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Abstract
We introduce and prove small cap square function estimates for the unit parabola and
the truncated light cone. More precisely, we study inequalities of the form

‖ f ‖p ≤ Cα,p(R)

∥
∥
∥

( ∑

γ∈�α(R−1)

| fγ |2
)1/2∥

∥
∥
p
,

where �α(R−1) is the set of small caps of width R−α . We find sharp upper and lower
bounds of the constant Cα,p(R).

Keywords Square function estimate · Fourier restriction estimate · Decoupling
inequality

Mathematics Subject Classification 42B10

1 Introduction

In this paper, we study the square function estimates. We begin with the most general
setting. Let � ⊂ R

n be a set in the frequency space, and suppose we are given a
partition of � into subsets � = {σ }:

� =
⊔

σ∈�

σ.

We will only consider the case when σ are morally rectangles. For any function f ,
we define fσ = (ψσ f̂ )∨, where ψσ is a smooth bump function adapted to σ . We will
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also assume supp f̂ ⊂ � in the following discussions. The inequality we are interested
in is of the following form:
Square Function Estimate:

‖ f ‖p ≤ Cp,�

∥
∥
∥

( ∑

σ∈�

| fσ |2
)1/2∥∥

∥
p
.

The goal is to find the best constant Cp,� that works for all test functions f .
This type of estimate is of huge interest in harmonic analysis. We briefly review

some well-known results.
When� is the R−1-neighborhoodof the unit parabolaP = {(ξ, ξ2) ∈ R

2 : |ξ | ≤ 1}
and � = {σ } is the set of ∼ R−1/2 × R−1-caps that form a partition of �, then an
argument of Córdoba–Fefferman (see also [1, Proposition 3.3]) gives

‖ f ‖4 �
∥
∥
∥

( ∑

σ∈�

| fσ |2
)1/2∥

∥
∥
4
.

(Throughout this article, we suppress the ∼ symbol for simplicity when the precise
scale is unimportant.)

When � is the R−1-neighborhood of the unit cone C = {(ξ1, ξ2, ξ3) ∈ R
3 : ξ3 =

√

ξ21 + ξ22 , 1/2 ≤ ξ3 ≤ 1} and� = {σ } are 1×R−1/2×R−1-caps that form a partition

of �, then the sharp L4 square function estimate was proved by Guth–Wang–Zhang
[6]:

‖ f ‖4 � ‖(
∑

σ∈�

| fσ |2)1/2‖4.

Here, A � B means A �ε RεB for any ε > 0.
When � is certain neighborhood of a moment curve, it was studied by Gressman,

Guo, Pierce, Roos and Yung [3]. The sharp L7 estimate was obtained by Maldague
[7]. There are some other related results (see [4, 8]).

In the discussion above, we see that the size of caps in the partition of parabola
is R−1/2 × R−1; the size of caps in the partition of cone is 1 × R−1/2 × R−1. We
usually call them the canonical partition. Besides the canonical partition of parabola
and cone, Demeter, Guth and Wang [2] introduced the “small cap decoupling" which
is the decoupling inequality for a finer partition than the canonical partition. Similarly,
we can also ask the question about the small cap square function estimate.

The goal of this paper is to prove the sharp square function estimates for the small
caps of parabola and cone. We will first define the small caps. Then we will introduce
and study examples which give sharp lower bounds of the constants. Finally, we will
prove the sharp bounds of the constants.
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1.1 Small Caps

1.1.1 Small Caps for Parabola

Let P := {(ξ, ξ2) : ξ ∈ R, |ξ | ≤ 1} be the unit parabola, and NR−1(P) be its
R−1-neighborhood. For 1/2 ≤ α ≤ 1, let �α(R−1) be the partition of NR−1(P) into
rectangular boxes of dimensions R−α × R−1. More precisely, each γ ∈ �α(R−1) is
of form

γ = (I × R) ∩ NR−1(P),

where I ⊂ [−1, 1] is an interval of length R−α . Note that we have #�α(R−1) ∼ Rα .
Our square function estimate is

Theorem 1 For supp f̂ ⊂ NR−1(P), we have

‖ f ‖L p(R2) � Cα,p(R)

∥
∥
∥

( ∑

γ∈�α(R−1)

| fγ |2
)1/2∥

∥
∥
L p(R2)

, (1)

where

Cα,p(R) =
{

Rα( 12− 2
p ) p ≥ 4α + 2,

R(α− 1
2 )( 12− 1

p ) 2 ≤ p ≤ 4α + 2.
(2)

Remark We remark that p ≥ 4α + 2 is equivalent to α( 12 − 2
p ) ≥ (α − 1

2 )(
1
2 − 1

p ).

Therefore, (2) is equivalent to (up to constant) Cα,p(R) ∼ Rα( 12− 2
p ) + R(α− 1

2 )( 12− 1
p )

.

1.1.2 Small Caps for Cone

Denote the truncated cone in R
3 by

C := {(ξ1, ξ2, ξ3) ∈ R
3 : ξ3 =

√

ξ21 + ξ22 , 1/2 ≤ ξ3 ≤ 1}.

