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Abstract
We introduce the Hadamard–Bergman convolution on the half-plane. We show that
it exists in terms of the Hadamard product and it is commutative on the Bergman
space (more appropriately called the Bergman–Jerbashian space) in the half-plane.
Further, we explore mapping properties of the generalized Bergman-type operators
with exponential weights in weighted Bergman spaces in the half-plane. Finally, we
deduce sharp inclusions for weighted Bergman spaces, from corresponding Sobolev-
type inequalities.

Keywords Hadamard–Bergman convolution · Spaces of holomorphic functions ·
Laplace–Fourier transform
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1 Introduction

1.1 The Hadamard–Bergman Convolution on the Half-Plane

Denote by � the open right half-plane,

� = {z ∈ C : Re(z) > 0} .
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Denote by Hol(�) the class of functions F that are holomorphic in the right half-plane.
Recall, that weighted Bergman spaces are defined as follows (see e.g. [2], Definition
1.1 on p. 1):

Definition 1.1 For α > −1 the weighted Bergman spaceAα is the space of functions
F holomorphic in the right half-plane, F ∈ Hol(�) , equipped with the norm

||F ||Aα
=

[∫∫
�

|F(x + iy)|2xαdxdy

]1/2
.

For brevity we denote by A = A0 the non-weighted Bergman space.

Remark 1.2 After this article was completed, the authors came across the newly pub-
lishedbook [5] and the survey article [6],where itwas stated that theweightedBergman
spaces are more appropriately called the Bergman–Jerbashian spaces.

Definition 1.3 We recall that the Hadamard–Bergman convolution operator (or the
Hadamard–Bergman product) on the disc was defined in [9] as follows:

Kg f (z) =
∫
D

g(w) f (zw)dA(w)

= lim
r→1

∫
|w|<r

g(w) f (zw)dA(w), f ∈ Hol(D), (1.1)

where

dA(w) = 1

π
dxdy, w = x + iy

is the normalized Lebesgue area measure on the unit disc D. The integral in (1.1) is
understood in improper sense.

See also [7, 8, 10] for a study ofmore general constructions (variable operators) than
that of (1.1), and [11] for the developing of the theory for general weighted Lebesgue
(Bergman) spaces and some other classical spaces of complex analysis.

In an analogy to Definition 1.3, we formally introduce the Hadamard–Bergman
convolution I (F, G) on the half-plane � as follows.

Definition 1.4 Given F, G ∈ Hol(�) the Hadamard–Bergman product (or convo-
lution) I (F, G) of two functions F, G ∈ Hol(�) on the half-plane � is formally
defined as:

I (F, G)(z) =
∫∫

�

G(w)F (z + w) dwdw, for z ∈ �. (1.2)

The expression (1.2) written formally, will be interpreted in a precise way in Definition
3.6, in terms of the Hadamard product of Laplace preimages of functions F and G.
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We can also fix the function G referring to it as a kernel and hence we can consider
(1.2) as the corresponding Hadamard–Bergman convolution operator F �→ I (F, G).

The idea of introducing and studying theHadamard–Bergman operators is basically
due to the importance of generalizing the classical Bergman operator and operators of
fractional integro-differentiation (Bergman-type operators) to a more general class of
integral operators. In addition to its purely fundamental significance, we note that the
consideration of such integral operators has a direct application to the description of
classes of functions, for example, Hölder functions. These studies have been done for
the case of a disc [7, 10], and we plan to further develop the topic in the context of a
half plane.

We first explore properties of the Hadamard–Bergman convolution in Bergman
spaces. Specifically, in Sect. 4.1 we prove:

Theorem 1.5 Let the functions F, G belong to the Bergman space A. Then the
Hadamard–Bergman convolution I (F, G) exists in terms of the Hadamard product,
and it is commutative I (F, G) = I (G, F).

