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Abstract
In this paper, we enhance a recent algorithm for approximate spectral factorization
of matrix functions, extending its capabilities to precisely factorize rational matrices
when an exact lower-upper triangular factorization is available. This novel approach
leverages a fundamental component of the improved algorithm for the precise design
of rational paraunitary filter banks, allowing for the predetermined placement of zeros
and poles. The introduced algorithm not only advances the state-of-the-art in spectral
factorization but also opens new avenues for the tailored design of paraunitary filters
with specific spectral properties, offering significant potential for applications in signal
processing and beyond.
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1 Introduction

Spectral factorization is the process by which a positive (scalar or matrix-valued)
function S is expressed in the form

S(t) = S+(t)S∗+(t), t ∈ T, (1.1)

where S+ can be analytically extended inside the unit circle T and S∗+ is its Hermitian
conjugate. There are multiple contexts in which this factorization naturally arises,
e.g., linear prediction theory of stationary processes [21, 30] optimal control [2, 6]
digital communications [3, 15] etc. Spectral factorization is used to construct certain
wavelets [5] and multiwavelets [20] as well. Therefore, many authors contributed to
the development of different computational methods for spectral factorization (see the
survey papers [22, 28] and references therein, and also [4, 17] for more recent results).
As opposed to the scalar case, in which an explicit formula exists for factorization:

S+(z) = exp
(

1
4π

∫
T

t+z
t−z log S(t) dt

)
, in general, there is no explicit expression for

spectral factorization in the matrix case. The existing algorithms for approximate
factorization are, therefore, more demanding in the matrix case.

The Janashia-Lagvilava algorithm [18, 19] is a relatively new method of matrix
approximate spectral factorization [10] which proved to be effective, see, e.g., [9,
12, 24]. Several generalizations of this method can be found in [13, 14]. In particu-
lar, the method is capable to factorize some singular matrix functions with a much
higher accuracy than other existing methods (see Sect. 3 in [9]). Nevertheless, the
algorithm, as it was designed originally, is not able to factorize exactly even simple
polynomial matrices. In the present paper, we cast a new light on the capabilities of the
method eliminating the above-mentioned flaw. The exact matrix spectral factoriza-
tion is important as it may be used as a key step in the construction of certain wavelet
or multiwavelet filter banks with high precision coefficients [20]. Furthermore, we
construct a wide class of rational paraunitary matrices, including singular ones with
some entries having zeros on the boundary; this construction process is of independent
interest.

LetP+
N be the set of polynomials of degree at most N and for p(z) = ∑N

k=0 ckz
k ∈

P+
N , let p̃(z) = ∑N

k=0 ckz
−k . Let alsoP−

N := { p̃ : p ∈ P+
N }. The core of the Janashia-

Lagvilava method is a constructive proof of the following

Theorem ([19, Th. 1], [11, Th. 1]) Let F be a (Laurent) polynomial m ×m matrix of
the form

F(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1 0
φ1(z) φ2(z) φ3(z) · · · φm−1(z) 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (1.2)
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where

φ j ∈ P−
N , j = 1, 2, . . . ,m − 1.

Then, there exists a unique paraunitary matrix polynomial of the form

U (z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

u11(z) u12(z) · · · u1m(z)
u21(z) u22(z) · · · u2m(z)

...
...

...
...

um−1,1(z) um−1,2(z) · · · um−1,m(z)

ũm1(z) ũm2(z) · · · ũmm(z)

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1.3)

where ui j (z) ∈ P+
N , 1 ≤ i, j ≤ m, with determinant 1,

detU (z) = 1, for all z wherever U (z) is defined, (1.4)

satisfying

U (1) = Im (1.5)

and such that

FU ∈ (P+
N )m×m . (1.6)

Here (1.6) means that FU is an m × m matrix with the entries from P+
N . A matrix

polynomial U is called paraunitary if

U (z)Ũ (z) = Im,

where Ũ (z) = [ũ j i ] for U (z) = [ui j (z)], and Im is the m × m identity matrix.
Let R be the set of rational functions in the complex plane, R+ ⊂ R be the set of

rational functions with the poles outside the open unit disk D := {z ∈ C : |z| < 1},
and let R− ⊂ R be the set of rational functions with the poles inside D. It follows
readily from well-known facts (see Sect. 5) that, in the above theorem, if φ j ∈ R−
in (1.2), j = 1, 2, . . . ,m − 1, then ui j ∈ R+ in (1.3), 1 ≤ i, j ≤ m. Nevertheless,
in the existing form, the Janashia-Lagvilava algorithm would find only a polynomial
approximation to the rational entries ui j . In this paper, we construct them exactly. In
particular, we provide a constructive proof of the following

Theorem 1.1 Let F be an m × m matrix function of the form (1.2), where φ j ∈ R−.
Assume also that the poles of functions φ j are known exactly. Then one can explicitly
construct the unique paraunitary matrix function U of the form (1.3), where

ui j ∈ R+, for 1 ≤ i, j ≤ m, (1.7)
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satisfying (1.4) and (1.5), such that

FU ∈ (R+)m×m . (1.8)

Here, for u ∈ R, it is assumed that ũ(z) = u(1/z), which coincideswith the introduced
definition for u ∈ P+

N .
The first step in the Janashia-Lagvilava algorithm is Cholesky-like factorization of

(1.1):

S(z) = M(z)M∗(z), (1.9)

where M is the lower triangular matrix with the corresponding scalar spectral factors
on the diagonal:

M(z) =

⎛
⎜⎜⎜⎜⎜⎝

f +
1 (z) 0 · · · 0 0

ξ21(z) f +
2 (z) · · · 0 0

...
...

...
...

...