For 1/2 ≤ β ≤ 1, let �β(R−1) be the partition of NR−1(C) into caps of dimensions
1 × R−β × R−1. More precisely, we first choose a partition of S

1 into R−β -arcs:
S
1 = 
σ . For each arc σ , consider the R−1-neighborhood of

⎧

⎨

⎩
(ξ1, ξ2, ξ3) ∈ C : (ξ1, ξ2)

√

ξ21 + ξ22

∈ σ

⎫

⎬

⎭
,

which is a cap of dimensions 1× R−β × R−1. �β(R−1) is the set of caps constructed
in this way (see Fig. 1). Note that #�β(R−1) ∼ Rβ . Our square function estimate is
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Fig. 1 Small caps of the cone

Theorem 2 For supp f̂ ⊂ NR−1(C), we have

‖ f ‖L p(R3) � Cβ,p(R)

∥
∥
∥

( ∑

γ∈�β(R−1)

| fγ |2
)1/2∥∥

∥
L p(R3)

, (3)

where

Cβ,p(R) =

⎧

⎪⎪⎨

⎪⎪⎩

R
β
2 p ≥ 8,

R
β
2 + 1

4− 2
p 4 ≤ p ≤ 8

R(β− 1
2 )(1− 2

p ) 2 ≤ p ≤ 4.

(4)

Remark We remark that there is no interpolation argument in the proof of square
function estimate. It is because that we cannot rewrite our square function estimate in
the form of

‖Tg‖X � C‖g‖Y ,

where X ,Y are some normed vector spaces and T is a linear operator. Another way
to see the interpolation argument is prohibited is by looking at the numerology in
(4). We draw the graph of ( 1p , logR Cβ,p(R)), where we ignore the CεRε factor in
Cβ,p(R) (See Fig. 2). We see the critical exponent p = 8 corresponds to a concave
point ( 18 ,

β
2 ) in the graph. But if the interpolation argument works, then the graph

should be convex which is a contradiction. Not being allowed to do interpolation will
be the main difficulty in the proof. This means that we need to prove the estimate
for all p, but not only the critical p. Let us consider the case β = 1/2. One critical
exponent p = 4 was proved by Guth–Wang–Zhang [6]. The result for another critical
exponent p = 8 and hence for p ∈ (4, 8) is not included in [6]. We also remark that

Cβ,p(R) ∼ min
{

R
β
2 , R

β
2 + 1

4− 2
p + R(β− 1

2 )( 12− 1
p )

}

.

1.2 Elementary Tools

We briefly introduce the notion of dual rectangle and local orthogonality.
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1
p

1
4

1
2

logR Cβ,p(R)

Fig. 2 Sharp exponents

Definition 1 Let R be a rectangle of dimensions a×b×c. Then the dual rectangle of R,
denoted by R∗, is the rectangle centered at the origin of dimensions a−1 × b−1 × c−1.
Here R∗ is made from R by letting the length of each edge of R become the reciprocal.

From our definition, we see that if R2 is a translated copy of R1, then R∗
1 = R∗

2 .
The motivation for defining dual rectangle is the following result.

Lemma 1 For any rectangle R, there exists a smooth function ωR which satisfies
1
10 · 1R(x) ≤ ωR(x) ≤ 10 · 1R(x) for x ∈ R, and ωR decays rapidly outside R. Also,
suppω̂R ⊂ R∗.

This lemma is very standard, so we omit the proof. The next result is the local orthog-
onality property.

Lemma 2 Let R be a rectangle and { fi } is a set of functions. If {supp f̂i + R∗} are
finitely overlapping, then

∫

R

∣
∣
∣

∑

fi
∣
∣
∣

2
�

∫
∑

| fi |2|ωR |2. (5)

Proof
∫

R

∣
∣
∣

∑

fi
∣
∣
∣

2
�

∫ ∣
∣
∣

∑

fiωR

∣
∣
∣

2 =
∫ ∣

∣
∣

∑

f̂iωR

∣
∣
∣

2
.

Note that f̂iωR = f̂i ∗ ω̂R is supported in supp f̂i + R∗. By the finitely overlapping
property, we see the above is bounded by
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�
∫

∑

| f̂iωR |2 =
∫

∑

| fiωR |2.

�

Remark Note thatωR is essentially 1R by ignoring the rapidly decaying tail. It turns out
that the tail is always harmless. Therefore, to get rid of some irrelevant technicalities,
we will just ignore the rapidly decaying tail, and write (5) as

∫

R

∣
∣
∣

∑

fi
∣
∣
∣

2
�

∫

R

∑

| fi |2.

There is another notion called comparable. Given two rectangles R1, R2, we say
R1 is essentially contained in R2, if there exists a universal constant C (say C = 100)
such that

R1 ⊂ CR2.

We say R1 and R2 are comparable if R1 is essentially contained in R2 and vice versa,
i.e.,

1

C
R1 ⊂ R2 ⊂ CR1.

Throughout this paper, we will just ignore the unimportant constant C , and just write
R1 ⊂ R2 to denote that R1 is essentially contained in R2.

2 Small Cap Square Function Estimate for Parabola

We prove Theorem 1 in this section. We begin with the sharp examples.

