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Abstract
Let ρ be a rearrangement-invariant (r.i.) norm on the set M(Rn) of Lebesgue-
measurable functions onR

n such that the space Lρ(Rn) = { f ∈ M(Rn) : ρ( f ) < ∞}
is an interpolation space between L2(R

n) and L∞(Rn). The principal result of this
paper asserts that given such a ρ, the inequality

ρ( f̂ ) ≤ Cσ( f )

holds for any r.i. norm σ on M(Rn) if and only if

ρ̄
(
U f ∗) ≤ C σ̄ ( f ∗).

Here, ρ̄ is the unique r.i. norm on M(R+), R+ = (0,∞), satisfying ρ̄( f ∗) = ρ( f )
and U f ∗(t) = ∫ 1/t

0 f ∗, in which f ∗ is the nonincreasing rearrangement of f on R+.
Further, in this case the smallest r.i. norm σ for which ρ( f̂ ) ≤ Cσ( f ) holds is given
by

σ( f ) = σ̄ ( f ∗) = ρ̄
(
U f ∗) ,

Communicated by Mieczyslaw Mastylo.

Rajesh K. Singh is supported by National Board for Higher Mathematics, Government of India.

B Rajesh K. Singh
agsinghraj@gmail.com

Ron Kerman
rkerman@brocku.ca

Rama Rawat
rrawat@iitk.ac.in

1 Department of Mathematics, Brock University, St. Catharines, ON L2S 3A1, Canada

2 Department of Mathematics and Statistics, Indian Institute of Technology, Kanpur 208016, India

3 Department of Mathematics, Indian Institute of Science, Bengaluru, Karnataka 560012, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-024-10101-2&domain=pdf
http://orcid.org/0000-0002-6883-7793
http://orcid.org/0009-0009-3711-2018
http://orcid.org/0009-0003-3026-8817


42 Page 2 of 28 Journal of Fourier Analysis and Applications (2024) 30 :42

where, necessarily, ρ̄
(∫ 1/t

0 χ(0,a)

)
= ρ̄ (min{1/t, a}) < ∞, for all a > 0. We further

specialize and expand these results in the contexts of Orlicz and Lorentz Gamma
spaces.

Keywords Fourier transform · Weighted inequalities · Lorentz Gamma spaces ·
Orlicz spaces · Interpolation spaces

Mathematics Subject Classification Primary 42B10; Secondary 46M35 · 46E30 ·
46B70

1 Introduction

Given f an L1(R
n) function, its Fourier transform, defined by

(F f )(ξ) = f̂ (ξ) =
∫

Rn
f (x)e−2π i x ·ξ dx, ξ ∈ R

n,

satisfies the inequality

‖ f̂ ‖∞ ≤ ‖ f ‖1.

Plancherel, in 1910, proved the n-dimensional version of the Riesz–Fischer theorem,
namely

‖ f̂ ‖2 = ‖ f ‖2.

Standard interpolation theorems yield that L p′(Rn), p′ = p
p−1 , is an interpolation

space (defined in Sect. 2) between L2(R
n) and L∞(Rn) for 1 < p < 2, leading to the

Hausdorff–Young inequality (1926),

‖ f̂ ‖p′ ≤ Cp‖ f ‖p,

in this case.
Inspired by the work of Jodeit and Torchinsky [13], in which the authors have

generalized the Hausdorff–Young inequality, replacing the L p spaces with Orlicz
spaces, we prove the following theorem which is central to the rest of the results in
this paper.

Theorem 1.1 Let ρ( f ) = ρ̄( f ∗) be an r.i. norm such that the Banach space Lρ(Rn)

is an interpolation space between L2(R
n) and L∞(Rn). Then,

ρ( f̂ ) ≤ Cσ( f ), (1.1)

for any r.i. norm σ if and only if

ρ̄(U f ∗) ≤ C σ̄ ( f ∗), (1.2)
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where C > 0 is independent of f ∈ Lσ (Rn).

For r.i norms ρ = ρp′ and σ = ρp, where ρp( f ) = ‖ f ‖p, 1 < p < ∞,
1
p + 1

p′ = 1, the space Lρp′ (R
n) = L p′(Rn) is an interpolation space between L2(R

n)

and L∞(Rn) when 1 < p < 2 and the inequality (1.2), amounts to

C ρ̄p( f
∗) ≥ ρ̄p′(U f ∗) =

[∫

R+

(∫ 1/t

0
f ∗
)p′

dt

] 1
p′

=
[∫

R+

(∫ t

0
f ∗
)p′

dt

t2

] 1
p′

,

which is a special case of Hardy’s inequality; see [9, p. 124]. Therefore, Theorem 1.1
leads to the Hausdorff–Young inequality in this case.

TheOrlicz spaces, Lρ�(Rn), are defined in termsof a nondecreasing convex (Orlicz)
function � mapping R+ onto itself with the norm being given by

ρ�( f ) = inf

{
λ > 0 :

∫

Rn
�

( | f (x)|
λ

)
dx ≤ 1

}
.

Our reformulation of the result in [13] asserts that, given an Orlicz function �, one
has

ρ�1( f̂ ) ≤ Cρ�2( f ),

in which

ρ�1( f ) = ρ�( f 2)1/2

and ρ�2 defined in terms of �̃2, with

�̃2(t) = 1

�1(t−1)
, t ∈ R+.

We discuss this and related results on Orlicz spaces in detail in Sect. 4. Theorem 1.1
tells us that, for 1 < p ≤ 2, the smallest r.i. norm σ for which

ρp′( f̂ ) ≤ Cσ( f ),

is given by

σ( f ) = σ̄ ( f ∗) = ρp′
(
U f ∗) =

[∫

R+

(∫ t

0
f ∗
)p′

dt

t2

] 1
p′

=
[∫

R+

(
t1/p f ∗∗(t)

)p′ dt
t

] 1
p′

,

the so-called Lorentz norm ρp,p′ , which is smaller than ρp.
In the next section we provide material on r.i. spaces and interpolation theory. The-

orem 1.1 and some of its consequences are proved in Sect. 3. Section4 deals with the
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Fourier transform in the context of Orlicz spaces and Sect. 5 considers the bounded-
ness of the Fourier transform between Lorentz Gamma spaces. Section6 concludes
with some remarks on other related work.

Throughout this article, we write A 	 B to abbreviate C1A ≤ B ≤ C2A for some
constants C1,C2 > 0 independent of A and B.

2 Rearrangement Invariant Spaces and the K -Functional

Definition 2.1 A rearrangement-invariant (r.i.) Banach function norm ρ on M(	),
	 = R

n or R+, satisfies

(1) ρ( f ) ≥ 0, with ρ( f ) = 0 if and only if f = 0 a.e.;
(2) ρ(c f ) = c ρ( f ), c > 0;
(3) ρ( f + g) ≤ ρ( f ) + ρ(g);
(4) 0 ≤ fn ↗ f implies ρ( fn) ↗ ρ( f );
(5) ρ(χE ) < ∞ for all measurable E ⊂ 	 such that |E | < ∞;
(6)

∫
E f ≤ CE ρ( f ), with E ⊂ 	, |E | < ∞ andCE > 0 independent of f ∈ M(	);

(7) ρ( f ) = ρ(g) whenever μ f = μg . Here, μh , for h ∈ M(	), denotes the
distribution function of h defined as μh(λ) = |{x ∈ 	 : |h(x)| > λ}|, λ ∈ R+.

