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Abstract
For the density of Galton-Watson processes in the Schröder case, we derive a complete
left tail asymptotic series consisting of power terms multiplied by periodic factors.

Keywords Galton-Watson process · Left tail asymptotic · Schröder and
Poincaré-type functional equations · Karlin-McGregor function · Fourier analysis

1 Introduction

The topic we will be discussing involves discrete and continuous Fourier analysis
and some notable analytical techniques. Generally, these ideas can be used in the
Fourier analysis of multiple functional iterations. Such iterative mappings are widely
used in practice. A nice introduction to the mathematical theory is given in [17]. We
choose one known probabilistic problem as an interesting application of our methods.
Some of the existing results will be significantly improved. In this section, we will
present them briefly. In particular, we mostly skip the probabilistic context focusing
more on the analytic part. All the formulas can be understood without additional
explanations of the terms of the theory of branching processes that we will use. The
main details will be covered in the following sections.

We consider a simple Galton-Watson branching process in the supercritical case
with the minimum family size 1-the so-called Schröder case. The probability of the
minimum family size is 0 < p1 < 1. Thus, the probability-generating function has
the form

P(z) = p1z + p2z
2 + p3z

3 + ....
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The case of non-zero extinction probability (p0 �= 0) can usually be reduced to the
supercritical casewith the help ofHarris-Sevastyanov transformation. The correspond-
ing information about branching processes is given in, e.g., [3, 12]. We assume that
the mean of offspring distribution is finite, i.e.

E = p1 + 2p2 + 3p3 + ... < +∞.

Then one may define the martingal limit, the density of which can be expressed as a
Fourier transform of some special function

p(x) = 1

2π

∫ +∞

−∞
�(iy)eiyxdy, where �(z) = lim

t→+∞ P ◦ ... ◦ P︸ ︷︷ ︸
t

(
1 − z

Et

)
,

see [7, 15]. Since the Fourier integral is quite complex, any expansion and asymptotic
analysis of p(x) is welcome. Often special attention is paid to the analysis of tails
when x → +0 or x → +∞. It is proven in [2] that p(x) has an asymptotic

p(x) = xαV (x) + o(xα), x → +0, (1)

with explicit α = −1 − logE p1 and a continuous, positive, multiplicatively periodic
function, V , with period E . Further references to this asymptotic are always based
on the principal work [2] and do not provide any formula for V (x), see, e.g., the
corresponding remark in [10, 11, 18] devoted to the Schröder case. Even such a result
is already great because p(x) is not simple.

Recently, some explicit expressions for V (x) in terms of Fourier coefficients of 1-
periodic Karlin-McGregor function and some values of �-function are given in [15].
The derivation is based on the complete asymptotic series for discrete relative limit
densities of the number of descendants provided in [16]. However, even for the first
asymptotic term, the derivation is somewhat informal because the continuous martin-
gal limit and the discrete distribution of the relative limit densities differ significantly.
In particular, only the first term in both asymptotics has a common nature, all other
terms are completely different. Now, I found beautiful and independent steps allowing
me to obtain the complete expansion (not only the first term)

p(x) = xαV1(x) + xα+βV2(x) + xα+2βV3(x) + ..., x > 0, (2)

with the certain value α defined above, β = − logE p1 > 0, and explicit multiplica-
tively periodic functions V1, V2, V3,..., see Eqs. (14) and (15). Finally, we obtain a
very efficient representation of Vn in terms of Fourier coefficients of periodic Karlin-
McGregor functions and some values of �-function

Vn(x) = Kn

(− ln x

ln E

)
, Kn(z) = κn

+∞∑
m=−∞

θ∗n
m e2π imz

�(− 2π im+n ln p1
ln E )

,

θ∗n
m =

∫ 1

0
K (x)ne−2π imxdx,
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where

K (z) = 	(�(Ez))p−z
1 , 	(z) = lim

t→∞ p−t
1 P ◦ ... ◦ P︸ ︷︷ ︸

t

(z),

	−1(z) = κ1z + κ2z
2 + κ3z

3 + ...,

see Eq. (24). All κ j can be computed explicitly, see Eq. (10). The form of V1(x)
presented in [15] significantly helped to determine the forms of other Vn(x). However,
we provide a proof of Eq. (2) free on any assumptions about V1. The main result is
formulated in Theorem 3.1.

