 0. 2.3)

Remark 2.9 Using condition («) and [12, 1.4 Lemma] it follows that,

k
t .
Lk(p*<ﬁ>+kt§go*(t)+§ L/, t>0, keN.
j=1

Thus, for any A, @ > 0 choosing = aAL* we obtain

l(p (@) + ka < ikgo (aALk) +— Z L. 2.4)
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Note that for each & > 0 there exists k € N such that logs < k. Thus, considering
o = j (for any j € N), it follows that

k
1 * 0 . 1 * oo . 1 ko9 7k 1 q .
X(p (]A)-F]lOghSX(p (])L)‘i‘jkfm(p (])LL)—&—W(;L, A>0and j e N.

k

g=1 L%} and A, = ALK, we conclude that

Thus, denoting Cj, = exp{ﬁ >
et o' U < €, e ? UM, 2.5)
foreach h, A > 0 and j € N.
Remark 2.10 If w and o are weight functions such that there exists A, C > 0 satisfying
o) <Cox), x=A;

then there exists constants Ay, L > 0 such that er) < i(p;k) (Aot) + L, Vi > 0.
In order to prove the above claim we will consider L > 1 such that o(ex) <
L(o(x) + 1), for each x > 0. In particular,

a(ezx) — L

L>—Lt———-1>
L L?

o (ex) B o (e2x) DY o(e™x) B

o(x) = >

mL,

for each m € N and x > 0. Thus, considering m such that e” > A

w(e™eY)
CLln

mL

o(eeY)
yt — o +mL} < sup {yt—

y>0

@3 (1) = sup{yt — o(e*)} < sup
y=0 y=0

w(e¥) 1 y |
< sup {yt — cLm +mL < A—sup {ytkg —w(e )}+mL: A—(pw(kgt)—i-mL.
y=0 T y20 o

for A\, = L™C and foreach ¢ > 0.

Remark 2.11 Since w is increasing it follows that,

+00 +o0
o(t) = t@ :z/ &;)ds < t/ ) 45 1> 1, (2.6)
s t

t 52

hence, using (8), it follows that w () = o(t) (t — +00).

Remark 2.12 Using the definition of ¢ and ¢*, for each b > 1 and A > 0 we have,

1 1 1
Xfp*(kb) > X{)\by —o(y)} =by — Xw(e“‘), Vy=>0.

\%

Thus, considering x > 1 and y = logx > 0,

ei? 0D > (bo=30®  yp>1 and Vx> 0. (2.7)
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Moreover, since w(x) = 0 (when x € [0, 1]), (2.7) also follows for x € [0, 1].
Furthermore, choosing b = x, it follows that, o< e%‘/’*(ka%‘“(l’). Thus, using
Remark 2.11, there exists b* > 0 (independent of 1) such that

B < ei® 0D} b e [b*; +00) A > 0.
Therefore, for each A > 0, there exists C; such that
jl<jl <Clex?™ @) vjeN. 2.8)

Remark 2.13 Using (2.8) and (2.5) it follows that the space of all real analytic functions
is contained in £¢.

Remark 2.14 Observe that, using (2.7), for b = n + 1, it follows that
/ e 1@ClEDge < 400, (2.9)
ElI>r

foreacha,c > Qandr > 1.

2.3 Ultradistributions

Definition 2.15 The continuous dual of D?(£2) is denoted by D®’(£2) and its elements
are called ultradistributions. Also, the continuous dual of £2 () is denoted by £%/ ().

Remark 2.16 1t follows from the definition that a linear functional u : D®(2) — Cis
continuous if and only if u is sequentially continuous.

Lemma 2.17 Let u : D*(RR) — C be a linear functional. The following statements
are equivalent:

1. u is (sequentially) continuous;
2. For all compact K C Q2 and for each § > 0 there exists a real positive constant
Cs kg such that

(. g)l < Cs.x Y e 1D a9 00 k). Vh € DU(K) = £2(Q) N CE(K).
aeNg

(2.10)
Proof Consider u such that (2.10) is satisfied. If ¢; — 0 in D”(£2), then there exists

a compact set K C € such that supp¢; C K (for all j € N) and there exists A > 0
such that

1
sup sup [3%¢;(x)|exp |:—X(p* (|a|k):| -0, j— +oo.

aeNy xekK
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Hence, for each € > 0 there exists j. € N such that

1
sup sup [0%¢; (x)| exp [—Xso* (Ial?»)} <€,

aeNj xek

when j > je. Thus, for each § > 0 there exists Cs g > 0 such that,

u, ¢) < Cs.x Y e 09 (l/8) ¢ o 10 (el

n
aeNj

where j > j.. Considering § = 1/(AL) (where L is the constant considered in («)
and using (2.4) it follows that

e =00 l/8) 10" (alh) — p=5r@*(alhl)+ 39" (alh) < A ~lal
where A = A(L) = 1. Hence,

(. ¢} < eCs et D e > je.

n
aeNj

Since ZaeNg el < 400, we can conclude that (u,¢;) — 0. Therefore, u is
continuous.

Conversely, suppose by contradiction that there exist a compact set K C 2 and
8 > 0 such that for each C > 0 there exists ¢ = ¢p¢c € D”(K) where

[, @) > C > e 21D 5% | oo k).

n
aeNy

Thus, for each j € N there exists ¢; € D(K) such that

rp = gl = ) e D% L -

n
aeNy

Set Y= (f)j/l’j. Note that supp ¥ C K and 6‘_5(”*(‘0['/3)”8“1//]‘||L00(K) < % Va €
Ng). Hence, ¥; — 0inD*(2) and |(u, ;)| = 1. This fact means that a contradiction
was obtained. Therefore, u is not continuous. O

2.4 A Regular Equivalent Weight Function
Definition 2.18 Let w : [0, +00[— [0, +oo[ and p : [0, +oo[— [0, +00[ be func-

tions. We say that w and p are equivalent (w ~ p) when there exist §, A, C > 0 such
that Aw(t) < p(t) < Cw(t), fort > 4.
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Remark2.19 Let w : [0, 4+o00[— [0, +o0o[ and p : [0, +oo[— [0, +o0[ be weight
functions. If  ~ p then £¥ = £P and D® = D’ (see [12, 3.4 Proposition]).

The next proposition guarantees that for each weight function w there exists a C'!
function p such that @ ~ u. Therefore, we recall that by (2.2) there exist A, H > 1
such that w(et) < H w(t), whent > A. Fix h > max{2; log(He)}.

Proposition 2.20 There exists a function Q € C'((1, +00)) satisfying:

l. o~ Qand lim Q'(y) =0.
y—>+00

2. There exist 8, > Oand D > O such that, if 11, (y) = (h—1)Q ((aw n ||y||2)1/2) :
fory € R", then,

1/2
Ho®) = © ((aw + IE1°) ) >0, Vg eR": @.11)
LoE) < Do(@y + 113, VE e R (2.12)
|9 1o ()] < 1, VEeR" and je{l,...,n}. (2.13)

3. Denoting ay, as in (1.3) it follows that for each compact set K C R" there exists
Ck > 0 (independent of §) such that sup,cg |03 {a;, (x,§)}| < Ck, for each
& e R" and o € Njj.

Proof 1. Define

T w(yt) 1 [T wb)
Q(y)=/l j dz=y’“/ Sds, ¥ >0,
y

Since h > 2 it follows that 0 < &,f) < % when s > 1. Recalling that ® = 0 in
[0, 1] and using (B) we can see that the function Q is well defined. And

+00
0'(y) = (h— 1)y"? 0) o 1 @0
y sh yh

Therefore, Q' is a continuous function. Moreover, since w is increasing and & > 2 we
have

—+00 1 1
00 = () /1 i = (), y>0. 2.14)
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And, since h > log(He) we obtain e"/(He) > 1. Consequently, C =
;:8 (ﬂ)j < +o00. Thus,

eh

eIt j+1
o) =/ w(y’)d = Z/ w(y’) Z%ej(e— ) 2.15)
j=0
Hj+l . +00 H Jj
sZ Tf(”ef (e~ <He—Dom. (e—,e) = CH(e — Do(y)
j=0 j=0
(2.16)

when y > A. Moreover, recalling that 7 > 2

+ +
Q= =y [T D2y OO gy [T D 20y
y s y y s y

Thus using (B) and (2.6) it follows that limy_, 1 |Q'(y)| = 0.

2. Since limy_, 400 |Q'(y)| = O there is 8, > A such that |Q'(y)| < ;27 when
y > 801)/ 2, Hence, if u is as being defined above then, |9z, e (§)] < 1, for each
& eR"and j € {1,...,n}. Moreover, using (2.14) it follows that u,(§) = (h —
Do ((5w + ||s||2)‘/2) > w ((aw + ||§||2)”2) ,VE € R". And, using (2.15) we obtain

1o(€) < Do, + §]1H)"/?) where D = (h — 1)CH (e — 1).
3. It follows from (2.13) and the definition of al’iw. O

Remark 2.21 Since w satisfies (§), it follows that the Q function defined in the proof
of Proposition 2.20 also satisfies (3).

