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Abstract
We investigate a class of Fourier extension operators on fractional surfaces (ξ, |ξ |α)

with α ≥ 2. For the corresponding α-Strichartz inequalities, we characterize the pre-
compactness of extremal sequences by applying the missingmass method and bilinear
restriction theory. Our result is valid in any dimension. In particular for dimension two,
our result implies the existence of extremals for α ∈ [2, α0) with some α0 > 5.

Keywords Sharp Fourier restriction theory · Extremals · Fractional Schrödinger
equations · Strichartz inequalities

Mathematics Subject Classification Primary 42B10; Secondary 42B37 · 35B38 ·
35Q41

1 Introduction

For α ≥ 2 and the corresponding α-order free Schrödinger equation, the classical
α-Strichartz inequality of [26, Theorem 3.1] states the following estimate
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where 2/q + d/r = d/2 with q > 2 and

Md,q,α := sup

{∥
∥
∥
∥
[D (α−2)

q ][eit |∇|α ] f
∥
∥
∥
∥
Lq
t (R)Lrx (R

d )

: ‖ f ‖L2
x (R

d ) = 1

}

is the sharp constant, as well as

[eit |∇|α ] f (x) := F−1eit |ξ |αF f (x) = 1

(2π)d

∫

Rd
eixξ+i t |ξ |α f̂ (ξ)dξ,

[Ds]u(x) := F−1|ξ |sF f (x).

HereF denotes the spatial Fourier transform

F f (ξ) := f̂ (ξ) =
∫

Rd
e−i xξ f (x)dx, xξ := x1ξ1 + x2ξ2 + · · · + xdξd

for x = (x1, x2, . . . , xd) and ξ = (ξ1, ξ2, . . . , ξd) in R
d . Indeed, this α-Strichartz

inequality (1) belongs to the wider class of Fourier extension estimates since the
space-time Fourier support of [eit |∇|α ] f is on the fractional surface (ξ, |ξ |α) ⊂ R

d+1.
For convenience, we denote that

[Eα] f (t, x) := [D α−2
q0 ][eit |∇|α ] f (x),

q0 := 2d + 4

d
, Md,α := Md,q0,α, S∗

d := Md,2.

Note that S∗
d is the corresponding sharp constant for the classical Schrödinger operator

[eit�] and the case α = 2 is also known as the Stein-Tomas estimate for paraboloid.
The relevant symmetries for these α-Strichartz inequalities are the space-time trans-

lations and scaling as follows

[gn] f (x) := (hn)
d/2[eitn |∇|α ] f (hnx + xn), (hn, xn, tn) ∈ R+ × R

d × R;

and the associated group G is defined by

G :=
{

[gn] : (hn, xn, tn) ∈ R+ × R
d × R

}

.

Then we say a sequence of functions ( fn) in L2(Rd) is precompact up to symmetries
if there exists a sequence of symmetries ([gn]) in G such that ([gn] fn) has convergent
subsequence in L2(Rd). Meanwhile, a sequence of functions ( fn) in L2(Rd) is an
extremal sequence for Md,q,α if it satisfies

‖ fn‖L2(Rd ) = 1, lim
n→∞

∥
∥
∥
∥
[D α−2

q0 ][eit |∇|α ] fn
∥
∥
∥
∥
L
q0
t,x (R

d+1)

= Md,q,α.
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Furthermore, a function f∗ ∈ L2(Rd) is called an extremal forMd,q,α if f∗ can make
the inequality (1) an equality and ‖ f∗‖L2 = 1.

The sharp Fourier restriction theory, equivalently the extremal problems for
Strichartz type inequalities, has received much attention recently. Readers are referred
to the survey [19] and the references therein for some progress on this theory, see also
the recent survey [35]. We sketch briefly some of the works as follows.

• Paraboloid: Kunze [30] showed the existence of extremals for the Fourier exten-
sion operator on one-dimension parabola (ξ, ξ2) ⊂ R

2 based on an application
of concentration-compactness principle from Lions [32, 33]; then Foschi [17]
proved that the only extremals are Gaussians for the case of one-dimension and
two-dimension paraboloids by solving some functional equations and investigat-
ing some Cauchy-Schwarz inequalities; meanwhile, Hundertmark and Zharnitsky
[23] established the same result independently by giving a new representation for
Strichartz integral based on some orthogonal projection operators; later, Shao [39]
showed the existence of extremals for the case of arbitrary dimensional paraboloids
by applying the profile decomposition consequence of [3].

• Cone: for the case of (ξ, |ξ |) ⊂ R
d+1 with low dimensions d = {1, 2, 3}, the only

extremals are known to be exponentials by the works of Foschi [17] and Carneiro
[8]; for the case of higher dimensions d ≥ 4, the extremals exist due to the work
of Ramos [37].

• Sphere: Christ and Shao [12] showed the existence of extremals for the Fourier
extension operator on the two-dimension sphere S

2 by following the general con-
centration compactness framework, aswell as establishing some strict comparisons
for the sharp constants of sphere and paraboloid; then, for this S

2 case, Foschi [18]
proved that the only extremals are constants by investigating the Cauchy-Schwarz
type estimates for some quadratic forms based on the geometric feature of S

2;
later, Shao [40] obtained the existence of extremals for the one-dimension sphere
S
1 by combining the outlines in [12] and the profile decomposition ideas in [2, 7];

then for arbitrary dimensions, Frank, Lieb and Sabin [20] established a charac-
terization for the precompactness of extremal sequences by applying the missing
mass method from Lieb [31].

• Other situations: There are many related works such as the odd curves [6, 21,
38], hyperboloids [9, 10], perturbations [36], and non-endpoint type estimates [14,
15, 22], as well as L p extremals [4, 11, 16, 42].

The natural generalization of the paraboloid case is to investigate the sharp Fourier
extension on fractional surfaces (ξ, |ξ |α) ⊂ R

d+1, which is corresponding to the frac-
tional Schrödinger equations. For the case (d, α) = (1, 4), Jiang, Pausader and Shao
[24] established a dichotomy result on the existence of extremals by establishing the
corresponding linear profile decomposition for one-dimension forth order Schrödinger
equations; for the case (d, α) = (d, 4), Jiang, Shao and Stovall [25] studied the high-
dimension forth order Schrödinger equations and established a dichotomy result on the
existence of extremals; then for the case (d, α) = (2, 4), Oliveira e Silva and Quilo-
drán [36] resolved this dichotomy and obtained the existence of extremals by applying
some comparison principle for convolutions of certain singular measures; later, Broc-
chi, Oliveira e Silva and Quilodrán [6] established a dichotomy result for the case of



40 Page 4 of 35 Journal of Fourier Analysis and Applications (2024) 30 :40

(d, α) = (1, α) by following some concentration compactness arguments and further
obtained the existence of extremals for all α ∈ (1, α0) with some α0 > 5 by applying
the aforementioned comparison principle; recently, the authors [13] established same
dichotomy result for the case of (d, α) = (1, α) by establishing the corresponding
linear profile decomposition for one-dimension fractional Schrödinger equations, and
then further studied the asymmetric as well as non-endpoint Strichartz inequalities.
For the case of one-dimension fractional curves, both of the proofs in [6] and [13] are
based on some refined Strichartz estimates, which follows from the Hausdorff-Young
inequality and Whitney decomposition. However, these techniques cannot deal with
the higher-dimension fractional surfaces case.

In this article, we investigate the general (d, α) case. One of our main results is the
following existence of extremals consequence Theorem1.1. This result generalizes the
aforementioned result of [36, Theorem 1.6] which claims the existence of extremals
for the case of (d, α) = (2, 4).

Theorem 1.1 For dimension d = 2, there exists one constant α0 > 5 such that for
arbitrary α ∈ [2, α0) the extremal for M2,α exists.

To prove this result, we need the following precompactness Theorem 1.2, which
gives one characterization for the precompactness of extremal sequences. With this
precompactness theorem in place, as we will show later in Sect. 6, our Theorem 1.1
follows directly from the previous results in [36, Proposition 6.9] and the classical fact
that Gaussians are extremals for S∗

2.

Theorem 1.2 All extremal sequences forMd,α are precompact up to symmetries if and
only if

Md,α > (α − 1)
−1

2d+4 (α/2)
−d

2d+4 S∗
d . (2)

In particular, if the strict inequality (2) holds, then there exists an extremal forMd,α .

It is obvious that the Strichartz norm is invariant under the actions of aforementioned
symmetries,1 hence precompact up to symmetries is the best one can expect. Note
that Theorem 1.2 states some universal property for all extremal sequences instead
of identifying the extremals. Similar consequences are also established in previous
literature, such as [20, Theorem 1.1] for the sphere and [21, Theorem 1] for cubic
curve. As mentioned above, the one-dimension case of Theorem 1.2 has been proved
in the recent works [6, Theorem 1.3] and [13, Theorem 1.1] by different methods. For
the sharp constant S∗

d , it is conjectured in [17, 23] that the only extremals are Gaussians
and then the corresponding constant can be obtained by the residue theorem. It can be

seen from the asymptotic Schrödinger Lemma 4.1 that (α − 1)
−1

2d+4 (α/2)
−d

2d+4 S∗
d is a

1 Indeed, the Strichartz estimates are also invariant under some other transformations such as the rotation
symmetries f (x) �→ eix0 f (x). However, we will not use these symmetries here since they do not lead to
loss of compactness in L2(Rd ) and are inessential in our situation. Furthermore, for the special case α = 2,
there are also frequency-translation symmetries f (x) �→ eixξ0 f (x) which does not maintain the Strichartz
norm for general α.
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lower bound for Md,α . In addition, the strict inequality (2) has been proved for some
special cases and further details are discussed in Remark 4.2.

Now we give some remarks on the proof of Theorem 1.2. Recall that the Banach-
Alaoglu theorem implies that all extremal sequences must have weak limits up to
subsequences. Hence the precompactness of extremal sequences (as well as the exis-
tence of extremals) usually comes from two steps: finding a nonzero weak limit and
then upgrading this weak convergence to strong convergence. The first step often relies
on some refinement of the original α-Strichartz estimates (1), and the second step often
follows from some compactness arguments. In this paper, we achieve these two steps
by using the bilinear restriction estimates and the missing mass method separately.