This theorem provides specific conditions under which a convolution exists, in a
tangible manner. At the same time, the article also presents a broader result on the
existence of the convolution (see Theorem 3.7). Yet, these conditions lack construc-
tiveness, leaving open the intriguing problem of devising a constructive description
for the most comprehensive set of holomorphic functions where convolution is both
defined and exists pointwise.

1.2 Generalized Bergman-Type Operators

We now introduce and explore two more integral operators. Namely, we discuss the
generalizedBergman-type power operatorRβ and the generalizedBergman-type expo-
nential operator Sβ,σ (see Definitions 1.6 and 1.7, correspondingly). The operator Rβ,

generally speaking, is a realization of the operator of fractional integration or differen-
tiation, depending onwhether β < 2 or β > 2 (and it gives the holomorphic projection
for β = 2).

Further study of such operators is promising for describing spaces of holomorphic
functions on the half-plane, as well as in the context of the action of these operators in
classes of holomorphic Hölder functions. Meanwhile, here in the paper, the operator
Sβ,σ is apparently being introduced and studied for the first time.

Definition 1.6 For a parameter β > 0 and a function

F : � → C, (1.3)

formally define the generalized Bergman-type power operator Rβ by the following
formula:

(
Rβ F

)
(z) =

∫∫
�

F(w)

(z + w)β
dwdw, for z ∈ �.
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Definition 1.7 For parameters β > 0 and σ ≥ 0, and a function

F : � → C, (1.4)

formally define the generalized Bergman-type exponential operator Sβ,σ by the
following formula:

(
Sβ,σ F

)
(z) =

∫∫
�

F(w)e−σw

(z + w)β
dwdw, for z ∈ �.

Remark 1.8 We justify studying operators Sβ,σ whose kernels involve exponential
weight e−σw as follows. For afixedσ ≥ 0 consider the curves�c where the exponential
weight e−σw is constant,

�c = {w ∈ � : e−σw = c}.

Observe that the distance from a point on the curve �c to the boundary ∂� of the
domain � does not depend on the actual choice of the point; it only depends on
parameters σ and c. This situation is analogous to the case of power weights on the
unit disc in complex plane C.

Indeed, for a fixed n ∈ N consider the curves γc that consist of those points z in the
unit disc D = {z ∈ C : |z| < 1}, for whom the absolute value of the power function
zn is equal to some constant c,

γc = {z ∈ D : ∣∣zn
∣∣ = c}.

Observe that the distance from a point on the curve γc to the boundary ∂D of the disc
D does not depend on the actual choice of the point; it only depends on parameters n
and c.

Our aim is to explore the mapping properties of integral operators Rβ and Sβ,σ in
weighted Bergman spacesAα. Namely, concerning the operator Sβ,σ , in Sect. 4.2 we
prove:

Theorem 1.9 Let σ ≥ 0, α > −1, α + 2β − 4 > −1. Then the operator Sβ,σ maps
the Banach space Aα into the Banach space Aα+2β−4.

In particular, by taking σ = 0 in Theorem 1.9, we obtain:

Corollary 1.10 Let α > −1, α+2β−4 > −1. Then the operatorRβ maps the Banach
space Aα into the Banach space Aα+2β−4.

1.3 Sharp Inclusions forWeighted Bergman Spaces

It is typical for novel studies to encounter unexpected yet comprehensible effects and
consequences that establish connections between the subject of the inquiry and the
classical theory. For instance, in our case, we deduce Corollary 2.17 on embedding of
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Sobolev spaces from a generalized Cafarelli-Kohn-Nirenberg inequality 2.16 proved
by Rabier [13].

Further, we showcase how this phenomena intertwines modern research with clas-
sical frameworks. Specifically, in Sect. 4.3, from the mentioned Corollary 2.17, we
deduce the following theorem regarding sharp inclusions for weighted Bergman
spaces:

Theorem 1.11 Let for α, α′ > −1 we have

F(z) ∈ Aα,

zF(z) ∈ Aα′ .