Remark 2.22 The Q function defined in the proof of Proposition 2.20 was inspired
by the proof of [28, 1.3. Proposition]. The function presented there is x(y) =
/; 1+°° % dt. In their work, the authors establish a similar inequality to (2.15) by
assuming a stronger hypothesis than ours: the existence of K > 1, T > 0, and
0 < € < 1 such that w(Kt) < (K — €)w(t) for each t > T. However, since we do

not have this hypothesis, we considered the power 4 instead of 2.

3 Technical Results on FBI Transforms

This chapter is dedicated to the presentation of some technical results. Using Faa di
Bruno’s formula we will obtain estimates for derivatives of FBI terms. At the end
of this section we will present a general inequality for the FBI transform acting on
ultradistributions.

Lemma 3.1 Let w be a weight function (see Definition 2.1) and k > 0. If o, and
8 = 8 are defined as in Proposition 2.20 then, there exist 5, D > 0 such that,

< DO 2 1o 5O WUERPHD D=y S (IEIP+0)!2)

3.1

)a’" {e—ww@)u—yﬂ}
y
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forallé e R" x,y e R,m € Nyand 6 > 0.

Proof Note that, using Faa di Bruno’s formula (see [14, Corollary 2.11]) it follows
that

3

8m{ —K g (E) (x— v)z} Ze Ko () (x—y)? Z l_[ [aj{ —K (&) (x —y) }]k’

ponr) =1 kL

where p(m, r) = {(kl,...,km) e Nj : Z;fl:lkj =r, ZT:ljkj = m}

Since 8}/,'{—/<,uw(§)(x — )%} =0, for j > 3, we will be able to consider the sum
over a subset of p(q, r), considering only derivatives of order less than three. Hence,
denoting pa(m, r) = {(ki, k2) € N§ : ki + ko =r, ki + 2k =m}, we have

T e 26 = D 2ol

m
m —ww(sxx—y)z” ) —K oo (8) (x—)?
‘8y [e 52 ¢ ko 1111 21K

pa(m,r)

And, using that r = ki +k = & + 2,k < m, m! < 2"rlko! and kolk!'/? =
(k21%k1 )12 < m!'/2 we obtain,

NPT M2 T @)y a]?
o e @ < o D0 e lo@@ =2 | @)%
r=1 pa(mr)

m k 1

m m!2%1 2 2 2 m

AN “2110 ) =92 o @ =1 (] 2

<oyt 3 ree eb S REGE
r=1 pa(m,r)

7

< [Di 2" m!\ 24 [efZKms)(x—sze 5 i ()] (x— >>2] 7 @)

XZ" Z k]'kz

r=1 pa(m,r)

1
1 | K 8 2 m
< [Dkz]"m!'/24m [e—zmw@)u—nzebmw<s)|<x—y>2]2 It )] %

DNDINI

r=1 p@mr) j=1 7
where D > 1 is as in (2.12). Recalling that (see [14, p. 515]),
m—1 m
! <
0 X M=) =(0)
p(m,r) j= 1
and
m
Z (m) —om
r=0 d

) Birkhduser
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using (2.11) and (2.12) it follows that

! 3 1 _ Kk 2 1/2y(r N2 m
‘ag; {efkllw(é)()(*})z}‘ < [D2k2 a1V /2= 5O UEIP+9) 2)(x—y) [ ((IE]% +8)1/2)1 2 2,
(3.2)

Thus, for each 6 > 0 it follows that,
}a;" {e*K“m@)(Z*y)zH < [D3k216]"0~ % mie= 5 UEIP+0) =1 L@/ (IEIP+)')

O

Remark 3.2 Observe that 9, {e*"“w(f)("*wz = —0, {e*"“w@)(k”z} , for £ e R"
and y, x € R. Thus, we can rewrite (3.1) by

‘afa;” {e—KMw(E)(X—y)ZH < D HE=mH0/2 4y 1y~ 5OWUER D) =y 0/ (1E124+8)/)

(3.3)

forallé e R",x,y e R, ¢,m € Npand 6 > 0.
Remark 3.3 Observe that
n
o Hefmw@)(xfyﬂ} —[To {efww@)(x;fy,-ﬁ]’
j=1

foreach x, &,y = (y1,...,yn) € R*and @ = (¢, ..., a,) € Np. Thus, it follows
from Lemma 3.1,

5 {e—ww@)(x—wzﬂ < Dlelg=lel/2g1,= 5o g+ D=y I? , o ((§]124+8)'/?)
y = : )
(3.4)
Next we will present bounds on the derivatives of the FBI phase.
Lemma 3.4 Ifwisaweightfunction, e, and § = &, are defined as in Proposition 2.20,

k> 0and Q(z,y,8) =i(x —y) & —Kkpeu)(x —y)z, then for each 0, A > (O there
exists D = Dg ; such that

107 8¢ iegm,y,s)] | < DIVl e* Gl o
x er@UEP+O )+ Z o((IEIP+0)") ,~ 5o (€I +8)?) (x—3)*

(3.5)

for (y,a,x,y,&) € Nj x Nj x R" x R" x R".
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Proof From Leibniz rule it follows that,

aVa“{ QK(xv&) (&)~ (—ig)e P gix—1)E
ﬂ<(ya)

ﬁ ﬁkaﬁ/s {e—Kﬂw(f)(Xk—}’k)z},

where 8 = (B', "), B’ = (B1..... B,) e Njand " = (B{,.... B;) € Ni.
Therefore, using (3.3), (2.3), (2.7) and (2.8) there exists C, D > 1 such that,

181 i
|833§{6Q‘“(Z*-V’$>}| < Y (;)(ﬂ,,)lléll'(y") BIDIBlg="4 g1 o= 50 UIEIP+8)) (—y)?
B=(y.a)

« T oWEP+')

V(¥ *H ) =BD 3 o517+
= 2 (ﬂ)(ﬁ) e el

B=(y,@)
x C\ﬂlg em “(HBD

2 1/2
o= St 2) (=32 , Lo ((EI2+)12)
< (14 CO~V2eh) 71+l g 36" Gl o F o (EIP+8))

2.61/2
o= ML) 2 n0 o, (g2 45)1 %)

foreach A, 6 > 0. O

The following result consists of a general domination of the FBI transform for
ultradistributions.

Lemma 3.5 LetQ2 C R" be an open subset. If w is aweight function, i, and § = 8, are
defined as in Proposition 2.20, k > 0, u € D*'(Q) and ¢ € D*(Q) with K = supp ¢.
Then, there exists A > 0 such that for each 0 > 0 we can find C = Cy > 0 such that

197 F< (u)(x, £)] < Cel/P9" AyDHolUER+D)2) gy o=5 =00 (IE17+8)'/2)
Mo ’ — ’
yekK

foreach (x,&) e R" x R" and y € Nj.

Proof Observe that denoting ¢; = (1,0,...,0),...,¢, = (0,...,0, 1) and consid-
ering areal sequence {/; }°° | suchthath; — 0Oit follows that, 1f1// € EP(R" xR is

such that ¥ (x, y) = 1//1(y)1//2(x y) (where Y1 € D?(R") and ¥ € E2(R" x R™)),
then

v(x +hj€kh’ )=y — Oy ¥ (x, ),
J

—

=) Birkhiuser
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in D, foreach k € {1, ...n} and x € R". Thus, using the continuity of u

lim
h—0 h

(y; Y (x + her, y)) — (uy; ¥ (x, y)) = lim < V(x + her, y) — ¥ (x, y)>
h

= (”y; Oy, ¥ (x, ).

Hence, it follows that
o — ). E — —v)2
0L, @) (x, §) = (u(y): g} [ CETROC g~y )

where y € Njj. Moreover, from Lemma 2.17 for each € > 0 there exists Ce > 0 such
that

|3))C’ Lu(x, 6] < Ce Ze—ﬂﬂ (lel/€) sup ‘30161’ {¢(y)el(x Y —kpwE)x— )) (x — y’g)H.

yeK

” 1 ”
Since ¢ € D?, there exists A; > 0 such that |07 ¢|lec < €717 @M1 l), for each
B" € Njj. Moreover, using Leibniz rule, (2.3), Lemma 3.4 and Proposition 2.20, for
each A, 8 > 0 there exist D > 0 such that

‘ay uwu(xséﬂ < CC¢ Ze_e(p (%) sup Z ((0}37/)>D|‘3|

YeK g<(a.y)

L7150 @2l DH(F+E Jo R+ g o248 ) —y)?