The fact that Tao’s bilinear restriction estimates [43] could deduce some refined
Strichartz estimates is first shown by Bégout and Vargas for the classical Schrödinger
equations in [3], which generalizes the previous low-dimensional results in [26, 27, 34]
to higher dimensions. And then numerous consequences are established by following
this idea, see, for instance, [10, 20, 29]. In fact, it is also mentioned in [6, Sect. 2]
and [21, Sect. 3.3] that the refined Strichartz-type estimates usually come from the
bilinear restriction estimates. However, both of them can simply use the Hausdorff-
Young inequality instead, since they both only study the one dimensional fractional
curves. This Hausdorff-Young inequality is also used by the authors in the recent
work [13]. Inspired by these previous results, in this paper we will use Tao’s bilinear
restriction estimates to establish the desired high dimensional refined α-Strichartz
estimates Proposition 2.7 for fractional surfaces and then use this result to establish
the non-zero weak limit.

However, there are two potential difficulties we should resolve: one is that the frac-
tional surface (ξ, |ξ |α) has zero Gaussian curvature at the origin point, which means
that we cannot use Tao’s bilinear restriction estimate [43, Sect. 9] directly; another
one is that (except for the origin point) the geometric structure of fractional surface
is different from that of paraboloid, which implies that we need to investigate the
corresponding quasi-orthogonality of these fractional surfaces in order to apply the
bilinear-to-linear arguments in [45]. As shown later in Sect. 2, we settle the first dif-
ficulty by applying some annular orthogonality consequence Lemma 2.4 and then
restrict our attention to the annular case, which are inspired by [10, 25, 28]; further-
more, based on one geometric result Proposition A.1, the second difficulty can be
solved by dividing the angle into a large number of regions (see the number Kd,α in
Sect. 2) and then investigating the quasi-orthogonality of each regions.

To upgrade the weak convergence to strong convergence, we use the missing mass
method which is invented by Lieb [31] in the content of Hardy-Littlewood-Sobolev
inequality; see, for instance, [20, 21] for the applications of thismethod in sharpFourier
restriction theory lately. One crucial tool to apply this method is the Brézis–Lieb type
lemma due to [5, 31], and here we use a more general version [20, Lemma 3.1]. There
are also various other kinds of generalizations appeared in the literature such as [6,
9, 14]. For a sequence of functions, when we decompose each function into different
parts, these Brézis-Lieb type lemmas can give some limit-orthogonality properties
under some suitable conditions. More specifically, the main required condition is
a pointwise convergence assumption which in turn relies on the corresponding local
smoothing estimates. Furthermore, in high dimensions, there need somemulti-variable



40 Page 6 of 35 Journal of Fourier Analysis and Applications (2024) 30 :40

analysis such as the multi-variable Taylor’s theorem and decay estimates for multi-
variable oscillatory integrals.

Let us roughly explain how our strategy works. It seems that this also obeys Lions’
concentration-compactness principle [32, 33]. Note that the loss of compactness in
L2(Rd) is the main enemy in our situation. Also recall that there are some symme-
tries when we investigate the precompactness of extremal sequences forMd,α . These
three parameters (hn, tn, xn) in the symmetries represent three possible ways to lose
compactness in L2(Rd): scaling and space-time translations. Fortunately, by using the
terminology “up to symmetries" to eliminate the effect of these three parameters, we
do not need to worry about the aforementioned three ways of losing compactness.
However, there is obvious another way to lose compactness in L2(Rd): the frequency
translations f (x) �→ eixξn f (x) with parameters |ξn| → ∞. Notice that the Strichartz
norm changes when frequency translation occurs. Therefore, to establish the precom-
pactness of extremal sequences (up to symmetries), we should at least understand the
effect of frequency translations and exclude this type of possibility of losing com-
pactness. Then we are led to the asymptotic Schrödinger behavior Lemma 4.1 and
this is why the strict inequality (2) appears in our Theorem 1.2: to exclude the loss of
compactness deduced by frequency translations. In this sense, our Theorem 1.2 states
one fact that essentially the aforementioned four ways are the only ways of losing
compactness when investigating the extremal sequences of Md,α .

The outline of this paper is as follows. In Sect. 2, we use the bilinear restriction
theory to deduce the refined α-Strichartz estimates as well as the non-zero weak
limit consequence; meanwhile, our arguments in this section rely on an auxiliary
geometric result whose proof is postponed to the Appendix A. Then in Sect. 3, we
present some pointwise convergence results so that we are able to apply the Brézis-
Lieb type lemma.Next in Sect. 4,we study the effect of frequency parameters including
the asymptotic Schrödinger behavior and the corresponding pointwise convergence
property. In Sect. 5, we apply themissingmassmethod to establish our precompactness
Theorem1.2. Finally in Sect. 6,we showour existence of extremals result Theorem1.1.

We end this section with some notations. The familiar notation x � y denotes
that there exists a finite constant C such that |x | ≤ C |y|, similarly for x � y and
x ∼ y. If necessary, we may use the notation x �α y to show the dependence of this
aforementioned constant C = Cα = C(α). Finally the indicator function of a set E
will be denoted by 1E and we further define f̂ E := 1E f̂ .

2 Bilinear Restriction and Refined Strichartz

In this section, we apply the bilinear restriction theory to establish our desired high
dimensional refined α-Strichartz estimates, see Proposition 2.7 below. To achieve this,
we need an auxiliary function and a relevant geometric result which is provided in
Appendix A. For a vector ξ = (ξ1, ξ2, · · · , ξd) ∈ R

d , we introduce the notations

‖ξ‖max := max{|ξ1|, |ξ2|, . . . , |ξd |}, ‖ξ‖min := min{|ξ1|, |ξ2|, . . . , |ξd |}.
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Let D denote the family of all the classical dyadic cubes in R
d . We further define the

annular dyadic cubes as follows.

Definition 2.1 For N ∈ 2Z, we define the dyadic cube-annular AN on Fourier space
as

AN :=
{

ξ ∈ R
d : N ≤ ‖ξ‖max < 2N

}

.

Moreover, for r ∈ 2Z+ , we decompose AN into annular dyadic cubes which are

DN ,r :=
{

τ ∈ D : τ ⊂ AN , �(τ ) = N

r

}

.

To apply some Whitney-type decomposition and achieve some quasi-orthogonal
properties, we need the following preliminary definitions and notations.

Definition 2.2 For dyadic cubes τ ⊂ AN and τ ′ ⊂ AN , we write τ ∼ τ ′ ⊂ AN if
�(τ) = �(τ ′) and they are not adjacent, their parents are not adjacent, their 2-parents
are not adjacent,..., their (Nd,α − 1)-parents are not adjacent while their Nd,α-parents
are adjacent. Here we say two regions are adjacent if their closures intersect, and the
number Nd,α ∈ Z+ will be determined later in (3).

Notice that τ ∼ τ ′ will imply �(τ) = N/r with some r ≥ 2Nd,α . To use the bilinear
form and the Whitney-type decomposition, we divide the unit sphere S

d−1 into Kd,α

parts which will lead to the following angle decomposition

AN =
Kd,α⋃

j=1

A j
N , θ

j
N := sup

{

θ(ξ, η) : (ξ, η) ∈ A j
N × A j

N

}

,

such that θ
j
N < θd,α with the angle range θd,α depending on Kd,α . Here θ(ξ, η)

denotes the angle between the vectors ξ and η. By symmetry wemay assume |ξ | ≥ |η|,
meanwhile we can set Kd,α large enough to let the angle region θd,α as small as we
want. Here the numbers Nd,α and Kd,α are chosen based on the angle decomposition
result Proposition A.1. Indeed, using the notations in Remark A.2, our numbers Nd,α

and Kd,α are chosen such that

arctan(d−1/22−Nd,α ) + θd,α ≤ θ̄0. (3)

Since the angle θ̄0 is fixed and depends only on (d, α), we know that this condition
(3) must can be achieved as long as Nd,α large enough and θd,α small enough which
means Kd,α large enough.

The reason we construct this condition (3) is that it will imply the result (11) which
is a critical estimate in the proof of Quasi-orthogonality Lemma 2.3. Meanwhile it
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should be pointed out that

max
1≤ j≤Kd,α

∥
∥
∥[eit |∇|α ] fA j

N

∥
∥
∥
L
q0
t,x

≤
∥
∥
∥[eit |∇|α ] fAN

∥
∥
∥
L
q0
t,x

≤
Kd,α∑

j=1

∥
∥
∥[eit |∇|α ] fA j

N

∥
∥
∥
L
q0
t,x

. (4)

We further introduce the annular-restricted notation τ ∼ τ ′ ⊂ A j
N which means

τ ∼ τ ′ ⊂ AN , τ ∩ A j
N �= ∅, τ ′ ∩ A j

N �= ∅.

Recall that θ̄0 is very small and much smaller than π/8. Hence by dividing AN into
Kd,α parts as above, except for a null set, it can be achieved that for arbitrary (ξ, ξ ′) ∈
A j

N × A j
N there exists unique pair τ ∼ τ ′ ⊂ A j

N satisfying ξ ∈ τ and ξ ′ ∈ τ ′. This
fact deduces the Whitney-type decomposition which will be used later in the proof of
annular refined estimates Lemma 2.6.

In our bilinear setting, the first crucial fact is the following quasi-orthogonality
lemma.

Lemma 2.3 Suppose that d ≥ 2 and j0 ∈ {1, 2 . . . , Kd,α}. Then the following inequal-
ity holds

∥
∥
∥
∥
∥
∥
∥

∑

τ∼τ ′⊂A j0
1

[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥
∥
∥
∥
∥

q0
2

L
q0
2
t,x

�
∑

τ∼τ ′⊂A j0
1

∥
∥
∥[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥

q0
2

L
q0
2
t,x

,

for all f ∈ L2(Rd) satisfying supp f̂ ⊂ A j0
1 .

Proof of Lemma 2.3 At the beginning, we mention that all the dyadic cubes in this
proof have intersections with A j0

1 . Given τ ∈ D1,r , denote ξ0 := c(τ ) the center of
τ . Then for every ξ ∈ τ , considering the radial direction and angle differences, some
geometry observations give that

∣
∣
∣|ξ | − |ξ0|

∣
∣
∣ � 1/r , (|ξ ||ξ0| − ξξ0)

1/2 � 1/r . (5)

Furthermore for τ ∼ τ ′ ∈ D1,r and ξ ′
0 := c(τ ′), there holds

∣
∣
∣|ξ0| − |ξ ′

0|
∣
∣
∣+ (|ξ0||ξ ′

0| − ξ0ξ
′
0)

1/2 ∼ 1/r . (6)

Denote τ̃ , τ̃ ′ the lifts of τ, τ ′ into the surface (ξ, |ξ |α) ⊂ R
d+1. Based on the quasi-

orthogonality result [37, Lemma 2.2], our main task is investigating the geometry of
the sum-set

τ̃ + τ̃ ′ := {(ξ + ξ ′, |ξ |α + |ξ ′|α) : (ξ, ξ ′) ∈ τ × τ ′} ⊂ R
d+1.
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We claim that the collection {(τ, τ ′) : τ ∼ τ ′ ⊂ A j0
1 } can be finitely decomposed

into universal number of subsets {Tm}K0
m=1, and then for each subset Tm there exist a

universal number K1 and a universal constant β > 0 such that the following property
holds: for every (τ, τ ′) ∈ Tm , we can find K1 parallelepipeds {P� = P�(τ, τ

′)}K1
�=1

satisfying

(

τ̃ + τ̃ ′) ⊂
(

K1⋃

�=1

P�

)

,
[

(1 + β) · P�

]

∩
[

(1 + β) · P�′
]

= ∅ for � �= �′.

