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Abstract
We introduce and prove small cap square function estimates for the unit parabola and
the truncated light cone. More precisely, we study inequalities of the form

171 = Cap® (X 152)7]

y€la(R™Y

where I'y (R™!) is the set of small caps of width R~%. We find sharp upper and lower
bounds of the constant Cy, ,(R).

Keywords Square function estimate - Fourier restriction estimate - Decoupling
inequality

Mathematics Subject Classification 42B10

1 Introduction
In this paper, we study the square function estimates. We begin with the most general

setting. Let 2 C R” be a set in the frequency space, and suppose we are given a
partition of €2 into subsets ¥ = {o'}:

Q:I_la.

We will only consider the case when o are morally rectangles. For any function f,
we define f, = (Y, )V, where ¥, is a smooth bump function adapted to o. We will
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also assume suppf C Qin the following discussions. The inequality we are interested
in is of the following form:
Square Function Estimate:

1715 = Crs| (X 152) ]

oeX

The goal is to find the best constant C), s that works for all test functions f.

This type of estimate is of huge interest in harmonic analysis. We briefly review
some well-known results.

When Qis the R~ -neighborhood of the unit parabola P = {(£, £%) € R? : |&| < 1}
and ¥ = {0} is the set of ~ R~/ x R~!-caps that form a partition of €, then an
argument of Cérdoba—Fefferman (see also [1, Proposition 3.3]) gives

s | (e) ),

oED

(Throughout this article, we suppress the ~ symbol for simplicity when the precise
scale is unimportant.)
When € is the R~!-neighborhood of the unit cone C = {(&], &, &) e R3 : & =

JEL+E7,1/2 <& < 1}and T = {o}are | x R~1/2x R™!-caps that form a partition
of €, then the sharp L* square function estimate was proved by Guth—-Wang—Zhang
[6]:

1A lla S N 1o a

oex

Here, A < B means A <. R*B forany € > 0.

When € is certain neighborhood of a moment curve, it was studied by Gressman,
Guo, Pierce, Roos and Yung [3]. The sharp L7 estimate was obtained by Maldague
[7]. There are some other related results (see [4, 8]).

In the discussion above, we see that the size of caps in the partition of parabola
is R™!/2 x R™!; the size of caps in the partition of cone is 1 x R™1/2 x R™!. We
usually call them the canonical partition. Besides the canonical partition of parabola
and cone, Demeter, Guth and Wang [2] introduced the “small cap decoupling" which
is the decoupling inequality for a finer partition than the canonical partition. Similarly,
we can also ask the question about the small cap square function estimate.

The goal of this paper is to prove the sharp square function estimates for the small
caps of parabola and cone. We will first define the small caps. Then we will introduce
and study examples which give sharp lower bounds of the constants. Finally, we will
prove the sharp bounds of the constants.
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1.1 Small Caps
1.1.1 Small Caps for Parabola

Let P := {(£,€%) : € € R,|€|] < 1} be the unit parabola, and Np-1(P) be its
R~ !'-neighborhood. For 1/2 < a < 1, let ', (R™") be the partition of Ng—1(P) into
rectangular boxes of dimensions R~ x R~!. More precisely, each y € [',(R™!) is
of form

y = xXR)NNz-1(P),

where I C [—1, 1]is an interval of length R~“. Note that we have #I", (R™!) ~ R®.
Our square function estimate is

Theorem 1 For suppfc Ng-1(P), we have

1/2
< 2
1l £ Car® (30 167) 7, e M
yela(R™1)
where .
R*G277) p>4da+2,
Ca,p(R) = (a—l)(l—l (2)
R™ 272 v 2<p<da+2.
Remark We remark that p > 4« + 2 is equivalent to a(% — %) > (o — %)(% — %).

. . a(t—2) (a=byt=1y
Therefore, (2) is equivalent to (up to constant) Cy, ,(R) ~ R™2 77 + R™ 272 77,

1.1.2 Small Caps for Cone

Denote the truncated cone in R3 by

Ci={¢16.6)eR &= /62 +E31/2<8 <1).

For1/2 < B <1, let Fﬁ(R_l) be the partition of Nz-1(C) into caps of dimensions
1 x R7# x R~!. More precisely, we first choose a partition of S! into R~#-arcs:
S! = Lo . For each arc o, consider the R_l-neighborhood of

é1,82)
= ¢

VEL+ & |

which is a cap of dimensions 1 x R P x R F,«;(R’l) is the set of caps constructed
in this way (see Fig. 1). Note that #I'g (R~ ~ RP. Our square function estimate is

(¢1.6.8)eC:
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Fig.1 Small caps of the cone

Theorem 2 For suppfc Ng-1(C), we have

1/2
< 2
Il £ Caa®| (2 16P) ], o 3)
yel"ﬁ(R*I)
where ;
R2 p =38,
B 1_2
Cpp(R)={R2T57%  4<p<38 4

Remark We remark that there is no interpolation argument in the proof of square
function estimate. It is because that we cannot rewrite our square function estimate in
the form of

ITgllx < Cliglly.

where X, Y are some normed vector spaces and T is a linear operator. Another way
to see the interpolation argument is prohibited is by looking at the numerology in
(4). We draw the graph of (%, logr Cp,p(R)), where we ignore the C¢ R€ factor in
Cg,p(R) (See Fig.2). We see the critical exponent p = 8 corresponds to a concave
point (%, g) in the graph. But if the interpolation argument works, then the graph
should be convex which is a contradiction. Not being allowed to do interpolation will
be the main difficulty in the proof. This means that we need to prove the estimate
for all p, but not only the critical p. Let us consider the case § = 1/2. One critical
exponent p = 4 was proved by Guth—Wang—Zhang [6]. The result for another critical
exponent p = 8 and hence for p € (4, 8) is not included in [6]. We also remark that

B B 1 2  a Iyl 1
Cﬁ,p(R)"‘min{R77 2"‘4 > R(ﬂ )}

1.2 Elementary Tools

We briefly introduce the notion of dual rectangle and local orthogonality.