Corresponding to an r.i. norm ρ on M(	) is the class

Lρ(	) := { f ∈ M(	) : ρ( f ) < ∞} ,

which becomes a Banach space of Lebesgue measurable functions under the norm
ρ( f ), f ∈ Lρ(	). The space Lρ(	) is then a rearrangement-invariant space.

According to a fundamental result of Luxemberg [9, Chapter 2, Theorem 4.10],
there corresponds to every r.i. norm ρ on M(Rn) an r.i. norm ρ̄ on M(R+) such that

ρ( f ) = ρ̄( f ∗), f ∈ M(Rn). (2.1)

Here,

f ∗(t) = μ−1
f (t) = inf

{
λ ∈ R+ : μ f (λ) ≤ t

}
, t ∈ R+.

There is only one such ρ̄ since both R
n and R+ are nonatomic and have infinite

Lebesgue measure, see [9, p. 64].
A theorem of Hardy and Littlewood asserts that

∫

Rn
| f (x)g(x)| dx ≤

∫

R+
f ∗(t)g∗(t)dt, f , g ∈ M(Rn). (2.2)

The operation of rearrangement, though not sublinear itself, is sublinear in the average,
namely,

( f + g)∗∗(t) ≤ f ∗∗(t) + g∗∗(t), f , g ∈ M(Rn), t ∈ R+, (2.3)
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in which

h∗∗(t) = t−1
∫ t

0
h∗, 0 ≤ h ∈ M(R+), t ∈ R+.

Abasic technique forworkingwith r.i. norms involves theHardy–Littlewood–Polya
(HLP) Principle which asserts that

f ∗∗ ≤ g∗∗ implies ρ( f ) ≤ ρ(g);

see [9, Chapter 3, Proposition 4.6]. This principle is based on a result of Hardy, a
generalized form of which reads

∫ t

0
f ≤

∫ t

0
g (2.4)

implies

∫ t

0
f h∗ ≤

∫ t

0
gh∗, t ∈ R+,

for all 0 ≤ f , g ∈ M(R+) and h ∈ M(R+). The Köthe dual of an r.i. norm ρ on
M(	) is another such norm, ρ′, with

ρ′(g) := sup
ρ( f )≤1

∫

	

| f (x)g(x)|dx, f , g ∈ M(	).

It obeys the Principle of Duality

ρ′′ = (ρ′)′ = ρ. (2.5)

Further, one has the Hölder inequality

∫

	

| f (x)g(x)|dx ≤ ρ( f )ρ′(g), f , g ∈ M(	).

Finally,

ρ̄′ = (ρ̄)′.

The Orlicz and Lorentz Gamma spaces studied in sections 5 and 6, respectively,
are examples of such r.i. spaces.

The dilation operator Es , s ∈ R+, is defined at f ∈ M(R+), t ∈ R+, by

(Es f )(t) = f (st), s, t ∈ R+.
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The operator Es is bounded on any r.i. space Lρ(R+). We denote its norm by hρ(s).
Using hρ we define the lower and upper indices of Lρ(R+) as

iρ = sup
s>1

− log hρ(s)

log s
and Iρ = inf

0<s<1

− log hρ(s)

log s
, (2.6)

respectively. One has

iρ = lim
s→∞

− log hρ(s)

log s
and Iρ = lim

s→0+
− log hρ(s)

log s
.

Further, 0 ≤ iρ ≤ Iρ ≤ 1 and, moreover,

iρ′ = 1 − Iρ and Iρ′ = 1 − iρ.

For all this, see [8, pp. 1250–1252].
If we denote by kρ(s) the norm of Es on the characteristic functions χF , F ⊂ R+,

|F | < ∞, and define jρ and Jρ by replacing hρ(s) in (2.6) by kρ(s), we obtain the
fundamental indices of Lρ(R+). It turns out that when Lρ(R+) is an Orlicz space or
Lorentz Gamma space iρ = jρ and Iρ = Jρ . For ρ an Orlicz norm see [9]; for ρ a
Lorentz Gamma norm see [10].

Finally, we describe that part of Interpolation Theory which is relevant to this paper.
Let X1 and X2 be Banach spaces compatible in the sense that both are continuously

imbedded in the same Hausdorff topological space H , written

Xi ↪→ H , i = 1, 2.

The spaces X1 ∩ X2 and X1 + X2 are the sets

X1 ∩ X2 := {x : x ∈ X1 and x ∈ X2}

and

X1 + X2 := {x : x = x1 + x2, for some x1 ∈ X1, x2 ∈ X2} ,

with norms

‖x‖X1∩X2 = max
[‖x‖X1 , ‖x‖X2

]

and

‖x‖X1+X2 = inf
{ ‖x1‖X1 + ‖x2‖X2 : x = x1 + x2, x1 ∈ X1, x2 ∈ X2

}
.

Recall that given Banach spaces X1 and X2 imbedded in a common Hausdorff
topological vector space, their Peetre K -functional is defined for x ∈ X1 + X2, t > 0,
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by

K (t, x; X1, X2) = inf
x = x1+x2

[‖x1‖X1 + t ‖x2‖X2

]
.

Weobserve that, for	 = R
n orR+, p ∈ [1,∞), L p(	) and L∞(	) are compatible,

each being continuously imbedded in the Hausdorff topological spaceM(	) equipped
with the topology of convergence in measure. One has

K (t, f ; L p(	), L∞(	)) 	
[∫ t p

0
f ∗(s)pds

]1/p
, t > 0, (2.7)

f ∈ (L p + L∞
)
(	), see [12].

The inequality

∫ t

0
( f̂ )

∗
(s)2ds ≤ C1

∫ t

0
(U f ∗)(s)2ds, t ∈ R+, (2.8)

from [13] reads

K
(
t, ( f̂ )∗; L2(R+), L∞(R+)

)
≤ K

(
t,C2U f ∗; L2(R+), L∞(R+)

)
. (2.9)

Definition 2.2 A Banach space Y is said to be intermediate between X1 and X2 if

X1 ∩ X2 ↪→ Y ↪→ X1 + X2.

Definition 2.3 ABanach space Y intermediate between the compatible spaces X1 and
X2 is said to be an interpolation space between X1 and X2 if every linear operator T
on X1 + X2 satisfying

T : Xi → Xi , i = 1, 2,

also satisfies T : Y → Y .

Suppose now that μ is an r.i. norm on M(R+) satisfying μ
(

1
1+t

)
< ∞. Denote

by Xμ the set of all x ∈ X1 + X2 for which

ρμ(x) = μ

(
K (t, x; X1, X2)

t

)
< ∞.