Here (1 + β) · P� denotes the centered dilation of P� which means

(1 + β) · P� := (1 + β)[P� − c(P�)] + c(P�)

with c(P�) denoting the center of P�. Let us postpone the detailed proof of this claim
and use it to prove our final result now. Define�� := 1P�

. Since P� is a parallelepiped,
for every exponent q > 1, the boundedness of Hilbert transform implies the following
multiplier boundedness

‖F ∗ �̂�‖Lq (Rd+1) � ‖F‖Lq (Rd+1) (7)

for all F ∈ Lq(Rd+1). On the other hand, note that the space-time Fourier support
satisfies

supp
(

[eit |∇|α ] fτ [eit |∇|α ] fτ ′
)
∧

t,x ⊂ (τ̃ + τ̃ ′) .

Hence by the claimand triangle inequality,weonly need to show the following estimate
holds

∥
∥
∥
∥
∥
∥

∑

(τ,τ ′)∈Tm

(

[eit |∇|α ] fτ [eit |∇|α ] fτ ′
)

∗ �̂�

∥
∥
∥
∥
∥
∥

q0
2

L
q0
2
t,x

�
∑

(τ,τ ′)∈Tm

∥
∥
∥[eit |∇|α ] fτ [eit |∇|α ] fτ ′

∥
∥
∥

q0
2

L
q0
2
t,x

(8)

for each m ∈ {1, 2, . . . , K0} and each � ∈ {1, 2, . . . , K1}. This estimate (8) comes
from a direct application of [37, Lemma 2.2] and the boundedness (7). Indeed, since
P� is an affine image of the unit cube, for each (τ, τ ′) ∈ Tm we can construct a bump
function ϕ = ϕ(τ, τ ′) satisfying

suppϕ ⊂ (1 + β) · P�, ϕ(x) ≡ 1 for x ∈ P�, ‖ϕ̂‖L1(Rd+1) ≤ C,
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where the constant C is independent of (τ, τ ′). Thus, [37, Lemma 2.2] deduces that

∥
∥
∥
∥
∥
∥

∑

(τ,τ ′)∈Tm

(

[eit |∇|α ] fτ [eit |∇|α ] fτ ′
)

∗ �̂�

∥
∥
∥
∥
∥
∥

q0
2

L
q0
2
t,x

�
∑

(τ,τ ′)∈Tm

∥
∥
∥

(

[eit |∇|α ] fτ [eit |∇|α ] fτ ′
)

∗ �̂�

∥
∥
∥

q0
2

L
q0
2
t,x

.

This conclusion and the boundedness (7) immediately give the desired estimate (8).
It remains to prove the aforementioned claim. For the sum-set τ + τ ′, considering

the length along radial direction and the angle differences, it is not hard to see that

∣
∣
∣|ξ + ξ ′| − |ξ0 + ξ ′

0|
∣
∣
∣ � 1/r ,

[|ξ + ξ ′||ξ0 + ξ ′
0| − (ξ + ξ ′)(ξ0 + ξ ′

0)
]1/2 � 1/r .

(9)

Meanwhile some further investigation will imply the following estimate

|ξ |α + |ξ ′|α − |ξ + ξ ′|α/2α−1 ∼ 1/r2. (10)

Indeed, without loss of generality we may assume |ξ | ≥ |ξ ′|. If we define the auxiliary
function

Fξ ′(ξ) := |ξ |α + |ξ ′|α − |ξ + ξ ′|α/2α−1,

then for every fixed ξ ′ ∈ R
d the function Fξ ′(ξ) has non-degenerate critical point

ξ = ξ ′. In other words, the Hessian matrix HessFξ ′(ξ ′) is positive-definite and

∇Fξ ′(ξ ′) = 0.

Also notice that Fξ ′(ξ ′) = 0 at this point and Fξ ′(ξ) is a smooth function. Moreover,
since we have

(ξ, ξ ′) ∈ τ × τ ′, τ ∼ τ ′ ⊂ A j0
1 ,

the condition (3) and Proposition A.1 then imply

det HessFξ ′(ξ) ∼ 1. (11)

Hence when τ ∼ τ ′ ∈ D1,r which leads to |ξ − ξ ′| ∼ 1/r , we can use the multi-
variable Taylor’s theorem to obtain |Fξ ′(ξ)| ∼ 1/r2. This gives the desired estimate
(10).

Then we follow some similar arguments in the proof of [10, Lemma 5.2]. First, we
can find a universal constant C1 such that for every fixed τ ∼ τ ′ ∈ D1,r , the number
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of corresponding ρ ∼ ρ′ ∈ D1,s satisfies the following quantity bound

#
{

(ρ, ρ′) : ρ ∼ ρ′ ∈ D1,s, (τ̃ + τ̃ ′) ∩ (ρ̃ + ρ̃′) �= ∅} ≤ C1.

In fact, if (τ̃ + τ̃ ′) ∩ (ρ̃ + ρ̃′) �= ∅, it is not hard to see that the estimate (10) implies
s ∼ r ; and for each fixed s, the estimates (5), (6) and (9) can imply that for given τ ,
the number of possible cubes ρ ∈ D1,s is universally bounded; then for each fixed ρ,
the number of ρ′ is obviously uniformly finite. Therefore we obtain the existence of
the constant C1.

Second, note that (10) gives the universal constant c2 > 0 and c3 > 0 with the
following relation

τ̃ + τ̃ ′ ⊂ �τ,τ ′ ,

�τ,τ ′ :=
{

(ξ, η) ∈ (τ + τ ′) × R : |ξ |α/2α−1 + c2/r
2 ≤ η ≤ |ξ |α/2α−1 + c3/r

2
}

.

Meanwhile the estimates (9) give the rectangle Rτ,τ ′ ⊂ R
d such that τ + τ ′ ⊂ Rτ,τ ′

with center c(Rτ,τ ′) at the point γ0 := ξ0 + ξ ′
0 and every side length comparable to

1/r , as well as one edge aligned with the vector γ0. By a centered dilation R∗
τ,τ ′ :=

(1 + c4) · Rτ,τ ′ with constant c4 > 0 small enough independent of (τ, τ ′), we can let
the following sets still have bounded overlap

�τ,τ ′ :=
{

(ξ, η) ∈ R∗
τ,τ ′ × R : |ξ |α/2α−1 + c2/2r

2 ≤ η ≤ |ξ |α/2α−1 + 2c3/r
2
}

.

Hence we are able to decompose the collection {(τ, τ ′) : τ ∼ τ ′ ⊂ A j0
1 } into universal

number of subsets {Tm}K0
m=1, such that for eachTm there is a corresponding set {�τ,τ ′ }m

whose elements are pairwise disjoint. Thus, we may fix somem = m0 and investigate
one subset Tm0 from now on.

Third, for γ ∈ R
d , we define T (γ ) to be the tangent plane of the surface

(ξ, |ξ |α/2α−1) at the point (γ, |γ |α/2α−1) as follows

T (γ ) :=
{

(γ, |γ |α/2α−1) + v : v ∈ R
d+1, v⊥(α|γ |α−2γ /2α−1,−1)

}

.

Let (e1, e2, . . . , ed+1) denote the canonical basis in R
d+1. Without loss of generality,

we may assume the center γ0 = |γ0|ed . Consider the point γ = ked which is very
close to γ0. In this case, the corresponding hyperplane can be computed as

T (γ ) = {(γ, |γ |α/2α−1) + (v1, v2, . . . , vd , vdαk
α−1/2α−1) : vi ∈ R, i = 1, 2, . . . , d

} ;

and lifting the rectangle Rτ,τ ′ to the tangent plane T (γ ) amounts to choosing

|(v1, v2, . . . , vd−1)| � 1/r , vd � 1/r .
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Hence we can precisely set y = (v1, v2 . . . , vd−1) and assume

|y| ≤ c5/r , |vd | ≤ c6/r (12)

with the constants c5, c6 to be determined later. Under these assumptions, in the direc-
tion ed+1, we can use the multi-variable Taylor’s theorem to estimate the largest
displacement between the tangent plane and the surface (ξ, |ξ |α/2α−1) as follows

|(y, k + vd)|α/2α −
(

kα/2α−1 + αvdk
α−1/2α−1

)

� |(y, vd)|2 ≤ (c25 + c26)/r
2.

Herewe have used the fact k ∼ 1which leads to all the second-order partial derivatives
and the Hessian of this corresponding function g(ξ) = |ξ |α/2α−1 comparable to 1.
Hence we can choose some universal constants c5, c6 small enough such that this dis-
placement is less than c3

2r2
. This conclusion further gives the desired universal constant

K1 comparable to (c5)1−d(c6)−1, such that the rectangle Rτ,τ ′ can be decomposed into
K1 smaller rectangles

Rτ,τ ′ =
K1⋃

�=1

R�,

where the smaller rectangles R� = R�(τ, τ
′) have the same size with disjoint interiors

and satisfy the condition (12).
Then for each �, let c� be the center of the rectangle P� and let T (R�) denote the lift

of R� into the tangent plane T (c�). Define the parallelepiped P� = P�(τ, τ
′) ⊂ R

d+1

as the sum-set

P� := T (R�) +
{

sed+1 : c2
r2

≤ s ≤ 3c3
2r2

}

.

Note that distinct P� have disjoint interiors and the following inclusion holds

(

τ̃ + τ̃ ′) ⊂ �τ,τ ′ ⊂
(

K1⋃

�=1

P�

)

.

Moreover, by the construction of R∗
τ,τ ′ and R�, there exists β > 0 such that

(1 + β) · R� ⊂ R∗
τ,τ ′ holds for every � ∈ {1, 2, . . . , K1}. Taking the aforementioned

displacements into consideration, recalling the choice of constants c5 and c6, we can
guarantee that

(1 + β) · P� ⊂ �τ,τ ′ ,

possibly choosing a smaller β but still universal. This finishes the proof of our desired
claim. ��
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One basic refinement of the original α-Strichartz inequality (1) is the following
annular orthogonality Lemma 2.4. Indeed, a direct application of the Littlewood-Paley
theory and the mixed-norm estimates (1) will give this refinement. Similar arguments
can be found in [25, Lemma 2.3]. See also [10, Proposition 2.1] and [28, Lemma 4.1].
We omit the proof here for simplicity.