ξr−1,1(z) ξr−1,2(z) · · · f +
r−1(z) 0

ξr1(z) ξr2(z) · · · ξr ,r−1(z) f +
r (z)

⎞
⎟⎟⎟⎟⎟⎠

. (1.10)

If S is a polynomial matrix function, then the entries of M are rational functions. How-
ever, in general, M cannot be constructed exactly even for simple polynomial matrices
S. The reason for this limitation is that, apart from elementary operations, construct-
ing M entails the spectral factorization of certain polynomials (see, for instance, the
beginning of Sect. 3 in [8]), which can only be performed approximately unless the
polynomial’s degree is very low and its roots can be exactly determined. Nevertheless,
there exist specific cases where the leading principal minors of S exhibit simple struc-
ture, allowing for the exact determination of their spectral factors, which are involved
in the diagonal entries of M . Under these circumstances, all (rational) entries of M
can be determined exactly. If, furthermore, the poles of the functions ξi j inside T can
be precisely identified, the assertion of the following theorem is that we can proceed
with the exact spectral factorization of S. Specifically, leveraging Theorem 1.1, we
establish.

Theorem 1.2 Let S be an r × r polynomial matrix function which is positive definite
(a.e.) on T, and let (1.9) be its lower-upper factorization. If the entries of (1.10) and
the poles of the functions ξi j insideT are known exactly, then the spectral factorization
of S can also be found exactly.

Remark 1.1 We emphasize that the diagonal entries of (1.10) may have zeros on T,
however, we do not require knowledge of their exact locations.

Remark 1.2 Observe that (1.10) in its turn yields the exact factorization of the deter-
minant. As demonstrated in [1], knowing the latter is necessary and sufficient for
the more general Wiener–Hopf factorization to be carried out exactly. The algorithm
described in [1], while allowing to exactly factorize any polynomial matrix functions
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with a factorable determinant (possessing an arbitrary set of partial indices, unstable
among others), does not work in singular cases where the determinant has zeros on T.
As mentioned in the previous remark, our algorithm does not have this restriction.

Polynomial paraunitary matrix functions play an important role in the theory of
wavelet matrices and paraunitary filter banks (see [11, 26, 29]). They are also known
as finite impulse response (FIR) lossless filters banks, and designing such filters with
specific characteristics is of significant practical importance. In particular, construction
of a matrix FIR lossless filter with a given first row, known as the wavelet matrix
completion problem, has a long history with various solutions proposed by a number
of authors [7, 11, 16, 23, 25, 27]. Theorem 1.1 leads to a solution of the rational
paraunitary matrix completion problem for a broad class of given first rows. Namely,
we prove the following

Theorem 1.3 Let

V1 = (v1, v2, . . . , ṽm), where vi ∈ R+ for i = 1, 2, . . . ,m, (1.11)

be such that

V1(z)Ṽ1(z) =
∑m

i=1
vi (z)ṽi (z) = 1

(
⇐⇒

∑m

i=1
|vi (t)|2 = 1 for each t ∈ T

)
.

(1.12)

If

∑m

i=1
|vi (z)| > 0 for each z ∈ D, (1.13)

then one can precisely construct a paraunitary matrix V with the first row (1.11).

Theorem 1.3 enables us to design rational lossless filter banks with preassigned zeros
and poles of the entries in the first row.

The paper is organized as follows: after notation (Sect. 2) and preliminary obser-
vations (Sect. 3), we prove some auxiliary lemmas in Sect. 4. Proofs of Theorems 1.1
and 1.2 are given in Sects. 5 and 6, respectively. The matrix completion problem is
solved in Sect. 7, while the last Sect. 8 provides some numerical examples of exact
spectral factorization and rational paraunitary matrix construction.

2 Notation and Definitions

This section summarizes the notation used in the paper, with some already introduced
in the introduction.

Let T := {z ∈ C : |z| = 1} be the unit circle in the complex plane,

T+ = D := {z ∈ C : |z| < 1} and T− = {z ∈ C : |z| > 1} ∪ {∞}.
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For a set S, let Sm×n be the set of m × n matrices with the entries from S.
Accordingly, the term ‘matrix function’ denotes matrices with entries as functions, or,
equivalently, functions that yield matrices as values. Im = diag(1, 1, . . . , 1) ∈ C

m×m

stands for them×m identity matrix and 0m×n is them×n matrix consisting of zeros.
For amatrix (or amatrix function)M = [Mi j ],MT = [Mji ] denotes its transpose, and
M∗ = [Mji ] denotes its Hermitian conjugate, while [M]m×m stands for its upper-left
m × m principal submatrix. On the other hand, for a ∈ C, we let a� = 1/a.

Let P be the set of Laurent polynomials with the coefficients in C:

P :=
{∑k2

k=k1
ckz

k : ck ∈ C, k1, k2 ∈ Z; k1 ≤ k2

}
. (2.1)

We also consider the following subsets of P: P+, P−, PN , P+
N and P−

N , where N is
a non-negative integer, which correspond to the cases k1 = 0, k2 = 0, −N = k1 ≤
k2 = N , 0 = k1 ≤ k2 = N , and −N = k1 ≤ k2 = 0 in (2.1), respectively. So, P+ is
the set of usual polynomials, and P+

N is the set of polynomials of degree less than or
equal to N .

The set of rational functions { f = p/q : p, q ∈ P} is denoted by R, and R+
(resp. R−) stands for the rational functions which are analytic, i.e. without poles, in
T+ (resp. in a neighbourhood of T− ∪ T). We assume that functions fromR− vanish
at ∞ and constant functions belong toR+, so thatR = R+ ⊕R−, i.e., every f ∈ R
can be uniquely decomposed as

f = f − + f +, (2.2)

where f − ∈ R− and f + ∈ R+.
For f ∈ R, it is assumed that f̃ (z) = f (1/z) = f (z�), and for F = [Fi j ] ∈

(R)m×n it is assumed that F̃ = [F̃ji ] ∈ (R)n×m . Note that f̃ (z) = f (z) and F̃(z) =
F∗(z) for z ∈ T.

Of course,

f , f̃ ∈ R+ and f is free of poles on T �⇒ f = Const. (2.3)

A matrix function U ∈ Rm×m is called paraunitary if

U (z)Ũ (z) = Im

(when we write an equation involving rational functions, we assume it holds wherever
the rational functions are defined, which is everywhere except for their poles). Note
that U ∈ Rm×m is paraunitary if and only if U (z) is unitary (i.e., U (z)U∗(z) = Im)
for each z ∈ T.