Birkhauser
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log (Oﬂ,p(R)

Sl

=
INIES

Fig.2 Sharp exponents

Definition 1 Let R be arectangle of dimensions a x b x c¢. Then the dual rectangle of R,
denoted by R*, is the rectangle centered at the origin of dimensions a~! x b= x ¢~ 1.
Here R* is made from R by letting the length of each edge of R become the reciprocal.

From our definition, we see that if R; is a translated copy of Rj, then R]“ = R;‘.
The motivation for defining dual rectangle is the following result.

Lemma 1 For any rectangle R, there exists a smooth function wg which satisfies
% Ap(x) < wr(x) <10-1g(x) for x € R, and wg decays rapidly outside R. Also,
suppwgr C R*.

This lemma is very standard, so we omit the proof. The next result is the local orthog-
onality property.

Lemma2 Let R be a rectangle and { f;} is a set of functions. If {suppﬁ + R*} are
finitely overlapping, then

[z

2
S / D il lorl. )
Proof

[\l & [ | s = [| ]

Note that fw\R = ﬁ * g is supported in suppj‘; + R*. By the finitely overlapping
property, we see the above is bounded by
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< [ S iFenl = [ sk

O

Remark Note that wg is essentially 1g by ignoring the rapidly decaying tail. It turns out
that the tail is always harmless. Therefore, to get rid of some irrelevant technicalities,
we will just ignore the rapidly decaying tail, and write (5) as

/R\ZﬁzngZmF.

There is another notion called comparable. Given two rectangles Ry, R>, we say
R/ is essentially contained in R», if there exists a universal constant C (say C = 100)
such that

Ry C CRy.

We say R and R, are comparable if R; is essentially contained in R» and vice versa,
ie.,

1
—R| C Ry C CR;.
Cl 2 1

Throughout this paper, we will just ignore the unimportant constant C, and just write
R1 C R; to denote that R; is essentially contained in R».

2 Small Cap Square Function Estimate for Parabola

We prove Theorem 1 in this section. We begin with the sharp examples.

2.1 Sharp Examples

There are two types of examples: concentrated example and flat example.
’Case I:p Z4a+2‘

We introduce the concentrated example. Choose f such that f(§) = wNR* P (&),
where VN1 (P) is a smooth bump function supported in Np—1 (P). We see that f(0) =

I f(E)dé ~ R~ Since fis supported in the unit ball centered at the origin, f is
locally constant in B(0, 1). Therefore,

I£1l, = I fllLeao.ny = R

We consider the right hand side of (1). By definition, for each y € T'o(R™"), ﬁ, is
roughly a bump function supported in 2y. Let y* be the dual rectangle of y which
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has dimensions R“ x R and is centered at the origin. By an application of integration
by parts and by ignoring the tails, we assume

1
AT

Here, “~" means up to a C¢ R€ factor for any € > 0. We will use the same notation
throughout the paper.
We see that

IC > 5e)"

yela(R™1)

b ,\,R*(Ha)p/ (Zly*)p/z-
LP(R?) BO.R) *

We evaluate the integral above. There are two extreme regions: B(0, R%) where all
the {y*} overlap; B(0, R) \ B(0, R/2) where {y*} is O(R**~!)-overlapping. For
the intermediate region B(0,r) \ B(0,r/2) (R® < r < R), we see that {y*} is
O (r~' R?)-overlapping. We may find a dyadic radius » such that

r/2 /2
/(Zly*> %/ (X)) S T R=PRBO, )| ~ R R
y B(0,r)\B(0,r/2)

14

Since p > 4o + 2 > 4, the expression above is maximized when r = R®. Plugging
in, we obtain

/ (Zly*)p/z < Re+5).
14

Plugging into (1), we have
RI< Cy p(R)R_(l""")Ra(%—'—%),
which gives

Cap(R) 2 R¥GV.

Case2:2 < p<da+2
| |

We introduce the flat example. Let & C Ng-1(P)bea R~'/2 x R~!-cap. Choose f
such that f(é) = (&), where vy is a smooth bump function supported in Np-1(P).
Let 6* be the dual rectangle of # which has dimensions R!/? x R and is centered at the
origin. By the locally constant property, f is an L' normalized function essentially
supported in 8*. By ignoring the tails, we assume

1

f T
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We see that
_3 3
Il fllp ~ R 2R?.