Expansion Eq. (2) consists of periodic oscillations amplified by power-lawmultipli-
ers. Asmentioned in, e.g., [4–6], such type of behavior can be important in applications
in physics and biology. Let us note the continuing interest in the tail behavior of the
Galton-Watson process. Recently, for the right (not left) tail, the universal estimates
are obtained in [9]. Maybe, in the future, such results can be improved to full asymp-
totic series as it is done for the left tail in Eq. (2). My hope is also supported by the
fact that series Eq. (2) converges not only for small arguments but for all x > 0 - that
includes the right tail. Of course, Eq. (2) is not the right tail asymptotic we are looking
for, but, I believe, Eq. (2) can be helpful during this search. In a different setup, some
estimates related to branching trees are also discussed in [1].

The rest of the paper is organized as follows. Section2 contains the definitions of
main objects and some preliminary results. The key elements here are Eqs. (14)–(16),
which will be elegantly developed in Eq. (19) along with Eqs. (23) and (24) of next
Sect. 3. Other elements are more technical than masterly and can be done in a not-
unique way: reasoning at the end of Sect. 2 and their alternative versions formulated
after Theorem 3.1 give necessary conditions for the theorem. Section4 contains some
numerical comparison of LHS and RHS in the main result Eq. (2) applied to some
concrete examples.

2 Preliminary Results

Let us recall some known facts about branching processes, including some recent
results obtained in [16]. Some new results are also included in this section. TheGalton–
Watson process is defined by

Xt+1 =
Xt∑
j=1

ξ j,t , X0 = 1, t ∈ N ∪ {0}, (3)

where all ξ j,t are independent and identically-distributed natural number-valued ran-
dom variables with the probability-generating function

P(z) := Ezξ = p0 + p1z + p2z
2 + p3z

3 + .... (4)
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For simplicity, we consider the case when P is entire. In this case, the first moment

E = P ′(1) = p1 + 2p2 + 3p3 + ... < +∞ (5)

is automatically finite. A polynomial P is common in practice, but the results discussed
below can be extended to a wide class of non-entire P . As the Introduction mentions,
we assume p0 = 0, p1 �= 0. Another natural assumption is p1 < 1, otherwise the case
p1 = 1 is trivial. One of the important limit distributions is the so-called martingal
limit W = limt→+∞ E−t Xt , the density p(x) of which will be our main subject to
study.

Under the assumptions discussed above, we can define

	(z) = lim
t→∞ p−t

1 P ◦ ... ◦ P︸ ︷︷ ︸
t

(z), (6)

which is analytic at least for |z| < 1. The function 	 satisfies the Scröder-type func-
tional equation

	(P(z)) = p1	(z), 	(0) = 0, 	′(0) = 1, (7)

as is seen from Eq. (6). The function 	 has an inverse

	−1(z) = κ1z + κ2z
2 + κ3z

3 + κ4z
4 + ..., (8)

analytic in some neighborhood of z = 0. The coefficients κ j can be determined by
differentiating the correspondingPoincaré-type functional equation, inverse toEq. (7),

P(	−1(z)) = 	−1(p1z), 	−1(0) = 0, (	−1)′(0) = 1 (9)

at z = 0. In particular,

κ1 = 1, κ2 = p2
p21 − p1

, κ3 = 2p2κ2 + p3
p31 − p1

, .... (10)