_ 210 N 1, n0 2.,.61/2
< CCee (xzwz o (12) o7 021D | | platyl (F+5 )oEP+5)!)
o
x sup e~ SOUERP+9 =02
yek

where Ao = max{A, A1}. Next we will consider ¢ = where k € N is chosen such

A Lk’
that e=%(1 + D) < 1 and L is as in («). From, (2.4),

1 * 1 vk j 14 2 5)1/2
075 u(r.6)] = CCeets? 2D i ko 1 e kel (1 4 pletl (145 )oEP+5)/2)
o
x sup e~ 2@WUEIP+82(x—y)?
yek

L+ )o((E1?+9)172)

¢ (Az\m)(HD)‘y‘e(x

< CleRs sup e~ 3OWUEIP+ D -

yek
for some C’ > 0. From the arbitrariness of A and 6 the proof is completed. O
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4 Proof Theorem 1.1: Necessity

The aim of this section is to prove the necessary condition of Theorem 1.1 i.e, when
given an ultradistribution u such that u is £“ regular in a neighborhood of a given point
Xo, then (1.5) is satisfied. To do so we will prove a more general result, Theorem 4.2,
in which the necessity part of Theorem 1.1 will be a particular case (just choose ¢ = 0
and ¥ = 1 in Theorem 4.2).

The reasons to present this more general result are the following. First, we need
the result for arbitrary o« # O for the FBI inversion formula for ultradifferentiable
functions presented in Sect. 5.1, see Lemma 5.2 and its consequences, Lemma 5.3 and
Lemma 5.5.

Second, we deal with any parameter k > 0 since in the proof of Lemma 5.5 we
consider a general ¥ and use Lemma 5.3 with «/2 (see (5.14)). For this reason it is
required to allow arbitrary k > 0. Moreover, Lemma 5.5 is important in the proof of
the sufficiency part of Theorem 1.1.

Following the main ideas of [18] we start by presenting a characterization of ultra-
distributions vanishing in a neighborhood of a given point. And then we will use this
fact to prove the main result of this section.

Lemma4.1 Let o be a weight function, k > 0, xg € R", Q C R" be an open
neighborhood of xo and u € D°’ (). If u vanishes in a neighborhood of xo, then for
each ¢ € D% () there exist constants C, ¢, .. > 0 and a neighborhood V C Q2 of xq
such that

99 FE (¢u)(x, &) < CertatleDe=0 @ (x £ a) e V x R" x N, (4.1)

Proof Given ¢p € D°(Q) it follows that ¢ € D (R") and there exists R > 0 such
that supp¢ C B(xo, R). Considering u € D°’(2) vanishing in a neighborhood of
X0, we can assume that there exists 0 < r < R/3 such that u = 0 in B(xg, 3r).
Also, consider a function ¥ € D (B(xg, 3r)) such that ¢ = 1 in B(xq, 2r). Then,

supp{¢y} C B(xo, 3r) and supp{¢(1 — )} C B(xo, R)\B(xo, r). Thus, using
Lemma 3.5, there exists A > 0 such that for each 8 > 0 there exists C = Cy > 0 such
that

|0F F,, (pu)(x, §)| =|0Y F (D (1 = Y)u)(x, §)]

<Cer¥s oD oW EIP+D) gy pmao (U8 (=)
r<lly—xoll<R

forevery (x, &, @) € R" x R" x Njy where a = % Moreover, if ||x —xg| < r/2 and
ly —xoll > rthen ||x —y]| > r/2. Thus, since § > 0 (here § denotes the constant §, as
defined in Proposition 2.20.), recalling that o is an increasing function and considering

2 .
6 = “g- we obtain

09 FE (Gu)(x, )] < Cett(lal o= %o (UEIP+9)'2) < cobestlal =% o).
forall |x — xoll < 5,& € R" and o € Nj.
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Thus setting V = B(xo, r/2) finishes the proof. O

Next we shall present the main result of this section whose consequence is the
necessity part of Theorem 1.1. Note that if o and w are weight functions with w () =
O(c(t)) as t — +oo then D?(Q) C D?(R) (see Remark 2.10) and D' (Q) C
D7 (Q).

Theorem 4.2 Let w and o be weight functions such that w(t) = O(o(t)) ast — 400,
k > 0, Q C R" be an open set and u € D' (Q). If u is £ in a neighborhood of
xo € Q2 then for each ¢ € D (R2) there exist C, ¢, . > 0 and a neighborhood V. C Q
of xo such that

02 F% (¢u)(x, &) < Cer? HDe=®  (x £.0) e V x R" x Nj, (4.2)

where ¢* = @ is the Young conjugate of ¢(t) = w(e").

Proof Fix R > 0 such that u € £“(B(xg, R)) and B(xg, R) C €. Consider ¢ €
D (B(xg, R)) such that ¢ = 1 in B(xo, %) and write

Fl, (pu)(x,8) = Fj, (You)(x, &) + F; (1 —y)pu)(x,§), (x,§) € R" xR".
(4.3)

Now we use Lemma 4.1 to obtain constants C, a, A > 0 and a bounded neighborhood
V of xo such that

02F (1 = Y)pu) (x, )] < Cet e Hlale=a @ (¢ £y e v x ",

Furthermore, since w(t) = O (o (t)) as t — 400 there exist A, ¢ > 0 so that w(§) <
co (&) for ||£|| > A and by the continuity of w, for each ¢ > 0 there exists C, > 0
such that 1 = ¢@® @) < C.e=@E) for I€]] < A. Thus, we use Remark 2.10,
define a; = %, increase A, C > 0, if necessary, and obtain

02 FS (1 = Y)u)(x, )] < Cer? Hlebem@e® - (x £y e v xR, (44)

Next we will fix &€ = (&1, ..., &,) € R"\{0} and consider j € {1, ..., n} such that
€1l < n|é;|. Moreover, given an arbitrary N € Ny, integrating by parts with respect
to y;, we can write

-V
(—ig))N

Fh, (u)(x. ) = [ domEa fumpmeme e @0 e, (- y.6))ay.

for x,& € R", where it was used that v ¢u € D?(B(xg, R)) € D®R"). Given
a € Njj, we have

Z <;{) (ig)afyei(xfy)é %

y=a

BT (o s =D /
" u)(x, =
T e (—igpN

x ool fuw s e 1O a -y play (4.5)
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Now, Remark 2.8, (2.5), (2.8) together with Leibniz’s rule and Proposition 2.20
(where it is proved that the derivatives of a,, are uniformly bounded in compact sets)
show that there exist C3, 1> > 0 (independent of x and &) such that

B1 o2 _ 5P 021B2)
|0y 9y {u(y)W(yM)(y)aM (x =y, 5)} | < Cae , (4.6)
VB, B2 €Ny and Vy, & e R"andx € V.

Furthermore, it follows from inequality (3.2) that there exist D > 0 such that

351 352 {e*’(ﬂa @) (x—y)? ]

=Tl oo o?)

_k 2 1/2y(x—v)2 11814621 1
< DB+ p= 30 WEITH3) D=2 (5 ((JIE112 4+ 85)2)] 2 |1 + Bal!2,

forall B1, B € Njand x, y, & € R".

4.7

Denote &, = o ((||€ ||2 + 8,)1/%), increase D (if necessary) and use (2.7) to obtain

1811 1821 1
3)/(’1352 [e—mw(é)(x—y)zH < Dlﬂ1+ﬂ2|‘ﬂl|Tl|,32\Tz(§(|,ﬂ1+ﬂ2‘)7

* * * *
e 0lBD 1 2 1B 1 2 018D 1 ¢ (lB1D
T e @B R gie@ihh S gire) Sl

1
m m mw@a)

<e

forall A9, A1 >0, By, B € N andx,y e R".. 4.8
0 0

Using Remark 2.11 we can find D; > D such that w(t) < ¢, foreacht > Df and
since w is increasing we can write

2 2
e*0lBID  ¢*qlBh DilALl Dilfal (1, 1
af1al2 {efwa@)(xfyﬁ ‘Se L R T T (g oo

2
forall Ag, A1 > 0, B1, B2 € Njand x, y € R".

’

(4.9)

Thus, using Leibniz’s rule, Remark 2.8, (4.6) and (4.9) there exists m = m(n) > 0
such that

0P o fuw P (e 1 O a,, (x =y, )|

2 2
e*qlnh  Piinl Dilnl

1« _ o*(oly1 D 1
<3 (ﬂ)czmw Galpa—pa 0D eZGind Zpnl PR (St )e)
Y
y=p

L o 02\ A1l NG
< Cy RV O1IBD 3¢ ol <m+me“0> <m+me“1> T o)

<0 eﬁ«m]|ﬁz|)e%w*<xo|ﬂl|>C|£1|C\A;?z\e(ﬁo+ﬁ)w<ea>’

forallo > 0, Bi, B € Ng,x € V andy e R", (4.10)
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where we considered A1 = A, used the notation 8 = (B1, f2), ¥ = (Y1, ¥2) €

Ny x Np and denoted Cy, = m + me 2A (for A > 0).

Hence, recalling that [|§]] < n|&;|, denoting C = ¢ |supp ¥ ¢| (where
[supp ¥ ¢| = f SUpp (v ¢) 1dy) and using (4.10) one can estimate the expression in

(4.5) by

[0 (Wou)(x, §)] <

||sn~ Z( )Czllén'“ 11 A O 559" GalrD el o o5+ 2t Jotte)

y<e
forall N € Ng, Ao > 0, x € V and £ € R" \ {0}. 4.11)
Denoting a = nC]A =k(ra) >
1
0 such that
o L el oM  ho@leh & et Golal (2l +3i7 )o@
|09 F% (popu)(x, §)| <C Kl e e% 7ot

(al|EIDN "+
forall .o > 0, x € V and £ € R" \ {0}.