Lemma 2.4 Let d ≥ 2. We have the following annular orthogonality estimate

‖[Eα] f ‖q0
L
q0
t,x (R

d+1)
� sup

N∈2Z

‖[Eα] fN‖q0−2

L
q0
t,x (R

d+1)
‖ f ‖2L2

x (R
d )

for every f ∈ L2(Rd), where f̂N := 1AN f̂ .

Based on this annular orthogonality result, we are able to focus on the annular case
and aim to establish some suitable control for the item ‖[Eα] fN‖Lq0

t,x
. At this point,

the advantage is that the truncated surface has non-zero Gaussian curvature. Hence
we are able to apply Tao’s classical bilinear restriction estimates in [43].

Theorem 2.5 Suppose that d+3
d+1 < p < d+2

d and j0 ∈ {1, 2 . . . , Kd,α}. Then for every
τ ∼ τ ′ ⊂ A j0

1 , the following bilinear estimates holds

∥
∥
∥[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥
L p
t,x

� |τ |1− q0
2p ‖ fτ‖L2‖ fτ ′ ‖L2

for all f ∈ L2(Rd) satisfying supp f̂ ⊂ A1. Therefore, by interpolation there exists
s0 ∈ (1, 2) such that

∥
∥
∥[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥
L
q0/2
t,x

� |τ |1− 2
s0 ‖ f̂τ‖Ls0 ‖ f̂τ ′ ‖Ls0 .

Proof of Theorem 2.5 This result follows from a standard parabolic rescaling argument
by Tao’s bilinear estimates on the paraboloid [43]. Note that our surface (ξ, |ξ |α)

restricted on the unit cube-annular A1 is a elliptic-type compact surface in the sense
of [45, Sect. 2]. Hence we can use the bilinear estimates [43, Sect. 9, third remark]
to deduce this desired conclusion. See [20, Theorem A.1] for further details on this
parabolic rescaling argument. ��

As mentioned above, on each annular, we are going to apply this bilinear estimate
Theorem2.5 to deduce the following annular refinedα-Strichartz estimate Lemma 2.6.
The arguments (from bilinear-type estimate to refined-type Strichartz estimate) are
classical, and similar arguments can be seen in the works such as [3, 21, 44]. Here
we follow the ideas in these works, and show the details for the convenience of the
readers.

Lemma 2.6 Let d ≥ 2. There exists γ ∈ (0, 1) such that the following estimate

∥
∥
∥[eit |∇|α ] f

∥
∥
∥
L
q0
t,x

�
[

sup
r∈2Z+

sup
τ∈D1,r

|τ |−1/2
∥
∥
∥[eit |∇|α ] fτ

∥
∥
∥
L∞
t,x

]γ

‖ f ‖1−γ

L2
x
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holds for all f ∈ L2(Rd) satisfying supp f̂ ⊂ A1. Moreover, by rescaling, the follow-
ing estimate

N
α−2
q0

∥
∥
∥[eit |∇|α ] f

∥
∥
∥
L
q0
t,x

�
[

sup
r∈2Z+

sup
τ∈DN ,r

|τ |−1/2
∥
∥
∥[eit |∇|α ] fτ

∥
∥
∥
L∞
t,x

]γ

‖ f ‖1−γ

L2
x

holds for all f ∈ L2(Rd) satisfying supp f̂ ⊂ AN .

Proof of Lemma 2.6 Due to the relation (4), it suffices to fix some j0 ∈ {1, 2, . . . , Kd,α}
and prove that

∥
∥
∥[eit |∇|α ] fA j0

1

∥
∥
∥
L
q0
t,x

�
[

sup
r∈2Z+

sup
τ∈D1,r

|τ |−1/2
∥
∥
∥[eit |∇|α ] fτ

∥
∥
∥
L∞
t,x

]γ

‖ f ‖1−γ

L2
x

. (13)

Our strategy is using the bilinear estimates Theorem 2.5. Thus, the Whitney-type
decomposition gives

∥
∥
∥[eit |∇|α ] fA j0

1

∥
∥
∥
L
q0
t,x

≤

∥
∥
∥
∥
∥
∥
∥

∑

τ∼τ ′⊂A j0
1

[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥
∥
∥
∥
∥

1/2

L
q0/2
t,x

.

Then the quasi-orthogonality Lemma 2.3 and Hölder’s inequality imply that

∥
∥
∥
∥
∥
∥
∥

∑

τ∼τ ′⊂A j0
1

[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥
∥
∥
∥
∥

1/2

L
q0/2
t,x

�

⎛

⎜
⎝

∑

τ∼τ ′⊂A j0
1

∥
∥
∥[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥

q0

L
q0/2
t,x

⎞

⎟
⎠

1
2q0

≤ sup
τ∼τ ′⊂A j0

1

∥
∥
∥[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥

q0−s
2q0

L
q0/2
t,x

(14)

×
⎛

⎜
⎝

∑

τ∼τ ′⊂A j0
1

∥
∥
∥[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥

s

L
q0/2
t,x

⎞

⎟
⎠

1
2q0

. (15)

Here the inequality is valid for all 0 < s < q0, though we will choose 1 < s < q0
later. In the remainder of this proof, we will estimate (14) and (15) by different ways
which will finally lead to the desired result (13).
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Firstly for the term (14), we have that

∥
∥
∥[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥
L
q0/2
t,x

≤
(

|τ |−1
∥
∥
∥[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥
L∞
t,x

)1− 2p
q0

×
(

|τ | q02p −1
∥
∥
∥[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥
L p
t,x

) 2p
q0

,

where d+3
d+1 < p < d+2

d . Then the bilinear estimates Theorem 2.5 gives the following
estimate

∥
∥
∥[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥
L
q0/2
t,x

�
(

|τ |−1/2‖[eit |∇|α ] fτ‖L∞
t,x

)1− 2p
q0

×
(

|τ ′|−1/2‖[eit |∇|α ] fτ ′ ‖L∞
t,x

)1− 2p
q0 ‖ f ‖

4p
q0
L2
x
,

which immediately means

sup
τ∼τ ′⊂A j0

1

∥
∥
∥[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥
L
q0/2
t,x

�
[

sup
r∈2Z+

sup
τ∈D1,r

|τ |−1/2‖[eit |∇|α ] fτ‖L∞
t,x

]2− 4p
q0

‖ f ‖
4p
q0
L2
x
. (16)

For the term (15), a standard application of bilinear estimates Theorem 2.5 concludes
that

∑

τ∼τ ′⊂A j0
1

∥
∥
∥[eit |∇|α ] fτ · [eit |∇|α ] fτ ′

∥
∥
∥

s

L
q0/2
t,x

�
∑

τ∼τ ′⊂A j0
1

[

|τ |1−2/s0‖ f̂τ‖Ls0 ‖ f̂τ ′ ‖Ls0

]s

�
∑

τ∼τ ′⊂A j0
1

[

|τ |1−2/s0‖ f̂τ‖2Ls0

]s

�
∑

τ⊂A1

[

|τ |1−2/s0‖ f̂τ‖2Ls0

]s

� ‖ f ‖2sL2 ,

where in the last inequality we have used [3, Theorem 1.3] with s > 1, see also [44, p.
279]. Thus, this estimate and the previous (16) directly imply our desired conclusion
(13). ��

Finally, we are able to show our main result in this section, which is the following
refined α-Strichartz proposition.
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Proposition 2.7 Let d ≥ 2. There exists θ ∈ (0, 1) such that the following estimate

‖[Eα] f ‖Lq0
t,x

�
[

sup
Q∈D

|Q|− 1
2

∥
∥
∥[eit |∇|α ] fQ

∥
∥
∥
L∞
t,x

]θ

‖ f ‖1−θ

L2
x

(17)

holds for all f ∈ L2(Rd).

Proof of Proposition 2.7 Combining the annular orthogonality Lemma 2.4 and annu-
lar refined α-Strichartz Lemma 2.6, we directly obtain this conclusion by applying
Bernstein’s inequality. ��

There are standard arguments to deduce the following non-zero weak limit result
Corollary 2.8 from the aforementioned Proposition 2.7. In fact, the L∞

t,x -norm in
(17) gives space-time translation parameters and the supremum of dyadic cubes gives
scaling-frequency parameters. Readers can see [20, Corollary 3.2] for further details
and the detailed proof are omitted here for simplicity.

Corollary 2.8 Let ( fn)beabounded sequence in L2(Rd)withd ≥ 2. If‖[Eα] fn‖Lq0
t,x

�

0, then there exists (tn, xn, ξn, hn) ⊂ R×R
d ×R

d ×R+ with hn‖ξn‖min ≥ 1/2, such
that up to subsequences

[̂gn] fn (ξ + hnξn)⇀V̂

in weak topology of L2(Rd) with V̂ �= 0. Moreover, if ‖ fn‖L2
x

≤ B and
lim supn→∞ ‖Eα fn‖Lq0

t,x
≥ A, then we have

‖V ‖L2
x

≥ CAβB−γ ,

where C, β, γ depend only on the dimension d and α.

3 Local Smoothing and Local Convergence

In this section we show some local smoothing property for the solution [eit |∇|α ] f .
Then this property further deduces some local convergence and pointwise convergence
results which will provide the desired input for Brézis-Lieb type lemma [20, Lemma
3.1]. Similar arguments can also be found in [20, 21].Our local smoothing consequence
is the following lemma.

Lemma 3.1 Let φ ∈ L1(Rd) be a Schwartz function. Then for all f ∈ L2(Rd), there
holds

∫

Rd+1
φ(x)

∣
∣
∣[D α−1

2 ][eit |∇|α ] f (x)
∣
∣
∣

2
dxdt �φ ‖ f ‖L2 .
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Proof of Lemma 3.1 We will mimic the proofs in [20, Lemma 4.4] and [21, Lemma
4.3], albeit with a small twist.

Let Ft be the Fourier transform on time space. Then there holds

Ft e
ia0t (λ) = 2πδ(λ − a0).

Here δ denotes the Dirac delta function. Thus, Plancherel theorem implies the follow-
ing estimate

∫

Rd+1
φ(x)

∣
∣
∣[D α−2

2 ][eit |ξ |α ] f (x)
∣
∣
∣

2
dxdt

∼
∫

Rd

∫

Rd
φ̂(ξ ′ − ξ)|ξ | α−1

2 |ξ ′| α−1
2 f̂ (ξ) f̂ (ξ ′)δ(|ξ |α − |ξ ′|α)dξdξ ′.