It is shown in, e.g., [7] or [15], that the density p(x), mentioned in Eq. (1) and between
Eqs. (5) and (6), can be computed by

p(x) = 1

2π

∫ +∞

−∞
�(iy)eiyxdy = 1

2π i

∫
γ

�(z)ezxdz, (11)

where γ is a modification of the original contour iR discussed below and

�(z) := lim
t→+∞ P ◦ ... ◦ P︸ ︷︷ ︸

t

(1 − z

Et
). (12)
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This function is entire, satisfying another Poincaré-type functional equation

P(�(z)) = �(Ez), �(0) = 1, �′(0) = −1. (13)

Note that E > 1, since p0 = 0, 0 < p1 < 1, and
∑

p j = 1, see Eq. (5). The existence
of the limit in Eq. (12) follows from the standard facts that the linearization of P at 1
leads to the multiplication of the increment of the argument by E . In other words, one
can use P(1+w) = 1+ Ew + O(w2) in Eq. (12) and see the convergence. The same
reason applies to Eq. (6). The corresponding details related to the theory of Schröder
and Poincaré-type functional equations are available in a good introductory book [17].

Everything is ready to derive a new expansion of p(x) that gives the complete left
tail asymptotic series—the justification for changing summation and integration will
be discussed below

p(x) = 1

2π i

∫
γ

	−1(	(�(z)))ezxdz =
+∞∑
n=1

κn

2π i

∫
γ

	(�(z))nezxdz

=
+∞∑
n=1

x−1−n logE p1Vn(x), (14)

see Eqs. (11) and (8), where

Vn(x) = κnx1+n logE p1

2π i

∫
γ

	(�(z))nezxdz. (15)

Using Eqs. (7), (13), and (15), it is easy to check that all Vn are multiplicatively
periodic

Vn(
x

E
) = κnx

ln Epn1
ln E

2π ipn1

∫
γ

	(�(z))ne
zx
E
dz

E
= κnx

ln Epn1
ln E

2π i

∫
γ
E

	(�(z))nezxdz = Vn(x).

(16)

The integration contour γ in Eq. (15) should be chosen so that�(γ ) lies in the domain,
where	 is invertible, and γ must be symmetric and connects−i∞with+i∞. One of
the choices is γ = iR+ ε with sufficiently large ε > 0, since �(z) → 0 for Rez � 0
and z → ∞. For such type of contours, the second integral in Eq. (16) along γ and
along γ /E is equal to the same value, due to the Cauchy integral theorem. The exact
power-law decay of �(z), when Rez � 0 and z → ∞, can be determined from the
identity

�(z) = 	−1(K (logE z)z
ln p1
ln E ), (17)

where K (z) = 	(�(Ez))p−z
1 is 1-periodic by Eqs. (7) and (13). This famous function

will reach its full potential a little later, see Eq. (18) and below. Here, we use only basic
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Fig. 1 Gray strip belongs to the domain of definition of K (z). Paths γ and logE γ are plotted with the blue
color

facts about it. Following [7], integral Eq. (11) exists.We assume that it exists in a strong
sense meaning �(iy) → 0 for y → ±∞ - this automatically means 	(�(iy)) → 0
for y → ±∞. Hence, K (z) defined above is analytic in a neighborhood of [x +
iπ

2 ln E , x + 1 + iπ
2 ln E ] for some large x ∈ R. Due to 1-periodicity, K (z) is analytic in

some strip of a positive width, a neighborhood of the line R + iπ
2 ln E , and, due to the

symmetry, R − iπ
2 ln E . In [7, 8, 16], it is shown that K (z) is also analytic in the strip

|Imz| < π
2 ln E . Roughly speaking, this fact can be derived from the definitions of K ,

	, �, and the basic facts about the Julia set related to P—it contains the unit disk.
Angle π

2 of the intersection of the boundary (unit circle) of the unit disk with the real
line at z = 1 gives the bound π