Taking the infimum in N € Ny in the last inequality we obtain

1«
|03 Fpe, (Wu) (x, §)| <C Jnf S k'“' 7@ GolaD) g @lED,, (55421 o)
- o (@llghNy
for all Ao >0, x € Vand & € R"\ {0}. 4.12)

1 * _ 1
Recalling that inf y e, (N @ AN < elogleT R @@ for each 1 > 1, see [12, page

218],then by increasing C if necessary, it follows that one can further estimate the
expression in (4.12) by

~ i . 1 B
‘agfllia (w¢u)(x, s)’ Scelog(aHE”)_ﬂw("ugll)kkz‘em‘p (lo\a\)emw(flllf\\)e(no +2}\1 )w(g")

forall Ag > 0, x € V and ||&|| > 1.

Now, we take advantage of y) and Remark 2.11 to obtain A; > 0 such that

& = o ((IE]* + 8,)"/?) < allé|| and log(al|§])) < z-w(ak), when ||| > A;.
Thus, choosing Ag = 1241

~ _ 1 1%
02 7% (Yrou)(x, )] < Ce m,w(ansu)kz\ e 7g¥" Goled) 4.13)

for each x € V and ||§]| > A;. Now, we choose k € N satisfying e % < a. Hence,
using (2.2) we see that there exists Ay > Aj such that

—w(ag) < —w(e*E) < —CL) 0 @), || > Aa

) Birkhduser
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Thus, using (2.5) there exist a; > 0 and A3 > 0 such that one can further estimate
(4.13) by

~ 1%
00 F% (ppu)(x,§)| < Ce 0@ e? By ey g > 4,0 @14)

This concludes the proof when ||&|| > A». For & small, we go back to (4.5) and use
(4.10) to get (possibly by increasing m)

02 F (You)(x, £)] =

> (i) [ {urw s e e O x|y

y=<a

. p2\ ol .
<Gorr? (1aD) (erme’Mll) Rl

(o)

1
Since w and o are continuous function (consequently supjg <4, €1 ¢ < 400),
using (2.5), there exists A2, C1, C2 > 0 such that
~ L % ~ 1 x
08, (Wpu)(x, £)] =Crena? P < Grena? D mao® 4 15)

for |£]] < Az, Cr > Cy SUP|z) <A, e“1®&) - Therefore, it follows from (4.3), (4.4),
(4.14) and (4.15) that the proof is completed. O

An immediate consequence is the necessity of Theorem 1.1.

Corollary 4.3 Fix a weight function w, an open set Q@ C R"* and u € D (Q). If
u € E® in a neighborhood of xo € Q2 then there exist a weight function o such that
w(t) = O(o(t)) ast — +00, so that for each ¢ € D (RQ) there exist C,c > 0 and
a neighborhood xo € V C 2 such that

| Fpup (Pu)(x, )] < Ce™ @, (x,6) e V x R". (4.16)
Proof Under the corollary hypothesis one can select any weight function w(t) =
O(o(t)) as t — oo then the proof of Theorem 4.2 will work for u € D*'(Q) C
D7(Q). O
5 Proof Theorem 1.1: Sufficiency

In order to prove the sufficiency part of Theorem 1.1 we shall prove an inversion
formula for the FBI transform F’ /’jw defined in (1.4).

5.1 Inversion Formula for Ultradifferentiable Functions

Throughout this section we will consider a weight function w and we will denote by
e the function defined in Proposition 2.20. In order to prove the sufficient condition
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of Theorem 1.1 in this section we will present two inversion formulas of ¥, u when
uisin &%, k > 0 and w is any weight function.

Lemma 5.1 Ifu € C"*1(R") then

w0 =0 [ Fueds Vre R,
Rn

Proof Let R > 1 be such that suppu C B(0, R). Since u € C Z,’H(R") it follows that
supg e {(1 + 11§ "1 (£)|} < +oc. Thus, using the Fourier inversion formula we
can write

u(x) =Q2x)™" lim / / u(xyel O E=E% g g (5.1
€e—
Definel’' =T (x,x", &, 1) =& +itk uyE)(x —x'), forx,x’,€ e R"andt € R.
Since gy > 0,

Rii(x —x') - T —e-T? < —€[£2 — 12 k? [0 (@) [lx — x'||7],
forall (x,x’,&,1) € R" x R" x R" x [0, 1].

This, together with the fact that the function w is increasing and (2.12) we see that
there exist constants D, § > 0 such that

Rii(x —x")-T(x,x',&,1) —e-[[(x,x, & D]}
= — ¢ (& — Dol + D) PIR +1)7?),

forO<t<1,|x'|| <R, |x|]| <rand& € R",

for an arbitrary r > 0.
Moreover, using (2.6) there exists a positive constant A such that one can further
estimate the last expression as follows

Rii(x —x')-T(x,x', &,1) —e - [[(x,x', &0} < —e ( > HE —%IIEIIZ,

forO <z <1, [lx']| <R, |lx|| < rand [|E]| > A. (5:2)

Since & +— e=€@lEl” is a L1 function for each € > 0, using (5.2) it follows that

ulx) =Qm)~ "hm lim / / u(x)el ™= x')-E—e&? dedy’.
nJEN<S

0S—>+o0

Now, using that ¢ > u(x')el ®=*)¢=€¢* is holomorphic, we may apply Stokes’
theorem together with the definition of a,,,, (see (1.3)) to obtain,

u(x)=QRm)™" lim lim / / u(x/)e“x_xl)‘r(x’x/’é’1)_E[F<X’X/"§’1)]2aK (x —x', &)dedy’.
e—0T S—+oo Jrn J g <5 Ho
(5.3)
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Thus, as a consequence of the third item in Proposition 2.20, inequality (5.2) and
Fubini’s theorem, we can further express (5.3) as

ulx) = (27‘[)_” lim / / u(x’)ei(X—X/)'r(X,X/,f,1)—€[F(X,X,,E,1)]2aﬁm (x — x/’ S)dx/dg

e—0t
. 2 . 2
=Qr)™" ]irg+/fu(x/)e’(X*x/)E*KMw(E)(X*X/) “ﬁw(’f _xr’E)e—e(ngme(s)(xfx/)) dx'dk.
€—>
5.4

Now, we will show that we can use the dominated convergence theorem in the
right-hand side of (5.4).

The goal is to bound the integral in x” uniformly in € by an L' function in £. Let
O (x,x', &) = —€(€ + ikpe(E)(x — x'))? and note that it follows from (2.6) that
there exist constants A, a > 0 so that

RAQu(x, ¥, §)} = —€(€? — [k po ) Pllx — x'II%) < —eall§]?,

forx’ € B(0, R), x € B(0,r), ||€]| > A. (55

Therefore, the trivial bound is not good enough for our purpose. The trick here is to
use integration by parts and to do so fix £ € R" and assume without loss of generality
that |&1| = max{|&]| : k € {1, ..., n}}. Then it follows that

_ €1 &1l 1 — x|
|IE|I—2<|IEII——><2(x/_IEI— RT7 ) (5.6)

_ for x" € B(0, R) and x € B(0, r). Moreover, using (2.6) and (2.12) and increasing
A > 0 (if necessary) we have

I&n 1
2 R+r

> 2/nD o((JEI7 +8)'?) = 2V/n )], &l =A (5.7

where D is the constant appearing in (2.12). Thus one can use (5.7) to continue
estimating (5.6) as

1§11 < 2 (Valigi] = .23/nlpo@)llx] = xil) < 24/n] — i + 21 — x|
forx’ € B(0, R), x € B(0,r) and ||&| > A (increasing A if necessary).

(5.8)

Thus, integrating by parts the integral in x” in the right-hand side of (5.4) multiplied
by |I€]|"*!, we have

1
g+

/ u(x/)ei(xf«\")éﬂcum(é)(xf)r’)zazr (x —x/, E)efe(EJriKum(E)(xf.X’))zdx’
R w

< |El"@n)?

fax; {eiu—x’)s—xuw@)(x—x/)z} u(xyal, (x — ', £)e—€EFikoE =X g/
Rll

< @n)'?