Then the inclusion

F(z) ∈ Aα′′

holds with a non-trivial α′′ �= α if and only if

• α and α′ are on the same side of 0 (including 0); α �= α′+2 ; α′′ is strictly between
α and α′; and

α − α′′

α − α′ > 0,

• or α and α′ are on strictly opposite sides of 0 ; α′′ is strictly in between α and 0 ;
and

α − α′′

α − α′ ≥ 0,

• or α ≥ 0 and α′′ = α′.

The remainder of this paper is structured as follows: the next Sect. 2 surveys some
well-known definitions and results that are necessary for the succeeding Sect. 3; the
latter will discuss the continuous version of the Hadamard product; the proofs of the
results announced in Introduction are provided in Sect. 4.

2 Auxiliary Results

2.1 Laplace Transform

Here we collect some standard definitions and known results regarding the action of
Laplace transform on: weighted L2 spaces, the class E of functions of sub-exponential
growth, and the class of Eg of functionals of sub-exponential growth. These results
will be used to phrase and carry out our proofs.
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Definition 2.1 Recall that the Laplace transform L f of a complex valued function

f : [0,+∞) → C

is formally defined as follows:

(L f )(z) =
∫ +∞

0
f (t)e−zt dt . (2.1)

The following theorem (see e.g. [4], Theorem 1, p. 2) describes weighted Bergman
spaces in terms of the Laplace transform.

Theorem 2.2 For α > −1 the Laplace transform is an isometric isomorphism between
the weighted space

L2
(
[0,+∞), t−(α+1)dt

)

and the weighted space Aα.

Being motivated by [14, Chap. 6.1], we introduce the class of sub-exponential
functions E—a rather large space of functions whose Laplace transform turns to be
holomorphic in the open right half-plane:

Definition 2.3 Denote by E the class of sub-exponential functions. That is, the class
of those locally-integrable complex valued functions

f ∈ L1
loc ([0,+∞))

that satisfy the following sub-exponential growth condition:

f (t)e−εt ∈ L1([0,+∞)), for all ε > 0. (2.2)

The following example of a function in E is borrowed from [14, p. 257]:

Example 2.4 For a parameter β > 0, consider the function gβ : [0,+∞) → R defined
by

gβ(t) = tβ−1

�(β)
.

We have gβ ∈ E, and the Laplace transform Lgβ may be written down explicitly,

(
Lgβ

)
(z) = 1

zβ
, for z ∈ �.

Having introduced the class E, consider L (E) , i.e. the class of images of functions
from E under the Laplace transform. Remarks 2.5, 2.6, 2.7 highlight the way L (E)

compares with some familiar classes of functions.
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Remark 2.5 ([14, p. 247]). The following inclusion holds:

L (E) ⊂ Hol(�).

Remark 2.6 ([12, Theorem 4, p. 502]). Let for a function F the following three
conditions hold:

• F ∈ Hol(�),

• F(z) → 0 as |z| → ∞ in any halfspace Re(z) ≥ ε uniformly with respect to
arg(z). In other words, for every ε > 0 we have

sup
z : Re(z)>ε, |z|=r

|F(z)| → 0, as r → ∞,

• for any a > 0 the restriction of the function F to the axis Re(z) = a is in L1(R).

In other words
∫

a+iR
|F(z)| dz < +∞.

Then F ∈ L (E) .

We point out that the following remark holds:

Remark 2.7 Let f ∈ E . Assume that the limit of the function f (finite or infinite) at 0
exists. Then the initial value theorem for the Laplace transform (as phrased in e.g. [1,
Sect. 13.2]) claims

lim
z∈�, z→∞ z · (L f )(z) = lim

t→0+ f (t). (2.3)

Consequently, if the latter limit is finite, then formula (2.3) imposes the following
restriction on the growth of the function F = L f ∈ L (E) at infinity: there exist
constants C > 0 and A > 0 such that

|F(z)| ≤ C

|z| , for all Re(z) ≥ A.

2.2 Generalized Functions

We now briefly recall some concepts from the theory of generalized functions.