Then, Xμ, with the norm ρμ, is an interpolation space between X1 and X2, see [4].
Therefore, from (2.7), we have that the space Xρμ,p , with the norm

ρμ,p( f ) = ρμ,p( f
∗) = μ̄

⎛

⎝t−1

[∫ t p

0
f ∗(s)pds

]1/p⎞

⎠ , f ∈ M(	), (2.10)
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is an interpolation space between L p(	) and L∞(	).

Definition 2.4 ABanach space Y intermediate between the compatible spaces X1 and
X2 is said to be monotone if, given x, y ∈ X1 + X2, with

K (t, x; X1, X2) ≤ K (t, y; X1, X2), t ∈ R+, (2.11)

one has y ∈ Y implies x ∈ Y and ‖x‖Y ≤ ‖y‖Y .
The result of Lorentz–Shimogaki in [17, Theorem 2 and Lemma 3] asserts that

the r.i. interpolation spaces between L p(	) and L∞(	) are precisely the monotone
spaces in that context. Further, the inequality (2.9) is a special case of (2.11). Thus,
for Lρ(Rn) between L2(R

n) and L∞(Rn), there holds

ρ( f̂ ) = ρ̄
(
( f̂ )∗

)
≤ C2ρ̄

(
U f ∗)

≤ MC2σ̄ ( f ∗)
= MC2σ( f ),

whenever the r.i. norms ρ and σ on M(Rn) satisfy

ρ̄(U f ∗) ≤ M σ̄ ( f ∗), f ∈ M(Rn). (2.12)

Remark 2.1 We have, for simplicity, chosen to restrict attention to functions f ∈
L1(R

n), since then f̂ is defined as a classical Lebesgue integral. Again, it is well
known that for f ∈ L2(R

n)

lim
R→∞

∫

{x∈Rn : |x |≤R}
f (x) e−2π i x ·ξ dx, ξ ∈ R

n,

exists in the normof L2(R
n),which canbeused to define f̂ . Thus, theFourier transform

can be defined as a function for all f ∈ (L1 + L2) (Rn). Indeed, it is shown in [3] that
(L1 + L2) (Rn) is the largest r.i. space of functions that is mapped byF into a space
of locally integrable functions.

The Editor has referred us to the paper [28], among others, where it is shown that,
essentially the set of functions f for which f̂ is defined as a function is the amalgam
space �2 (L1(R

n)), which in the case n = 1 has the norm

( ∞∑

k=−∞

(∫ k+1

k
| f (x)| dx

)2)1/2

.

This is a Banach function norm onM(Rn) that is not rearrangement-invariant, namely,
it satisfies (1)–(6) in Definition 2.1, but not (7). Thus, we need spaces other than the
r.i. ones to study the Fourier transform in the context of this space.



Journal of Fourier Analysis and Applications (2024) 30 :42 Page 9 of 28 42

3 Proof of Theorem 1.1

Proof The “if” part was proved towards the end of the Sect. 2. For the “only if” part, let
B be the unit ball inR

n centered at the origin. Then χ̂B is real-valued, radial and contin-
uous, with χ̂B(0) = |B|. Also, 0 ≤ χB ∗χB ≤ |B|χ2B ∈ L1 and ̂(χB ∗ χB) = (χ̂B)2.

Choose r > 0 such that χ̂B ≥ |B|/2 on r B. Let 0 ≤ f ∈ L1(Rn) be radial and
radially decreasing. For t ∈ R+, choose s > 0 such that |sB| = t−1. Then

(U f ∗)(t) =
∫ 1/t

0
f ∗ =

∫

sB
f (y)dy

=
(
r−1s

)n ∫

r B
f
(
r−1sy

)
dy

≤
(
r−1s

)n ∫

r B

4

|B|2 (χ̂B(y))2 f
(
r−1sy

)
dy

≤
(
r−1s

)n 4

|B|2
∫

Rn

̂(χB ∗ χB)(y) f
(
r−1sy

)
dy

=
(
r−1s

)n 4

|B|2 (rs−1)n
∫

Rn
(χB ∗ χB)(ξ) f̂

(
rs−1ξ

)
dξ

≤ 4

|B|2 |B|
∫

2B
| f̂
(
rs−1ξ

)
|dξ

= 4

|B|
(
r−1s

)n ∫

|η|≤2rs−1
| f̂ (η)|dη

= 4

|B|
(
r−1s

)n ∫
(
2rs−1

)n |B|

0

(
f̂
)∗

= 4

|B|2 r
−n 1

t

∫ 2nrn |B|2t

0

(
f̂
)∗

≤ 4

|B|2 r
−n 1

t

∫ t

0

(
f̂
)∗ = Cn

1

t

∫ t

0

(
f̂
)∗

,

where we further shrink r to be such that 2nrn|B|2 < 1 and the constant Cn > 0
depends only on n.

Therefore, for f ∈ (L1 ∩ Lσ )(Rn) such that f (x) = g(|x |), x ∈ R
n , with g ↓ on

R+,

ρ̄(U f ∗) ≤ Cn ρ̄

(
1

t

∫ t

0

(
f̂
)∗)

≤ C ′
n ρ̄

((
f̂
)∗)

= C ′
n ρ

(
f̂
)

≤ C C ′
n σ( f ), by assumption,

= C C ′
n σ̄

(
f ∗) ,
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where the second inequality is the boundedness of the averaging operator,
P : g �→ 1

t

∫ t
0 g, on L ρ̄ (R+), which follows from our hypothesis on L ρ̄ (R+) that it

is the interpolation space between L2(R+) and L∞(R+), and the Hardy’s inequality.
Given h ∈ (L1 ∩ L σ̄ ) (R+), let g(t) = h∗(|B|tn) and set f (x) = g(|x |). Then, the

rearrangement of f with respect to n-dimensional Lebesgue measure is equal to the
rearrangement of h with respect to 1-dimensional Lebesgue measure. The foregoing
argument then yields

ρ̄(Uh) ≤ ρ̄
(
Uh∗) = ρ̄

(
U f ∗) ≤ C σ̄ ( f ∗) = C σ̄ (h∗) = C σ̄ (h).

The space (L1 ∩ L σ̄ ) (R+) includes all bounded functions of compact support whence
the monotone convergence theorem and the Fatou property of ρ̄ and σ̄ completes the
proof. ��

Boyd in [7, pp. 92–98] associates to each r.i. norm ρ on M(	), 	 = R
n or R+,

and each p > 1 the functional

ρ(p)( f ) = ρ(| f |p) 1
p , f ∈ M(	). (3.1)

He shows that ρ(p) is an r.i. norm on M(	) and that ρ̄( f ∗∗) ≤ C ρ̄( f ∗) holds with
ρ̄ = ρ(p) = ρ̄(p).

The space defined by the norm ρ(p) is now referred to as the p-convexification of
Lρ(Rn). It was studied in a series of papers by G. Lozanovskiı̆ about the time Boyd,
independently, introduced his spaces. See the references to G. Lozanovskiı̆’s work in
[19]. This latter paper treats the K -functional of p-convexifications, as does the paper
[1]. These papers should shed light on the work involving ρ(2) in this and the next two
sections.

Theorem 3.1 Let ρ be an r.i. norm on M(	). For fixed p > 1, define ρ(p) as in (3.1).
Then, Lρ(p) (	) is an interpolation space between L p(	) and L∞(	).