/ ei(x—x’)s—wm(snx—xnza;z,ﬂ {u(x/)a; x 7x/’E)e—e<s+mm(5)(x—x/>>z} dx’
n 1 @

(5.9)
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forx’ € B(0, R), x € B(0,r) and ||€] > A.
Moreover, for each g € {1,...,n + 1}, using Faa di Bruno’s formula (see [14,
Corollary 2.11])

, a 19" Ol 61k
o e = ZeQ“(” T el =

plq,r)  p=l1

and
q q
plg,r) = ki, ..., kg) 1 kp >0, Zk,,:r, Zpk,,:q
p=1 p=1

It is easy to see that there exists a constant ¢ > 0 such that
|3 Quc(x, ', £)| < ecllg I, 193 Ouc(x, 2", 8)] <
ecl&?, and 9" 0, (x,x", &) =0(p = 3),
1

forx’ € B(0, R), x € B(0, r) and ||£| > A.
Consequently, we will be able to consider the sum over a subset of p(q, r), consider-
ing only derivatives of order less than three. Moreover, since

'Zp(q r l_[p Lkl < _ 1) (see [14, p. 515]), it follows that

’351 {eQAx,x’,é)” - Xq:e*wﬂéllz Z |(ec||§||2)’
" = gk
r=1 p2(q.r)

q
(c/a)
<gq! Zr! Z W

r=1 pa(q.r)

<q'Z<c/a>’rv > 1"[ —

p(g.r) p= 1
qg—1
=gq! r
q-Z(c/a) (r ~ 1)
r=1
< +c/a)lq! (5.10)
where pa2(q,r) = {(kl,lgz) c ki +ky = r and k| + 2k, = g}, for x’ € B(0, R),
x € B(0,r) and ||§]| > A. Thus using the Leibniz rule and (5.10) one can bound the

term in (5.9) by an uniform constant C,, > 0 independent of €,

flg ]!

. 2 . 2
/Rn u(x )l X E K@@y (1 e Etiteno @ g0 | < ¢,

for allx € B(0, r)and ||£]| > A.
(5.11)
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Since u is compactly supported, considering (5.4) and taking into account (5.11) we
can use the dominated convergence theorem in the right-hand side of (5.4) to conclude
that

u(x) = 2m)™" /Rn Fuux, &)dg, xll <r

for a arbitrary r > 0 as we wished to prove. O

Lemma5.2 Ifk > 0 and u € D*(R") then, for x € R" :

_lgl?

ux) =2r)™" lim e %fl’i ulx, &)dg, in ECRM).
j—+oo @

Proof Observe that, from Theorem 4.2 for each compact subset K C R” there exist
an open neighborhood V of K and a, A, C > 0 such that

02 F u(x, &) < Ce @@ ei¢" (@M x ¢ v and £ e R". (5.12)

Moreover, using Lemma 5.1 it follows that u(x) = (2w)™" fR" fl’iwu(x, £)dE.
Thus, from (5.12),

g%

|
3% {u(x) — Q™" / e 1 Fpyulx, E)dsH =

{ N
3 (2n)—"/ l—e T | Fp ulx,£)ds
2

=@em™ /(1 —e )Ce%w*(la\k)e—aw(g)ds

* [H
< Qry " Cer# el /(1 —e T e m@gs yeK.

The lemma now follows from (2.9) and the dominated convergence theorem. O

5.2 FBl Inversion Formulas for Ultradistributions

The aim of this section is to present two inversion formulas for ultradistributions.

Lemma 5.3 Let k > 0 be arbitrary. If u € D*'(R") and € D®(R") then
(uj; ¢) = (u; ¥¢), j — +oo foreach ¢ € D”(R")

2
where uj(x) = 2m)™" fe_@f/’jm(llm)(x’ §)d§.

Remark 5.4 Note that from Lemma 3.5 and Remark 2.11 it follows that u; is well
defined.
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Proof For each ¢ € D”(R") using Lemma 5.2 and the notation qvS(x) = ¢(—x) we
have

_lgp? . ,
(uj. ) =(2n)*”ffe J <ux/,wx’)e’(**x JE—re e ) r—x )2a“w(x—x/,§)>d$¢(x)dx

[ ,
:<ux/, 1//(,\?’)(27‘[)7” / / e et XDE—Kpw(E)(x—x )zauw (x — X, S)dé¢(x)dx>

li5 ]2

=<ux/,1//(x,)(2ﬂ)_n/e J f,‘jwé(x’,é)dé>

— (u, y¢), as j— 4oo.

Where in the second equality we can apply similar arguments as in the proof of

Lemma 3.4 to obtain the convergence of the Riemann integral in D® —topology.
112

Also, in the second and third equality, it was used thate™ / € L! (R™) and that
the support of ¢ and ¢ are compact subsets of R". O

Next we will use Lemma 5.3 to obtain another inversion formula which will be
used in the proof of Theorem 5.6.

Lemma5.5 Let k > 0 be arbitrary. If u € D (R") ¢ € D*(R") then
(tj; ) — (uy; @), j — +oo foreach ¢ € D”(R");

£ )2

where @j(x) = Qu) [ [ECD R mo@C0T T FE ) (1, 6) (Khte

)" drde.

Proof Since, e Mo =) ¢ L'(R™) (for each fixed x, £ € R") we can rewrite 1;j(x)
as

2 n
i) = )8 [[em @0 gl 00 ) (@)
n _ e i 3
=3t /e e <u’ -‘//(4)/el(Xi.)é7’“‘0)<$)[(t7')2+()[7t)2]aﬁw([ - %‘)dl> (Kltw(S)) 1 dE,

where it was used that the Riemann sum converges to the Riemann integral in the
D®-topology with respect to the variable 7. Using the equations

214 l / 2_1[ ‘ /]2_1t 2 ¢ + / lt "2
[ _2(x+x)} =3 t—x)+@—x") —2( —x)7+ (= x)( —X)+2( —x)
and

ooy =to s a—ne—xr+iec-xy

2 2 2
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it follows that

ij(x) = (2n3)%"/eﬁ<u, 1///6[@_%_'(“‘"(5)[%(X_'>2+2“_%(H'))z]a;m (t—-, é)dt>(lcuw(§))%d5-
(5.13)

Since e~ 210 E) (=3 (x+x')? e L'(R") (foreach &, x, x’, k) we consider the change

of variables, —w = 1 — % (x +x) to write

—K i orr—1 N2 _
/e o (5){ 1= (D] }al’iw(t—x’,é)dt = /e "““’@)zwzaﬁw(%(x —x)—w, &)dw.

Moreover, using the identity (see [32, (IX.4.6)])

Z\: [T >
(—) e [A+BO—y)dy=A+Bx 2z, A B reCandRz> 0,

s —00

Observe thatay, (z, & ) is apolynomial of degree n withrespectto z € R” (see (1.3)).
Additionally, it is a polynomial of degree 1 as a function of z; foreach j € {1, ..., n},
depending on the parameters z; for k # j. Since k > 0 and 4 (y) > 0 we obtain

2 w % _ 2 ’ K /
<L(§)) /e oo (8)2 al’iw(%(x—x)—w,$)dw=auw(%(x—x),é).

g

This together with (5.13) allow us to rewrite i (x) as

[ . nNe Kk /
uj(x) = (271)_"/6_7 <uxu10(x/)e’(x_x = Sio(®) (=) g (

220]

- %’,g))dg.

I

2
= @) [ w0 IO 2 (o)) g
—n —w i /2
= (2m) /e J fﬂm (Yu)(x, £)dE. (5.14)
Where in the second equality we used that af, (3.§) = aﬁf (x, &). Therefore the
result follows from Lemma 5.3. O

5.3 Sufficient Condition of Theorem 1.1

In this section we will use the inversion formula presented in the previous section
to prove that a certain decay of the FBI transform in all directions implies £¢ local
regularity.

Theorem 5.6 Let xo € R", w and o be weight functions such that w(t) = O(o (1))
(fort — +00), and u € D°'(R"). If there exist v € D° (R") and C, c, «,r > 0 such
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that
| (Yu)(t, §)] < Ce™ @ (1,€) € B(xo,r) x R” (5.15)

then u € £% in a neighborhood of x.

Proof We first note that it follows from Remark 2.11 and inequality (2.12) that there
exists A > 1 such that |o (€] + 85)"/H)| < e lI&]l and |1s ()] < [€]l, for
€]l > Aj. Moreover, using (2.7) we obtain

n+l

/ e @®ge < ecw*( g )/ %ds < 400.
[HEYY 1gn>4, NEN"*

Moving on we want to apply Lemma 5.5 and in order to do so we write

. [
W(x,1,&, j) = Q) DR OG0T T () (1, €) oo (€)',

and
//W(x,t,é,j)dtdé :f W(x,t,&, j)dtdé +/ \Il(x,t,é,j)dtdé—s—/ W(x,t,&, j)dtdé
Uy Uy Us

where, Uy = {(t,§) : |It — xoll < r, 5§l > A1}, U2 = {(#,8) : |It = xoll <
r, &l < A}, Us = {(t,&) @ It —xoll = r, & € R"}. Next we will prove that for
each ¢ € {1, 2, 3} there exists a function I, € £® in a neighborhood Uy of xg such
that lim W(x,t, &, j)dtdé = I;(x) in E2(Up). Therefore, using Lemma 5.5
Jj—>4o00 Uy
we will obtain u = I} 4+ I, + I3 in a neighborhood of x(, concluding the proof.
Observe that || f||§\|>A1 e @@ dgdt < 400. Thus, we can use the domi-

llt—xoll<r
nated convergence theorem to conclude that

/ W(x, 1, &, j)didE — 11 (x) = / @) 2R O T () (1, 8) [k (§))/2d1dE,
U; U

as j — 0o. Moreover, using (3.2) and (5.15) there exists D > 0 such that, for every
x € R" and every o € Nj it holds

199 11 ()| = ' /U @) ~/2ag [ —na O6=0* | (g 8) o (61 2dide
1

<[e iy (“) 11« DI B1Z o (g1 + 80) 1017 Cem O licpug (613 drd
Ui B<a
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Since [o (]l 4+ 85)"/H)| < e ||| and |uo ()] < [&]l, for [I€] > Ay, using
(2.3), (2.7) and (2.8) there exists Dy > 0 such that

DB o (1 + 8018 e~ @@ sy )13 < DIFLCE |t e 18162 P mco®

< DB (18] + ny12 e Ble/2, 507 () =S (®)

< plftrees *(BL) —Sw®)

< Dl €9 G e/ &) o)
(5.16)

Thus, using (2.7) there exists Cy, Dy > 0 such that

c/2 181 —_tw
¢ h)] < € Zﬁsa(ﬁ) R R CO P R

Sot(la—Bl) Se*(2181) _c
=1 L (ﬂ)Dl‘fl\é\bA]ew( w1 5 (218) - foerge,

for every x € R" and every a € Nj.