A matrix function S ∈ Rm×m is called positive definite, if S(z) ∈ C
m×m is positive

definite for each z ∈ T, except for some isolated points (where the determinant of S
might be equal to zero, or some entries of S might have a pole).

If f is an analytic function in a neighborhood of a ∈ C, then the k-th coefficient of
its Taylor series expansion is denoted by c+

k { f , a}.
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The notation 〈·, ·〉Cm and ‖ · ‖Cm are for the standard scalar product and norm on
C
m . The symbol δi j stands for the Kronecker delta, i.e., δi j = 1 if i = j and δi j = 0

otherwise, and e j = (δ1 j , δ2 j , . . . , δmj )
T is a standard basis vector of C

m×1.
Throughout this paper, we understand the term ‘construct’ as ‘finding the object

exactly’,with its precisemeaning emerging from the surrounding context. For instance,
‘constructing’ p ∈ P amounts to finding its coefficients exactly, while ‘constructing’
f ∈ R means determining coprime p and q such that f = p/q. In theory, we can
also find exact solutions for certain problems, such as determining Laurent series
coefficients or solving linear equations with known matrices and vectors. These facts
will be employed implicitly in the subsequent sections.

3 Preliminary Observations

3.1

We will need the following simple observation. Let

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a11z1 + b11z1 + a12z2 + b12z2 + · · · + a1nzn + b1nzn = c1
a21z1 + b21z1 + a22z2 + b22z2 + · · · + a2nzn + b2nzn = c2
...

an1z1 + bn1z1 + an2z2 + bn2z2 + · · · + annzn + bnnzn = cn

(3.1)

be the system of n equations with unknowns z1, z2, . . . , zn . It is equivalent to the
following 2n×2n system of equations with the unknowns xi = �(zi ) and yi = �(zi ),
i = 1, 2, . . . , n,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ar11 + br11)x1 + (bi11 − ai11)y1 + · · · + (ar1n + br1n)xn + (bi1n − ai1n)yn = cr1
...

(arn1 + brn1)x1 + (bin1 − ain1)y1 + · · · + (arnn + brnn)xn + (binn − ainn)yn = crn
(ai11 + bi11)x1 + (ar11 − br11)y1 + · · · + (ai1n + bi1n)xn + (ar1n − br1n)yn = ci1
...

(ain1 + bin1)x1 + (arn1 − brn1)y1 + · · · + (ainn + binn)xn + (arnn − brnn)yn = cin,

(3.2)

where ar = �(a), ai = �(a), and the same for b and c.

Remark 3.1 If system (3.1) has a unique solution, then system (3.2) has a unique
solution as well and, therefore, the determinant of its 2n × 2n coefficients matrix is
nonzero.
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3.2

If a matrix polynomial S ∈ (PN )m×m is positive definite, then spectral factorization
(1.1) has the form

S(z) = S+(z)S̃+(z), z ∈ C\{0},

where S+ ∈ (P+
N )m×m . Under the usual requirement that the spectral factor S+ is

nonsingular onT+, the spectral factor is unique up to a constant right unitary multiple.
This theorem is known as the Polynomial Matrix Spectral Factorization Theorem, and
its elementary proof is available in [8].

Since every positive definite matrix function R ∈ Rm×m can be represented as
a ratio R = S/P , where S ∈ Pm×m and P ∈ P are positive definite, the spectral
factorization theorem (alongside with the uniqueness) can be extended to the rational
case:

Theorem 3.1 If R ∈ Rm×m is positive definite, then there exists an unique (up to
a constant right unitary multiple) R+ ∈ Rm×m+ such that det R+(z) �= 0 for each
z ∈ T+ and

R(z) = R+(z)R̃+(z) (3.3)

for each z where both sides of (3.3) are defined.

Remark 3.2 To be specific, if R+ and Q+ are two spectral factors of R, then there
exists a unitary matrix U ∈ C

m×m such that R+(z) = Q+(z)U .

Remark 3.3 Factorization (3.3) provides also the spectral factorization of the determi-
nant

det R(z) = det R+(z)d̃et R+(z).

3.3

Knowing the coefficients f1k of the expansion of an analytic function f in a neigh-
borhood of a ∈ C,

f (z) =
∑∞

k=0
f1k(z − a)k, f1k ∈ C, k = 0, 1, . . . ,

we can (explicitly) compute the coefficients of the expansion of its l-th power, f l :

[ f (z)]l =
∑∞

k=0
flk(z − a)k, flk ∈ C, k = 0, 1, . . . , (3.4)

in the same neighborhood for each l ≥ 1 by the following recursive formula

fl+1,k =
∑k

j=0
fl,k− j f1 j . (3.5)
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For the sake of notational convenience, we also assume that f0k = δ0k for k =
0, 1, 2, . . ..

If b ∈ T+ and a function ũ ∈ R− has the form

ũ(z) =
∑N

l=0

cl
(z − b)l

,

then

u(z) =
∑N

l=0

cl
(1/z − b)l

=
∑N

l=0

cl zl

(1 − bz)l
. (3.6)

If now a ∈ T+ (a = b is not excluded), we have the expansion

1

1 − bz
=
∑∞

k=0

b�

(b� − a)k+1 (z − a)k

in a neighborhood of a (to be specific, for |z − a| < |b� − a|) and hence (using
z = z − a + a)

f (z) := z

1 − bz
= ab�

b� − a
+

∞∑
k=1

(b�)2

(b� − a)k+1 (z − a)k =:
∞∑
k=0

f1k(z − a)k .

Applying now formulas (3.4), (3.5), we can expand (3.6) in the same neighborhood
of a as

u(z) =
N∑
l=0

cl

(
z

1 − bz

)l

=:
N∑
l=0

cl

∞∑
k=0

f ablk (z − a)k =
∞∑
k=0

(
N∑
l=0

f ablk cl

)
(z − a)k,

where the coefficients f ablk , which depend on a and b, can be recursively computed
for each l = 0, 1, . . . , N and k = 0, 1, . . .