We consider the right hand side of (1). ]iy the same reasoning as in Case 1, for each
y € Tw(R™) with y C 6, we know that fy is roughly a bump function supported in
2y. Therefore, we can assume

|
f :—1 *,
A

We also note that y;* and ;" are comparable when y1, y, C 6. We have

02 08) ] = (Z1)")

y€ela(R™1) y<Co
~ R—(l+a)#{y C 6}1/2|y*|1/p

1/p

I+a

~ R~ pil@—3) p

Plugging into (1), we have

I+a

RTIRY 5 Cy p(R)R-IHOREC@D R
which gives
Cop(R) 2 ROTDCED),

2.2 Proof of Theorem 1

By the standard localization argument, it suffices to prove

1_2 Lyl 1 1/2
1f e Se (R*2T7 4 ROT2C ,,>)H< > |fy|z> H ‘
yela(R™ !

We introduce some notations. Throughout the proof, we use y to denote caps of
dimensions R~ x R~ For R~1/2 < A < 1, we will consider caps 7 of length A and
thickness R~!. We write |t| = A to indicate the length of 7. We will also partition
the region By into rectangles of dimensions R* x R. For simplicity, we denote these
rectangles by Brex g. The longest direction of Bre g will be specified in the proof.

Let K ~ log R and let m € N be such that K" = R'/2. By doing the broad-narrow
reduction as in [2, Section 5.1], we have

107y SC™ D M falllnay (6)
01=R~1/2
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mKC 1/2,p
+C"KC YT max Ua ) P, (D)
RTIZ<A<IITIMA || =|ry =k~ A
A dyadic dist(1.12)> (10K)~1 A

Note that C" K€ <¢ R€, foreach € > 0.
We first estimate the right hand side of (6).

Lemma 3 Let 0 be a cap of length R~'/%. Then,

(Z15P)"],

yCo

Lyl 1
| follLr(BR) < RO2GTY)

Proof We partition By into Bge g, Where each Bg« g is a translation of y* fory C 6
(note that for all y C 6, y*’s are comparable). It suffices to prove for any Bgox g,

(Z lfylz)l/Z‘

yCo

1yl 1
1 follr(Brary S RO™DGT7

®)

LP @B, )

Here, wp4a,  is @ weight which = 1 on Bgex g and decays rapidly outside Bgaxg.
And ||g|l1r(w) is defined to be (f |g|Pw)/P. We remark that we use @By, p instead
of 15,4, 1s to make the local orthogonality and locally constant property rigorous.
As such technicality is well-known (see for example in [1]), we will just pretend
®Bpa, g = 1Bga, , fOr convenience.

We further do the partition

BROZXR = |_| BRI/ZxRa

where each By1/2, p is atranslation of 6. Since fj is locally constant on each Bgi2 g,
we have

1/p
||fe||u<BRaxR>=( > "fe"fwBRum))

Brij2yp
I/p
3,1 1
5(5—73) P
SRZ p 2 ( Z ”f9||L2(BR1/2 R)>
X
Brij2,p
Q(L,l)
<R 7 2 follp2(Bga p)-

By local orthogonality, Holder’s inequality and noting p > 2, we have

I follL2(Bga )
12
s[(Z1sR) 7
yCo

Combining the inequalities, we finish the proof of (8). O

< gUH®G—)
L2(Braxg)

()]

yCo

LP(Bgaxg)
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By Lemma 3, the right hand side of (6) is bounded by

reReHA-} (ZH(ZW)”H )" <cam|(Z17)",

Next, we estimate (7). For any summand in (7), we will show that

Gt Pleran S Cap®| (S 152) ] ©)

yCrt

1 1/2
This will imply (7)7 < Ca,p(R) H ( > fy|2) ‘ » and then finishes the proof of
Y

Theorem 1. It remains to prove (9).

Fixa A € [R_l/2 1] and a  with |t| = A. We first consider (1, -,
ycr ¥ isan RY x R*A™ I_rectangle when A > R%~1; ﬂVCT
R® x R-rectangle when A < R*~!. We consider these two cases separately.
’Case 1:A > R*! ‘

We choose a partition Bg = |_| Bge g a1, Where each B o, ga o1 18 @ translation
of (1, <, . We just need to show

p*. It is

easy to see [ ) y*is an

(10)

1/2
1 S PN S Car®| (T 15P) 7,

ycr R xREA—1)

Since each | f}, | is locally constant on Bge, gep-1 When y C 7, we have

() (2n)"

RO xgaa—1)

LP(B L2(Bgo s o p—1)

Since { fy }, c: are locally orthogonal on Bga gap-1, We have

(2 15r)"]
yCrt

~ 2 .
R 11 ST

Therefore, (10) is reduced to

141
1 fe) PN Lr B, 1) S Cop RIRP AT ™20 ol 2 (11)

RexReA-)

Next, we apply the parabolic rescaling. Recall that 7 is a cap of length A. We dilate
by factor A~! in the tangent direction of  and dilate by factor A=2 in the normal
direction of 7. Under the rescaling, we see that: T becomes the R ~' A~2-neighborhood
of P; 71 and 1 become K ~!-separated caps with length K ! and thickness R~ A~2;

Birkhauser
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the rectangle Bga, gaa-1 in the physical space becomes Brea. Let g, g1, g2 be the
rescaled version of fr, fr,, fr, respectively. The inequality (11) becomes

IRV IS R VS WS |
1(8182) 2110 (Bran) S Cap (RYRZ* AN 2F 0 AP g o 0 (12)

We recall the following bilinear restriction estimate (see for example in [9]).