By Schur test, we only need to show

sup
ξ

∫

Rd
φ̂(ξ ′ − ξ)|ξ | α−1

2 |ξ ′| α−1
2 δ(|ξ |α − |ξ ′|α)dξ ′ < ∞.

Setting polar coordinate ξ ′ = kθ with θ ∈ S
d−1 and denoting ξ = |ξ |θξ , it remains to

deduce

sup
ξ

|ξ |d−1
∫

Sd−1

∣
∣
∣φ̂
(

|ξ |(θξ − θ)
)∣
∣
∣ dθ < ∞.

The dominated convergence theorem implies that
∫

Sd−1

∣
∣
∣φ̂
(

|ξ |(θξ − θ)
)∣
∣
∣ dθ is a con-

tinuous function with respect to ξ , hence it suffices to prove

∫

Sd−1

∣
∣
∣φ̂
(

|ξ |(θξ − θ)
)∣
∣
∣ dθ = O

(

|ξ |1−d
)

(18)

as |ξ | → ∞. A changing of variables gives

∫

Sd−1

∣
∣
∣φ̂
(

|ξ |(θξ − θ)
)∣
∣
∣ dθ = 1

|ξ |d−1

∫

S
d−1
ξ

|φ̂(θ)|dθ,

where S
d−1
ξ := {θ ∈ R

d : |θ − θξ | = |ξ |} is the sphere centered at θξ with radius |ξ |.
Then the fact that φ is a Schwartz function deduces the desired result (18) and finishes
the proof. ��
Lemma 3.2 Let β < α−1

2 and define the operator [Ēβ ] := [Dβ ][eit |∇|α ]. For a
bounded sequence of functions ( fn) in L2(Rd), if we have

fn⇀0
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weakly in L2(Rd), then up to subsequences there holds [Ēβ ] fn(t, x) → 0 almost
everywhere in R

d+1.

Proof of Lemma 3.2 Based on the local smoothing Lemma 3.1, the proof is standard.
Similar proofs can also be found in [20, Proposition 4.3], [21, Lemma 4.3] and [21,
Lemma D.1].

We aim to show that [Ēβ ] fn → 0 strongly in L2
loc(R

d+1), which implies the desired
result by a Cantor diagonal argument. Let K ⊂ R

d+1 be a compact set and ε > 0. For
� > 0, define

[P�] f (x) := F−11B�F f (x), [P⊥
� ] f (x) := f (x) − [P�] f (x).

Here B� is the ball in R
d centered at origin with radius �. For the [P⊥

� ] term, since
β < α−1

2 , we use Lemma 3.1 to conclude that

∥
∥
∥1K [P⊥

� ][Ēβ ] fn
∥
∥
∥
L2
t,x

≤
∥
∥
∥1K e

|x |2
∥
∥
∥
L∞
t,x

∥
∥
∥e−|x |2 [D α−1

2 ][eit |∇|α ]
∥
∥
∥
L2
x→L2

t,x

×
∥
∥
∥[P⊥

� ][Dβ− α−1
2 ]
∥
∥
∥
L2
x→L2

x

‖ fn‖L2
x

≤ CK�β− α−1
2 ,

where CK is independent of n and the notation ‖[T ]‖L p→Lq denotes the norm of the
operator [T ]. Hence we can choose � large enough independent of n such that

∥
∥
∥1K [P⊥

� ][Ēβ ] fn
∥
∥
∥
L2
t,x

≤ ε.

Then for this large � and the [P�] term, we claim that for every fixed t ∈ R there
holds

1K (t, ·)[P�][Dβ ][eit |∇|α ] fn → 0 (19)

strongly in L2
x (R

d) as n → ∞. Indeed, for any (t, x) ∈ R × R
d , since fn⇀0 in

L2
x (R

d) we have

1K (t, ·)[P�][Dβ ][eit |∇|α ] fn(x) = 1K (t, x)
∫

Rd
1{|ξ |≤�}|ξ |βeixξ+i t |ξ |α f̂n(ξ)dξ → 0

as n → ∞. Meanwhile, by Cauchy–Schwarz and the boundedness of ‖ fn‖L2
x
, there

holds
∣
∣
∣1K (t, ·)[P�][Dβ ][eit |∇|α ] fn(x)

∣
∣
∣ � 1K (t, x)�β+d/2‖ fn‖L2

x
�� 1K (t, x).

Therefore, dominated convergence theorem gives the desired claim (19). Notice that
there holds

∥
∥
∥1K (t, ·)[P�][Dβ ][eit |∇|α ] fn(x)

∥
∥
∥
L2
t,x

�� ‖1K ‖L2
t,x

.
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Hence, the claim (19) anddominated convergence theorem imply that1K [P�][Ēβ ] fn →
0 strongly in L2

t,x (R
d+1) as n → ∞. This completes the proof. ��

4 Approximate Symmetry

As mentioned in the introduction, to establish the main precompactness result Theo-
rem 1.2, one should understand the behavior of approximate symmetries in the sense
of [21, Remark 2.6]. In other words, we should investigate the effect of frequency
parameters ξn . In this section, for frequencies (ξn) ⊂ R

d with |ξn| → ∞, then up to
subsequences we introduce the following notations

ξ̄n := ξn

|ξn| , ξ0 := lim
n→∞ ξ̄n .

For an unit vector ξ0 ∈ S
d−1, we define the linear transformation A0 on R

d as follows

A0 : ξ �→ ξ⊥√α/2 + ξ �
√

α(α − 1)/2, ξ � := (ξξ0)ξ0, ξ⊥ := ξ − ξ �;

and the associated unitary operator [ Ã0] on L2(Rd) is defined by

[ Ã0] f (x) := | det A0|1/2 f (A0x). (20)

Note that the absolute value of determinate | det A0| = (α/2)d/2
√

α − 1. The approx-
imate symmetry mainly investigates the operator

[T n
α ] f (t, x) :=

∫

Rd
|ξ + ξn|

α−2
q0 eixξ+i t |ξ+ξn |α f̂ (ξ)dξ (21)

and the following function

Fn
α (t, x) = [T̄ n

α ] f (t, x) :=
∫

Rd

∣
∣
∣
∣

ξ

|ξn| + ξ̄n

∣
∣
∣
∣

α−2
q0

eixξ+i t�n(ξ) f̂ (ξ)dξ, (22)

where

�n(ξ) := 1

|ξn|α−2

[

|ξ + ξn|α − |ξn|α − α|ξn|α−2ξnξ
]

.

Indeed, it is not hard to see that there holds

‖[T n
α ] f ‖Lq0

t,x
= ∥∥Fn

α

∥
∥
L
q0
t,x

.

Our first result on the aforementioned approximate operator [T n
α ] is the following

asymptotic Schrödinger behavior lemma.
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Lemma 4.1 Let f ∈ L2(Rd) with ‖ f ‖L2 = 1 and frequencies (ξn) ⊂ R
d . Set

f̂n(ξ) := f̂ (ξ − ξn), a∗
d,α := (α − 1)

−1
2d+4 (α/2)

−d
2d+4 .

Then, up to subsequences, we have the following asymptotic Schrödinger behavior

lim|ξn |→∞ ‖[Eα] fn‖Lq0
t,x

= lim
n→∞

∥
∥[T n

α ] f ∥∥Lq0
t,x

= a∗
d,α

∥
∥
∥[eit�][ Ã0] f

∥
∥
∥
L
q0
t,x

.

Remark 4.2 Based on the existence of extremals for S∗
d by [39], this Lemma 4.1 imme-

diately gives

Md,α ≥ (α − 1)
−1

2d+4 (α/2)
−d

2d+4 S∗
d .

For the case d = 1, after some accurate numerical calculations, it has been shown in
[6, Theorem 1.4] that there exists α1 ≈ 5.485 such that the strict inequality (2) holds
for indices α ∈ (1, α1)\{2}. For the case d = 2, it has been proved in [36, Proposition
6.9] that there exists α0 > 5 such that the strict inequality (2) holds for α ∈ (2, α0).
These consequences suggest that the aforementioned strict inequality might hold for
all general (d, α) with α > 2. However, it remains an open question for us.

Proof of Lemma 4.1 The change of variables can yield that

‖[Eα] fn‖Lq0
t,x

= ∥∥[T n
α ] f ∥∥Lq0

t,x
,

‖[T̄ n
α ]‖L2

x→L
q0
t,x

= ‖[T n
α ]‖L2

x→L
q0
t,x

= ‖[Eα]‖L2
x→L

q0
t,x

= Md,α. (23)

Hence by some dense argument we may assume f has compact Fourier support at the
beginning. Using our aforementioned definition (22), we can obtain that

‖[T n
α ] f ‖Lq0

t,x
=
∥
∥
∥
∥
∥

∫

Rd
|ξn|

α−2
q0

∣
∣
∣
∣

ξ

|ξn| + ξ̄n

∣
∣
∣
∣

α−2
q0

eixξ+i t |ξ+ξn |α f̂ (ξ)dξ

∥
∥
∥
∥
∥
L
q0
t,x

=
∥
∥
∥
∥
∥

∫

Rd

∣
∣
∣
∣

ξ

|ξn| + ξ̄n

∣
∣
∣
∣

α−2
q0

e
ixξ+i t |ξ+ξn |α

|ξn |α−2 f̂ (ξ)dξ

∥
∥
∥
∥
∥
L
q0
t,x

= ∥∥Fn
α

∥
∥
L
q0
t,x

.

Then the Taylor’s theorem, paired with the assumptions |ξn| → ∞ and f has compact
Fourier support, will directly imply the following pointwise convergence

lim
n→∞ �n(ξ) = α|ξ |2 + α(α − 2)|ξξ0|2

2
. (24)
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Therefore it is reasonable to expect the following estimate

lim
n→∞

∥
∥
∥[T n

α ] f
∥
∥
∥
L
q0
t,x

=
∥
∥
∥
∥

∫

Rd
eixξ+i t

[

α|ξ |2/2+α(α−2)|ξξ0|2/2
]

f̂ (ξ)dξ

∥
∥
∥
∥
L
q0
t,x

. (25)

Let us postpone the proof of this result and go ahead by using this estimate (25). From
the definition of A0 and [ Ã0], we know that |A0ξ |2 = α|ξ |2/2 + α(α − 2)|ξξ0|2/2.
Then a direct computation yields that

∥
∥
∥
∥

∫

Rd
eixξ+i t

[

α|ξ |2/2+α(α−2)|ξξ0|2/2
]

f̂ (ξ)dξ

∥
∥
∥
∥
L
q0
t,x

=
∥
∥
∥
∥

∫

Rd
eixξ+i t |A0ξ |2 f̂ (ξ)dξ

∥
∥
∥
∥
L
q0
t,x

= | det A0|−1/2
∥
∥
∥[eit�][ Ã0] f (A−1

0 x)
∥
∥
∥
L
q0
t,x

= | det A0|1/q0−1/2
∥
∥
∥[eit�][ Ã0] f

∥
∥
∥
L
q0
t,x

.