2 ln E for the symmetric strip defined above. Here, ln E is
due to Ez in the definition of K . As mentioned, the corresponding details are available
in, e.g., [7, 8, 16]. Returning to the analyticity of K (z) in the strip |Imz| < π

2 ln E
and in the strips neighbor to R ± iπ

2 ln E we deduce that K (z) is analytic (and still
1-periodic) in a larger strip |Imz| < k for some k > π

2 ln E . This means that the contour
logE γ lies strictly inside the domain of the definition of K , see Fig. 1, and, hence,

K (logE z) is bounded and smooth for z ∈ γ . Thus, �(z) = O(z
ln p1
ln E ), see (17), and

if ln p1
ln E < −1 then integrals Eq. (15) converge absolutely. Absolute convergence also

justifies Eq. (14). Recall that p1 < 1 and E > 1. Hence, ln p1
ln E < −1 is not a rare

case. In fact, it can be shown that Eq. (15) converges anyway because ln p1
ln E < 0 and
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decaying function z
ln p1
ln E is multiplied by the oscillatory factor ezx for Imz → ±∞,

but it requires more cumbersome calculations.

3 Representation of Vn(x) Through the Fourier Coefficients of
Karlin-McGregor Function

Recall that the Karlin-McGregor function, see [13, 14], is 1-periodic function given
by

K (z) = 	(�(Ez))p−z
1 =

m=+∞∑
m=−∞

θme
2π imz, (18)

where the corresponding Fourier coefficients θm decay exponentially fast. One simple
consequence of the theory of periodic functions states that if 1-periodic function is
analytic in the strip {z : |Imz| < r} then its Fourier coefficients are bounded by
C(ε)e−2π |m|(r−ε), where m is a number of the coefficient, ε > 0 is any, and C(ε)

is common for all the coefficients. We recall only that at least r = logE π

2 for the
Karlin-McGregor function, see details in, e.g., [16]. Let us rewrite Eq. (15) in terms
of K :

Vn(x) = κnx
ln Epn1
ln E

2π i

∫
γ

p−nz
1 	(�(Ez))n pnz1 eE

zxdEz

= κnx
ln Epn1
ln E

2π i

∫
logE γ

K (z)n pnz1 eE
zxdEz

= κnx
ln Epn1
ln E

2π i

∫
logE γ

(

m=+∞∑
m=−∞

θ∗n
m e2π imz)pnz1 eE

zxdEz

= κn

m=+∞∑
m=−∞

θ∗n
m

x
ln Epn1
ln E

2π i

∫
logE γ

e2π imz pnz1 eE
zxdEz, (19)

where θ∗n
m are Fourier coefficients of 1-periodic function

K (z)n =
m=+∞∑
m=−∞

θ∗n
m e2π imz . (20)

They are convolution powers of original Fourier coefficients θm . We already know the
form of V1(x):

V1(x) =
+∞∑

m=−∞

θme2π im
− ln x
ln E

�(− 2π im+ln p1
ln E )

, (21)
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see [15]. Comparing Eqs. (19) with (21) and taking into account κ1 = 1, see Eq. (10),
we guess the main identity

x
ln Ep1
ln E

2π i

∫
logE γ

e2π imz pz1e
EzxdEz = e2π im

− ln x
ln E

�(− 2π im+ln p1
ln E )

. (22)

A direct independent proof of Eq. (22) can be based on well-known Hankel integral
representations of the �-function. It is easy to check that, after changes of variables,
Eq. (22) becomes equivalent to the formula presented in Example 12.2.6 on page 254
of [19]. This is a standard, but interesting, exercise in complex analysis and special
functions. Substituting pn1 instead of p1 into Eq. (22), we obtain also

x
ln Epn1
ln E

2π i

∫
logE γ

e2π imz pnz1 eE
zxdEz = e2π im

− ln x
ln E

�(− 2π im+n ln p1
ln E )

. (23)

Combining Eqs. (19) with (23), we obtain the final result

Vn(x) = Kn(
− ln x

ln E
), Kn(z) = κn

+∞∑
m=−∞

θ∗n
m e2π imz

�(− 2π im+n ln p1
ln E )

. (24)

The formula Eq. (24) is more convenient for computations than Eq. (15) because it
is similar to Eq. (21) for which efficient numerical schemes developed in [16] were
already applied in [15] and show good results there.