Since t +— # is increasing, using (2.3), the last inequality can be further esti-

mated as follows

o (4 a— cor(4 c
02 1) <Cy Z(g)/ﬂﬂ et (t1a-11) 59" (419) 0004
>Aj

B=<a

c x4 .
<Ci(Dy + 1)n|a|ez¢’ (Cla)/ e_Z‘“@)ds,
lEI>Ay

for every x € R" and every o € Nj.
Now we invoke (2.5) to obtain D, > 0 and A; > O such that [0Z/;(x)| <

1%
Dye? (M\al)’ for each (x, ) € R" x Njj. Thus I} € £2(IR"). Moreover, reasoning
analogously we see that,

- w(4
< Ci(Dy +1)"'°“e%“’*(f‘”')/ 500 |,
£1> Ay

oy i/ W(x,1,&, jdrdg — 11<x>’
Uy

Therefore,
/ V(. t,&, j)dtde — I, asj— +oo, inEYR™M). (5.17)
Uj

Next we will study Us. Since U, is bounded for each x € R”" it follows that

[ W pdide > oo = [ @) TR0 e ©00 2 Gy 6) teio €1 drde.
Uy U
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Also using (3.2) and (5.15) there exist constants C, D > 0 such that for every
a € Njj we have

10Y 1 ()| = ‘ f @) 7/242 [0 —khs OG0 e g, €) Tepq 61/ 2drde
U

@) 2Ce Lo €))7 Y (‘”)ns||'“‘ﬁ'D'ﬂ'ﬁ!%[o<<||sn2 3021 % dra
%) B=a

/<2n3) 2O sup lue @MY (Z)A‘I“’f“u‘ﬁ‘ﬁ!“z[a(<A%+aa)‘/2)1‘5‘/2dzds.
[HES f=a

Hence, there exist D3, D4 > 0 such that |03 1| < D3D|a‘|oz|!, for every o € Nj.
Therefore, using Remark 2.12 it follows that I, € £“(R"). Moreover, one can see
that

usu2
e 1|d&.

a;:{f w<x,r,e,j>dtds—12<x)} sD3le"|a|!f
U lEN<Ay

Thus,
/ V(. 1,&, j)dtde - I, asj — +oo in E2(R"). (5.18)
U

Next, in order to study the integral in the region U3, observe that

e — el = it —xoll — llx —xoll = r — > = =
x — —xoll = [lx — x Fr—===
> 0 oll = )

for ||t — xol = r and [|x — xol| < 7.
Thus, using (2.11), (2.12) and Lemma 3.5 there exists D > 0 such that,

. £|2 n e ey el n
8Dk OC=07 =55 T ()1, 6) [po (§)]F | < De 370D =85O T Hr 005 5| §

1
-D |:(K7'2&(§))n n!126" ]2 e_%g(g) grr(aﬂ(A —?
16"n!  (krs)"

ni?16} D56 =0 (63 )r—1)?
K2r"

for 6 (&) = o (6 + 1€1%)/?), (1,€) € Uz and |x — xo| < 5. where it was used

25 e 12 kr2sE) |2 . .
that [%] : < [e 16 } . Hence, using the dominated convergence theorem

2~
(recalling that [ ¢ ™*167®)d& < +o0 and fe_KU(sl/Z)(x—f)zdt < +00),
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f W(x,t, &, j)dtdé — (x)
U3

= [ @r?) RN OO T () (1,8) (110 (§)]"drds,
Us

whenever [|x — xo|| < % (5.19)

Moreover, using the Leibniz rule, Remark 3.3, Lemma 3.5, (2.3), (2.7) and (2.8),
for each 6, A > 0 to be chosen there exist D3, D4, D5 > 0 such that

g | OO0 Ee (1, 8) T )17 ]

o _ K 2 1291 v 112 2 12 n
< Z <’3> ||§||\01 ﬁngﬂlﬁ!e 20 (g7 +86) " Dllx =] 00 ((NE11°+30) )[MU(E)]Z

B=a

o 1% 1 0wl , -
= Z (,3) er? (Ma‘)ww(g)DLﬁ‘[Ho(é)]Ze 2 (e 1))

B=a

o~ 160 W) lx—111? o (&7 +85)'/%)

o] £l 0@ o2
5 € Rz roe

<D e o (E1P4+80)"2) g=ka =11, (£)]5,

;
for ||t — xo|| = r and ||x — xgo|| < 2

where in the last inequality we fixed 6 = % and Kk, = 1’(—60(\/3). Moving on using
(2.5) we see that there exist Dg > 0 and A, > 0 such that the last inequality can be
further estimated as

3 {eié(xfl)*lfﬂa (‘i-‘)(xft)zj_-z(r Wu)(t, &) [k o (g)]% ] ‘

*o 2
< Deem B e e o WS ko et P (3

for ||t — xo|| >  and [|x — xo| < % (5.20)

Moreover, from the fact that

/ el =t gy < / e dy < 400
[lt=xoll>r R"

and considering A3, c¢; > 0 so that w(§) < c10(&), for ||€|| > A3, it follows that

v el 2. a2 " 0@ _w? 2, 8172 n
/e e m o EIEET0 y 6)| 2 dt s/ er e U, (6) 2 dg
IEII=A3

o EP+92) 2 2812 n
+/usu e S+ |, 6))3 .
>A3
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Note that, the first integral is finite and choosing A = 6;17‘; it follows from (2.12),

(2.7) and Remark 2.11, that

1o ((IE12+8)1/2
/ . 1 ((nsu;zs) )e*%"““s”z”)l/z)|u(,(.§)|%d§
I51>As3

Krz n
- / e a7 eI 1, )] d < +oo. (5.21)
§11>A3

Thus, summing up (5.19), (5.20) and (5.21) we see that there exists D7, L, > 0
such that

1%
109 13(x)| < Dyen? %D v(x, ) € B (xo, §) x N
This shows that I3 € £“. In addition to that and similarly as before it follows that

£ )%

e —1‘ds.

9% {/ W(x,t, &, j)dtds — 13(x)}
U

< Dqer?"Celo) /
HEXY

Hence

/ V(. t,&, j)dtdé — I3, asj— +oo, in EY(B(xo, 5)). (5.22)
U

Therefore, using (5.17), (5.18), (5.22) and Lemma 5.5 it follows thatu = I} + I, + I3
in B(xg, %), which concludes the proof. O

6 A Characterization of Ultradifferentiable Iterates of Constant
Coefficients Operators

Let P(§) = Z‘al <m ax&® be a polynomial function of degree m. This section is
dedicated to the characterization of the space £ (2; P) (see Definition 1.2) using a
FBI transform.

Remark 6.1 From now on we will consider 0 < p < 1 such that (1.8) is satisfied and
denote o () = 04,,(t) = w(¢”). It is important to note that, if @ is a weight function
and 0 < p < 1 then o is a weight function.

Theorem 6.2 Let xg € R”, w be a weight function and P (D) be a constant coefficient

hypoelliptic linear operator of order m together with its hypoelliptic index p (satisfying
(1.8)). Let o (t) = w(t”) and u € D°'(R") C D' (R"). The following conditions are
equivalent:
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1. There exists a neighborhood Q2 of xg such that u € £°(; P).
2. There exist ¢ € D®(R") (such that ¢ = 1 in a neighborhood of xg), C, ,,c > 0
and a neighborhood V of xq such that

o ($1PONV @) (x, )] < Cer?" WmhmwlEI (¢ & N) € v x R" x N,
(6.1)

where we are denoting ¢*(x) = ¢} (x) = sup{xy —¢(y) : y > 0}, for each x > 0
and |y is the function obtained from Proposition 2.20 when applied to o instead of
.