Thus, in order to compute the first L coefficients c+
0 , c+

1 , . . . , c+
L−1 of the expansion

of the function (3.6) in the neighborhood of a, one can use the linear transformation

(c+
0 , c+

1 , . . . , c+
L−1)

T = Aab
LN (c0, c1, . . . , cN )T , (3.7)

where Aab
LN is an L × (N + 1) matrix whose kl-th entry is equal to

[Aab
LN ]kl = f ablk , 0 ≤ k < L, 0 ≤ l ≤ N .

We emphasize that the entries of Aab
LN depend only on a, b, L , and N .
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4 Some Auxiliary Lemmas

For given rational functions φ j ∈ R−, j = 1, 2, . . . ,m − 1, let us consider the
following set of conditions, which originates from the Janashia–Lagvilava method
(cf. [11, eq. (31)]) and plays an essential role in the proposed constructions:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ1xm − x̃1 ∈ R+
φ2xm − x̃2 ∈ R+
...

φm−1xm − x̃m−1 ∈ R+
φ1x1 + φ2x2 + · · · + φm−1xm−1 + x̃m ∈ R+.

(4.1)

We say that a vector function X = (x1, x2, . . . , xm)T ∈ (R+)m×1 is a solution of
(4.1) if its coordinate functions are free of the poles on T and satisfy the conditions in
(4.1).

Lemma 4.1 (cf. [11, Lemma 3]) If X and Y are two solutions of (4.1) (not necessarily
different), then

m−1∑
k=1

xk ỹk + x̃m ym = Const. (4.2)

Proof Since both X and Y are solutions, we have in particular:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ1ym − ỹ1 ∈ R+
...

φm−1ym − ỹm−1 ∈ R+
φ1x1 + φ2x2 + · · · + φm−1xm−1 + x̃m ∈ R+.

Taking the linear combination of these conditions with the weights −x1, . . . ,−xm−1
and ym , respectively:

m−1∑
k=1

xk ỹk + x̃m ym ∈ R+.

Since the conditions on X and Y are symmetric, we also have

m−1∑
k=1

yk x̃k + ỹmxm ∈ R+,

and since the functions xi and yi do not have poles on T by definition, the relation
(2.3) imply (4.2). ��
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The set of solutions Sm of (4.1) is not a linear space. In order to make it linear, we
need to modify it and consider

Sm̃ := {(x1, x2, . . . , xm−1, x̃m)T : (x1, x2, . . . , xm−1, xm)T ∈ Sm}.

Then Sm̃ becomes a linear space in the usual sense: X , Y ∈ Sm̃ ⇒ αX +βY ∈ Sm̃ for
each α, β ∈ C, where α(x1, . . . , xm−1, x̃m)T = (αx1, . . . , αxm−1, α x̃m)T (not α x̃m
in the last position). From now on, slightly abusing the notation, we may also call
Sm̃ = Sm̃(φ1, φ2, . . . , φm−1) the space of the solutions of (4.1) (along with Sm) and
denote its elements (x1, . . . , xm−1, x̃m)T by X̂ .

Since x̃(z) = x(z) for each z ∈ T, Lemma 4.1 implies the following

Corollary 4.1 If X̂ and Ŷ are two solutions of (4.1), then 〈X̂(z), Ŷ (z)〉Cm is constant
on T. In particular, ‖X̂(z)‖Cm is constant on T and if X̂(z) = 0 for some z ∈ T, then
X̂ ≡ 0 and X ≡ 0.

Corollary 4.2 Let X̂1, X̂2, . . . , X̂m be m solutions of the system (4.1) such that

X̂i (1) = (δi1, δi2, . . . , δim)T , i = 1, 2, . . . ,m, (4.3)

and let

C = (c1, c2, . . . , cm)T ∈ C
m×1.

Then

X̂C =
∑m

i=1
ci X̂i

is the unique solution of the system (4.1) for which X̂(1) = C .

5 Constructive Proof of Theorem 1.1

For F defined by (1.2), consider the positive definite matrix function

R(z) = F(z)F̃(z). (5.1)

Due to spectral factorization theorem for rational matrix functions (see Theorem 3.1
and Remark 3.2), there exists the spectral factorization (3.3) of (5.1) such that

R+(1) = F(1). (5.2)

Remark 5.1 We emphasize that such factor R+(z) is unique (see Remark 3.2).
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Since det R(z) = 1 = det F(z) and spectral factorization yields the factorization
of the determinant as well (see Remark 3.3), we have

det R+(z) = Const

and, due to (5.2), this constant is equal to 1. Therefore,

det R+(z) = 1. (5.3)

Consequently, the matrix function

U (z) = F−1(z)R+(z), (5.4)

which is paraunitary since

U (z)Ũ (z) = F−1(z)R+(z)R̃+(z)F̃−1(z) = F−1(z)F(z)F̃(z)F̃−1(z) = Im,

has the determinant equal to 1,

detU (z) = 1.

Let U (z) = [Ui j (z)]mi, j=1, and investigate its further properties.
If we write the inverse of the matrix (1.2) explicitly as

F−1(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0 0
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

...

0 0 0 · · · 1 0
−φ1(z) −φ2(z) −φ3(z) · · · −φm−1(z) 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (5.5)

it follows from (5.4) that

Ui j ∈ R+ for 1 ≤ i < m, 1 ≤ j ≤ m.

Since

Ũ (z) = U−1(z) = 1

detU (z)
[Cof(U (z))]T = [Cof(U (z))]T ,

we have

Ũmj = cof(Umj ) ∈ R+, for 1 ≤ j ≤ m,

i.e., the entries of the last row of U are in {u ∈ R : ũ ∈ R+} (note that since U is
a unitary matrix function on T, it does not have poles on T). Consequently, we can
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modify the notation for the entries of U and assume that it has the form (1.3), where
(1.7) holds. Thus the matrix function (5.4) satisfies the conditions of Theorem 1.1 and,
taking into account that

U (1) = Im

(see (5.2)) and such U is unique (see Remark 5.1), we will construct it explicitly.
First observe that the columns of U satisfy the system of conditions (4.1). Indeed,

since R−1+ ∈ R+ as a spectral factor and U−1 = Ũ , it follows from (5.4) that

Ũ F−1 = R−1+ ∈ R+.