Lemma4 Letr > 1, K > 1. Suppose g1, g» satisfy suppgi, suppgz C N,—2(P) and
dist(suppg1, suppg2) > K L. Then for p > 2 and r' > r we have

2 172
1818 2 Iera,) < KOV (g2, 1820 1208,0) - (13)

Proof We just need to prove for 7’ = r. When p = 2, this is trivial. When p = 4, this
is the bilinear restriction estimate. When p = oo, we note that

181823 0es,, < 81 L llg2llLoes,) < IZ11L1 1820,
SrE g 2 = R g 2 lg2 o
The second-last inequality is by Holder and the condition on the support of g1, g>. The

last inequality is by Plancherel. For other p, the proof is by using Holder to interpolate
between p = 2, 4, co. O

We return to (12). Noting that R*A > (RA?)!/?, we apply the lemma above to
2
bound the left hand side of (12) by (R"‘A)E_1 81122 (Bga - It suffices to prove

2

1 1 1 1
(RotA)p—l g Ca!p(R)(RZOIA—l)—Z"FTJA3(—§+7}). (14)
1 2
When p > 4, we use Cq_,(R) > R*27%). Then (14) boils down to
1« pa(G=3) 2o A—1y= 35 A3 =3+5)
(REA)?— < RYMZTP(RAH 2T AT, (15)

which is equivalent to

which is true since R > 1.
1 1
When p < 4, we use Cy,,(R) 2 R 2G=%) Then (14) boils down to

(ROZA)%_l S R(Ul_%)(%_%)(RZOlA—l)—%'F%A?’(—%‘f‘%)’ (16)
which is equivalent to
@=5G—4)
R™2727p > 1,
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which is true since o« > 1/2.
’Case 2:A < RY! ‘

We choose a partition Bg = |_| Brexr, Where each Breyp is a translation of
(), v We just need to show

1 fe) Perger < Cop®| (T 152) " a7

yCrt

LP(Bgayg)

Since each | f}, | is locally constant on Bgexg when y C t, we have
1 1
~ (ROZ+1 )* §+;

[(Z152) e (X157

yCrt yCrt

L2(Braxp)
Since { f} }, ¢ are locally orthogonal on Bge g, we have

()

~ el L2 Brasg)-

L2(Bgaxg)
Therefore, (17) is reduced to

_1,1
ey fe) Pl Bro) S CapRYRDY 20 fell 2Bpe - (18)

Next, we do the same parabolic rescaling as above. The rectangle Bgre g in the
physical space becomes Bpa o« ga2-Let g, g1, g2 betherescaled versionof fr, fr,, fr,
respectively. The inequality (18) becomes

[0 U B O G |
1(g182) Il s < Cap(RYRHH)T2H DAY g 2

RAxRA2) ~ RZAxRA2)

19)
To apply Lemma 4, we do the partition Brapxra2 = L] Bra2- So, (19) is reduced
to

11 g 11
1(8182) 0 (B0) S Cap (IR T A T gl g ). (20)
By Lemma 4,
2
Z1
1(8182)" 2 lLr(Byy0) S (RADP gl 2,0
It suffices to prove
(RAZ)%_I < Ca,,,(R)R("‘*”(_%*%)A3(_%+%). 1)

Birkhauser
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12
When p > 4a + 2, we use Cyp(R) = R*Z77). Then (21) boils down to
2241 o pa(3=2) pe+D(=3+1) \3(=1+1)
(RAS)r " < R™2° /'R 2PN 2T (22)

which is equivalent to

Using A > R™ 2, we just need to prove

The last inequality is equivalent to Z ~ 3"y > 0, which is further equivalent
to p > 4o + 2. We also remark that this is the place where the critical exponent
p = 4a + 2 appears.

When 2 < p < 4a+2,weuse Cy p(R) 2 R“ DG . Then (21) boils down to
2_ _ Iyl 1 _141 141
(RAz)p 1 < R(a 2)(2 p)R(a'H)( 2+p)A3( 2+p)’ (23)

which is equivalent to

Dl
=

24N
x\

which is true since A~! < RY/Z,
The proof of Theorem 1 is finished.

3 Small Cap Square Function Estimate for Cone

We prove Theorem 2 in this section. We begin with the sharp examples.

3.1 Sharp Examples

Choose f such that f WN ) (&), where WN _, () (&) is a smooth bump func-
tion supported in Np-1(C). We are going to calculate the lower bound of I fllp, which
is the left hand side of (3). We see that f(0) = f f(é)dé ~ R~ Since f is supported
in the unit ball centered at the origin, f is locally constant in B(0, 1). Therefore,

£l 2 I flLecso.ny) = R (24)

Birkhauser
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We also estimate the integral of f in the region {|x| ~ R}. We first do a canonical
partition of Ng—1(C) into 1 x R™/2 x R~!-planks, denoted by

Ng-1©) =] _|o.

Then we can write f = ", fp, such that each ]‘; is a smooth bump function on 6.
Let 0* be the dual rectangle of 6, so 6* has size 1 x R1Y2 x R and is centered at the
origin. By an application of integration by parts, we can assume

1y = R_S/Zlg*.

| fol =

|9*|

Now the key observation is that {6*} are disjoint in B(0, R) \ B(0, %R), SO we see
that

Ifllp =11 fol ZH 9‘
» Xejf p ;f LP(B(0,R)\B(0, 25 R))
NR*3/2H 1o
Zg: LP(B(O.R)\B(0, £ R))

1
~ R2(Y16) " g
0

Combining with (24), we see
3.2
||f||,,3max{R—1,R‘f+F}. (25)

And we see the threshold for these two lower bounds to be equal is at p = 4.