Proof (1) = (2): Let R € (0, 1/3) be such that B(xg,3R) C Q. Set0 < r <
R and ¢ € D®(B(xp, R)) such that ¢ = 1 in B(xp, r). Also, considering i €
D®(B(x0,2R)) such that ¢ = 1 in B(xg, R), it follows that

Fuo (#LPON W) (x.8) = / POIPDNY )()e 1O a, (x—y, £)dy
= / SOIPDIY () (y) (el & V51O g, (x —y £)dy

- / () — NIPDYY W) () Y () IEH Oy ey

+ / [P(D)Vu(y) Y (y)el S5 1 OC g (¢ ) £)dy

=11(x,8)+ L(x,§),

where x, £ € R”,

Ii(x, &) = / [6(y) — LIPD)N () (y) ¥ (y)e! T E 1o ®OC7g (g £)dy
(6.2)

and
B(r &) = [IPOIMu) pe O, =y ody. (63)
Next we will study /1 and /5. First, denoting K = suppy and using Holder inequal-

ity,

. 2 2
I &1 < POV ull 2k [ / 1900 = Ly (e g, (- y,g)| dy]

<|ly—xo|=2R

) Birkhduser



45 Page 36 of 45 Journal of Fourier Analysis and Applications (2024) 30:45

Since u € £(2; P) and K C €, recalling Definition 1.2, there exists C1, C > 0 and
A > 0 such that

12
1 % . 2
(. §)] = Crexd ) [/ 160) ~ 11y O, (v, 6)| dy}
r

<|y—xol=2R

1/2 )
gCeiW*W"N’[ sup e—2a<s|><x—y>2} < Cok ¢ OmN) —o(IE1°) 7

r=ly—xo|<2R

for each x satisfying |x — xo| < 5 and § € R"; where we also use Proposition 2.20.

Next we will consider the term I, given by (6.3). Let £ be an arbitrary positive
integer. Using (1.8) we obtain for ||£|| > K, with K the constant appearing in (1.8),
and u, := [P(D)]Nu

Ih(x, &) = ‘ / AEE Y () (e PO g, (e yf)dy‘

W / [P(E)1Ee Dy () (e Mo OG0 y,g)dy‘

W /[ (=DyI* {’(x V)s}uN(y)w(y)e 1o E)x-1?, (X—y,é)dy‘

‘/ CDE PO fuy (e @6 g (- y, s>}dy‘
(6.4)

(CIIEIIP’")E

In order to study the above integral we first recall that

PN = Y0 PP x DPf. VfigeC™,
|Bl<m "

where we denote P#) g = (8;.9 P)(D)g foreach g € Njj. Using the linearity of P(D)
it follows that

I
P(D) o P(D)(fe) = Y. = P(D)[PPg x DPf}, vfgec™
|Bl<m

Hence,

1 1
1l=m 0| <m

% Dﬂ1+---+ﬁ£f’ Vf,geC>.
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Thus, inserting the last expression in (6.4) it follows that,

1 1 1
L(x, < —— —_. —
12, O < e 2 gy 2 ﬂe!/B

[Bil<m |Bel<m

% ‘351+~--+ﬂz {w(y)e—ﬂa(é)(x—y)zaw x -y, E)de

’[P(ﬁl) 0---0 P(ﬂe)uN(y)
(x0,2R)

1 1 1
- B1) (Be)
= (ClE NP Z e Z @”[P Yoo PYOlUNL2(B(xg.2R))

|B11=<m [Bel<m

% H 351+-~+ﬁz {W(~)e_““(s)(x_')2aﬂa (x —-, %‘)} ‘

6.5
L2(B(x0.2R)) ©)

where ||£| > K.Observe that, since o is increasing it follows that o (|| £ | 4+84) /%) <
(] + 8(17/2), foreach & € R”. Thus, using Remark 3.3 for o instead of w, Leibniz’s
rule and the fact that v € D® we obtain that for each & > 0 there exist A;, D > 0

such that

o 1% _ 12
o {W(y)e_““@(h’>za;ta (x—y, s)H < Z (;)eh @ Ctln ﬂl)Dm'ﬁ!e@”(”S”“O ).
B=n

for each n € Njj. Thus, using (2.3), (2.5) and (2.8), there exist C2, A > 0 such that

s 12
’a;j {w(y)e—ug(é)(x—y)zaﬂo (x —y, S)” < C28A2¢ ()LZWDe@G(Hf”-‘rtSo )

Hence, using (2.3)

y) 1L xmis-1a.
H3ﬁ1+---+m [W,)e—ua(sxx—-ﬁ% o —- 5)} L= g " @RIBD oo e+,
Yy o ’ .

< Cre
L%(x0,2R)

(6.6)
Moreover, using Corollary 6.7 there exists C > 1 such that,

”[p(ﬂl) 0.0 P(ﬁe)]uN”Lz(B(xo,ZR))

< Cfllﬁll S;lp }{”[Pjop(ﬂz)o . 'OP(ﬂe)]uN||L2(B(x0,2R+61))}
je{0,1

fcfllﬁll sup {”[P(ﬂZ)O"‘OP(ﬂ()OPj]uN||L2(B(x0,2R+g]))}

Jj€{0,1}
<ct 1B1l | Bel Plto...o PN
<Coe.eg " sup I[P o0 PTNuN 120 (xg. 2R 461+ ter)
J1,--je€f0,1}
<cte e sup NPTV U 2 ke e
Jise--je€f0,1}
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for ¢; = |: _ B! where j € {1,...,¢} and

1/18;
M/@TA)* @I 118D ] (el/C kz)cl/(Z/kz\ﬁ h’

C,, > lissuch that e®") < C,e’ (for each t > 0). Observe that using (2.7) it follows

1
L 1 B

(185D | T8 R Vg =B R R

€ < |:e2/kz J 1 <|cl?ern / — = —
(e ¢ ten ¢
where j € {1, ..., £}. Thus, R < 1 (for j € {1, ..., £}). Moreover,
eel/(zuz)cl/(z%‘ﬂ/‘)
since B(xg,3R) C Q and u € £(R2; P) there exist Cy, A > 0 such that
PPV 0.0 PPNy 2 gy 2myy < Clef el sup PV H Vw12 g 3y,
Jiseje€f0,1}
¢ Bi! Be! Cpeto*Gm(EN)

<C s - -
- el1/21:2)]* (21121 B11) el1/Q A)1p* 2 2 1Be )

6.7)

Hence, putting (6.5), (6.6) and (6.7) together we obtain,

1 1 1 B! Be!
I < - - .. - 4 -
I26x. )] < (ClIENPm)® 2 B! 2 ﬁe!clc QDI @B Gl1/@TA)Ie Q0 Bel)

Bri=m U1 1el=m
LAp——LY) i 1/2
et om0 2imt 75 @R poiel+s?)

— iy 0 X Cebv e, e, (6.8)

[Bil=m  |Bel<m

Moreover, using (2.3) and (2.5) we see that denoting C4 = C1C; and Cs5 = Zlﬂlfm 1
there exist positive constants Cg, A3, A4 such that,

15 ¢ Gamb)

e 6] < CyClet e OmErN) oo l4sy™ < €37 " o e Gami) go (el +y/)
- ”E”pmi 5 - HS”me
L_o*(mazt)
_ (Mllslpl Coe i RamN) oo (g5 (6.9)

Since (6.9) holds true for every £ € N one can take the infimum in £ and use [17,
Lemma 1.4] to obtain,

12

m
|L(x, )| < <elog |§|ﬂe”,;3w(|$|/’)> Cee? <p *(AamN) o El+85

Now one can use (y) to get A > 0 such that log ||£]|” < @) , when ||&] > A.

2mrz
Thus mlog(lI§[1”) — ﬁw(lléllp) =< —2,\3w(||$||p) when [§]| > A. This, together

with the fact that 0 < p < 1, that w is a increasing and («)implies that o (||| +
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1/2 1/2

2
5 7) = w([lléll +8571°) = w(lIEN° +3p/ ) < w(ellEll”) < Llo(I§]1°) + 1], when
IEN = m Hence, choosing 6 = 4/\ T it follows that
(x, £)| < e—ﬁm(\\éll”)c itp*(MmN) OLIO(EN)11 . ¢ o eq(p FamN) Lo (1]17) 7ﬁw(ug||o)

< ool o5 ¥ GamN) = g0l

for ||| > max [A } . Therefore, there exists C7 > 0 such that

R

1 *
L (x, &)] < Ce=@@UEIN 2" RamM) e o

(2) = (1) : Consider 0 < r < R, ¢ € D®(B(xg, R)) (suchthat¢ = 1in B(xg, r))
and C, A, ¢ > 0 such that

g (SLPOONY @) (6, )] = Cex®™ Nmh = lEID (¢ N) € Bixg, r) x B" x No.
(6.10)
First, observe that,
from Theorem 1.1 we can conclude that there exists 0 < & < r such that
u € E%(B(xp,d)). In order to prove that u € E*(B(xp, 8); P) we will consider a
compact set K C B(xg, 8). Since ¢ = 1 in K it follows that [P(D)]N (u)(y) =

dMIP(D)IN (u)(y), foreach y € K.
Moreover, given v € D°’(R") and denoting

_le?

v () = )" f T Fouy @) (x, §)d§ (6.11)

it follows from Lemma 5.3 that (vf; Y) — (ve; ¥) (for each v € D7 (R")).
Furthermore for each N € Ny it follows from (6.10) that

2
(271)7"/e_%fug@[P(D)]N(u))(x,S)dé
- (277)7"/fua(d)[P(D)]N(u))(x,é)dé, Vx € K.