Thus, if we write the product Ũ F−1 explicitly, taking into account equations (5.5)
and

Ũ =

⎛
⎜⎜⎜⎜⎝

ũ11 ũ21 . . . ũm−1, 1 um1

ũ12 ũ22 . . . ũm−1, 2 um2
...

...
...

...
...

ũ1m ũ2m . . . ũm−1,m umm

⎞
⎟⎟⎟⎟⎠

,

we obtain the first m − 1 conditions in (4.1) for each column of U . The last condition
directly follows from the relations FU = R+ ∈ R+.

Remark 5.2 We emphasize that the columns of U are solutions of the system (4.1).

Suppose now that the functions φi ∈ R− are of the form

φi (z) =
ni∑
k=1

Nik∑
l=1

γikl

(z − aik)l
; i = 1, 2, . . . ,m − 1,

i.e., φi has poles at ai1, ai2, . . . , ai,ni , |aik | < 1, of orders Ni1, Ni2, . . . , Ni,ni , respec-
tively. Assume also that

∪m−1
i=1 {ai1, ai2, . . . , ai,ni } =: {am1, am2, . . . , am,nm } and Nmν := max{Nik : aik = amν},

1 ≤ ν ≤ nm , i.e., we combine poles of all functions φi , i = 1, 2, . . . ,m − 1, and set
their maximal order at each pole as the order of the pole.

For each j = 1, 2, . . . ,m, we construct the j-th column of U . To this end, assume
that j is fixed and let ui = ui j , i = 1, 2, . . . ,m. Since functions ũi , 1 ≤ i ≤ m, have
poles only in T+ (see (1.7)), it can be observed from the first m − 1 equations of (4.1)
that functions ui , 1 ≤ i < m, have the form

ũi (z) = Ci +
ni∑
k=1

Nik∑
l=1

Cikl

(z − aik)l
(5.6)
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and it follows from the last relation of (4.1) that

ũm(z) = Cm +
nm∑
k=1

Nmk∑
l=1

Cmkl

(z − amk)l
. (5.7)

The functions (5.6), for i = 1, 2, . . . ,m − 1, and (5.7) overall contain

m0 := m +
m∑
i=1

ni∑
k=1

Nik (5.8)

unknown coefficients:

Ci , 1 ≤ i ≤ m, and Cikl , 1 ≤ i ≤ m, 1 ≤ k ≤ ni , 1 ≤ l ≤ Nik . (5.9)

We will construct a linear algebraic system of equations (with these coefficients
as unknowns) consisting of the same number of equations. Indeed, m equations can
be obtained from the relation that the j-th column of U (1) is equal to e j (see (1.5)),
namely we have

ui (1) = Ci +
ni∑
k=1

Nik∑
l=1

Cikl

(1 − aik)l
= δi j , for i = 1, 2, . . . ,m. (5.10)

In addition, for each function φi , i = 1, 2, . . . ,m − 1, considering i-th relation of the
system (4.1) which is satisfied by um and ui ,

φi um − ũi ∈ R+, (5.11)

and equating Nik negative indexed coefficients to 0 in the Laurent expansion of the
function in (5.11) in a neighborhood of aik , where 1 ≤ k ≤ ni , we get the following
Nik equations written in the matrix form

⎡
⎢⎢⎢⎢⎣

γik1 γik2 γik3 · · · γik,Nik−1 γikNik

γik2 γik3 γik4 · · · γikNik 0
γik3 γik4 γik5 · · · 0 0
· · · · · · · ·

γikNik 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎢⎣

c+
0 {um, aik}
c+
1 {um, aik}
c+
2 {um, aik}

...

c+
Nik−1{um, aik}

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

Cik1
Cik2
Cik3

...

CikNik

⎤
⎥⎥⎥⎥⎥⎦

. (5.12)

Using equation (5.7) and the relations described by (3.7), we can substitute

(c+
0 {um, aik}, . . . , c+

Nik−1{um, aik})T =
nm∑
τ=1

Aaikamτ

Nik Nmτ
(Cm,Cmτ1,Cmτ2, . . . ,CmτNmτ )

T
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in (5.12). The resulting system will contain only (5.9) as the unknowns. Performing
the same procedure for each pole aik of φi , we obtain

∑ni
k=1 Nik equations for each

i = 1, 2, . . . ,m − 1, and thus in total

m1 :=
∑m−1

i=1

∑ni

k=1
Nik (5.13)

additional equations.
Consider now the solution of the last condition in (4.1):

φ1u1 + φ2u2 + · · · + φm−1um−1 + ũm ∈ R+.

Equating again negative indexed coefficients to 0 in the Laurent expansion of the above
function in a neighborhood of amk , for each k = 1, 2, . . . nm , we get the following
Nmk equations

∑
i

⎡
⎢⎢⎢⎢⎣

γiν1 γiν2 γiν3 · · · γiνNmk−1 γiνNmk

γiν2 γiν3 γiν4 · · · γiνNmk 0
γiν3 γiν4 γiν5 · · · 0 0

· · · · · · · ·
γiνNmk 0 0 · · · 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

c+
0 {ui , amk}
c+
1 {ui , amk}
c+
2 {ui , amk}

...

c+
Nmk−1{ui , amk}

⎤
⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎣

Cmk1
Cmk2
Cmk3

...

CmkNmk

⎤
⎥⎥⎥⎥⎥⎦

.

(5.14)

Here, the summation is with respect to those ies for which aiν = amk for some ν ≤ ni
and it is assumed that γiνl = 0 if Niν < Nmk and Niν < l ≤ Nmk . Again, we can
eliminate extra unknowns in the above equations by making the substitutions (see
(5.6) and (3.7))

(c+
0 {ui , amk}, . . . , c+

Nmk−1{ui , amk})T =
ni∑

τ=1

Aamkaiτ
Nmk Niτ

(Ci ,Ciτ1,Ciτ2, . . . ,CiτNiτ )
T .