Finally, the fact | det A0| = (α/2)d/2
√

α − 1 gives the constant a∗
d,α = (α −

1)
−1

2d+4 (α/2)
−d

2d+4 .
Now it remains to prove (25). Indeed, we can obtain the following stronger result

Fn
α (t, x) →

∫

Rd
eixξ+i t

[

α|ξ |2/2+α(α−2)|ξξ0|2/2
]

f̂ (ξ)dξ (26)

strongly in Lq0
t,x (R

d+1) as n → ∞. Firstly for any (t, x) ∈ R
d+1, since f is a

Schwartz function with compact Fourier support, dominated convergence theorem
and the estimate (24) imply

lim
n→∞ Fn

α (t, x) =
∫

Rd
eixξ+i t

[

α|ξ |2/2+α(α−2)|ξξ0|2/2
]

f̂ (ξ)dξ. (27)

On the other hand, for n large enough, by a standard application of stationary phase
method we can deduce the following two decay estimates

|Fn
α (t, x)| ≤ C(1 + t2 + |x |2)− d

4 (28)

and

|Hα(t, x)| :=
∣
∣
∣
∣

∫

Rd
eixξ+i t

[

α|ξ |2/2+α(α−2)|ξξ0|2/2
]

f̂ (ξ)dξ

∣
∣
∣
∣
≤ C(1 + t2 + |x |2)− d

4 ,

(29)

where the constant C is independent of n. Assume for the moment these two decay
estimates and let us show the desired convergence result (26) first. From the decay



40 Page 22 of 35 Journal of Fourier Analysis and Applications (2024) 30 :40

estimates (28) and (29), after taking a subsequence, we have that for all n and some
constant C ′ there holds

∫

|(t,x)|>R

(|Fn(t, x)|q0 + |Hα(t, x)|q0) dtdx ≤ C ′

R
.

By setting R > 0 large enough, this term can be arbitrary small uniformly in n. Hence
it suffices to prove that for any fixed R > 0, there holds

1BR (t, x)Fn
α (t, x) → 1BR (t, x)Hα(t, x)

strongly in Lq0
t,x (R

d+1) as n → ∞. By dominated convergence theorem, this follows
immediately from the pointwise convergence (27) and the following uniform bound
(for n large enough)

|Fn
α (t, x)| � ‖ f̂ ‖L1 < ∞.

Thus, it remains to prove the decay estimates (28) and (29) by means of stationary
phase method. In view of the Fourier extension on the surface

S̄ :=
(

ξ, α|ξ |2/2 + α(α − 2)|ξξ0|2/2
)

,

then the fact that S̄ has non-zero Gaussian curvature and [41, p. 348, Theorem 1]
directly give the result (29). Indeed, a direct computation shows that the determinant
of corresponding Hessian matrix is a constant αd(2α − 2). To deduce (28), since
|ξn| → ∞, we point out that for n large enough there holds

|Fn
α (t, x)| ≤ 3

∣
∣
∣
∣

∫

Rd
eixξ+i t�n(ξ) f̂ (ξ)dξ

∣
∣
∣
∣
.

Let �̄n(x̄, t̄, ξ) := x̄ξ + t̄�n(ξ) with (x̄, t̄) := (x, t)/|(x, t)|. We investigate the
gradient

∇�̄n(x̄, t̄, ξ) = x̄ + t̄

|ξn|α−2

[

α|ξ + ξn|α−2(ξ + ξn) − α|ξn|α−2ξn

]

and the Hessian

Hess�̄n(x̄, t̄, ξ) = t̄

|ξn|α−2

(

α|ξ + ξn|α−2Ed + α(α − 2)|ξ + ξn|α−4LT
n Ln

)

,

where Ed is the identity matrix, Ln := (ξ + ξn) is viewed as row vector and LT
n is the

transpose of Ln . Then we can compute the absolute value for the determinant of this
Hessian

∣
∣det Hess�̄n(x̄, t̄, ξ)

∣
∣ = (αt̄)d(α − 1)|ξ + ξn|d(α−2)

|ξn|d(α−2)
.
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Since |ξn| → ∞ and the ξ -localization, we have the following estimates

lim
n→∞ |∇�̄n| = |x̄ + α(α − 1)t̄ξ |, lim

n→∞
∣
∣det Hess�̄n

∣
∣ = (αt̄)d(α − 1).

Thus, for n large enough, the proof is divided into two cases. Firstly if t̄ ≥ ε for some
small ε to be determined later, then we always have

∣
∣det Hess�̄n

∣
∣ � εd . Hence the

uniform stationary phase estimates of Alazard, Burq and Zuily [1, Theorem 1] will
give the desired estimate (28). Secondly if t̄ < ε which means |x̄ | >

√
1 − ε2, duo to

the ξ -localization, we can choose ε small enough such that |x̄ | ≥ α(α − 1)t̄ |ξ | + 1/8
uniformly in ξ . Then we always have the following uniform estimate

∣
∣∇�̄n

∣
∣ ≥ |x̄ | − α(α − 1)t̄ |ξ | ≥ 1/8 > 0.

Therefore, the classical integration by parts arguments [41, p. 341, Proposition 4] will
deduce an even faster decay than the desired conclusion (28) and complete the proof.

��
As we have done in Sect. 3, to use the Brézis-Lieb type lemma, analogously the

corresponding local smoothing and local convergence results are required to be estab-
lished. At this point due to the parameters ξn , we need to do some extra estimates by
using the Taylor’s theorem.

Lemma 4.3 Suppose that φ be a Schwartz function and |η| ≥ 100. There exists C > 0
such that for arbitrary function f ∈ L2(Rd) which has Fourier support in {ξ : |ξ | ≤
|η|/5}, we have

∫

Rd+1
φ(x)

∣
∣
∣[ψη(D)][T̄ η

α ] f (t, x)
∣
∣
∣

2
dxdt ≤ C‖ f ‖2L2

x
,

where [T̄ η
α ] is defined as in (22) with parameter η substituting ξn and

ψη(ξ) := |η| α−2
q0 |ξ |1/2 |ξ + η|− α−2

q0 .

Proof of Lemma 4.3 By Plancherel theorem, as in the proof of Lemma 3.1, we inves-
tigate

∫

Rd

∫

Rd
φ̂(ξ ′ − ξ)ψη(ξ)ψη(ξ

′)|η| 4−2α
q0 |ξ + η| α−2

q0
∣
∣ξ ′ + η

∣
∣

α−2
q0 f̂ (ξ ′) f̂ (ξ)δ

[

�η(ξ) − �η(ξ
′)
]

dξdξ ′.

Then Schur test implies that it suffices to bound the following term

sup
ξ

∫

Rd
φ̂(ξ ′ − ξ)|ξ |1/2|ξ ′|1/2δ [�η(ξ) − �η(ξ

′)
]

dξ ′
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independently of η. For every ξ ∈ R
d and η ∈ R

d , denote the set

Vξ,η := {ξ ′ : |ξ ′ + η|α − α|η|α−2ηξ ′ = |ξ + η|α − α|η|α−2ηξ}.

Then a direct computation shows that the aforementioned term can be bounded by

sup
ξ

sup
ξ ′∈Vξ,η

‖φ̂‖L∞|ξ |1/2|ξ ′|1/2|η|α−2

α

∣
∣
∣|ξ ′ + η|α−2(ξ ′ + η) − |η|α−2η

∣
∣
∣

.

First, we states the following claim whose proof is postponed

sup
ξ

sup
ξ ′∈Vξ,η

‖φ̂‖L∞|ξ |1/2|ξ ′|1/2|η|α−2

α

∣
∣
∣|ξ ′ + η|α−2(ξ ′ + η) − |η|α−2η

∣
∣
∣

∼α sup
ξ

sup
ξ ′∈Vξ,η

‖φ̂‖L∞|ξ |1/2
|ξ ′|1/2 . (30)

Nowwe turn to prove |ξ ′| ∼α |ξ | for all ξ ′ ∈ Vξ,η uniformly in η. Then this estimate
and the claim (30) will immediately give the desired uniform bound Cα‖φ̂‖L∞ and
complete the proof. Indeed, the set Vξ,η can be rewritten as

Vξ,η =
{

ξ ′ : |ξ̃ ′ + η̄|α − α|ξ̃ ′| cos θ(ξ ′, η) = |ξ̃ + η̄|α − α|ξ̃ | cos θ(ξ, η)
}

,

where

ξ̃ ′ := ξ ′/|η|, η̄ := η/|η|, ξ̃ := ξ/|η|.

Note that |ξ̃ | ≤ 1/5 and |ξ̃ ′| ≤ 1/5. Without loss of generality, we may assume
η̄ = (1, 0, . . . , 0). Then for ξ ′ ∈ Vξ,η we have

(1 + 2ξ̃ ′
1 + |ξ̃ ′|2)α/2 − αξ̃ ′

1 = (1 + 2ξ̃1 + |ξ̃ |2)α/2 − αξ̃1. (31)

Here we have used the notations ξ̃ = (ξ̃1, ξ̃2, . . . , ξ̃d) and ξ̃ ′ = (ξ̃ ′
1, ξ̃

′
2, . . . , ξ̃

′
d).

Moreover, we can use Taylor’s theorem to deduce the estimates

(

1 + 2ξ̃1 + |ξ̃ |2
)α/2 − αξ̃1 ≤

(

1 + 2|ξ̃ | + |ξ̃ |2
)α/2 − α|ξ̃ |

= 1 + α(α − 1)

2

(

1 + θ0|ξ̃ |
)α−2 |ξ̃ |2

with 0 < θ0 < 1; and on the other hand there exists 0 < θ1 < 1 such that

(

1 + 2ξ̃ ′
1 + |ξ̃ ′|2

)α/2 − αξ̃ ′
1 = 1 + α

2
|ξ̃ ′|2

+α(α − 1)

2

[

1 + θ1(2ξ̃
′
1 + |ξ̃ ′|2)

]α−2 (|ξ̃ ′| + 2ξ̃ ′
1

)2
.
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Hence if there holds |ξ̃ | � |ξ̃ ′| ≤ 1/5, then it will deduce a contradiction to the
identity (31). Similarly |ξ ′| � |ξ | is not possible. Therefore we obtain the desired
estimate |ξ | ∼α |ξ ′| and it remains to prove the claim (30).