To justify changing the order of summation and integration in Eq. (19), it is enough
to take into account ln p1

ln E < −1 and remember that K is smooth and bounded in the
symmetric strip, parallel to R, of the width logE π , see details at the end of Sect. 2.
Hence, K (z) is well approximated by its Fourier series for z ∈ logE γ , with the
necessary rate of convergence. Gathering all these remarks, let us formulate the main
result.

Theorem 3.1 If P is entire, integral Eq. (11) exists in the strong sense �(iy) → 0 for
y → ±∞, and ln p1

ln E < −1 then Eq. (2) along with Eq. (24) hold true.

As it is mentioned at the end of Sect. 2, the assumption ln p1
ln E < −1 can be usually

omitted. The convergence of Eq. (24) is quite fast because θ∗n
m = O(e−2π |m|k) for

some k > π
2 ln E that more than compensates small values of � in the denominator,

which are approximately of the order e− π2 |m|
ln E |m|− ln p1

ln E − 1
2 , see, e.g., the corresponding

analysis based on Stirling approximations of Gamma function explained in [16]. Thus,
Fourier coefficients in Eq. (24) decay exponentially fast.

The condition �(iy) → 0 for y → ±∞ can be replaced with a more simple
condition, which follows directly from Eq. (13) and from the definition of the Julia
set.

Proposition 3.2 If |�(iy)| < 1 for y ∈ [r , Er ] for some r > 0, then �(iy) → 0 for
y → ±∞.
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Proof Indeed, recall that the filled Julia set related to P(z) contains the open unit
disk because all the coefficients of the polynomial P(z) are positive and the maximal
by modulus value at the boundary of the unit disk is P(1) = p1 + p2 + ... = 1.
Thus, if �(iy) lies in the interior of the unit disk then �(iy) lies in the interior of the
corresponding component of the filled Julia set as well. Thus, P-iterations performed
by the first formula in Eq. (13)

�(iEt y) = P ◦ ... ◦ P︸ ︷︷ ︸
t

(�(iy)) → 0, y ∈ [r , Er ] (25)

by the standard properties of the Julia sets, since 0 is the unique attracting point inside
the unit disk for P(z). The uniqueness of the attracting point follows from

|P(z)| � |z|(p1 + p2|z| + ...) < |z|(p1 + p2 + ...) = |z| for |z| < 1.

Hence, P is a contracting mapping inside the unit disk and P-iterations for any z with
|z| < 1 converges to 0. Because ∪t∈N[Etr , Et+1r ] = [Er ,+∞) we state �(iy) → 0
for y → +∞, see Eq. (25). Due to the symmetry the same works for y → −∞. 
�

Using fast exponentially convergent algorithms for the computation of �(z)
developed in, e.g., [16], we can check the condition formulated in Proposition 3.2
numerically. On the other hand, if the interior of the corresponding component of the
filled Julia set contains a little bit more than the open unit disk, namely a small sector
near z = 1 of the angle � π , then the condition formulated in Proposition 3.2 is
automatically satisfied. This is because, for small y, the point w, defined by

w = �(iy) = 1 − iy − �′′(0)
2

y2 + O(y3), �′′(0) = P ′′(0)
E2 − E

> 0,

lies inside the filled Julia set and after a few, say m, P-iterations, see Eq. (13),
�(iEm y) = P ◦ ... ◦ P︸ ︷︷ ︸

m

(w)will be small enough by the properties of Julia sets already

discussed. All the filled Julia sets we tested in various examples contain such sectors,
see, e.g., the right panel in Fig. 2 computed with the help of this site.1 The Julia sets
(black area) include

{z : |arg(1 − z)| � π

2
+ δ}

for all sufficiently small 1 − z, and some positive δ > 0. The total angle of the sector
2(π/2 + δ) > π as required. The set of parameters p1, p2, p3, and p4 for which the
Julia sets were computed will be used in the next examples section.