Definition 2.8 Being motivated by [12, Chap. 6.1, p. 532], define the class of test
functions T to consist of complex-valued infinitely-differentiable functions of a single
positive real variable, whose supports are compact subsets of the positive semi-axis
(0,+∞).Convergenceϕn → ϕ in the class of test functionsT means that all functions
ϕn −ϕ vanish outside of a compact subset of the positive semi-axis (0,+∞), and that
for all m ∈ Z+ we have

ϕ(m)
n (t) → ϕ(m)(t), as n → +∞ (2.4)
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where the convergence in (2.4) is uniform on the positive semi-axis t ∈ (0,+∞).

Definition 2.9 Correspondingly, define the class of test functions T2 to consist of
complex-valued infinitely-differentiable functions of two positive real variables,
whose supports are compact subsets in the first quadrant (0,+∞) × (0,+∞).

Definition 2.10 Following [12, Chap. 6.1, p. 536], define yet another class of test
functions B to consist of complex-valued infinitely-differentiable functions of one
real variable ϕ such that

lim
t→+∞ t lϕ(m)(t) = 0, for all l, m ∈ Z+.

Further, following [12, Chap. 6.1, p. 536], convergence ϕn → ϕ in the class of test
functions B means that for all l, m ∈ Z+ we have

t lϕ(m)
n (t) → t lϕ(m)(t), as n → +∞ (2.5)

where the convergence in (2.5) is uniform on any ray t ∈ [a,+∞), a > 0.

Definition 2.11 Denote by T ∗ and B∗ the duals of spaces T and B.

Definition 2.12 Finally, introduce the space Eg of sub-exponential distributions (func-
tionals, generalized functions) as the space of those linear bounded functionals f ∈ T ∗
for whom

f e−εt ∈ B∗, for all ε > 0. (2.6)

It turns out that the operator L iswell-defined on Eg and that it maps Eg into Hol(�)

(see e. g., [12, Chap. 6.1, p. 536] for details). Moreover, regarding the operator L, we
have the following uniqueness result in the class Eg (see [14, p. 257]).

Theorem 2.13 (Schwartz, [14, p. 2577]) Let f ∈ Eg. Then the condition

(L f )(z) = 0, for all z ∈ �

implies that f is the zero of the space T ∗.

Recall that Remarks 2.5, 2.6, 2.7 describe the class L(E) in terms of inclusions into
some well-known spaces. In comparison, the class L (Eg) is completely described as
follows (see [14, p. 258]):

Theorem 2.14 (Schwartz, [14, p. 258]) The class L (Eg) coincides with the class of
functions F ∈ Hol(�) satisfying the sub-polynomial growth condition. That is, a
function F, holomorphic in the right half-plane, F ∈ Hol(�), is the Laplace trans-
form of a distribution f ∈ Eg if and only if there exists k ∈ N such that for all ε > 0
we have

sup
z : Re(z)>ε

|F(z)|
|z|k < +∞.
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2.3 Sobolev Spaces

We recall the definition of Sobolev spaces and formulate a generalized Cafarelli–
Kohn–Nirenberg inequality proved by Rabier.

Definition 2.15 Given a, b ∈ R and 1 ≤ p, q < ∞, denote

R∗ = R \ {0}

and consider the weighted Sobolev space

W 1,(q,p)
{a,b}

that consists of functions u ∈ L1
loc

(
RN∗

)
who satisfy the following two conditions:

u ∈ Lq
(
R

N : |x |αdx
)

,

∇u ∈
(

L p
(
R

N : |x |bdx
))N

,

and that is equipped with the norm

||u||a,q + ||∇u||b,p .