For this same f, we will estlmate the upper bound of the right hand side of (3). Recall
thaty isal x R™ B x R~!-cap contained in Ng-1(C), and by definition fy = f
Therefore, f), is a smooth bump function adapted to y. By an application of integration
by parts, we can assume

1
[ fyl = W *|1y*.

Here, the dual rectangle y* is centered at the origin with size 1 x R? x R. See Fig.3:
the rectangle on the left hand side is y; the rectangle on the right hand side is y*.
Therefore, we can write

H( > |fy|2>1/2Hp ~ R—l—ﬂ<f (Zly*)pﬂ)l/p. (26)

yelg(R™) Y
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Fig.3 Dual rectangle

Fig.4 Horizontal slice

Note that each y* is supported in B(0, R), so we rewrite
p/2 p/2
/(Zly*) =[ dr/ (D 1,) dxidee.
; =R Jw=ry NG

. /2 .
We are going to calculate fmzr} (Zy 1),*) . Here is the result:

Proposition 1 For p > 2, we have

/2 R + RY 0<r<10,
/ (Zly*) ~ P ERPE 4 IR LR 10<r < RF, (27)
=) Ty rI=fRPY 4 R RF <r <R

Proof Fix the plane {x3 = r}. For each y*, we set
=y N =r}

y¥ is a rectangle of size 1 x R? in the plane {x3 = r}. Denote the center of y,* by
C(y,). We see that C(y;¥) lies on the circle

S = {xy =1, [x} 422 =1},

Birkhauser
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and the long direction of y,* is tangent to S, (see Fig.4). We can rewrite the left hand

side of (27) as
r/2
/R 2 (Z 1%*) .

14

We also notice two useful facts: (1) #{y,} ~ RP; (2) {C(y})} are roughly rR=P-
separated on the circle S,.
’Case 1.0<r< 10‘

In this case, we see that {y,*} essentially form a bush centered at the origin. Evalu-
ating the concentrated part and spread-out part, we have

/Rz (Xy:l%f*)p/z ~ ~/B(0,1) (;w)m

p/2 B
+/ (Zlﬁ) ~RT + R
B(O,RP)\B(0,5RF)

Case2:10<r < RP ‘
For any point P € (J y,*, we are going to estimate },, 1,,+(P). Define

d(P) := dist(P, S,).

We see that any P € | y,* satisfies d(P) < R, and if P € | y;* lies inside S, then
d(P) = 0. For simplicity, we write d = d(P). We consider several cases:

(1) d < 10. In this case, P lies in the 10-neighborhood of S,.. Therefore,

Z 1,-(P) = Z L snnioes) (P)
Y 14

Noting that y,*NN1o(S;) isessentiallya 1 xr 1/2_rectangle centered at C (e Sy
and noting that {C(y;)} are r R separated, we have

r!/2 172
Zl}’r*mNIO(Sr)(P) ~ rR*,B = l"_ / R/3
14

(2) 10 <d < r. We claim in this case

> 1,:(P) ~ RE(ra)™'2.
Y

See Fig.5. By translation and rotation, we may assume S, is centered at (—r, 0)
and P lies on the x-axis. By Pythagorean theorem, the coordinate of P is
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Fig.5 Horizontal slice

(0, v/d(d + 2r)). Since d < r, we may ignore some constant factor and write
the coordinate of P as
P = (0, (dn'?. (28)

The next step is to find the number of y,* that pass through P. Suppose P € y,*.
Since the center of y* lies in S,, we may denote its coordinate by C(y) =
(—r +rcosf,rsin@). Let £ be the line passing through C(y,*) and tangent to S,
(which is also the core line of y,):

cosf
sin 6

£:y—rsinf = — (x +r —rcosh).

Since (dr)'/? < RP, we see that P y¥ is equivalent to dist(¢, P) < % By some
calculation,

dist(¢, P) = [dr)'/? — rsin® + 287 (1 — cos 0)|
’ cos2 6
I+ sin? 6
= |sin6(dr)"/? = r(1 = cos )]
0 2] 0
= 2|(dr)"/? sin = cos = — r sin® =|.
2 2 )

We just need to find the number of € such that dist(¢, P) < 1/2. By symmetry, we
just compute the positive solutions 6 that are close to 0. In this case, the inequality
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becomes
6 6 0
(dr)'/?sin = cos = — rsin® = < 1/4.
22 2

The meaningful solutions will be

(dr)l/zcosg — ,/dr cos? %) —r

. 0
sin— <
2~ 2r
1 1
2 (dr)12 cos§ +,/drcos?§ —r
~ (dr)~ "2

In the last step, we use cos % ~ 1. Therefore, 0 < 6 < (dr)~!/2. Since {C(y)}

have angle separation ~ R~ we see the number of y* that contains P is ~
RA(dr)~1/2.
B)r=<dc< RP. We claim in this case

> 1,:(P) ~ RFd™.
14

The calculation is exactly the same as above, with the only modification that we
replace (28) by P = (0, d).

Combining the three scenarios (1), (2), (3), we can estimate

p/2 p/2
/ (Zlyr*> - (/ +/ +/ )(Zlﬁ(P)) dpP
R\ apy<10 - J10=dpy=r  Jr<apy<rt )N

~re PR+ N ar(RBrd) )P
de[10,r] dyadic
P R
de[r,RP] dyadic
~rlmTRPT £ 275 RPT L R?P,

In the last line, we use ~ is because when p = 4, the summation is over ~ log R same
numbers instead of a geometric series.