Proof Suppose the linear operator T satisfies

T : L p(	) → L p(	) and T : L∞(	) → L∞(	).

Then, according to [9, Theorem 1.11, pp. 301–304], there exists C > 0, such that

∫ t

0
(T f )∗(s)pds ≤ C

∫ t

0
f ∗(s)pds, f ∈ (L p + L∞)(	), t ∈ R+. (3.2)

The HLP Principle involving ρ̄ yields

ρ
(
(T f )p

) = ρ̄
([

(T f )∗
]p)

≤ C ρ̄
([

f ∗]p)

= Cρ
(| f |p) , f ∈ Lρ(p) (	),
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and hence

ρ(p)(T f ) ≤ C1/pρ(p)( f ), f ∈ Lρ(p) (	).

��
Theorem 3.2 Let ρ and σ be r.i. norms on M(Rn) determined, respectively, by the r.i.
norms ρ̄ and σ̄ on M(R+) by ρ( f ) = ρ̄( f ∗) and σ( f ) = σ̄ ( f ∗), f ∈ M(Rn). Then,

ρ(2)( f̂ ) ≤ Cσ( f ), f ∈ (Lσ ∩ L1)(R
n),

if and only if

ρ(2)(Ug) ≤ C σ̄ (g), g ∈ M(R+).

Proof The result is a consequence of Theorems 3.1 and 1.1. ��
From our discussion on the spaces Xρμ,p , with the norm ρμ,p given by (2.10),

Theorem 1.1 guarantees

Theorem 3.3 Let μ and σ be r.i. norms on M(Rn) determined, respectively, by the r.i.

norms μ̄ and σ̄ on M(R+). Suppose μ̄
(

1
1+t

)
< ∞. Set

ρμ,2( f ) = ρμ,2( f
∗) = μ̄

⎛

⎝t−1

[∫ t2

0
f ∗(s)2ds

]1/2⎞

⎠ .

Then,

ρμ,2( f̂ ) ≤ Cσ( f ), f ∈ (Lσ ∩ L1)(R
n),

if and only if

ρμ,2(Ug) ≤ C σ̄ (g), g ∈ M(R+).

Finally, consider an r.i. norm ρ on M(Rn) determined by the r.i. norm ρ̄ on M(R+)

and set

ρU ( f ) := (ρ̄ ◦U ) ( f ∗) = ρ̄(U f ∗), f ∈ M(Rn).

One has ρU an r.i. norm if (ρ̄ ◦U ) (χ(0,t)) < ∞ for all t > 0, or, equivalently,

ρ̄
(

1
1+t

)
< ∞. In that case, L ρ̄ ◦U (R+) is the largest r.i. space to be mapped into

L ρ̄ (R+) by U .
With this background we now have



42 Page 12 of 28 Journal of Fourier Analysis and Applications (2024) 30 :42

Theorem 3.4 Let ρ be an r.i. norm on M(Rn) defined in terms of an r.i. norm ρ̄ on
M(R+) such that

ρ̄

(
1

1 + t

)
< ∞.

Assuming L ρ̄ (R+) is an interpolation space between L2(R+) and L∞(R+), one has
that LρU (Rn) is the largest r.i. space of functions on R

n to be mapped into Lρ(Rn) by
F .

4 F in the Context of Orlicz Spaces

An Orlicz gauge norm is given in terms of an N -function

�(x) =
∫ x

0
φ, x ∈ R+;

here φ is a nondecreasing function mapping R+ onto itself. These N -functions are
convex functions of the type from [13] referred to in the Introduction. Specifically, the
gauge norm ρ� is defined at f ∈ M(	), 	 = R

n or R+, by

ρ�( f ) = inf

{
λ > 0 :

∫

	

�

( | f (x)|
λ

)
dx ≤ 1

}
.

One can show ρ�( f ) = ρ̄�( f ∗), so that the Orlicz space

L�(	) = { f ∈ M(	) : ρ�( f ) < ∞}

is an r.i. space. The norm (ρ�)′ dual to ρ� is equivalent to the gauge norm ρ�̃, where
�̃(t) = ∫ t

0 φ−1, t ∈ R+, see [9].
The definitive work on F between Orlicz spaces is due to Jodeit and Torchinsky.

See, in particular, [13, Theorem 2.16]. This theorem asserts that if A and B are N -
functions with L A(Rn) ⊂ (L1 + L2)(R

n), LB(Rn) ⊂ (L2 + L∞)(Rn) and F :
LA(Rn) → LB(Rn), then there exist N -functions A1 and B1 with L A1(R

n) ⊃ L A(Rn)

and LB1(R
n) ⊂ LB(Rn) for which F : L A1(R

n) → LB1(R
n). Moreover, B1(t) =

1/ Ã1(t−1); A1(t)/t2 ↓ on R+ and so B1(t)/t2 ↑ on R+.
Using the results in the previous sections we now show LA1(R+) is an interpolation

space between L1(R+) and L2(R+), while LB1(R+) is an interpolation space between
L2(R+) and L∞(R+).

To begin, we observe that B1(t)/t2 ↑ is equivalent to B1(t) = �(t2) for some N -
function �. Indeed, given the latter, one has B1(t)/t2 = �(t2)/t2 ↑ on R+. Again
B1(t)/t2 ↑ implies B1(t1/2)/t ↑, so that �(t) = B1(t1/2) is such that B1(t) = �(t2).
Next,

ρ
(2)
� ( f ) = ρ�( f 2)

1
2 = ρB1( f ).
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According to Theorem 3.1, then, LB1(R
n) is an interpolation space between L2(R

n)

and L∞(Rn).
Now, B1(t) = 1/ Ã1(t−1) is equivalent to Ã1(t) = 1/B1(t−1), whence Ã1(t)/t2

= (t−1)2/B1(t−1) and so B1(t)/t2 ↑ amounts to Ã1(t)/t2 ↑, that is, L Ã1
(Rn) is an

interpolation space between L2(R
n) and L∞(Rn). Since L Ã1

(Rn) is the Köthe dual
of LA1(R

n) we conclude that LA1(R
n) is an interpolation space between L1(R

n) and
L2(R

n).
The monotonicity conditions on A1 and B1 translate into conditions on their

associated fundamental functions. For example, LB1(R
n) has fundamental function

φB1(t) = ρB1

(
χ(0,t)

) = 1/B−1
1 (t−1), t ∈ R+. Thus setting t = 1/B1(y) in

φB1 (t)

t1/2
= 1

B−1
1 (t−1)t1/2

we arrive at
(
B1(y)
y2

)1/2
, which increases in y and therefore

decreases in t , so
φB1 (t)

t1/2
↓.

We observe that L A1(R
n) is not the largest r.i. space that F maps into LB1(R

n);
that space has norm ρB1(U f ∗). In the Lebesgue context, in which, say, B1(t) = t p

′
,

1 < p < 2,

ρp′(U f ∗) =
[∫

R+
(U f ∗)(t)p′

dt

]1/p′

	
[∫

R+

[
t
1
p f ∗∗(t)

]p′ dt

t

]1/p′

,

which is the so-called Lorentz norm ρp,p′ . This norm is smaller than ρA1 = ρp. For
more details see the next section.