This way, we get

m2 :=
∑nm

k=1
Nmk (5.15)

additional equations, and summing up m (the number of equations in (5.10)) with m1
in (5.13) and m2 in (5.15), we get m0 in (5.8). Consequently, we can construct the
system of m0 algebraic equations with m0 unknowns (5.9). Some of these unknowns
enter in this equation with their conjugate like Ci or Cikl , however, the existence and
uniqueness of the solution to this system is known beforehand and, taking into account
Remark 3.1, these unknowns can be found explicitly by the standard way.
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6 Constructive Proof of Theorem 1.2

By applying Theorem 1.1, the proof of Theorem 1.2 closely follows the approach out-
lined in previous publications [12, 19]. However, it is crucial to note that the obtained
intermediate terms can be computed exactly, which is a central focus of this paper.
Particularly, throughout this section, when we refer to “constructing", we understand
“computing exactly".

Note that the triangular factor M in (1.10) can be constructed within the field of
rational functions using a process similar to the Cholesky factorization algorithm for
standard numerical matrices. The key difference is that, instead of extracting square
roots as the standard algorithm requires, one performs scalar spectral factorization.
It is assumed that the poles indicated in the theorem can be precisely determined
during the construction of such M . Observe also that the determinant of (1.10) can be
analytically extended inside T everywhere and

det M(z) �= 0 for each z ∈ T+ (6.1)

since it is required that the diagonal functions fm , m = 1, 2, . . ., are spectral factors.
The spectral factor S+ can be represented as the product

S+(z) = M(z)U2(z)U3(z) · · ·Ur (z), (6.2)

where each matrix Um is paraunitary and has the following block matrix form

Um(z) =
(

Um(z) 0m×(r−m)

0(r−m)×m Ir−m

)
, m = 2, 3, . . . , r (6.3)

Matrices (6.3) are constructed recursively in such a way that [Mm]m×m =: ([S]m×m)+
is a spectral factor of [S]m×m , where

Mm = MU2U3 · · ·Um

(the term U1 = Ir is omitted as [M]1×1 = f +
1 is already a spectral factor of [S]1×1;

see (1.10)). This can be achieved by using Theorem 1.1. Indeed, let us assume that
U2,U3, . . . ,Um−1 are already constructed so that

[S(z)](m−1)×(m−1) = [Mm−1(z)](m−1)×(m−1)[M̃m−1(z)](m−1)×(m−1). (6.4)

Since matrices (6.3) are paraunitary and they have the special structure, we also have

[S(z)]m×m = [Mm−1(z)]m×m[M̃m−1(z)]m×m .

Furthermore, [Mm−1(z)]m×m has the following block matrix form

[Mm−1]m×m =
[[S]+(m−1)×(m−1) 0(m−1)×1

[ζ ]1×(m−1) f +
m

]
=
[[S]+(m−1)×(m−1) 0(m−1)×1

01×(m−1) f +
m

]
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×
[

Im−1 0(m−1)×1
[ζ ]1×(m−1)/ f +

m 1

]
=
[[S]+(m−1)×(m−1) 0(m−1)×1

01×(m−1) f +
m

]

×
[

Im−1 0(m−1)×1
[φ+]1×(m−1) 1

] [
Im−1 0(m−1)×1

[φ−]1×(m−1) 1

]
, (6.5)

where [ζ ]1×(m−1) := [ζ1, ζ2, . . . , ζm−1], [φ±]1×(m−1) := [φ±
1 , φ±

2 , . . . , φ±
m−1] and

ζi/ f
+
m = φ+

i + φ−
i , i = 1, 2, . . . ,m − 1,

is the decomposition of a rational function according to the rule (2.2). The first two
factors in the right hand side of (6.5) belong to (R+)m×m and their determinants are
free of zeros in T+. Assuming now that F is the last matrix in (6.5) and applying
Theorem 1.1, we can find a paraunitary matrix Um = U of the form (1.3), satisfying
(1.7) and (1.4), such that (1.8) holds. Hence,

[Mm−1]m×mUm = [Mm]m×m (6.6)

is a spectral factor of [S]m×m , and equation (6.4) remains valid if we change (m −
1) to m. Note that, although the factors in (6.6) are merely rational matrices, the
product [Mm]m×m = ([S]m×m)+ ∈ (P+)m×m due to polynomial spectral factorization
theorem (see Sect. 3.2).

Thus, ifwe accordingly construct all thematricesU2,U3, . . . ,Ur in (6.2),we obtain
a spectral factor S+.

Remark 6.1 In this paper, our focus is on exact factorization. If we cannot precisely
handle the factor described in Theorem 1.2 as given by (1.10), we can still obtain its
entries and corresponding poles in T with any prescribed accuracy. This allows us
to derive an approximation of M by a rational matrix function, say M̂ . We can then
proceed with M̂ and apply the algorithm as previously described. This results in an
approximate spectral factor Ŝ+. We anticipate that the convergence Ŝ+ → S+ should
occur under the condition that M̂ → M , which will be the focus of our future work.

In our opinion, the ideas developed in this section can also be used to factorize
matrices depending on a parameter.

7 Completion of Paraunitary Matrices

In this section we prove Theorem 1.3. Since a matrix V is paraunitary if and only if
V T is paraunitary, for notational convenience, we assume the given data is the first
column of the matrix and construct its completion. Hence we assume that

V1 = (v1, v2, . . . , ṽm)T ∈ Rm×1, where vi ∈ R+ for i = 1, 2, . . . ,m, (7.1)

is given which satisfies Ṽ1V1 = 1 and we obtain a paraunitary matrix V with the first
column V1. This completion follows the same idea as demonstrated in [11, Sect. 5]
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for polynomial matrices: first we construct a rational row vector

(φ1, φ2 . . . , φm−1) ∈ R1×(m−1)
− (7.2)

and then, applying the procedures described in the proof of Theorem 1.1, we construct
the corresponding completion. To this end, we consider the same system of conditions
as (4.1),

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ1vm − ṽ1 ∈ R+
φ2vm − ṽ2 ∈ R+
...