In Sect. 4.3 we will need a result on embedding of the weighted Sobolev space
W 1,(q,p)

{a,b} into the weighted space L p
(
R

N : |x |cdx
)
. A central result of that type is the

Cafarelli–Kohn–Nirenberg inequality [3]. For our aims, we need to utilize a gener-
alized Cafarelli–Kohn–Nirenberg inequality proved by Rabier [13]. Specifically, we
single out points (i), (ii), (iv)-1 of Theorem 1.1 in [13] (as those are the points that,
when specified to our assumptions, provide a non-trivial result) and phrase it as a sep-
arate Theorem 2.16. We preface Theorem 2.16 by the following notations, borrowed
from formulas (1.3), (1.4) of [13, p. 2]. For given values of a, b, c, r define:

p∗ = ∞, if p ≥ N ,

p∗ = N p

N − p
, if 1 ≤ p < N ,

c0 = r(a + N )

q
− N ,

c1 = b − p + N

p
− N ,

θc = c − c0

c1 − c0
, if points c0 and c1 are distinct.
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Theorem 2.16 (Rabier, [13]) Let a, b, c ∈ R and 1 ≤ p, q, r < ∞ ( 1 ≤ p < ∞
and 0 < q, r < ∞ if N = 1 ). Then the following continuous embedding of Banach
spaces holds:

W 1,(q,p)
{a,b}

(
R

N∗
)

↪→ Lr
(
R

N , |x |cdx
)

. (2.7)

with a non-trivial constant c �= a if and only if r ≤ max{p∗, q} and

• either a and b − p are on the same side of −N (including −N), a+N
q �= b−p+N

p ,

c is in the open interval with endpoints c0 and c1 and

θc

(
1

p
− 1

N
− 1

q

)
≤ 1

r
− 1

q
,

• or a and b − p are strictly on the opposite sides of −N , c is in the open interval
with endpoints c0 and −N and

θc

(
1

p
− 1

N
− 1

q

)
≤ 1

r
− 1

q
,

• or p ≤ r ≤ p∗, a ≤ −N and b − p < −N , c = c1,

Corollary 2.17 Apply Theorem 2.16 with

N = 1,

p = q = r = 2,

a = −(α + 1) < 0, b = − (
α′ + 1

)
< 0, c = − (

α′′ + 1
)

< 0,

c0 = a, c1 = b,

p∗ = +∞,

θc = c − a

b − a
, if a �= b,

to get that the conditions

u ∈ L2
(
[0,+∞), t−(α+1)dt

)

and

u′ ∈ L2
(
[0,+∞), t−(α′+1)dt

)

imply

u ∈ L2
(
[0,+∞), t−(α′′+1)dt

)

if and only if the conditions of Theorem 1.11 hold.
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3 Symbolic Calculus

The following auxiliary lemma will be later used in Lemma 3.4.

Lemma 3.1 The following two expressions are equal as functionals in T ∗
2 :

δ(t − s)

t + s
=

(∫ +∞

0
e−(t+s)x dx

) (∫ +∞

−∞
ei(t−s)ydy

)
, for t, s > 0, (3.1)

where δ is the Dirac delta function.

Proof First note that the following two expressions are equal as functions of variables
t, s > 0 :

1

t + s
=

∫ +∞

0
e−(t+s)x dx . (3.2)

Assumption 3.2 Assume that h ∈ T2 is a test function. In particular, this implies that
the support of the function h is a compact subset in the first quadrant (0,+∞) ×
(0,+∞).

Under Assumption 3.2, the following Fourier inversion formula holds:

h(t, t) = 1

2π

∫ +∞

−∞

(∫ +∞

0
h(t, s)e−isyds

)
eitydy, for t > 0. (3.3)

We integrate both sides of the Fourier inversion formula (3.3) from t = 0 to t = +∞
to get

∫ +∞

0
h(t, t)dt =

∫ +∞

0

∫ +∞

−∞

(∫ +∞

0
h(t, s)e−isyds

)
eitydydt . (3.4)

On the one hand, we may express the left side of Eq. (3.4) in terms of the Dirac delta
function as follows:

∫ +∞

0
h(t, t)dt =

∫ +∞

0

∫ +∞

0
h(t, s)δ(t − s)dtds. (3.5)

On the other hand, due to Assumption 3.2, the function h(t, s) is absolutely integrable
on [0,+∞) × [0,+∞). Additionally,

∣∣∣ei(t−s)y
∣∣∣ ≤ 1, for 0 < s, t < +∞,−∞ < y < +∞.