The foregoing argument can be used to associate a pair of N -functions (A, B) to
a given N -function � such that F : LA(Rn) → LB(Rn). Moreover, L A(Rn) is an
interpolation space between L1(R

n) and L2(R
n), while LB(Rn) is an interpolation

space between L2(R
n) and L∞(Rn). Indeed, we have

Theorem 4.1 Let� be an N-function. Set B(t) = �(t2) and Ã(t) = 1/B(t−1). Then,
essentially, A(t)

t2
↓,

F : L A(Rn) → LB(Rn)

or, equivalently,

F : L B̃(Rn) → L Ã(Rn)

with L A(Rn) an interpolation space between L1(R
n) and L2(R

n), while LB(Rn) is
an interpolation space between L2(R

n) and L∞(Rn).

Proof Theprecedingdiscussion showsρB = ρ�(2) whence LB(Rn) is between L2(R
n)

and L∞(Rn). Again B(t)/t2 ↑ and Ã(t)/t2 ↑ which means L Ã is an interpolation
spacebetween L2(R

n) and L∞(Rn),whence L A(Rn) is an interpolation spacebetween
L1(R

n) and L2(R
n). Finally, Theorem 3.10 in [13] ensures

F : L A(Rn) → LB(Rn),

since B(t) = 1/ Ã(t−1) is equivalent to Ã(t) = 1/B(t−1). ��
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5 F Between Lorentz Gamma Spaces

In this section, we make use of the operators P and Q defined by

(P f )(t) = 1

t

∫ t

0
f and (Qg)(t) =

∫ ∞

t
g(s)

ds

s
, f , g ∈ M(R+), t ∈ R+.

These operators satisfy the equations

∫

R+
g P f =

∫

R+
f Qg, f , g ∈ M(R+),

and

PQ = QP = P + Q.

Fix an index p ∈ (1,∞) and a weight 0 ≤ u ∈ M(R+). The Lorentz Gamma norm

ρp,u defined in terms of the Lorentz norm λp,u( f ) = λp,u( f ∗) =
(∫

R+ f ∗(t)pdt
)1/p

by

ρp,u( f ) = λp,u( f
∗∗), f ∈ M(	),

where, once again, 	 = R
n or R+.

To guarantee ρp,u(χE ) < ∞ for all measurable sets E ⊂ 	 with |E | < ∞, we
require

∫

R+

u(t)

1 + t p
dt < ∞. (5.1)

The Lorentz Gamma space

�p,u(	) = {
f ∈ M(	) : ρp,u( f ) < ∞}

,

is then an r.i. space. The norm, ρp′,v′ , dual to ρp,u is given by

ρp′,v′(g) =
(∫

R+
g∗∗(t)pv′(t)dt

)1/p′

, g ∈ M(	)

where, p′ = p/(p − 1) and

v′(t) = t p
′+p−1

∫ t
0 u

∫∞
t u(s)s−pds

[∫ t
0 v + t p

∫∞
t u(s)s−pds

]p′+1
.

This is shown, for example, in [10].
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In this section we study the inequality

ρp,u( f̂ ) ≤ C ρq,v( f ), f ∈ (L1 ∩ �q,v)(R
n). (5.2)

We begin by assuming �p,u(R+) is an interpolation space between L2(R+) and
L∞(R+), then address the question of when this is the case later in the section.

Recall that Theorem 1.1 ensures that (5.2) holds if and only if

ρ̄p,u(U f ∗) ≤ C ρ̄q,v( f
∗), f ∈ M(R+). (5.3)

Theorem 5.1 Let the indices p, q and weights u, v be as described above. Then, given
that �p,u(R+) is an interpolation space between L2(R+) and L∞(R+), one has (5.2)
if and only if

ρ̄q ′,v′(g∗∗) ≤ C ρ̄p′,u p
′(g∗), g ∈ M(R+). (5.4)

where, as usual, p′ = p
p−1 , q

′ = q
q−1 ,

∫
R+ v = ∞,

v′(t) = tq
′+q−1

∫ t
0 v

∫∞
t v(s)s−qds

[∫ t
0 v + tq

∫∞
t v(s)s−qds

]q ′+1

u p(t) = u(t−1)t p−2,

∫

R+
u p = ∞,

and

u p
′(t) = t p

′+p−1
∫ t
0 u p

∫∞
t u p(s)s−pds

[∫ t
0 u p + t p

∫∞
t u p(s)s−pds

]p′+1
, t ∈ R+.

Proof The inequality (5.3) tells that the space determined by the r.i. norm ρ̄p,u(U f ∗)
is the largest one mapped into �p,u(R+) by U . Now,

ρ̄p,u(U f ∗) =
[∫

R+
P(U f ∗)(t)pu(t) dt

] 1
p

,

P
(
U f ∗) (t) = t−1 (P(Q f ∗)

)
(t−1).

Further,

∫

R+

[
t−1 (P(Q f ∗)

)
(t−1)

]p
u(t)dt =

∫

R+

[
t
(
P(Q f ∗)

)
(t)
]p

u(t−1)t−2dt .
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We have shown that

ρ̄p,u(U f ∗) =
[∫

R+

(
P(Q f ∗)

)
(t)pu p(t)dt

] 1
p

= ρ̄p,u p (Q f ∗).

Therefore, any �q,v(R+) mapped into �p,u(R+) byU must be embedded into this
largest domain; that is,

ρ̄p,u p (Q f ∗) ≤ C ρ̄q,v( f
∗), f ∈ M(R+). (5.5)

But, since (5.5) is equivalent to (5.4), its dual inequality, (5.5) may be tested over
any 0 ≤ f ∈ M(R+), as is seen in

∫

R+
g∗Q f =

∫

R+
f Pg∗ ≤

∫

R+
f ∗Pg∗ =

∫

R+
g∗Q f ∗.

��
The inequality (5.4), and hence (5.2), amounts to

[∫

R+
(Ph)q

′
v′
] 1

q′
≤ C

[∫

R+
h p′

u p
′
] 1

p′
, (5.6)

with h = g∗∗ belonging to

	0,1(R+) = {0 ≤ h ∈ M(R+) : h(t) ↓ and t h(t) ↑ on R+}.

Such inequalities are shown in Theorem 4.4 of [10] to be equivalent to a pair of
weighted norm inequalities involving general non-negative measurable functions. In
the case of (5.6) this leads to

Theorem 5.2 Let the indices p, q and weights u, v be as in Theorem 5.1. Then, (5.6)
holds if and only if

[∫

R+
[(P + Q)g]q

′
v′
] 1

q′
≤ C

[∫

R+
gp′

u p
1−p′

] 1
p′

(5.7)

and

[∫

R+
(P2g)q

′
v′
] 1

q′
≤ C

[∫

R+
gp′

u p
1−p′

] 1
p′

, 0 ≤ g ∈ M(R+).