Case 3:R? <r< R‘

This is almost the same as . Actually, it is even simpler, since we only have
scenarios (1) and (2) (with the range in (2) replaced by 10 < d < r—'R?# and noting
r~'R?$ < r). The same argument will give

p/2 o
/RZ <Xy: 1;/,*) B </d(P)510 " /lofd(P)Sr_leﬁ ) ( Xy: lyr*(P)) dpP

Birkhauser




Journal of Fourier Analysis and Applications (2024) 30:36 Page 190f29 36

~ (12 REYPI 4 3 dr(RP (rd)~V/%)P/?
de[10,r~1 R28] dyadic

With (27), we can finally estimate

/2
J(Z1)" = ] [t s
y [rI<R fr3a=r} 7,
p/2
+/ / ) 1 dxidxydr
(/05r|510 10<|r|<RF RE<|r|<R <Z )

<SR¥ 4+ RY 4 Y s TERPE 4 27ERPE 4 R
re[10,RA] dyadic

+ > re'TERPE 4 R
re[RP,R] dyadic

< R% + RBCHE) + R(Z—f{)-q—% 1 RIF28
~ RY + RCD )+BE 4+ RIF2P.
The last step is because of RECTH) < R 1 RC-D+H,
Combining (25), (26) and plugging into (3), we obtain

1

3,2 2 B 1428
max R, RT27] S Gy (RORTIF(RE+ RITEFE LR D).

Considering of the three cases 2 < p < 4,4 < p < 8 and p > 8 will give us that the
right hand side of (4) is actually the lower bound of Cg ,(R) (up to R€ factor).

3.2 Proof of Theorem 2

The difficult part of the proof will be in the range 4 < p < 8. Recall from Remark
1.1.2 that we need to prove for all p but not only the endpoint p, since there is no
interpolation argument. The main tool we are going to use is called the amplitude
dependent wave envelope estimate by Guth—-Maldague [5]. Before giving the proof,
we introduce some notations from [5, 6].

Recall C is the truncated cone in R3:

Ci={6eR’: &= x]+x},1/2<& < 1).

We have the canonical partition of Ng-1(C) into 1 x R~!/2 x R~!-planks © = {#}:

Ng-1©) =] _|o.
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More generally, for any dyadic s € [R™'/2, 1], we can partition the s>-neighborhood
of Cinto 1 x s x s2-planks Sy = {z;}:

Ne(©) =] ]

Note in particular Sp-12 = ©. For each s and a frequency plank 7, € S, we define
the box Uy, in the physical space to be a rectangle centered at the origin of dimensions
Rs? x Rs x R whose edge of length Rs? (respectively Rs, R) is parallel to the edge
of 7, with length 1 (respectively s, s2). Note that for any 6 € ®, Uy is just 6* (the dual
rectangle of 0). Also, Uy, is the convex hull of Ugc, Uy.

We make a useful observation, which will be used later. For any 6 C t,, we see
that 6* isa 1 x R!/2 x R-plank. Define Uy ; to be the Rs*> x Rs x R-plank which is
made by dilating the corresponding edges of 6*. Our observation is that Uy, and Up s

are comparable:

1
EUQ,S C U, CCUpg. 29)

This is not hard to see by noting that the second longest edge of 6* form an angle < s
with the Rs x R-face of Ur,. We just omit the proof.

We cover R? by translated copies of U,,. We will use U || Uy, to indicate U is one
of the translated copies. If U || U, then we define Sy f by

Suf= (Y 1) "1y, (30)

0Cts

We can think of Sy f as the wave envelope of f localized in U in the physical space
and localized in 7, in the frequency space. We have the following inequality of Guth,
Wang and Zhang (see [6, Theorem 1.5]):

Theorem 3 [Wave envelope estimate] Suppose suppr Ng-1(C). Then

IFIF < CeRE D Y > Ul ISy £115, (31)

R=12<5<1 7,685 Ul|Ugq

forany € > 0.

There is a refined version of the wave envelope estimate proved by Guth and
Maldague (See [5, Theorem 2]):

Theorem 4 [Amplitude dependent wave envelope estimate] Suppose suppf -
Ngp-1(C). Then for any a > 0,

Hr eR:[f@>a) <CR > Y > U ISufl3. (32)

R_I/ZSSS] T5€Ss Uegrx ()

2
for any € > 0. Here, Gr, (@) = {U 1| Uy, < 1UI7MISu £13 2 [og RI™! i |
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Remark In the original paper [5], their definition for G, (@) is

2

Gey(@) = {U 1 U 101 IS0 3 2 G

where #1, = #{t; € Sy : fr, # 0}. Noting that #7; < #S;, we see our G () is a
bigger set, and hence our (32) is weaker than the original version ([5] Theorem 2).