Thus, we may apply Fubini’s theorem to the right handside of (3.4) to get

∫ +∞

0

∫ +∞

−∞

(∫ +∞

0
h(t, s)e−isyds

)
eitydydt =
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=
∫ +∞

−∞

∫ +∞

0

∫ +∞

0
h(t, s)ei(t−s)ydsdtdy. (3.6)

Using (3.5) and (3.6), we rewrite the equality (3.4) as follows:

∫ +∞

0

∫ +∞

0
h(t, s)δ(t − s)dtds =

∫ +∞

−∞

∫ +∞

0

∫ +∞

0
h(t, s)ei(t−s)ydsdtdy. (3.7)

We now proved that the equality (3.7) holds under Assumption 3.2. Therefore, the
following two functionals in T ∗

2 are equal:

δ(t − s) =
∫ +∞

−∞
ei(t−s)ydy. (3.8)

The two claims (3.2) and (3.8) prove Lemma 3.1. 
�
Our arguments will make use of the following definition that introduces the

continuous version of the discrete Hadamard product.

Definition 3.3 Let f , g : [0,+∞) → C be such that

f (t)g(t)

t
∈ E . (3.9)

Define (the continuous version of) the Hadamard product of functions f and g by the
following formula:

P( f , g)(z) =
∫ +∞

0
f (t)g(t)e−zt dt

2t
, for z ∈ �. (3.10)

Note that the function P( f , g) is holomorphic in the right half-plane �.

The following lemma relates the Hadamard–Bergman convolution I (F, G), to the
Hadamard product P( f , g) defined by formula (3.10):

Lemma 3.4 For test functions

f , g ∈ T (3.11)

we have

P( f , g)(z) = I (L f ,Lg)(z), z ∈ �. (3.12)

Proof UnderAssumption (3.11) the condition (3.9) applies, and theHadamard product
P( f , g) is well-defined by formula (3.10). Now consider the measure

δ(t − s)

t + s
dtds
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on R×R. In terms of that measure, we can rewrite the Hadamard product P( f , g) as
a double integral,

P( f , g)(z) =
∫ +∞

0

∫ +∞

0
f (t)g(s)e−t z δ(t − s)

t + s
dtds, for z ∈ �. (3.13)

Further, we may interpret the expression

δ(t − s)

t + s
, for t, s > 0.

that appears on the right side of (3.13) as a functional in T ∗
2 .Correspondingly, we may

interpret the whole right side of (3.13) as the value of that functional when evaluated
on the function

e−zt f (t)g(s) ∈ T2.

In other words,

P( f , g)(z) =
〈
δ(t − s)

t + s
, e−t z f (t)g(s)

〉
, for z ∈ �. (3.14)

We now apply (3.1) to rewrite the right had side of (3.14) as follows:

〈(∫ +∞

0
e−(t+s)x dx

) (∫ +∞

−∞
ei(t−s)ydy

)
, e−t z f (t)g(s)

〉
. (3.15)

By Fubini’s Theorem for distributions (see e.g. [15, pp. 416–419]), we rewrite the
expression in (3.15) as follows

∫ +∞

−∞

∫ +∞

0

(∫ +∞

0
f (t)e−t(z+x−iy)dt

) (∫ +∞

0
g(s)e−s(x+iy)ds

)
dxdy. (3.16)

Recalling the formula for the Laplace transform (2.1), we rewrite (3.16) in a concise
form as

∫ +∞

−∞

∫ +∞

0
(L f ) (z + x − iy) · (Lg) (x + iy)dxdy

w=x+iy=

=
∫∫

�

(L f ) (z + w) · (Lg) (w)dwdω = I (L f ,Lg).