Proof According to Theorem 4.4 in [10], one has (5.6) if and only if

[∫

R+
[(P + Q)Qg]p u p

] 1
p ≤ C

[∫

R+
gqv′1−q

] 1
q
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and

[∫

R+
[P(P + Q)g]q

′
v′
] 1

q′
≤ C

[∫

R+
gp′

u p
1−p′

] 1
p′

,

holds for all 0 ≤ g ∈ M(R+).

These are dual inequalities. We choose the second one, which easily reduces to
(5.7). ��

To deal with the case q ≤ p we will use special instances of the following
combination of Theorems 1.7 and 4.1 from [6].

Theorem 5.3 Consider 0 ≤ K (x, y) ∈ M (R+ × R+), which, for fixed y ∈ R+,
increases in x and, for fixed x ∈ R+, decreases in y and which, moreover, satisfies
the growth condition

K (x, y) ≤ K (x, z) + K (z, y), 0 < y < z < x .

Let t, u, v and w be nonnegative, measurable (weight) functions on R+ and suppose
�1(x) = ∫ x

0 φ1 and�2(x) = ∫ x
0 φ2 are N-functions having complementary functions

�1(x) = ∫ x
0 φ1

−1 and �2(x) = ∫ x
0 φ2

−1, respectively, with �1 ◦ �2
−1 convex. Then

there exists c > 0 such that

�1
−1
(∫

R+
�1

(
cw(x)

∫ x

0
K (x, y) f (y)dy

)
t(x)dx

)

≤ �2
−1
(∫

R+
�2 ( u(y) f (y) ) v(y)dy

)
,

0 ≤ f ∈ M(R+), if and only if

∫ x

0

K (x, y)

u(y)
φ2

−1
(
cα(λ, x)K (x, y)

λu(y)v(y)

)
dy ≤ c−1λ

and
∫ x

0

1

u(y)
φ−1
2

(
cβ(λ, x)

λu(y)v(y)

)
dy ≤ c−1λ,

where

α(λ, x) = �2 ◦ �1
−1
(∫ ∞

x
�1 (λw(y)) t(y)dy

)

and

β(λ, x) = �2 ◦ �1
−1
(∫ ∞

x
�1 (λw(y)K (y, x)) t(y)dy

)
.
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Theorem 5.4 Let p, q, u, u′, u p, v, v′ be as in the Theorem 5.1, with 1 < q ≤ p < ∞.
Then, given that �p,u(R+) is an interpolation space between L2(R+) and L∞(R+),
one has (5.2) if and only if

(1)

(∫ x

0
u p(y)dy

) 1
p
(∫ ∞

x
v′(y)y−q ′

dy

) 1
q′

≤ C

(2)

(∫ x

0
v′(y)dy

) 1
q′ (∫ ∞

x
u p(y)y

−pdy

) 1
p ≤ C

(3)

(∫ x

0

(
log

x

y

)p

u p(y)dy

) 1
p
(∫ ∞

x
v′(y)y−q ′

dy

) 1
q′

≤ C

(4)

(∫ x

0
u p(y)dy

) 1
p
(∫ ∞

x
v′(y)

(
1

y
log

y

x

)q ′

dy

) 1
q′

≤ C .

Indeed (1) and (3) can be combined into

(∫ ∞

0

(
log

(
1 + x

y

))p

u p(y)dy

) 1
p
(∫ ∞

x
v′(y)y−q ′

dy

) 1
q′

≤ C .

Proof The first inequality in (5.7) amounts to

[∫

R+
(Pg)q

′
v′
] 1

q′
≤ C

[∫

R+
gp′

u1−p′
p

] 1
p′

and

[∫

R+
(Qg)q

′
v′
] 1

q′
≤ C

[∫

R+
gp′

u1−p′
p

] 1
p′

, 0 ≤ g ∈ M(R+),

the latter inequality being, by duality, equivalent to

[∫

R+
(P f )p u p

] 1
p ≤ C

[∫

R+
f q v′1−q

] 1
q

, 0 ≤ f ∈ M(R+).
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We illustrate the method of proof with the second inequality in (6.7) involving

(P2g)(x) = 1

x

∫ x

0
log

(
x

y

)
g(y)dy.

Thus, taking, in Theorem 6.3, K (x, y) = log+ x
y ,�1(x) = xq

′
,�2(x) = x p′

(observe

that (�1◦�2
−1)(x) = x

q′
p′ ,which is convexwhen q ≤ p),w(y) = y−1, t(y) = v′(y),

u(y) = u p(y)−1, v(y) = u p(y) we get

α(λ, x) = λp′
(∫ ∞

x
v′(y)y−q ′

dy

) p′
q′

and

β(λ, x) = λp′
(∫ ∞

x
v′(y)

(
y−1 log

y

x

)q ′
dy

) p′
q′

,

from which the conditions in Theorem 5.3 yields (3) and (4). We point out that λ

cancels. ��
The inequality (5.2) is much easier to deal with when

ρp,u( f ) 	 λp,u( f ) =
(∫

R+
f ∗(t)p u(t) dt

) 1
p

, (5.8)

which equivalence is not all that uncommon, as wewill see later in this section. Indeed,
given (5.8),

ρp,u(U f ∗) 	
(∫

R+

(
U f ∗) (t)p u(t) dt

) 1
p

=
(∫

R+
f ∗∗(t)p u p(t) dt

) 1
p

= ρp,u p ( f ).

We thus have

Theorem 5.5 Let p, q, u, u p and v be as in Theorem 5.1. Then, given that �p,u(R+)

is an interpolation space between L2(R+) and L∞(R+), with ρp,u satisfying (5.8),
one has

ρp,u( f̂ ) ≤ C ρp,u p ( f ). (5.9)

Moreover, there is no essentially smaller r.i.-norm that can replace ρp,u p in (5.9).
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Finally, there is a relatively simple condition sufficient to guarantee (5.2). It comes
out of working with the inequality (5.5) and involves the norm of the dilation operator
Es as a mapping from �q,v(R+) to �p,u p (R+), namely,

h(�q,v, �p,u p )(t)= inf
{
M > 0 : ρ̄p,u p ( f (ts))= ρ̄p,u p ((Et f )(s))≤M ρ̄q,v( f )<∞} .

The argument in the proof of Theorem 4.1 of [16] ensures (5.5) provided

∫ ∞

1
h(�q,v, �p,u p )(t)

dt

t
< ∞.

Again the argument in the proof of Theorem 5.2 in [10] yields

h(�q,v, �p,u p )(t) = sup
s>0

[∫ s/t
0 u p + (s/t)p

∫∞
s/t u p(y)y−pdy

] 1
p

[∫ s
0 v + sq

∫∞
s v(y)y−qdy

] 1
q

,

when 1 < q ≤ p < ∞.

Altogether, we have

Theorem 5.6 Let p, q, u, u p and v be as in Theorem 5.1, with 1 < q ≤ p < ∞.
Then, given that �p,u(R+) is an interpolation space between L2(R+) and L∞(R+),
one has (5.9) provided

∫ ∞

1
sup
s>0

[∫ s/t
0 u p + (s/t)p

∫∞
s/t u p(y)y−pdy

] 1
p

[∫ s
0 v + sq

∫∞
s v(y)y−qdy

] 1
q

dt

t
< ∞.