Proof of Theorem 2 | Case 1:p > 8| This is just by Cauchy—Schwarz inequality, since
#Tp(R™1) ~ RP.[Case 22 < p < 4
We have (31). By dyadic pigeonholing on s, we can find s such that

IAIE = Y Y W01 ISu £15 (33)

eS8, U||Uy

We fix this s. Denote U := {U : U | U; for some t € S;}. Then the inequality above
can be written as

IF13 S Y 10 sy £113 (34)

UeU

We remind readers that each U € U has size Rs? x Rs x R. We also have the following
L? estimate:

LA~ D IS f13 (35)

UeU

We provide a quick proof for (35). We have

LA =D 0~ Y Y I felfag

T€S; TeS; UNUy

Noting that { fp : & C 7} are locally orthogonal on any translation of U, and recalling
(30), we have

1B~ 2 2 [ Xk = X usesi3

teS; U||Uy ocrt UeU

Next, we will do dyadic pigeonholing on || Sy f ||%. (Actually, we only need to prove
alocal version of the inequality, so we just care about those U that intersect Bg. There
are in total R of them.) We can find a number W > 0 and set U = {U € U :
ISy f1I3 ~ W}, so that

£l S U1~ #U'W2, (36)
I£115 ~ #U'W. (37)
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Since every U € U has the same measure R>s?, there is no ambiguity to write [U/|~!
in (36).

. Let o be such that % =7+ ]%"‘ Theno = 4(% — %). Applying Holder’s inequality
gives

1— i1 P i1
LAIG < IFISPIAIS ™7 S 1017 Pesuws <o 79 3 sy 15
UeU

Next we are going to exploit more orthogonality for Sy f. Suppose U | U;. By
definition

||sUf||%=fUZ|fa|2=fUZ]nyf.
ocrt

oct yco

We remind readers that {t} are 1 x s x s2-caps; {Yare 1 x R™1/2 x R’l-caps; {y}
are 1 x R™# x R~ !-caps. Since U is too small for {fy : v C 0} to be orthogonal on
U, we need to find a larger rectangle. First, let us look at the rectangles {y : y C 6}.
We want to find a rectangle vy as big as possible, such that {y +v : y C 0} are finitely
overlapping. Actually, we can choose vy to be of size R'/27# x R~ x R~ (here
the edge of vg with length R'/>=# (respectively R, R~!) are parallel to the edge
of 6 with length 1 (respectively R~!/2, R~1). See Fig. 6: the left hand side is 6 and
{y : y C 0}; the right hand side is our vg. It is not hard to see {y + vp : y C 6}
are finitely overlapping. Let v} be the dual of vy in the physical space, then v has

size RF~2 x RP x R and we have the local orthogonality (we just ignore the rapidly
decaying tail for simplicity):

/*
Yo

S~ [ Tint

yCo Yo yco

Define
Vo =U; + v;‘, (38)

which is a rectangle of size
maX{Rsz, Rﬂ_%} x max{Rs, Rﬁ} X R.

We tile R? with translated copies of Vy, and we write V || V, if V is one of the tiles.

ﬂ—l B B—> B
. RP 2 R 1 e RP72 R .
Notllng that T S Ry we1 will discuss three scenarios: 1. T S Ry = 1; 2.
B-% 8 B—% B
RP2 RP . RP2 R
T < 1< %53 1= = R
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0

R—P

Vg

R1/2—ﬂ

R—1/2

Fig.6 Small caps

p-4% . . .
o If £ 22 < %’j < 1, then Vj is essentially U;. In this case, we already have the

orthoxgonalitonf {fy :v CO0}onU(| Uy). Therefore,

115 < ey 303 (/UZIZfVP)g

teS; U||U, oct yco
P
_pl_1 2
~ TR Y Y (/ Z|fy|2>
res, U, MYV yce
r
2\2
I RONI
reS, UIU, VY “ycr
P
2
- [ (Znp)
res, VR Cycr
2\ P/?
=< .
<[ (X 5P
VEFIS(R’I)
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e In the other two scenarios, we proceed as follows.

HHEUEERID Y (/ Z|f0|2) P2

teS; U||Uy 6cr
— (l_l) 1’_1 2 [7/2
<o Y S wocat ([ )
€S, U\ Uy ocr U

p/2
<ottt DY S ([ i)

1eS, 6CT V|V

(By orthogonality) ~ |U| —p(3- )#{9 - 1}2_1 Z Z Z </ Z|fy )

TeS; 0CT V|| Vp yCo
1 1
(Holder) < [U[ "GP0 c r)2 71y
TSy
1_1 p/2
ZZH/'P(Z P/(Zlfy )
ocT V|| Vg yCo
1 1
V"GP o Ly
=(ig1)" Teeent (2 1n0)
yels(R™) ?

RB-3 PG
= maxl—l max[ ,1} (st)ff1
Rs?

IC > ey

yel"ﬂ(R’l)

We just need to check

RP RB—% P(5=3) i
(max{R—’ 1}max{R— 1}) ! (sR%)IE*I § R(ﬂ*%)(p72)' (39)

)
S S2

B
 If Rszz <1 < & then the left hand side of (39) equals R/~ DE=D which is <
the right hand 51de of (39).

p-1
xIf1 < RRYZZ < R—ﬂ , then the left hand side of (39) equals

(R¥-2 —2)7—1

which is less than the right hand side of (39) since s~ < RVZ,
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’Case3:4§ p < 8‘
Note that

LI~ Y aflix e RY: [f(x)] ~ all.

« dyadic
We can assume the range of « is R fllso < @ < || flloo. Other & are considered
as negligible.
By dyadic pigeonholing, we can find « > 0 such that
||f||§ < (logR) - a?|{x € R3: | f(x)| ~ o} + negligible term.