First, we assume ξ̃ ′
1 = x and |(ξ̃ ′

2, . . . , ξ̃
′
d)| = y for real numbers x and y. Recall

the aforementioned vector η̄ and consider the vector (x, y) ∈ R
2 with |(x, y)| ≤ 1/5.

To prove the desired estimate (30), we only need to show that

C1 ≤
∣
∣
∣(x + 1, y) − (1/|(x + 1, y)|α−2, 0

)
∣
∣
∣

√

x2 + y2
≤ C2,

which means

C2
1 ≤ (x + 1)2 + [(x + 1)2 + y2]2−α − 2(x + 1)[(x + 1)2 + y2]1− α

2 + y2

x2 + y2
≤ C2

2 .

(32)

If |(x, y)| ≥ c0 for some c0 > 0, the existence of C1 and C2 is obvious. Hence we
should investigate the upper and lower bound for the case |(x, y)| → 0. In this case, by
denoting z = x2 + y2 + 2x and using Taylor’s theorem, we conclude that the middle
item in (32) equals to

x2 + y2 + (α − 2)x(x2 + y2 + 2x) + O(z2) − 2(x + 1)O(z2) + O(z2α−4) + O(zα−2)

x2 + y2
.

The limit does not exist as (x, y) → (0, 0), but we can give the bounds for all points
(x, y) in the neighborhood of origin. Notice that for |(x, y)| ≤ min{3/(α − 2), 1/5}
there holds

(α − 2)x(x2 + y2 + 2x) ≥ −x2 − y2

3
, (α − 2)x(x2 + y2 + 2x)

≤ 3(α − 2)(x2 + y2).

Hence we obtain the desired lower bound 1/2 and upper bound 3α for the case
|(x, y)| < c0 with c0 small enough. This further implies the desired conclusion (32).

��
Lemma 4.4 Let (ξn) ⊂ R

d with |ξn| → ∞. If a bounded sequence of functions ( fn)
in L2(Rd) satisfies

supp f̂n ⊂ {ξ : |ξ | ≤ |ξn|/5}, fn⇀0

weakly in L2(Rd) as n → ∞, then up to subsequences we have

[T n
α ] fn → 0
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strongly in L2
loc,t,x (R

d+1) and hence [T n
α ] fn(t, x) → 0 almost everywhere in R

d+1.

Proof of Lemma 4.4 Considering the function ψη(ξ) defined in Lemma 4.3, it is not
hard to see that for any given ε > 0, there exists � large enough depending only on ε

such that for all |ξ | ≥ � with |ξ | ≤ |η|/5 there holds
1

ψη(ξ)
< ε.

Hence the desired conclusion follows from a standard argument by imitating the proof
of Lemma 3.2, which means controlling the [P⊥

� ] term by using Lemma 4.3 and
estimating the [P�] term by using dominated convergence theorem since we have the
pointwise convergence (24). Similar proof also can be found in [21, Lemma 4.3], and
the details are omitted here for avoiding too much repetition. ��

5 Method of MissingMass

In this section, by adapting the arguments in [20, Sect. 2] and [21, Sect. 2], we show
how themissingmassmethod can give the desired precompactness result Theorem1.2.
First, we introduce some definitions.

Definition 5.1 Let ( fn) ⊂ L2(Rd).Wewrite fn � 0 if for all sequences of symmetries
([gn]) ⊂ G there holds the weak convergence [gn] fn⇀0 in L2(Rd).

Define the set

P := {( fn) : ‖ fn‖L2(Rd ) = 1, fn � 0
}

and the sharp α-Strichartz constant with respect to P as follows

M∗
d,α := sup

{

lim sup
n→∞

‖[Eα] fn‖Lq0
t,x (R

d+1)
: ( fn) ∈ P

}

.

As we consider the precompactness of extremal sequences forMd,α , it is obvious that
the sequences in P are not precompact up to symmetries and thus are our enemies.
On the other hand, our next result Proposition 5.2 states that all the enemies are in P .

Proposition 5.2 Let d ≥ 2. All the extremal sequences forMd,α are precompact up to
symmetries if and only if

Md,α > M∗
d,α.

Proof of Proposition 5.2 It is clear that Md,α ≥ M∗
d,α . Hence the ‘only if’ part comes

from the definition of M∗
d,α and Theorem 5.3 which claims that the supremum value

M∗
d,α can be attained.
Thus, we only need to show the ‘if’ part. Assume that Md,α > M∗

d,α and ( fn) is
an extremal sequence for Md,α . In this case there exists ([gn]) ⊂ G such that, up to
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subsequences, [gn] fn⇀v �= 0 weakly in L2(Rd) as n → ∞ since ( fn) /∈ P . Hence
if we write

vn := [gn] fn, rn := vn − v,

then for n → ∞ we have rn⇀0 weakly in L2(Rd) and further

1 = ‖ fn‖2L2 = ‖vn‖2L2 = ‖v‖2L2 + ‖rn‖2L2 + o(1) (33)

due to the fact that L2 is a Hilbert space. Meanwhile the local convergence Lemma 3.2
implies that [Eα]rn(t, x) → 0 almost everywhere in R

d+1 since q0 > 2. Then as
n → ∞, a variant of Brézis-Lieb lemma [20, Lemma 3.1] gives that

Mq0
d,α = ‖[Eα]vn‖q0Lq0

t,x
+ o(1)

= ‖[Eα]v‖q0
L
q0
t,x

+ ‖[Eα]rn‖q0Lq0
t,x

+ o(1)

≤ Mq0
d,α

(

‖v‖q0
L2
x
+ ‖rn‖q0L2

x

)

+ o(1).

Combining this estimate with (33) and letting n → ∞, we conclude

1 ≤ ‖v‖q0
L2 +

(

1 − ‖v‖2L2

)q0/2
.

Therefore the fact q0 > 2 implies either ‖v‖2
L2 = 0 or 1 − ‖v‖2

L2 = 0. Since v �= 0,
we obtain that

0 = 1 − ‖v‖2L2 = lim
n→∞ ‖rn‖2L2 = lim

n→∞ ‖vn − v‖2L2 .

This states that vn = [gn] fn convergence strongly to v in L2(Rd) and completes the
proof. ��

The Proposition 5.2 above gives a characterization on the precompactness of
extremal sequences for Md,α . Hence our main result Theorem 1.2 is reduced to the
following Theorem 5.3 which is also used in the proof of Proposition 5.2.

Theorem 5.3 Suppose that a∗
d,α := (α − 1)

−1
2d+4 (α/2)

−d
2d+4 and d ≥ 2. There holds

M∗
d,α = a∗

d,αS
∗
d .

Furthermore, the supremum M∗
d,α is attained. In other words, there is a sequence

( fn) ⊂ L2(Rd) with ‖ fn‖L2
x

= 1 such that fn � 0 and lim supn→∞ ‖[Eα] fn‖Lq0
t,x

=
M∗

d,α .
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Proof of Theorem 5.3 The proof follows from amore involved version of missing mass
method. We first show that M∗

d,α ≥ a∗
d,αS

∗
d . For a sequence (ξn) with |ξn| → ∞ and

φ ∈ L2(Rd) with ‖φ‖L2 = 1, we define f̂n(ξ) := φ̂(ξ − ξn). It is not hard to see that
fn � 0. Then Lemma 4.1 implies that

lim
n→∞ ‖[Eα] fn‖Lq0

t,x
= a∗

d,α

∥
∥
∥[eit�]φ

∥
∥
∥
L
q0
t,x

.

Hence we conclude

M∗
d,α ≥ a∗

d,α

∥
∥
∥[eit�]φ

∥
∥
∥
L
q0
t,x

.

By taking supremum over all such functions φ, we obtain M∗
d,α ≥ a∗

d,αS
∗
d .

Furthermore, from [39] it is known that there exists an extremal for S∗
d . Then

taking φ in the above argument to be this extremal will give the sequence ( fn) with
‖ fn‖L2 = 1 and fn � 0 such that

lim
n→∞ ‖[Eα] fn‖Lq0

t,x
= a∗

d,αS
∗
d .

Therefore, it remains to prove the reverse inequality M∗
d,α ≤ a∗

d,αS
∗
d .

We may assume M∗
d,α > 0 without loss of generality. By the definition of M∗

d,α ,

there exists ( fn) ⊂ L2(Rd) satisfying ‖ fn‖L2 = 1 and fn � 0 such that

lim sup
n→∞

‖[Eα] fn‖Lq0
t,x

≥ 1

2
M∗

d,α > 0.

Then Corollary 2.8 yields that there exist ([gn]) ⊂ G and ξn with hn|ξn| ≥ 1
2 such

that up to subsequences there holds

[̂gn] fn (ξ + hnξn)⇀V̂ (ξ), ‖V ‖L2 ≥ γ̃ > 0.

Here γ̃ := γ̃ (d, α) depends only on the dimension d and α. Note that fn � 0 implies
hn|ξn| → ∞. Otherwise we have V̂ = 0 which is a contradiction. Hence if we set
En := {ξ ∈ R

d : |ξ | ≤ hn|ξn|/5} and write

r̂n := 1En

(

[̂gn] fn(· + hnξn) − V̂
)

, q̂n := (1Rd − 1En )
(

[̂gn] fn(· + hnξn) − V̂
)

,

then there holds

‖[Eα] fn‖Lq0
t,x

= ‖[Eα][gn] fn‖Lq0
t,x

= ‖[T n
α ](rn + qn + V )‖Lq0

t,x

= ‖[T̄ n
α ](rn + qn + V )‖Lq0

t,x
,
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where [T n
α ] and [T̄ n

α ] are defined as

[T n
α ] f (t, x) :=

∫

Rd
|ξ + hnξn|

α−2
q0 eixξ+i t |ξ+hnξn |α f̂ (ξ)dξ

and

[T̄ n
α ] f (t, x) :=

∫

Rd

∣
∣
∣
∣

ξ

hn|ξn| + ξ̄n

∣
∣
∣
∣

α−2
q0

eixξ+i t�n(ξ) f̂ (ξ)dξ.

Here ξ̄n := ξn/|ξn| and the function �n(ξ) is defined by

�n(ξ) := 1

|hnξn|α−2

[

|ξ + hnξn|α − |hnξn|α − α|hnξn|α−2hnξnξ
]

.