1 https://www.marksmath.org/visualization/polynomial_julia_sets/

https://www.marksmath.org/visualization/polynomial_julia_sets/
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Fig. 2 Two examples of Julia sets computed with the help of this site1: the cases p1 = 0.1, p2 = 0.5,
p3 = 0.4, and p1 = 0.1, p2 = 0.1, p3 = 0.5, p4 = 0.3

4 Examples

As examples, we consider the same cases as in [15]. The difference is that we add the
second asymptotic term. We take two sets of parameters

p1 = 0.1, p2 = 0.5, p3 = 0.4 and p1 = 0.1, p2 = 0.1, p3 = 0.5, p4 = 0.3.

Thus, we have two probability-generating functions

P1(z) = 0.1z + 0.5z2 + 0.4z3 and P2(z) = 0.1z + 0.1z2 + 0.5z3 + 0.3z4

that will be used for the computation of two densities p1(x) and p2(x) by Eqs. (11)
and (12). Let us compare such computed densities with their first asymptotic term
given in Eqs. (2) and (24). The comparison is provided in Fig. 3. As it is seen, the first
asymptotic term already gives a very good approximation, especially for small x .

Fig. 3 Comparison of exact normalized densities with their first asymptotic approximations: the case p1 =
0.1, p2 = 0.5, p3 = 0.4 (upper curves), and p1 = 0.1, p2 = 0.1, p3 = 0.5, p4 = 0.3 (bottom curves)

https://www.marksmath.org/visualization/polynomial_julia_sets/
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Fig. 4 Comparison of differences between exact normalized densities and their first asymptotic terms with
the second asymptotic terms: the case p1 = 0.1, p2 = 0.5, p3 = 0.4 (upper curves), and p1 = 0.1,
p2 = 0.1, p3 = 0.5, p4 = 0.3 (bottom curves)

The next step is to compare the difference between exact normalized densities and
their first asymptotic terms with the second asymptotic term, see again Eqs. (2) and
(24). The comparison is provided in Fig. 4. The results are quite good.

For the computation of the asymptotic terms, we use numerical procedures based
on fast algorithms developed in [16]. Originally, the procedures were developed for the
computation of K (z) but can be easily applied without modifications for K (z)n , which
is required in Eq. (20) and then in Eq. (24). For the computation of the densities, we use
FFT (DFT). Some additional tricks are necessary because, roughly speaking, DFT is
developed for the discrete analogs of finite integrals, from−π to π , not for the infinite
integrals as we need, see Eq. (11). Generally speaking, the computation of infinite
integrals is much harder than the computation of finite integrals. Asymptotic terms
Eq. (24) require the computation of Fourier coefficients of K (z)n , see Eq. (20), which
can be performed with the help of a standard DFT—a discrete analog of finite integrals
over [−π, π ]. In this sense, RHS of Eq. (2) has an obvious advantage over LHS
containing the infinite integral. In particular, the numerical accuracy of the computation
of the infinite integral in LHS of Eq. (2) is insufficient to compare it with the second
asymptotic term for very small x . Much more expensive calculations are needed to
achieve the required accuracy. For this reason, we have not included this comparison
(when x ≈ 0) in Fig. 4. At the same time, RHS of Eq. (2) has no such type of
disadvantages, because Vj (x) are multiplicatively periodic and can be computed for
any x easily, and, as already said, their computation does not require infinite integrals
and can be performed with the standard FFT. Among others, this was one of the
motivations for obtaining the main result—RHS expansion in Eq. (2).
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