2.1 Sharp Examples

There are two types of examples: concentrated example and flat example.
Case 1: p ≥ 4α + 2

We introduce the concentrated example. Choose f such that f̂ (ξ) = ψNR−1 (P)(ξ),
whereψNR−1 (P) is a smooth bump function supported in NR−1(P).We see that f (0) =
∫

f̂ (ξ)dξ ∼ R−1. Since f̂ is supported in the unit ball centered at the origin, f is
locally constant in B(0, 1). Therefore,

‖ f ‖p ≥ ‖ f ‖L p(B(0,1)) � R−1.

We consider the right hand side of (1). By definition, for each γ ∈ �α(R−1), f̂γ is
roughly a bump function supported in 2γ . Let γ ∗ be the dual rectangle of γ which
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has dimensions Rα × R and is centered at the origin. By an application of integration
by parts and by ignoring the tails, we assume

fγ = 1

|γ ∗|1γ ∗ .

Here, “≈" means up to a CεRε factor for any ε > 0. We will use the same notation
throughout the paper.

We see that

∥
∥
∥

( ∑

γ∈�α(R−1)

| fγ |2
)1/2∥

∥
∥

p

L p(R2)
∼ R−(1+α)p

∫

B(0,R)

(∑

γ

1γ ∗
)p/2

.

We evaluate the integral above. There are two extreme regions: B(0, Rα) where all
the {γ ∗} overlap; B(0, R) \ B(0, R/2) where {γ ∗} is O(R2α−1)-overlapping. For
the intermediate region B(0, r) \ B(0, r/2) (Rα ≤ r ≤ R), we see that {γ ∗} is
O(r−1R2α)-overlapping. We may find a dyadic radius r such that

∫ ( ∑

γ

1γ ∗
)p/2 ≈

∫

B(0,r)\B(0,r/2)

( ∑

γ

1γ ∗
)p/2

� (r−1R2α)p/2|B(0, r)| ∼ r2−
p
2 Rα p.

Since p ≥ 4α + 2 ≥ 4, the expression above is maximized when r = Rα . Plugging
in, we obtain

∫ ( ∑

γ

1γ ∗
)p/2

� Rα(2+ p
2 ).

Plugging into (1), we have

R−1 � Cα,p(R)R−(1+α)Rα( 2
p + 1

2 )
,

which gives

Cα,p(R) � Rα( 12− 2
p )

.

Case 2:2 ≤ p ≤ 4α + 2

We introduce the flat example. Let θ ⊂ NR−1(P) be a R−1/2 × R−1-cap. Choose f
such that f̂ (ξ) = ψθ(ξ), where ψθ is a smooth bump function supported in NR−1(P).
Let θ∗ be the dual rectangle of θ which has dimensions R1/2× R and is centered at the
origin. By the locally constant property, f is an L1 normalized function essentially
supported in θ∗. By ignoring the tails, we assume

f = 1

|θ∗|1θ∗ .
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We see that

‖ f ‖p ∼ R− 3
2 R

3
2p .

We consider the right hand side of (1). By the same reasoning as in Case 1, for each
γ ∈ �α(R−1) with γ ⊂ θ , we know that f̂γ is roughly a bump function supported in
2γ . Therefore, we can assume

fγ = 1

|γ ∗|1γ ∗ .

We also note that γ ∗
1 and γ ∗

2 are comparable when γ1, γ2 ⊂ θ . We have

∥
∥
∥

( ∑

γ∈�α(R−1)

| fγ |2
)1/2∥

∥
∥
L p(R2)

∼ R−(1+α)

( ∫ ( ∑

γ⊂θ

1γ ∗
)p/2

)1/p

∼ R−(1+α)#{γ ⊂ θ}1/2|γ ∗|1/p

∼ R−(1+α)R
1
2 (α− 1

2 )R
1+α
p .

Plugging into (1), we have

R− 3
2 R

3
2p � Cα,p(R)R−(1+α)R

1
2 (α− 1

2 )R
1+α
p ,

which gives

Cα,p(R) � R(α− 1
2 )( 12− 1

p )
.

2.2 Proof of Theorem 1

By the standard localization argument, it suffices to prove

‖ f ‖L p(BR) �ε (Rα( 12− 2
p ) + R(α− 1

2 )( 12− 1
p )

)

∥
∥
∥

( ∑

γ∈�α(R−1)

| fγ |2
)1/2∥∥

∥
p
.

We introduce some notations. Throughout the proof, we use γ to denote caps of
dimensions R−α × R−1. For R−1/2 ≤ � ≤ 1, we will consider caps τ of length� and
thickness R−1. We write |τ | = � to indicate the length of τ . We will also partition
the region BR into rectangles of dimensions Rα × R. For simplicity, we denote these
rectangles by BRα×R . The longest direction of BRα×R will be specified in the proof.

Let K ∼ log R and letm ∈ N be such that Km = R1/2. By doing the broad-narrow
reduction as in [2, Section 5.1], we have

‖ f ‖p
L p(BR) � Cm

∑

|θ |=R−1/2

‖ fθ‖p
L p(BR) (6)



Journal of Fourier Analysis and Applications (2024) 30 :36 Page 9 of 29 36

+ CmKC
∑

R−1/2≤�≤1
� dyadic

∑

|τ |∼�

max
τ1,τ2⊂τ

|τ1|=|τ2|=K−1�

dist(τ1,τ2)≥(10K )−1�

‖( fτ1 fτ2)1/2‖p
L p(BR). (7)

Note that CmKC �ε Rε , for each ε > 0.
We first estimate the right hand side of (6).