φm−1vm − ṽm−1 ∈ R+
φ1v1 + φ2v2 + · · · + φm−1vm−1 + ṽm ∈ R+,

(7.3)

however, now we treat vi ∈ R+ (for 1 ≤ i ≤ m) as known functions and φ j ∈ R−
(for 1 ≤ j < m) as unknown functions. A necessary and sufficient condition for the
existence of this solution is provided by the following

Lemma 7.1 For given functions vi ∈ R+, i = 1, 2, . . . ,m, satisfying

∑m

i=1
vi (z)ṽi (z) = 1, (7.4)

there exists solution (7.2) of system (7.3) (φ1, φ2, . . . , φm−1)
T , φ j ∈ R−, j =

1, 2, . . . ,m − 1, if and only if there exist functions hi ∈ R+, 1 ≤ i ≤ m, such
that

∑m

i=1
hivi = 1. (7.5)

Proof General solutions of the first m − 1 conditions in (7.3) have the form

φi =
[

ṽi

vm

]−
+ ψi , where ψi ∈ R− and ψivm ∈ R+. (7.6)

Substituting these relations into the last condition of (7.3), we get

m−1∑
i=1

([
ṽi

vm

]−
+ ψi

)
vi + ṽm =

m−1∑
i=1

(
ṽi

vm
+ ψi −

[
ṽi

vm

]+)
vi + ṽm ∈ R+

Hence,

m−1∑
i=1

ṽivi + ψivmvi

vm
+ vm ṽm

vm
=: hm ∈ R+
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and, by virtue of (7.4),

1 +
∑m−1

i=1
ψivmvi = hmvm .

Thus, if we introduce the notation hi = −ψivm , i = 1, 2, . . . ,m − 1, where hi ∈ R+
due to the last condition in (7.6), we get (7.5) and the first part of the lemma is proved.

Suppose now that (7.5) holds and define functions

φi =
[
ṽi − hi

vm

]−
, i = 1, 2, . . . ,m − 1.

Then the first m − 1 conditions in (7.3) are satisfied and, for the last condition, we
have

m−1∑
i=1

[
ṽi − hi

vm

]−
vi + ṽm =

m−1∑
i=1

(
ṽi − hi

vm

)
vi + ṽm −

m−1∑
i=1

[
ṽi − hi

vm

]+
vi

=
∑m−1

i=1 ṽivi + ṽmvm − ∑m−1
i=1 hivi

vm
−

m−1∑
i=1

[
ṽi − hi

vm

]+
vi

= 1 − ∑m−1
i=1 hivi
vm

−
m−1∑
i=1

[
ṽi − hi

vm

]+
vi = hm −

m−1∑
i=1

[
ṽi − hi

vm

]+
vi ∈ R+.

Hence the last condition of (7.3) is also satisfied and the lemma is proved. ��
Remark 7.1 It is well known that condition (1.13) is equivalent to (7.5) satisfied for
some polynomials hi ∈ P+, 1 ≤ i ≤ m.Moreover, these polynomials can be explicitly
found by solving the corresponding system of linear algebraic equations.

We proceed with the proof of Theorem 1.3 as follows. Suppose

V1(1) = C = (c1, c2, . . . , cm)T ∈ C
m×1.

We can complete C to the unitary matrixW , i.e., we can construct a unitary matrixW
with the first column C .

Lemma 7.1 guarantees that we can construct a row vector (7.2) which is the solution
of system (7.3). Use these φi , i = 1, 2, . . . ,m − 1, to construct a matrix function F
defined by equation (1.2), and let U be the corresponding paraunitary matrix deter-
mined according to Theorem 1.1. We have that the columns

Û j = (u1 j , u2 j , . . . , um−1, j , ũm j )
T , j = 1, 2, . . . ,m,

of the matrix U are solutions of system (4.1) (see Remark 5.2) and

Û j (1) = (δ1 j , δ2 j , . . . , δmj )
T , j = 1, 2, . . . ,m
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(see (1.5)). Hence

VC =
∑m

j=1
c j Û j (7.7)

is the solution of system (4.1) which satisfies VC (1) = C . However, such solution of
the system (4.1) is unique (see Corollary 4.2). Therefore, VC defined by (7.7), which
is the first column of U (z) · W , coincides with (7.1). Obviously, the matrix

V (z) = U (z) · W (7.8)

is paraunitary, therefore the proof of Theorem 1.3 is completed.

8 Numerical Examples

8.1

In this section, we provide some examples of exact constructions which rely on the
methods presented in this paper. First we factorize the following matrix

S(z) =
(

2z−1 + 6 + 2z 11z−1 + 22 + 7z
7z−1 + 22 + 11z 38z−1 + 84 + 38z

)
, (8.1)

which is positive definite, however, it has a singularity (of order 4) at the isolated
point z = 1. In particular, det S(z) = −z−2 + 2 − z2 = (z−2 − 1)(z2 − 1). An
approximate factorization of this matrix, varying in both speed and accuracy, is given
in [12, 19]. Now, by using Theorem 1.1, we can factorize (8.1) exactly as it admits
exact lower-upper factorization (1.9) with

M(z) =
(

b + az 0
7+22z+11z2

a+bz
1−z2
b+az

)
, (8.2)

where a =
√
3 − √

5 and b =
√
3 + √

5. Arguing as in (6.5), the matrix (8.2) can be
represented as

M(z) =
(
b + az 0

0 1−z2
b+az

)(
1 0
φ 1

)
,

where φ = (7 + 22z + 11z2)/(a + bz). The function φ has a single pole in T+ at
z0 = −a/b = (

√
5 − 3)/2 with the residue γ0 = (25 − 11

√
5)/2. Therefore, the

function φ can be split into φ = φ+ +φ−, where φ−(z) = γ0/(z− z0) and φ+ ∈ R+.
Hence, we have to take the 2 × 2 matrix function

F(z) =
(

1 0
γ0

z−z0
1

)
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in the role of (1.2) and construct a paraunitary matrix U according to Theorem 1.1.
Postmultiplying M by U , we get a spectral factor

S+(z) = M(z)U (z). (8.3)

Formulas (5.6) and (5.7) suggest that we have to search solutions u1 and u2 of the
system (4.1) in the form

ũ1(z) = C1 + C11

z − z0
and ũ2(z) = C2 + C21

z − z0
.