Thus,

(PN @)(x) = $ PO (1) (x)
— Qo) / Fo @IP(D)Y W) (x. £)dE, x € K.

Hence, using (6.10),
(PO @) = @y [ teige ke O — ¢\ edv o, e
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where C1 = (2)™"C [ e “*(E1)d. Therefore,
[P )] 12 ) < €1 / Ldx 2" (0m) _ ) p ot ma)
K

where C» = C|K]| and |[K| = f x ldx denotes the Lebesgue measure of K, hence
concluding that £(B(xg, 8); P). O

Next, as an immediate consequence of the previous theorem we prove that an iterate
of a constant coefficient hypoelliptic operator is a ultradifferentiable function.

Corollary 6.3 Let w be a weight function, 2 C R" be an open set and P (D) be a
constant coefficient hypoelliptic linear partial differential operator of order m. Then,
denoting o (t) = w(t?), it follows that E°(2; P) C £° (RQ).

Proof If u € £°(R2; P) then, using Theorem 6.2 it follows that u satisfies (6.1). Using
Theorem 5.6, for N = 0, it follows that u € £°. O

The next result is the so called Denjoy-Carleman Kotake-Narasimhan theorem for
constant coefficients operator and the proof given here is different from the one in [7].

Corollary 6.4 Let w be a weight function and Q@ C R" be an open set. If P(D) is
a constant coefficient elliptic linear partial differential operator of order m, then
EP(2; P) C £X(RQ).

Proof Since P (D) is a constant coefficient elliptic linear partial differential operator
it follows that p = 1 in (1.8). Thus, the result now follows from Corollary 6.3. O

Theorem 6.5 Let w be a weight function and Q C R" be an open set. If P(D) is a
constant coefficient linear partial differential operator of order m (non necessarily
hypoelliptic), then £°(2) C £ (2; P).

Proof Considering u € £“(£2), for each K C Q compact there exist C, 1 > 0 such
that

10%u(x)| < Cer?®" (o,

foreachx € K and x € Ng. Moreover, denoting P(D) = Zm <m Ga D%y it follows
that

[LPDWu] oy = D Haal -+ D e 19 ] 2k,
leer|<m loej|<m
1 .
= Z |aa1 | T Z |a0lj | C |K| ex(p*()‘lal_‘_m_‘_a/l).
leer|<m loej|<m

where |[K| = || x ldx denotes the Lebesgue measure of K. Since 1 — WT(’) is increas-

ing, by denoting h = Z |ay| it follows that

lee|<m

1P DYV ull 2y < RIC|K ||er? Oim)
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Therefore, using (2.5) there exist C; > 0 and 1, > O such that
. mj Koo 1 s .
[P ul 2, = CIKI(H7) €57 Gim < C|K ferct i,

Thus we conclude that u € £ (R2; P). O

Remark 6.6 1t is important to observe that using Corollary 6.4 and Theorem 6.5 we
can prove that if f € £(Q), P(D) is a constant coefficient elliptic linear partial
differential operator of order m and u € L%OC(Q) is a solution of the equation

P(Du=f, in Q (6.12)

then, u € £%(2).

Analogously, we can prove that if P (D) is a non-elliptic operator but it is a constant
coefficient hypoelliptic linear partial differential operator of order m satisfying (1.8)
andu € LfOC(Q) satisfies (6.12) then u € £ () (where o () = w(t?)).

Appendix: Some Properties for a Constant Coefficient Hypoelliptic Lin-
ear Operator

Throughout this section we will consider xo € R*,0 < R < 1, m > 0 and a constant
coefficient hypoelliptic linear operator P (D) of order m, defined in B(xg, R). Also,
we will denote 3*P = P@ and P (D)f = P@ f, for each o € Ng and f €
C°°(B(x9, R)). Moreover, in order to simplify the notation we will denote || f||, =
I f1lL2(B(xy.ry) < 0O, foreach O < r < R. In the proof of the next theorem we shall
use [20, inequality (4.5)’]. To be more precise, there exist C, y > 0 such that,

e NP@gIr < C(IPPlIr + (1 +€ IBlR) (A.1)
foreache > 0,¢ € C"(B(xo, R)) anda € Njj (suchthatO < |a| < m). Furthermore,
following [20, Lemma 4.1] for each €,€; > 0 such that R > €| + € there exists

@(e;.e) € CXF(B(xg, R —¢€)) such that ¢¢, = 1in B(xg, R — €] — €) and there exists
C > 0 dependent of R > 0 but not on (€1, €) satisfying,

199 Bey ellzoe < Ce; 1, (A2)
for || < m. We will use the following notation,

N, (f) = SUP05k||f||r75,

r>8>
forr <R, f € L>(B(xop,r)) and k € R.
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LemmaA.1 Let u € C"™(B(xp, R)) and y > 0. Then there exists D > 0 (dependent
of v, P, R) such that,

Ny_jal.R—8; (P®u) < D[N, g—s, (Pu) + |lullg—s,],

for each R >8; > 0 and a € N[}, where |a| < m.

Proof Consider arbitrary 0 < § and §; such that §; + 8 < R. By (A.2) there exists
¢s.5,€ C° (B(xo, R — 81— %)), ¢s.5, = L in B(xo, R — 8 — 8) and

) — et
10%s5.5, L < C (E) ,

for each o € N such that |a| < m. Moreover, for each € > 0 and 8 € Njj such that
|B| < m it follows that,

e PNPPu|g_s,_s = e PIPP (gs.5,u)llR-5,—5 < € I PP (¢5.5,u) | r.
Using (A.1) it follows that,
e PNPPu|g_s—s < CUIP(ps,5,w) R + 1+ € 7)ds.5,ullR).

Next we recall that, P(D)(fg) = Z\a|§m %P(O‘)g x 9% f for f, g € C*. Hence,

1
X e
o

la|<m "

e PlpPujp_s s5<c (

e
+(0+e >||¢a,alloo|u||“1§)
R

2 s—lalglel @ Y
S DIl LA e
=X — Wlpgyg F AT

S\~Y /s\Vlal
2 2 i () v
<c ( (2) (2) |» u||R7517%+(1+6 Mullg—s,
la|<m

S\ 7 _
<ct X (5> Ny—ja).R=8; (P@uw) + (1 + € V>IMR61)-

la|<m

Thus,

S\7
87 e Bl PBy | p_s s < C? ( > 2Ny o ks (P@u) + (W + (g) ) ||’4||R5|) :
|ee|<m

Next, considering an arbitrary x > 0 and defining € = % it follows that,

xPIs7 =Bl PPy g s, _5 < C* ( > 2Ny o k=g (P@u) + (87 + x7) ||”|R51) :

loe|<m
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Since0 < § < R < 1and y > 0 we have §¥ < 1. Considering the supremum in
6 > 0 in the above inequality, we have

1PNy -ipir-s, (PPu) = €2 ( > 2Ny ks (P@w) + (14 x7) ||u||“]) ,
la|<m

foreach 8 € N{j such that 0 < || < m. Summing in f the last inequality we see that,
there exists C; > 0 such that

3 XNy jagiros, (P(a)u) <C ( > 2Ny o) =8y (P@u) + (1+ 1Y) ||u||R51) .

O<|a|<m la|<m

Thus,

S (1= 2 Nyotaino (P@u) = € (27 Nygesy @) + (14 x7) lll-s))

O<|a|<m
Choosing x > 1, such that x — C;27 > 1, it follows that,
Ny _jal; R—5; (P(a)u> < Ci (2" Ny g—s; )+ (1 + x7) lullr=s,) .

foreach @ € Njj suchthat 0 < |a| < m. Therefore, denoting C> = max{2”; (1+x7)}
and D = CC,, it follows that,

Ny fati—sy (P@u) = D (Ny, s, 60 + lules,)
for each o € Njj such that 0 < |a| < m. O
Corollary 6.7 Let u € C™(B(xg, R)). There exists Cp > 0 such that,
1P @ullr < Cpe'® (1Pully+e + lltlrre)

foreache,r > 0 (suchthatr +¢ < R < 1)ando € Ng where |a| < m. Let us recall
the notation ||ullr+e = lull2(B(xy r+e))-

Proof Using Lemma A.1 it follows that,

81 P @y p_s s < D { sup ¥ | Pullp—s,—y + ||u||“1] < D (RY | Pullg—s, + llulg—s,)
O<n<R—41

foreachd, §; > Osuchthat§+6; < Randa € g,suchthatO < |a| < m. Therefore,
foreach0 <r < Rand 0 < € < R — r it follows that

" P@y ), = T POy p_gr—e)—e < D (RY |Pullyte + llullrre) -
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Hence, using that 0 < R < 1
IPull, < e De® (| Pullyse + lullrre) < Crpe™ (I1Pullyse + lullrte)

where Cp = €V D. O
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