Proof The result follows from the preceeding discussion, since (5.9) and (5.5) are
equivalent when �p,u(R+) is an interpolation space between L2(R+) and L∞(R+).

��
We now consider the question of when �p,u(R+) is an interpolation space between

L2(R+) and L∞(R+).

To begin, recall that ρp,u 	 λp,u was shown in [2] to be equivalent to the Bp

condition

t p
∫ ∞

t
u(s)

ds

s p
≤ C

∫ t

0
u, t ∈ R+. (5.10)

We have

Theorem 5.7 Fix p ∈ (2,∞) and a weight 0 ≤ u ∈ M(R+). Suppose u satisfies
the Bp/2 condition. Then, �p,u(R+) is an interpolation space between L2(R+) and
L∞(R+).
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Proof The Bp/2 condition is necessary and sufficient in order that ρp/2,u 	 λp/2,u .
Thus,

ρ
(2)
p/2,u( f

∗) 	
[∫

R+
( f ∗(t)2)

p
2 u(t) dt

] 2
p · 12

= λp,u( f
∗).

But, Bp/2 condition implies

t p
∫ ∞

t
u(s)

ds

s p
=
∫ ∞

t
u(s)

(
t

s

)p

ds ≤
∫ ∞

t
u(s)

(
t

s

) p
2

ds ≤ C
∫ t

0
u, t ∈ R+,

and so

λp,u( f
∗) 	 ρp,u( f

∗), f ∈ M(R+).

We conclude �p,u(R+) = L
ρ

(2)
p/2,u

(R+) and hence, in view of Theorem 3.1, �p,u(R+)

is an interpolation space between L2(R+) and L∞(R+). ��
Remark 5.1 G. Sinnamon in [27] proved that, given u ∈ Bp/2 and provided 0 < q ≤
2 ≤ p < ∞, one has (5.2) if and only if

ρ̄p,u(χ(0,t)) ≤ C ρ̄q,vq (χ(0,t)), t ∈ R+,

with vq(t) = v(t−1) tq−2, t ∈ R+. Theorem 5.7 and the fact that ρ̄p,u(U f ∗) 	
ρ̄p,u p ( f

∗), ensures that, for p ∈ [2,∞) and any q ∈ (1,∞), one has (5.2) if and only
if

ρ̄p,u p (χ(0,t)) ≤ C ρ̄q,v(χ(0,t)), t ∈ R+.

In the proof of Theorem 5.10 below we require a corollary of the following result
of R. Sharpley from [25, Lemma 3.1, Corollary 3.2]

Theorem 5.8 Let ρ be an r.i. norm on M(Rn). Suppose the fundamental indices of

L ρ̄ (R+) lie in (0, 1). Given p ∈ (1,∞), set μp(t) = ρ̄(χ(0,t))
p

t , t ∈ R+. Then,
ρ̄p,μp

(
χ(0,t)

) = ρ̄
(
χ(0,t)

)
, t ∈ R+. Moreover,

ρ̄p,μp ( f
∗) 	 λ̄p,μp ( f

∗), f ∈ M(Rn).

Corollary 5.9 Let ρ = ρp,u be as in Theorem 5.8. Then, ρ = ρp,μp , where μp(t) =
ρ̄(χ(0,t))

p

t , t ∈ R+.

Proof The spaces �p,u(R
n) and �p,μp (R

n) have ρ̄p,μp

(
χ(0,t)

) = ρ̄p,u
(
χ(0,t)

)
, t ∈

R+. As such, the spaces are identical, in view of [10, Theorem 5.1]. ��



42 Page 22 of 28 Journal of Fourier Analysis and Applications (2024) 30 :42

The principal result of this section is

Theorem 5.10 Fix p ∈ [2,∞) and 0 ≤ u ∈ M(R+), with
∫
R+

u(t)
1+t p dt < ∞. Suppose

the fundamental indices of �p,u(R
n) lie in (0, 1). Then, �p,u(R

n) is an interpolation
space between L p(R

n) and L∞(Rn) (and hence between L2(R
n) and L∞(Rn)) if and

only if

sup
s≥t

ρ̄p,u
(
χ(0,s)

)p

s
≤ C

ρ̄p,u
(
χ(0,t)

)p

t
, (5.11)

for some C > 0 independent of t ∈ R+. Moreover, the optimal r.i. domain for F
corresponding to �p,u(R

n) has the norm

ρ̄p,u(U f ∗) 	 λ̄p,u(U f ∗) = ρ̄p,u p ( f
∗).

Proof Suppose first that p = 2. Given T : L2(R
n), L∞(Rn) → L2(R

n), L∞(Rn)

one has, according to [9, Theorem 1.11, p. 301] and [12],

∫ t

0
(T f )∗(s)2ds ≤ C ′M2

2

∫ Mt

0
f ∗(s)2ds = C ′M2M∞

∫ t

0
f ∗(Ms)2ds,

f ∈ (L2 + L∞) (R+), in which M = M∞/M2, Mk being the norm of T on Lk(R+),
k = 2,∞. In view of (5.11), HLP yields

∫

R+
(T f )∗(t)2

ρ̄2,u
(
χ(0,t)

)2

t
dt ≤

∫

R+
(T f )∗(t)2 sup

s≥t

ρ̄2,u
(
χ(0,s)

)2

s
dt

≤ C ′M2M∞
∫

R+
f ∗(Mt)2 sup

s≥t

ρ̄2,u
(
χ(0,s)

)2

s
dt

≤ CC ′M2M∞
∫

R+
f ∗(Mt)2

ρ̄2,u
(
χ(0,t)

)2

t
dt,

f ∈ (L2 + L∞) (R+). Theorem 5.8 now ensures the latter is equivalent to

∫

R+
(T f )∗∗(t)2

ρ̄2,u
(
χ(0,t)

)2

t
dt ≤ CC ′M2M∞h(M)2

∫

R+
f ∗∗(t)2

ρ̄2,u
(
χ(0,t)

)2

t
dt,

where h(t) is the norm of the dilation operator Et on�2,μ2(R+) = �2,u(R+),μ2(s) =
ρ̄2,u(χ(0,s))

2

s , by Corollary 5.9, that is, T : �2,u(R
n) → �2,u(R

n). Thus, �2,u(R
n) is

between L2(R
n) and L∞(Rn).
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Suppose, next, p > 2. The “if” part of our theorem will follow in this case if we

can show (5.11) implies the weight w(t) = ρ̄p,u(χ(0,t))
p

t satisfies Bp/2 condition. But,

t p/2
∫ ∞

t

ρ̄p,u
(
χ(0,s)

)p

s

ds

s p/2
≤ t p/2

∫ ∞

t
sup
y≥s

ρ̄p,u
(
χ(0,y)

)p

y

ds

s p/2

≤ t p/2 sup
y≥t

ρ̄p,u
(
χ(0,y)

)p

y

∫ ∞

t

ds

s p/2

≤ C t
ρ̄p,u

(
χ(0,t)

)p

t

≤ C2
∫ t

0

ρ̄p,u
(
χ(0,s)

)p

s
ds, t ∈ R+.