Notice that qn → 0 strongly in L2(Rd) and further rn⇀0weakly in L2(Rd). Hence the
uniform boundedness of the operators [T̄ n

α ] as shown in (23) implies that [T̄ n
α ]qn → 0

strongly in Lq0
t,x (R

d+1).Meanwhile, by the local convergenceLemma4.4,we conclude
[T̄ n

α ]rn → 0 almost everywhere in R
d+1. Note that the strong convergence result (26)

implies

lim
n→∞

∥
∥
∥
∥
[T̄ n

α ]V (t, x) −
∫

Rd
eixξ+i t

[

α|ξ |2/2+α(α−2)|ξξ0|2/2
]

V̂ (ξ)dξ

∥
∥
∥
∥
L
q0
t,x

= 0.

Thus as n → ∞, applying the variant of Brézis-Lieb lemma [20, Lemma 3.1] with

πn =
∫

Rd
eixξ+i t

[

α|ξ |2/2+α(α−2)|ξξ0|2/2
]

V̂ (ξ)dξ, ρn = [T̄ n
α ]rn,

we can obtain that

‖[Eα] fn‖q0Lq0
t,x

= ∥∥[T̄ n
α ]V∥∥q0

L
q0
t,x

+ ‖[T̄ n
α ]rn‖q0Lq0

t,x
+ o(1)

= ∥∥[T n
α ]V∥∥q0

L
q0
t,x

+ ‖[T n
α ]rn‖q0Lq0

t,x
+ o(1). (34)

Due to the asymptotic Schrödinger behavior Lemma 4.1 and Strichartz inequality (1),
we obtain the following asymptotic estimate

lim
n→∞

∥
∥[T n

α ]V∥∥Lq0
t,x

= a∗
d,α

∥
∥
∥[eit�][ Ã0]V

∥
∥
∥
L
q0
t,x

≤ a∗
d,αS

∗
d‖V ‖L2

x
.

Here [ Ã0] is an unitary operator on L2
x defined in (20). On the other hand, a changing

of variables deduces [T n
α ]rn = [Eα]ωn with ω̂n := r̂n(· − hnξn). Since [̂gn] fn � 0
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and V̂ (· − hnξn) � 0, as well as the Fourier transform is an automorphism operator
on L2, we obtain that ωn � 0. This fact implies

lim sup
n→∞

∥
∥[T n

α ]rn
∥
∥
L
q0
t,x

= lim sup
n→∞

‖[Eα]ωn‖Lq0
t,x

≤ M∗
d,α

(

1 − ‖V ‖2L2

)1/2
.

Inserting these two limit estimates into (34) and taking limit n → ∞ can deduce the
following inequality

lim sup
n→∞

‖[Eα] fn‖q0Lq0
t,x

≤ (a∗
d,αS

∗
d

)q0 ‖V ‖q0
L2 + (M∗

d,α

)q0
(

1 − ‖V ‖2L2

)q0/2 ;

and this inequality can be rewritten as

(

M∗
d,α

)q0
[

1 −
(

1 − ‖V ‖2L2

) q0
2
]

−
(

a∗
d,αS

∗
d

)q0 ‖V ‖q0
L2 ≤

(

M∗
d,α

)q0

− lim supn→∞ ‖[Eα] fn‖q0Lq0
t,x

.

Since q0 > 2 and ‖V ‖L2 ∈ [γ̃ , 1], we conclude
[(

M∗
d,α

)q0 − (a∗
d,αS

∗
d

)q0] γ̃ q0 ≤ (M∗
d,α

)q0 − lim sup
n→∞

‖[Eα] fn‖q0Lq0
t,x

.

Finally, taking supremum over all such sequences ( fn) yields the desired conclusion.
��

6 Existence of Extremals

Based on the precompactness Theorem 1.2 established in the previous section, one
directway to show the existence of extremals forMd,α is to compare this sharp constant
Md,α with the constant S∗

d . In fact, as mentioned in the introduction, several works
have been done in this direction, and similar strict-inequality phenomena have been
appeared in other surfaces such as the sphere, see for example the articles [6, 12, 20,
36, 40].

For our fractional surface situation, with the dimension d = 2 and the index α in
some region, Oliveira e Silva and Quilodrán [36, Proposition 6.9] have established the
desired strict inequality (2) by applying some comparison principle for convolutions
of certain singular measures. This result helps us obtain the existence of extremals for
M2,α with the index α in this corresponding region. For the convenience of the reader,
we recall the result [36, Proposition 6.9] in this article and then show the detailed proof
for Theorem 1.1.

Here we recall the strict-inequality result of Oliveira e Silva and Quilodrán [36,
Proposition 6.9]. For d = 2, they have investigated the following convolution inequal-
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ity

‖ f σα ∗ f σα‖L2
t,x (R

3) ≤ Q2
α‖ f ‖L2

x (R
2),

where Qα is the sharp constant and the singular measure σα is given by

dσα(y, s) := δ(s − |y|α)|y| α−2
4 dyds, (y, s) ∈ R

2 × R.

Then they have established the following proposition.

Proposition 6.1 (Proposition 6.9 of [36]) For the dimension d = 2, there exists a
constant α0 > 5 such that for arbitrary α ∈ (2, α0) there holds

π

α
√

α − 1
< Q4

α ≤ π

α
.

Finally, we show the desired existence of extremals Theorem 1.1 and complete this
section.

Proof of Theorem 1.1 Let us first recall the classical result that up to symmetries Gaus-
sians are the only extremals for S∗

d when d = {1, 2}. Hence, by direct computation,
one can obtain the following sharp constants

S∗
1 = 12−1/12, S∗

2 = 2−1/2.

Then applying the precompactness Theorem 1.2, we obtain that the extremals forM2,α
must exist if we can show the following strict inequality

M4
2,α > (2α

√
α − 1)−1. (35)

Denoting the space-time Fourier transform by Ft,x with dimension d = 2, one can
observe that

[D α−2
4 ][eit |∇|α ] f (t, x) = (2π)−2Ft,x ( f σα)(−t,−x).

Hence for the sharp constants M2,α and Qα , by the Plancherel theorem, there holds

(2π)M4
2,α = Q4

α.

Then applying the aforementioned Proposition 6.1, we obtain that the desired strict
inequality (35) holds for α ∈ (2, α0) with some index α0 > 5. This completes the
proof. ��
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Appendix A: One Geometric Consequence

For a parameter η, we define the following function

Fη(ξ) = |ξ |α + |η|α − |ξ + η|α/2α−1

on the set Eη := {ξ ∈ R
d : |ξ | ≥ |η|}. This appendix is devoted to showing a geo-

metric result related to this function. Roughly speaking, the Proposition A.1 below
states that if the angle between ξ and η is small, then the Hessian matrix of Fη(ξ) is
positive-definite which means the corresponding surface has positive Gaussian curva-
ture. Hence, in this situation, the multi-variable Taylor’s theorem will give some nice
displacement estimates around the critical points. These estimates are crucial when we
establish the quasi-orthogonality Lemma 2.3 and apply the bilinear restriction theory.
We first introduce some notations.

For two positive semi-definite matrices A and B, we write A ≥ B if A − B ≥ 0
whichmeans A−B is positive semi-definite. Similarly for A > B, A ≤ B and A < B.
Meanwhile the vectors in R

d are viewed as row vectors and the notation ξ T denotes
the transpose of ξ . For two vectors ξ and η inR

d , we use the notation θ(ξ, η) to denote
the angle between ξ and η. In addition, Ed is the d×d identity matrix. Then our result
is as follows.

Proposition A.1 There exists a number K̄d,α ∈ Z+ such that the unit cube-annular

A1 can be divided into K̄d,α partsA1 =⋃K̄d,α

j=1 R j , and in each partR j we have the
following properties:

c1Ed ≤ HessFη(ξ) ≤ c2Ed

holds for all pairs (ξ, η) ∈ R j × R j with ξ ∈ Eη.

Proof of Proposition A.1 Firstly it is not hard to see that, by dividing the unit sphere
S
d−1 into K̄d,α disjoint parts and then decomposing A1 accordingly, we can achieve

that for every (ξ, η) ∈ R j × R j and every y ∈ R
d there holds

∣
∣
∣cos2 θ(ξ, y) − cos2 θ(ξ + η, y)

∣
∣
∣ ≤ 1

2α − 4
. (36)

Indeed, since |θ(ξ + η, y) − θ(ξ, y)| ≤ θ(ξ + η, η) ≤ θ(ξ, η), the continuity of
trigonometric functions gives the existence of such number K̄d,α .

A direct computation shows

HessFη(ξ) = α

[

|ξ |α−2 − |ξ + η|α−2

2α−1

]

Ed

+α(α − 2)

[

|ξ |α−4ξ T ξ − |ξ + η|α−4(ξ + η)T (ξ + η)

2α−1

]

.
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Therefore the inequality |ξ + η|α−2 ≤ (|ξ | + |η|)α−2 ≤ 2α−2|ξ |α−2 implies the
following estimate

HessFη(ξ) ≥ α|ξ |α−2

2

[

Ed + (α − 2)
ξ T ξ

|ξ |2 − (α − 2)
(ξ + η)T (ξ + η)

|ξ + η|2
]

.

We aim to show that for every y ∈ R
d there holds

c3|y|2 ≤ y

[

Ed + (α − 2)
ξ T ξ

|ξ |2 − (α − 2)
(ξ + η)T (ξ + η)

|ξ + η|2
]

yT ,

where c3 is independent of y. This fact will give the desired constant c1 since |ξ | ∼ 1
in our situation. By homogeneity we may assume y ∈ S

d−1. Then we conclude that

y

[

Ed + (α − 2)
ξ T ξ

|ξ |2 − (α − 2)
(ξ + η)T (ξ + η)

|ξ + η|2
]

yT

= 1 + (α − 2)

[ |ξ yT |2
|ξ |2 − |(ξ + η)yT |2

|ξ + η|2
]

≥ 1 − (α − 2)
∣
∣
∣cos2 θ(ξ, y) − cos2 θ(ξ + η, y)

∣
∣
∣

≥ 1/2,

where in the last inequality we have used the condition (36). Finally, since Fη(ξ) is
smooth and the domain is bounded, the existence of c2 is obvious. ��

Remark A.2 By the proof, we can define

θ̄ j := sup{θ(ξ, η) : (ξ, η) ∈ R j × R j , |ξ | ≥ |η|},
θ̄0 := min{θ̄ j : j = 1, 2, . . . , K̄d,α}.

Using these notations, Proposition A.1 implies that if θ(ξ, η) ≤ θ̄0 with |ξ | ≥ |η|,
then there holds

c1Ed ≤ HessFη(ξ) ≤ c2Ed .
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