Lemma 3 Let θ be a cap of length R−1/2. Then,

‖ fθ‖L p(BR) � R(α− 1
2 )( 12− 1

p )
∥
∥
∥

( ∑

γ⊂θ

| fγ |2
)1/2∥

∥
∥
p
.

Proof Wepartition BR into BRα×R , where each BRα×R is a translation of γ ∗ for γ ⊂ θ

(note that for all γ ⊂ θ , γ ∗’s are comparable). It suffices to prove for any BRα×R ,

‖ fθ‖L p(BRα×R) � R(α− 1
2 )( 12− 1

p )
∥
∥
∥

( ∑

γ⊂θ

| fγ |2
)1/2∥

∥
∥
L p(ωBRα×R

)
. (8)

Here, ωBRα×R is a weight which = 1 on BRα×R and decays rapidly outside BRα×R .
And ‖g‖L p(ω) is defined to be (

∫ |g|pω)1/p. We remark that we use ωBRα×R instead
of 1BRα×R is to make the local orthogonality and locally constant property rigorous.
As such technicality is well-known (see for example in [1]), we will just pretend
ωBRα×R = 1BRα×R for convenience.

We further do the partition

BRα×R =
⊔

BR1/2×R,

where each BR1/2×R is a translation of θ
∗. Since fθ is locally constant on each BR1/2×R ,

we have

‖ fθ‖L p(BRα×R) =
(

∑

BR1/2×R

‖ fθ‖p
L p(BR1/2×R)

)1/p

� R
3
2 ( 1

p − 1
2 )

(
∑

BR1/2×R

‖ fθ‖p
L2(BR1/2×R)

)1/p

≤ R
3
2 ( 1

p − 1
2 )‖ fθ‖L2(BRα×R).

By local orthogonality, Hölder’s inequality and noting p ≥ 2, we have

‖ fθ‖L2(BRα×R)

�
∥
∥
∥

( ∑

γ⊂θ

| fγ |2
)1/2∥∥

∥
L2(BRα×R)

≤ R(1+α)( 12− 1
p )

∥
∥
∥

( ∑

γ⊂θ

| fγ |2
)1/2∥∥

∥
L p(BRα×R)

.

Combining the inequalities, we finish the proof of (8). �
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By Lemma 3, the right hand side of (6) is bounded by

RεR(α− 1
2 )( 12− 1

p )

(
∑

θ

∥
∥
∥

( ∑

γ⊂θ

| fγ |2
)1/2∥∥

∥

p

p

)1/p

≤ Cα,p(R)

∥
∥
∥

( ∑

γ

| fγ |2
)1/2∥∥

∥
p
.

Next, we estimate (7). For any summand in (7), we will show that

‖( fτ1 fτ2)1/2‖L p(BR) � Cα,p(R)

∥
∥
∥

( ∑

γ⊂τ

| fγ |2
)1/2∥∥

∥
p
. (9)

This will imply (7)
1
p � Cα,p(R)

∥
∥
∥

(
∑

γ

| fγ |2
)1/2∥∥

∥
p
, and then finishes the proof of

Theorem 1. It remains to prove (9).
Fix a � ∈ [R−1/2, 1] and a τ with |τ | = �. We first consider

⋂

γ⊂τ γ ∗. It is
easy to see

⋂

γ⊂τ γ ∗ is an Rα × Rα�−1-rectangle when � ≥ Rα−1;
⋂

γ⊂τ γ ∗ is an

Rα × R-rectangle when � ≤ Rα−1. We consider these two cases separately.

Case 1:� ≥ Rα−1

We choose a partition BR = ⊔
BRα×Rα�−1 , where each BRα×Rα�−1 is a translation

of
⋂

γ⊂τ γ ∗. We just need to show

‖( fτ1 fτ2)1/2‖L p(BRα×Rα�−1 ) � Cα,p(R)

∥
∥
∥

( ∑

γ⊂τ

| fγ |2
)1/2∥

∥
∥
L p(BRα×Rα�−1 )

. (10)

Since each | fγ | is locally constant on BRα×Rα�−1 when γ ⊂ τ , we have

∥
∥
∥

( ∑

γ⊂τ

| fγ |2
)1/2∥∥

∥
L p(BRα×Rα�−1 )

∼ (R2α�−1)
− 1

2+ 1
p

∥
∥
∥

( ∑

γ⊂τ

| fγ |2
)1/2∥∥

∥
L2(BRα×Rα�−1 )

.

Since { fγ }γ⊂τ are locally orthogonal on BRα×Rα�−1 , we have

∥
∥
∥

( ∑

γ⊂τ

| fγ |2
)1/2∥∥

∥
L2(BRα×Rα�−1 )

∼ ‖ fτ‖L2(BRα×Rα�−1 ).