This finishes the proof. 
�
Corollary 3.5 Due to commutativity of the Hadamard product defined in 3.3, under the
assumption of Lemma 3.4, we conclude that the following four functions are equal on
�:

I (L f ,Lg) = P( f , g) = P(g, f ) = I (Lg,L f ) .
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Being motivated by Lemma 3.4, we introduce the following precise definition of
the Hadamard–Bergman convolution operator:

Definition 3.6 Assume that

f (t), g(t),
f (t)g(t)

t
∈ E, (3.17)

and denote

F = L f , G = Lg.

Then we interpret the Hadamard–Bergman convolution operator I (F, G), that was
introduced formally inDefinition 1.4, as the correspondingHadamard product P( f , g)

defined in (3.10).

Recall that in Lemma 3.4 the equality (3.12) was proved when f and g are test
functions. We now prove the same equality for the general case:

Theorem 3.7 Under Assumptions (3.17) the equality (3.12) holds.

Proof Suppose that Assumptions (3.17) hold. Construct sequences of test functions
fn, gn ∈ T such that

fn → f ,

gn → g, (3.18)

where convergence is understood to be both pointwise and in the sense of the weighted
space L2

([0,+∞), t−(α+1)dt
)
. Denote Fn = L fn and Gn = Lgn . For all z ∈ � we

have

Fn(z) =
∫ +∞

0
fn(t)e−zt dt

(3.18)→
∫ +∞

0
f (t)e−zt dt = F(z),

Gn(z) =
∫ +∞

0
gn(t)e

−zt dt
(3.18)→

∫ +∞

0
g(t)e−zt dt = G(z), (3.19)

when n → +∞, and at the same time

∫∫
�

Fn (z + w) Gn(w)dwdw
(3.4)=

∫ +∞

0
fn(t)gn(t)

e−zt

t
dt →

(3.18)→
∫ +∞

0
f (t)g(t)

e−zt

t
dt, (3.20)

also when n → +∞.By Fatou’s theorem, from conditions (3.19) and (3.20) it follows
that for every z ∈ � the function w → F (z + w) G(w) is Lebesgue integrable on
the half-plane w ∈ �, and

∫∫
�

F (z + w) G(w)dwdw =
∫ +∞

0
f (t)g(t)

e−zt

t
dt,
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or in other words

I (F, G) = P( f , g).

This finishes the proof. 
�

Lemma 3.4 could be compared to the following known result ([12, Theorem 10, p.
511]):

Theorem 3.8 ([12, Theorem 10, p. 511]). Let f , g ∈ E . Then

L( f g)(z) =
∫

a+iR
(L f )(w) · (Lg)(z − w)dw, for Re(z) > a, and a > 0.

4 Proofs of Main Results

4.1 Proof of Theorem 1.5

Let the functions F, G belong to the Bergman space A. Then by Theorem 2.2 the
functions F and G are Laplace transforms of some functions f , g,

F = L f , G = Lg, (4.1)

satisfying conditions

∫ +∞

0

| f (t)|2
t

dt < +∞,

∫ +∞

0

|g(t)|2
t

dt < +∞. (4.2)

We now check conditions of Lemma 3.4. By Holder’s inequality, for all ε > 0 we
have

∫ +∞

0
| f (t)|e−εt dt =

∫ +∞

0

| f (t)|√
t

√
te−εt dt ≤

≤
(∫ +∞

0

| f (t)|2
t

dt

)1/2 (∫ +∞

0
te−2εt dt

)1/2
(4.2)
< +∞. (4.3)

Also by Holder’s inequality

f (t)g(t)

t

(4.2)∈ L1([0,+∞)) ⊂ E . (4.4)

Consequently, by (4.3) and (4.4) the assumption of Lemma 3.4 holds. Thus, the
conditions of Lemma 3.4 hold. Consequently by Lemma 3.4, Theorem 1.5 follows.
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4.2 Proof of Theorem 1.9

We divide the proof of Theorem 1.9 in two steps.
Step 1. Assume that F ∈ Aα. By Theorem 2.2, this is equivalent to claiming that

F = L f for some

f ∈ L2
(
[0,+∞), t−(α+1)dt

)
. (4.5)

Given σ ≥ 0, introduce the auxiliary function

fσ : [0,+∞) → C

by the following two relations:

fσ (t) = f (t − σ), for t ≥ σ,

fσ (t) = 0, for 0 ≤ t < σ.