We just need to fix this «, and prove an upper bound for a”|{x € R : | f(x)| > a}|.
By (32), we have

AreR:f@ >} CRC D Y > U ISu I

R71/2§S§1 T3 €Sy Uegrs (@)

By pigeonholing again, we can find s such that

HlxeR I fl>adl g Y. Y U ISufI3 (40)

1€S; UeG: (o)

We fix this s. We also remind readers the definition of G, («):

Ge(@) :={U || U : |U|—1fUZ|fe|2 2 (@)},

6cr

since #S; ~ s~ 1. Continuing the estimate in (40), we have

2
AHlxeR I fWI>all Y. D |U|—1(fUZ|f9|2)

1€S; UeG: (o) ocr

% 2-%

DD |U|—1(f2|fa|2) (|U|(as>2) .
7€S; UeG, (@) Upcr

Moving the power of « to the left hand side, we obtain

Plx eR I f@ >} T D |U|‘5</U2|f9|2>2s41’. (41)

1eS; UeG: () ocr

Our final goal is to prove that the right hand side above is

e
Y

AN

Birkhauser



36 Page260f29 Journal of Fourier Analysis and Applications (2024) 30:36

R 0

U* | R71s72

R-1/2 R14-1

Fig.7 Small caps

To do that, we again need to exploit the orthogonality of { f,, : ¥ C 6}. The argument
is different from that in [Case 2:2 < p <4 ‘ In ’ Case 2:2 < p < 4|, we expand the
integration domain U to a bigger rectangle V to get orthogonality, whereas here we
are going to use Cauchy—Schwarz inequality.

We discuss the geometry of these caps. Fix a 7 € S;. By definition, U, is a Rs? x
Rs x R-rectangle in the physical space. Then U} is a R 1s2x R7ls7 1 x R7I-
rectangle. We make the following observation: for each & C 1, we can show that
U} is comparable to another rectangle, which has the same size but with the edges
parallel to the corresponding edges of 6. We explain it with more details. Let Uy s be
the Rs?> x Rs x R-rectangle which is made from the 1 x R'/? x R-rectangle 6* by
dilating the corresponding edges. Then Uy, is a R 's72 x R™1s7! x R !-rectangle

whose edges are parallel to the corresponding edges of the 1 x R~1/2 x R~ !-rectangle
0. We want to show U and Ug*’ , are comparable. This is equivalent to show U, and
Uy, s are comparable, which is an observation we made at (29). Therefore, for any
0 C t, we can assume the edges of U are parallel to the corresponding edges of 6.

Fix a U || Uy, then U* = U}. See Fig.7: on the leftis 6 and {y : y C 6}; on
the middle is our U*. We will discuss two scenarios depending on whether R~# (the
width of y) is bigger than R~!s~! (the width of U*).

o If R7# > R~s7!, then we see that {y + U* : y C 6} are finitely overlapping.
This means that { f}, : y C 6} are locally orthogonal on U':

2
/U‘y%fy‘ sfl/y%mﬁ
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Therefore,

Iy < U= Z Z (/Uzlzfy|z>gs4p

€S U||Us 6ct ycCo

SwEY Y (/UZmF)gs“P

eS8 U|| Uy yCr

(Holder) <s*7 ) " )~ /U (Zmﬁ)g

teS; U||Us yCrt

:S4—p2/R3<Z|fy|z)'5

TeSs yCt

§s4_”/R3( Z |fy|2)p/2.

yelp(R™)
We just need to check

Bp
P <RTH

L]

-2

1/2

Plugging s~! < R™1/2, the inequality above is reduced to

RPI* < R%

which is true since g > 1/2.

If R~ < R~1s~!, we will define a set of new planks which we call 77. See on the
right hand side of Fig.7. We partition 6 into a set of 1 x R~'s~! x R™!-planks,
which we denoted by {7 : w C 6}. If the partition is well chosen (the size of caps
can vary within a constant multiple), we can assume each y fits into one 7, so we
define

o= Z fy'

ycm

Now, our key observation is that {wx + U* : w C 0} are finitely overlapping. This
is true by noting that: the width of U* and 7 are both R~!s~!; the angle between
the longest edge of 7 and U* is less than R~'/? and R~ 's=2 . R™1/2 < R=15 1,
Therefore, we have that { f;; : # C 0} are locally orthogonal on U, i.e.,

fU\an §/UZ|fn|2. 43)

TCo TCo

2
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Another step of Cauchy—Schwarz will give

2
/UZ;)IM:/UZ‘ZJ‘V\ S#{VCn}/UVZCQUer

Tch yCmw

:RﬂR—ls—I/UZmR. (44)

yCo

As a result, we obtain

2 < pBR-1 —1/ 2
/U|f9| < s UZW

yCo

Summing over 6§ C t, we obtain

fUDfePSRﬂR‘ls‘lfUZUyF.

ocrt yCt

Therefore,

p/2
I <fUZIf9|2> 5P

teS; U||Uy ocrt

/2
SIWIERIRTTHE Y (/Uzw)p stP

teS; U||U; yCr

#rR RS S [ (X iR)"

1eS; U||Uy vCr

(Y )

yel“ﬂ(R—l)

(Holder)

IA

s4_P(R’3R_1s_1)%

IA

p
p

We just need to check

sSP(RPR-s1E < REHE2

’

which is equivalent to

3p 3p
s < R7T 2,

P 1/2 : 3p
Plugging s~' < R'/? and noting that 4 — = < 0, we prove the result. O
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