Therefore, (10) is reduced to

‖( fτ1 fτ2)1/2‖L p(BRα×Rα�−1 ) � Cα,p(R)(R2α�−1)
− 1

2+ 1
p ‖ fτ‖L2(BRα×Rα�−1 ). (11)

Next, we apply the parabolic rescaling. Recall that τ is a cap of length �. We dilate
by factor �−1 in the tangent direction of τ and dilate by factor �−2 in the normal
direction of τ . Under the rescaling, we see that: τ becomes the R−1�−2-neighborhood
of P; τ1 and τ2 become K−1-separated caps with length K−1 and thickness R−1�−2;
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the rectangle BRα×Rα�−1 in the physical space becomes BRα�. Let g, g1, g2 be the
rescaled version of fτ , fτ1 , fτ2 respectively. The inequality (11) becomes

‖(g1g2)1/2‖L p(BRα�) � Cα,p(R)(R2α�−1)
− 1

2+ 1
p �

3(− 1
2+ 1

p )‖g‖L2(BRα�). (12)

We recall the following bilinear restriction estimate (see for example in [9]).

Lemma 4 Let r > 1, K > 1. Suppose g1, g2 satisfy suppĝ1, suppĝ2 ⊂ Nr−2(P) and
dist(suppĝ1, suppĝ2) > K−1. Then for p ≥ 2 and r ′ ≥ r we have

‖(g1g2)1/2‖L p(Br ′ ) � K O(1)r
2
p −1(‖g1‖L2(Br ′ )‖g2‖L2(Br ′ )

)1/2
. (13)

Proof We just need to prove for r ′ = r . When p = 2, this is trivial. When p = 4, this
is the bilinear restriction estimate. When p = ∞, we note that

‖(g1g2)1/2‖2L∞(Br ) ≤ ‖g1‖L∞(Br )‖g2‖L∞(Br ) ≤ ‖ĝ1‖L1‖ĝ2‖L1

� r−2‖ĝ1‖L2‖ĝ1‖L2 = r−2‖g1‖L2‖g2‖L2 .

The second-last inequality is by Hölder and the condition on the support of ĝ1, ĝ2. The
last inequality is by Plancherel. For other p, the proof is by using Hölder to interpolate
between p = 2, 4,∞. �


We return to (12). Noting that Rα� ≥ (R�2)1/2, we apply the lemma above to

bound the left hand side of (12) by (Rα�)
2
p −1‖g‖L2(BRα�). It suffices to prove

(Rα�)
2
p −1 � Cα,p(R)(R2α�−1)

− 1
2+ 1

p �
3(− 1

2+ 1
p )

. (14)

When p ≥ 4, we use Cα,p(R) � Rα( 12− 2
p ). Then (14) boils down to

(Rα�)
2
p −1 � Rα( 12− 2

p )
(R2α�−1)

− 1
2+ 1

p �
3(− 1

2+ 1
p )

, (15)

which is equivalent to

Rα( 12− 2
p ) � 1,

which is true since R ≥ 1.

When p ≤ 4, we use Cα,p(R) � R(α− 1
2 )( 12− 1

p ). Then (14) boils down to

(Rα�)
2
p −1 � R(α− 1

2 )( 12− 1
p )

(R2α�−1)
− 1

2+ 1
p �

3(− 1
2+ 1

p )
, (16)

which is equivalent to

R(α− 1
2 )( 12− 1

p ) � 1,
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which is true since α ≥ 1/2.

Case 2:� ≤ Rα−1

We choose a partition BR = ⊔
BRα×R , where each BRα×R is a translation of

⋂

γ⊂τ γ ∗. We just need to show

‖( fτ1 fτ2)1/2‖L p(BRα×R) � Cα,p(R)

∥
∥
∥

( ∑

γ⊂τ

| fγ |2
)1/2∥∥

∥
L p(BRα×R)

. (17)

Since each | fγ | is locally constant on BRα×R when γ ⊂ τ , we have

∥
∥
∥

( ∑

γ⊂τ

| fγ |2
)1/2∥∥

∥
L p(BRα×R)

∼ (Rα+1)
− 1

2+ 1
p

∥
∥
∥

( ∑

γ⊂τ

| fγ |2
)1/2∥∥

∥
L2(BRα×R)

.

Since { fγ }γ⊂τ are locally orthogonal on BRα×R , we have

∥
∥
∥

( ∑

γ⊂τ

| fγ |2
)1/2∥∥

∥
L2(BRα×R)

∼ ‖ fτ‖L2(BRα×R).

Therefore, (17) is reduced to

‖( fτ1 fτ2)1/2‖L p(BRα×R) � Cα,p(R)(Rα+1)
− 1

2+ 1
p ‖ fτ‖L2(BRα×R). (18)

Next, we do the same parabolic rescaling as above. The rectangle BRα×R in the
physical space becomes BRα�×R�2 . Let g, g1, g2 be the rescaled version of fτ , fτ1 , fτ2
respectively. The inequality (18) becomes

‖(g1g2)1/2‖L p(BRα�×R�2 ) � Cα,p(R)(Rα+1)
− 1

2+ 1
p �

3(− 1
2+ 1

p )‖g‖L2(BRα�×R�2 ).