Consequently,

u1(z) = C1 + (C11 − C1z0)z

1 − z0z
and u2(z) = C2 + (C21 − C2z0)z

1 − z0z

(since we deal with real coefficients, we do not use the conjugate sign for Ci ) and the
system derived from the equations (1.5), (5.12), and (5.14) has the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 + C11
1−z0

= 1

C2 + C21
1−z0

= 0

γ0

(
C2 + C21z0

1−z20

)
− C11 = 0

γ0

(
C1 + C11z0

1−z20

)
+ C21 = 0.

(8.4)

For u12 and u22, we just have to change the right-hand side of (8.4) to (0, 1, 0, 0)T .
The code was designed to perform the exact arithmetics in the quadratic field

Q(
√
5) and the following solutions of (8.4) and its companion system were obtained

by the Gaussian elimination: C1 = (35 − 7
√
5)/20, C11 = (−11 + 5

√
5)/4, C2 =

(5 − √
5)/20, C21 = (−3 + √

5)/4 for u11, u21, and C1 = (−5 + √
5)/20, C11 =

(3 − √
5)/4, C2 = (35 − 7

√
5)/20, C21 = (−11 + 5

√
5)/4 for u12, u22. Hence the

unitary matrix (1.3) was constructed

⎛
⎝

35−7
√
5

20 + −11+5
√
5

4(1/z−z0)
−5+√

5
20 + 3−√

5
4(1/z−z0)

5−√
5

20 + −3+√
5

4(z−z0)
35−7

√
5

20 + −11+5
√
5

4(z−z0)

⎞
⎠ = c

(
7+3z
az+b

−1+z
az+b

−1+z
a+bz

3+7z
a+bz

)
, (8.5)

where c = b(5 − √
5)/20 =

√
3 + √

5
√
25 − 10

√
5 + 5/20 = 2

√
10/20 = 1/

√
10.

The spectral factor (8.3) is equal to the product of (8.2) and (8.5). Given that the
theory implies that the entries of S+ are polynomials of order 2, we can assert that
the obtained rational functions are indeed polynomials, allowing for exact divisions.
Indeed we get

S+ = c

(
7 + 3z −1 + z

24 + 16z −2 + 2z

)
,
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a result that can be verified through direct multiplication.

8.2

In the next example, we construct a paraunitary matrix with the first row

V1(z) =
(
3z+3
5z+6

4z+5
5z+6

z+1
6z+5

)
=: (v1(z), v2(z), ṽ3(z)). (8.6)

One can check that |v1(z)|2 + |v2(z)|2 + |v3(z)|2 = 1 for each z ∈ T, i.e., condition
(1.12) of Theorem 1.3 is satisfied and we follow the procedures described in its proof
in order to perform this construction.

Since v3(z) = (z + 1)/(5z + 6) is analytic in T+ together with its inverse, the
solution φ1, φ2 of the system (7.3) can be identified by

φ1 =
[
ṽ1

v3

]−
= 11

2(6z + 5)
=: γ1

z − z0
and φ2 =

[
ṽ2

v3

]−
= −11

6(6z + 5)
=: γ2

z − z0
,

where γ1 = 11/12, γ2 = −11/36, and z0 = −5/6. Thus, we construct the matrix
function F of the form (1.2) and search for the corresponding paraunitary matrix
(1.3). Since z0 = −5/6 is a single pole of functions φ1 and φ2, we search the solutions
(u1, u2, u3) of the system (4.1) in the form

ũ j (z) = C j + C j1

z − z0
, j = 1, 2, 3,

and the system derived from the equations (1.5), (5.12), and (5.14) has the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 + C11
1−z0

= δi1

C2 + C21
1−z0

= δi2

C3 + C31
1−z0

= δi3

γ1

(
C3 + C31z0

1−z20

)
− C11 = 0

γ2

(
C3 + C31z0

1−z20

)
− C21 = 0

γ1

(
C1 + C11z0

1−z20

)
+ γ2

(
C2 + C21z0

1−z20

)
+ C31 = 0.

(8.7)
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Taking i = 1, 2, and 3 in the system (8.7), we get the coefficients of the entries of the
first, second and third columns of (1.3). Thus we obtain

U (z) =

⎛
⎜⎜⎝

19
22 + 3z

2(5z+6)
1
22 − z

2(5z+6)
1
22 − z

2(5z+6)
1
22 − z

3(5z+6)
65
66 + z

6(5z+6)
65
66 + z

6(5z+6)
1
22 − 1

2(6z+5)
−1
66 + 1

6(6z+5)
−1
66 + 1

6(6z+5)

⎞
⎟⎟⎠ .

For the function V1 defined by (8.6), we have V1(1) = 1
11 (6, 9, 2). We used the Cayley

transform V = (I − A)(I + A)−1 and searched for skew-symmetric matrix A which
satisfies the conditions (I − A)1 = V1(1)(I + A), where (I − A)1 is the first row
of I − A. This provides the orthogonal matrix W with rational entries and the first
column V T

1 (1):

W = 1

55

⎛
⎜⎝
30 −45 −10

45 26 18

10 18 −51

⎞
⎟⎠

Using formula (7.8), we get a paraunitary matrix V with the first column V T
1 :

V (z) =

⎛
⎜⎜⎝

1
2 + z

2(5z+6) − 7
10 − 13z

10(5z+6) − 1
10 − 9z

10(5z+6)

5
6 − z

6(5z+6)
13
30 + 13z

30(5z+6)
3
10 + 3z

10(5z+6)

1
6 + 1

6(6z+5)
7
30 + 31

30(6z+5) − 4
5 − 7

5(6z+5)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

3z+3
5z+6 − 24z+21

5(5z+6) − 7z+3
5(5z+6)

4z+5
5z+6

13z+13
5(5z+6)

9z+9
5(5z+6)

z+1
6z+5

7z+11
5(6z+5) − 24z+27

5(6z+5)

⎞
⎟⎟⎠

and the matrix we search for is V T .
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