This completes the proof of “if” part.
As for the “only if” part we rely on a result of L. Maligranda [18] asserting that if

Lρ(Rn) is an interpolation space between L p(R
n) and L∞(Rn), then

ρ̄(χ(0,s))

ρ̄(χ(0,t))
≤ C max

[( s
t

) 1
p
, 1

]
. (5.12)

Indeed, for t ≤ s, (5.12) yields

ρ̄(χ(0,s))

ρ̄(χ(0,t))
≤ C

( s
t

) 1
p

or

ρ̄(χ(0,s))
p

s
≤ C

ρ̄(χ(0,t))
p

t
,

from which (5.11) follows. ��
To this point the Lorentz Gamma range norms have been equivalent to functionals of
the form

λp,u( f ) =
[∫

R+
f ∗(s)pu(t)dt

] 1
p

.

This need not be the case for the ρ2p,u in Theorem 5.12 below.

Lemma 5.11 Fix p ∈ (1,∞) and 0 ≤ u ∈ M(R+), with

∫

R+

u(t)

1 + t p
dt < ∞.
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Then,

(∫

R+
f ∗∗(t)p u(t) dt

) 1
p ≤

(∫

R+
f ∗(t)p u(p)(t) dt

) 1
p

, f ∈ M(R+), (5.13)

where

u(p)(t) = p t p−1
∫ ∞

t
u(s)s−pds, t ∈ R+;

moreover, u(p) is essentially the smallest weight for which (5.13) holds.

Proof It is shown in [21] that

(∫

R+
f ∗∗(t)p u(t) dt

) 1
p ≤

(∫

R+
f ∗(t)p v(t) dt

) 1
p

, f ∈ M(R+),

if and only if

∫ t

0
u(s)ds + t p

∫ ∞

t
u(s)s−pds ≤ C

∫ t

0
v, t ∈ R+.

But,

∫ t

0
u(p)(s)ds =

∫ t

0
p s p−1

∫ ∞

s
u(y)y−pdy ds

=
∫ t

0
p s p−1

∫ t

s
u(y)y−pdy ds +

[∫ t

0
p s p−1ds

] [∫ ∞

t
u(s)s−pds

]

=
∫ t

0

(∫ y

0
p s p−1ds

)
u(y)y−pdy + t p

∫ ∞

t
u(s)s−pds

=
∫ t

0
u + t p

∫ ∞

t
u(s)s−pds.

We conclude that

(∫

R+
f ∗∗(t)p u(t) dt

) 1
p ≤ C

(∫

R+
f ∗(t)p u(p)(t) dt

) 1
p

, f ∈ M(R+).

��
Theorem 5.12 Let p and u be as in Lemma 5.11. Then,

ρ2p,u( f̂ ) = ρ̄2p,u(( f̂ )
∗) ≤ C ρ̄

2p,u(p)
2p

( f ∗) = ρ
2p,u(p)

2p
( f ), (5.14)
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where

u(p)
2p (t)=u(p)(t−1) t2p−2= p(t−1)p−1

(∫ ∞

t−1
u(s)s−pds

)
t2p−2= p t p−1

∫ ∞

t−1
u(s)s−pds.

Proof Applying the construction in (3.1) to the functionals in (5.13) yields

(∫

R+

(
t−1

∫ t

0
f ∗(s)2ds

)p

u(t) dt

) 1
2p

≤
(∫

R+
f ∗(t)2p u(p)(t) dt

) 1
2p

= λ2p,u(p) ( f ).

Again,

(
t−1

∫ t

0
f ∗(s)ds

)2p

≤
(
t−1

∫ t

0
f ∗(s)2ds

)p

by Hölder’s inequality.
Hence, using HLP in (2.8), yields

ρ2p,u( f̂ ) ≤ ρp,u( | f̂ | 2 )1/2

≤ Cρp,u((U f ∗)2 )1/2

≤ Cλ2p,u(p) (U f ∗)

= C

(∫

R+
(U f ∗)(t)2p u(p)(t) dt

) 1
2p

= C

(∫

R+
f ∗∗(t)2p u(p)

2p (t) dt

) 1
2p

= Cρ
2p,u(p)

2p
( f ).

��
Example 5.1 Fix p, 1 < p < ∞, and set

u(t) =
{
t2p−1

(
log 1

t

)−α
, 0 < t < 1,

t p−1−α, t > 1,

with 0 < α < 1. Then, one has

ρ2p,u( f ) �	 λ2p,u( f ), f ∈ M(R+),

or, equivalently,

t2p
∫ ∞

t
u(s)s−2pds ≤ C

∫ t

0
u, t ∈ R+, (5.15)
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does not hold. Indeed, the left hand side of (5.15) is equal to Ct2p
(
log 1

t

)−α+1
, while

the right hand side is

∫ t

0
u =

∫ t

0
s2p−1 (log 1

s

)−α 	 t2p
(
log 1

t

)−α
, 0 < t < 1,

in view of L’Hôspital rule. The ratio of the left side to the right side in (5.15) is,
essentially, log 1

t which → ∞ as t → 0+.

6 OtherWork

Inequalities involving Fourier transform other than those considered in this paper are
weighted Lebesgue inequalities

(∫

Rn
| f̂ (x) w(x)|q dx

) 1
q ≤ C

(∫

Rn
| f (x) v(x)|p dt

) 1
p

and weighted Lorentz inequalities

(∫

R+
( f̂ )∗(t)q w(t) dt

) 1
q ≤ C

(∫

R+

(∫ 1/t

0
f ∗
)p

v(t) dt

) 1
p

,

in which 0 ≤ v,w ∈ M(Rn) and 1 < p, q < ∞.
In both [15, 20] conditions are for the Lebesgue inequalities that apply not just tow

and v but to all weights equimeasurable with them. The extreme cases of these are the
decreasing rearrangement, W , of w and the increasing rearrangement, V , of v. This
reduces the considerations to the case w ↓ and v ↑.

The weighted Lebesgue inequalities are shown in [15, 20] to be equivalent to
inequalities of the form, for example when 1 ≤ p ≤ q ≤ ∞,

(∫ t−1

0
w

) 1
q (∫ t

0
w

− 1
p−1

) q
p′ ≤ B, t ∈ R+. (6.1)

In [15] the sufficiency is proved using the inequality (2.8) from [13]. The necessity
comes out of the inequality

ρq

(
( f̂ )∗w

)
	 ρ2

(
U f ∗w

)

from [15]. The proofs in [20] are more complicated. The conditions for the weighted
Lorentz inequalities are similar to (6.1).

A brief survey of papers on these inequalities, from the pioneering work of
Benedetto and Heinig [5] through that of G. Sinnamon [26] and Rastegari and
Sinnamon [24], is given in the paper [22] of Nursultanov and Tikhonov.
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In this paper we have seen the behaviour ofF on r.i. spaces depends on its action on
radially decreasing functions. But what about the size of f if f̂ is radially decreasing?
This question is taken up in [11] in the context of Fourier series where functions with
a cosine series having decreasing coefficients as |n| → ∞ are studied.
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