We have that condition (4.5) is equivalent to

∫ +∞

0
f 2σ (t) · t−(α+1)dt < +∞,

or equivalently

∫ +∞

0

[
fσ (t)tβ−2

]2
t−α−2β+3dt . (4.6)

Recalling the assumption α+2β−4 > −1 of Theorem 1.9, the conditions of Theorem
2.2 are satisfied for the function fσ (t)tβ−2. Hence, condition (4.6) is equivalent to

L
(

fσ (t) · tβ−2
)

∈ Aα+2β−4. (4.7)

Step 2. We now express the function w → F(w)e−σw in terms of the auxiliary
function fσ as follows. For w ∈ � we have

F(w)e−σw = e−σw

∫ +∞

0
f (t)e−wt dt

t→t−σ=
∫ +∞

σ

f (t − σ)e−wt dt =

=
∫ +∞

0
fσ (t)e−wt dt = L ( fσ ) (w). (4.8)

We write the expression Sβ,σ F as follows:

(
Sβ,σ F

)
(z)

(1.7)=
∫∫

�

F(w)e−σw

(z + w)β
dwdw

(1.4)= I

(
F(w)e−σw,

1

wβ

)
(z) =
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(4.8),(2.4)= I
(
L fσ ,Lgβ

)
(z)

(3.4)= P
(

fσ , gβ

) (3.3)=
∫ +∞

0
fσ (t)gβ(t)e−zt dt

2t
=

(2.4)=
∫ +∞

0
fσ (t)tβ−2e−zt dt = L

(
fσ (t)tβ−2

)
(z).

Here gβ is as given in Example 2.4. Consequently, condition (4.7) is equivalent to

Sβ,σ F ∈ Aα+2β−4.

as claimed by Theorem 1.9.

4.3 Proof of Theorem 1.11

Assume that

F ∈ Aα. (4.9)

By Theorem 2.2, this is equivalent to claiming that F = L f for some

f ∈ L2
(
[0,+∞), t−(α′+1)dt

)
. (4.10)

Additionally assume that f ∈ T . Integrate formula (4.10) by parts to get

zF(z) = −
∫ +∞

0
f ′(t)e−zt dt . (4.11)

Assume that

zF(z) ∈ Aα′ . (4.12)

By Theorem 2.2, statements (4.11) and (4.12) are equivalent to claiming that

f ′ ∈ L2
(
[0,+∞), t−(α′+1)dt

)
. (4.13)

From Corollary 2.17 we obtain that if α′′ satisfies the conditions of Theorem 1.11,
then Assumptions (4.9) and (4.12) imply

F ∈ Aα′′ .

5 Summary

Summarizing, we state that in this paper, by analogy with the known results for the
disc, Hadamard–Bergman operators on the half-plane are introduced and studied for
the first time. However, the analogy is only formal, while the case of a half-plane is
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essentially different from the case of a disc. The main results are as follows. We give
sufficient conditions underwhich these operators arewell defined (Theorem1.5).More
general conditions are obtained in Theorem 3.7, however, it is not given in constructive
terms. We state, as an open question, the finding of constructive general conditions.
Further, we present results onmapping properties of operators Rβ and Sβ,σ inweighted
Bergman spaces (see Theorem 1.9 and Corollary 1.10). As an application of the above-
mentioned results, in Theorem 1.11 we relate sharp inclusions for weighted Bergman
spaces with some Sobolev-type inequalities.
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