(19)
To apply Lemma 4, we do the partition BRα�×R�2 = ⊔

BR�2 . So, (19) is reduced
to

‖(g1g2)1/2‖L p(BR�2 ) � Cα,p(R)(Rα+1)
− 1

2+ 1
p �

3(− 1
2+ 1

p )‖g‖L2(BR�2 ). (20)

By Lemma 4,

‖(g1g2)1/2‖L p(BR�2 ) � (R�2)
2
p −1‖g‖L2(BR�2 ).

It suffices to prove

(R�2)
2
p −1 � Cα,p(R)R(α+1)(− 1

2+ 1
p )

�
3(− 1

2+ 1
p )

. (21)
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When p ≥ 4α + 2, we use Cα,p(R) � Rα( 12− 2
p ). Then (21) boils down to

(R�2)
2
p −1 � Rα( 12− 2

p )R(α+1)(− 1
2+ 1

p )
�

3(− 1
2+ 1

p )
, (22)

which is equivalent to

�
1
p − 1

2 � R− α
p + 1

2− 1
p .

Using � ≥ R− 1
2 , we just need to prove

R− 1
2p + 1

4 � R− α
p + 1

2− 1
p .

The last inequality is equivalent to 1
4 − 1

2p − α
p ≥ 0, which is further equivalent

to p ≥ 4α + 2. We also remark that this is the place where the critical exponent
p = 4α + 2 appears.

When 2 ≤ p ≤ 4α + 2, we use Cα,p(R) � R(α− 1
2 )( 12− 1

p ). Then (21) boils down to

(R�2)
2
p −1 � R(α− 1

2 )( 12− 1
p )R(α+1)(− 1

2+ 1
p )

�
3(− 1

2+ 1
p )

, (23)

which is equivalent to

�
1
p − 1

2 � R
1
4− 1

2p ,

which is true since �−1 ≤ R1/2.

The proof of Theorem 1 is finished.

3 Small Cap Square Function Estimate for Cone

We prove Theorem 2 in this section. We begin with the sharp examples.

3.1 Sharp Examples

Choose f such that f̂ = ψNR−1 (C)(ξ), where ψNR−1 (C)(ξ) is a smooth bump func-
tion supported in NR−1(C). We are going to calculate the lower bound of ‖ f ‖p, which
is the left hand side of (3).We see that f (0) = ∫

f̂ (ξ)dξ ∼ R−1. Since f̂ is supported
in the unit ball centered at the origin, f is locally constant in B(0, 1). Therefore,

‖ f ‖p � ‖ f ‖L p(B(0,1)) � R−1. (24)
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We also estimate the integral of f in the region {|x | ∼ R}. We first do a canonical
partition of NR−1(C) into 1 × R−1/2 × R−1-planks, denoted by

NR−1(C) =
⊔

θ.

Then we can write f = ∑

θ fθ , such that each f̂θ is a smooth bump function on θ .
Let θ∗ be the dual rectangle of θ , so θ∗ has size 1 × R1/2 × R and is centered at the
origin. By an application of integration by parts, we can assume

| fθ | = 1

|θ∗|1θ∗ = R−3/21θ∗ .

Now the key observation is that {θ∗} are disjoint in B(0, R) \ B(0, 9
10 R), so we see

that

‖ f ‖p = ‖
∑

θ

fθ‖p ≥
∥
∥
∥

∑

θ

fθ
∥
∥
∥
L p(B(0,R)\B(0, 9

10 R))

∼ R−3/2
∥
∥
∥

∑

θ

1θ∗
∥
∥
∥
L p(B(0,R)\B(0, 9

10 R))

∼ R−3/2
( ∑

θ

|θ∗|
)1/p = R− 3

2+ 2
p .

Combining with (24), we see

‖ f ‖p � max
{

R−1, R− 3
2+ 2

p

}

. (25)

And we see the threshold for these two lower bounds to be equal is at p = 4.
For this same f ,wewill estimate the upper boundof the right hand side of (3).Recall

that γ is a 1 × R−β × R−1-cap contained in NR−1(C), and by definition f̂γ = ψγ f̂ .
Therefore, f̂γ is a smooth bump function adapted to γ . By an application of integration
by parts, we can assume

| fγ | = 1

|γ ∗|1γ ∗ .

Here, the dual rectangle γ ∗ is centered at the origin with size 1× Rβ × R. See Fig. 3:
the rectangle on the left hand side is γ ; the rectangle on the right hand side is γ ∗.

Therefore, we can write

∥
∥
∥

( ∑

γ∈�β(R−1)

| fγ |2
)1/2∥

∥
∥
p

∼ R−1−β

( ∫ ( ∑

γ

1γ ∗
)p/2

)1/p

. (26)
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Fig. 3 Dual rectangle

Fig. 4 Horizontal slice

Note that each γ ∗ is supported in B(0, R), so we rewrite

∫ ( ∑

γ

1γ ∗
)p/2 =

∫

|r |≤R
dr

∫

{x3=r}

(∑

γ

1γ ∗
)p/2

dx1dx2.

We are going to calculate
∫

{x3=r}
(

∑

γ 1γ ∗
)p/2

. Here is the result:

Proposition 1 For p ≥ 2, we have

∫

{x3=r}

( ∑

γ

1γ ∗
)p/2 ≈

⎧

⎪⎨

⎪⎩

R2β + R
pβ
2 0 ≤ r ≤ 10,

r1−
p
4 Rβ

p
2 + r2−

p
2 Rβ

p
2 + R2β 10 ≤ r ≤ Rβ,

r1−
p
4 Rβ

p
2 + R2β Rβ ≤ r ≤ R.

(27)

Proof Fix the plane {x3 = r}. For each γ ∗, we set

γ ∗
r := γ ∗ ∩ {x3 = r}.

γ ∗
r is a rectangle of size 1 × Rβ in the plane {x3 = r}. Denote the center of γ ∗

r by
C(γ ∗

r ). We see that C(γ ∗
r ) lies on the circle

Sr := {x3 = r ,
√

x21 + x22 = r},
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and the long direction of γ ∗
r is tangent to Sr (see Fig. 4). We can rewrite the left hand

side of (27) as

∫

R2

( ∑

γ

1γ ∗
r

)p/2
.

We also notice two useful facts: (1) #{γ ∗
r } ∼ Rβ ; (2) {C(γ ∗

r )} are roughly r R−β -
separated on the circle Sr .
Case 1:0 ≤ r ≤ 10
In this case, we see that {γ ∗

r } essentially form a bush centered at the origin. Evalu-
ating the concentrated part and spread-out part, we have

∫

R2

( ∑

γ

1γ ∗
r

)p/2 ≈
∫

B(0,1)

( ∑

γ

1γ ∗
r

)p/2

+
∫

B(0,Rβ)\B(0, 12 R
β)

( ∑

γ

1γ ∗
r

)p/2 ∼ R
pβ
2 + R2β.

Case 2:10 ≤ r ≤ Rβ

For any point P ∈ ⋃
γ ∗
r , we are going to estimate

∑

γ 1γ ∗
r
(P). Define

d(P) := dist(P, Sr ).

We see that any P ∈ ⋃
γ ∗
r satisfies d(P) � Rβ , and if P ∈ ⋃

γ ∗
r lies inside Sr then

d(P) = 0. For simplicity, we write d = d(P). We consider several cases:

(1) d ≤ 10. In this case, P lies in the 10-neighborhood of Sr . Therefore,

∑

γ

1γ ∗
r
(P) =

∑

γ

1γ ∗
r ∩N10(Sr )(P)

Noting that γ ∗
r ∩N10(Sr ) is essentially a 1×r1/2-rectangle centered atC(γ ∗

r )(∈ Sr )
and noting that {C(γ ∗

r )} are r R−β separated, we have

∑

γ

1γ ∗
r ∩N10(Sr )(P) ∼ r1/2

r R−β
= r−1/2Rβ.

(2) 10 ≤ d ≤ r . We claim in this case

∑

γ

1γ ∗
r
(P) ∼ Rβ(rd)−1/2.

See Fig. 5. By translation and rotation, we may assume Sr is centered at (−r , 0)
and P lies on the x2-axis. By Pythagorean theorem, the coordinate of P is
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Fig. 5 Horizontal slice

P

(0,
√
d(d + 2r)). Since d ≤ r , we may ignore some constant factor and write

the coordinate of P as
P = (0, (dr)1/2). (28)

The next step is to find the number of γ ∗
r that pass through P . Suppose P ∈ γ ∗

r .
Since the center of γ ∗

r lies in Sr , we may denote its coordinate by C(γ ∗
r ) =

(−r + r cos θ, r sin θ). Let � be the line passing through C(γ ∗
r ) and tangent to Sr

(which is also the core line of γ ∗
r ):

� : y − r sin θ = −cos θ

sin θ
(x + r − r cos θ).

Since (dr)1/2 ≤ Rβ , we see that P ∈ γ ∗
r is equivalent to dist(�, P) ≤ 1

2 . By some
calculation,

dist(�, P) = |(dr)1/2 − r sin θ + cos θ
sin θ

r(1 − cos θ)|
√

1 + cos2 θ

sin2 θ

= | sin θ(dr)1/2 − r(1 − cos θ)|
= 2|(dr)1/2 sin θ

2
cos

θ

2
− r sin2

θ

2
|.

We just need to find the number of θ such that dist(�, P) ≤ 1/2. By symmetry, we
just compute the positive solutions θ that are close to 0. In this case, the inequality
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becomes

(dr)1/2 sin
θ

2
cos

θ

2
− r sin2

θ

2
≤ 1/4.

The meaningful solutions will be

sin
θ

2
≤

(dr)1/2 cos θ
2 −

√

dr cos2 θ
2 − r

2r

= 1

2

1

(dr)1/2 cos θ
2 +

√

dr cos2 θ
2 − r

∼ (dr)−1/2.

In the last step, we use cos θ
2 ∼ 1. Therefore, 0 ≤ θ � (dr)−1/2. Since {C(γ ∗

r )}
have angle separation ∼ R−β , we see the number of γ ∗

r that contains P is ∼
Rβ(dr)−1/2.

(3) r ≤ d ≤ Rβ . We claim in this case

∑

γ

1γ ∗
r
(P) ∼ Rβd−1.

The calculation is exactly the same as above, with the only modification that we
replace (28) by P = (0, d).

Combining the three scenarios (1), (2), (3), we can estimate

∫

R2

( ∑

γ

1γ ∗
r

)p/2 =
(∫

d(P)≤10
+

∫

10≤d(P)≤r
+

∫

r≤d(P)≤Rβ

)( ∑

γ

1γ ∗
r
(P)

)p/2
dP

∼ r(r−1/2Rβ)p/2 +
∑

d∈[10,r ] dyadic
dr(Rβ(rd)−1/2)p/2

+
∑

d∈[r ,Rβ ] dyadic
d2(Rβd−1)p/2

≈ r1−
p
4 Rβ

p
2 + r2−

p
2 Rβ

p
2 + R2β.

In the last line, we use≈ is because when p = 4, the summation is over∼ log R same
numbers instead of a geometric series.

Case 3:Rβ ≤ r ≤ R

This is almost the same as Case 2 . Actually, it is even simpler, since we only have
scenarios (1) and (2) (with the range in (2) replaced by 10 ≤ d ≤ r−1R2β and noting
r−1R2β ≤ r ). The same argument will give

∫

R2

( ∑

γ

1γ ∗
r

)p/2 =
( ∫

d(P)≤10
+

∫

10≤d(P)≤r−1R2β

)( ∑

γ

1γ ∗
r
(P)

)p/2
dP
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∼ r(r−1/2Rβ)p/2 +
∑

d∈[10,r−1R2β ] dyadic
dr(Rβ(rd)−1/2)p/2

≈ r1−
p
4 Rβ

p
2 + R2β.

�

With (27), we can finally estimate

∫ ( ∑

γ

1γ ∗
)p/2 =

∫

|r |≤R
dr

∫

{x3=r}
(
∑

γ

1γ ∗)p/2dx1dx2

( ∫

0≤|r |≤10
+

∫

10≤|r |≤Rβ

+
∫

Rβ≤|r |≤R

)(∑

γ

1γ ∗
)p/2

dx1dx2dr

� R2β + R
pβ
2 +

∑

r∈[10,Rβ ] dyadic
r(r1−

p
4 Rβ

p
2 + r2−

p
2 Rβ

p
2 + R2β)

+
∑

r∈[Rβ ,R] dyadic
r(r1−

p
4 Rβ

p
2 + R2β)

� R
pβ
2 + Rβ(2+ p

4 ) + R(2− p
4 )+ pβ

2 + R1+2β

∼ R
pβ
2 + R(2− p

4 )+ pβ
2 + R1+2β.

The last step is because of Rβ(2+ p
4 ) ≤ R

pβ
2 + R(2− p

4 )+ pβ
2 .

Combining (25), (26) and plugging into (3), we obtain

max
{

R−1, R− 3
2+ 2

p

}

� Cβ,p(R)R−1−β
(

R
β
2 + R

2
p − 1

4+ β
2 + R

1+2β
p

)

.

Considering of the three cases 2 ≤ p ≤ 4, 4 ≤ p ≤ 8 and p ≥ 8 will give us that the
right hand side of (4) is actually the lower bound of Cβ,p(R) (up to Rε factor).

3.2 Proof of Theorem 2

The difficult part of the proof will be in the range 4 ≤ p ≤ 8. Recall from Remark
1.1.2 that we need to prove for all p but not only the endpoint p, since there is no
interpolation argument. The main tool we are going to use is called the amplitude
dependent wave envelope estimate by Guth–Maldague [5]. Before giving the proof,
we introduce some notations from [5, 6].

Recall C is the truncated cone in R
3:

C := {ξ ∈ R
3 : ξ3 =

√

x21 + x22 , 1/2 ≤ ξ3 ≤ 1}.

We have the canonical partition of NR−1(C) into 1 × R−1/2 × R−1-planks � = {θ}:

NR−1(C) =
⊔

θ.
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More generally, for any dyadic s ∈ [R−1/2, 1], we can partition the s2-neighborhood
of C into 1 × s × s2-planks Ss = {τs}:

Ns2(C) =
⊔

τs .

Note in particular SR−1/2 = �. For each s and a frequency plank τs ∈ Ss , we define
the boxUτs in the physical space to be a rectangle centered at the origin of dimensions
Rs2 × Rs × R whose edge of length Rs2 (respectively Rs, R) is parallel to the edge
of τs with length 1 (respectively s, s2). Note that for any θ ∈ �,Uθ is just θ∗ (the dual
rectangle of θ ). Also, Uτs is the convex hull of ∪θ⊂τsUθ .

We make a useful observation, which will be used later. For any θ ⊂ τs , we see
that θ∗ is a 1× R1/2 × R-plank. Define Uθ,s to be the Rs2 × Rs × R-plank which is
made by dilating the corresponding edges of θ∗. Our observation is that Uτs and Uθ,s

are comparable:
1

C
Uθ,s ⊂ Uτs ⊂ CUθ,s . (29)

This is not hard to see by noting that the second longest edge of θ∗ form an angle � s
with the Rs × R-face of Uτs . We just omit the proof.

We cover R
3 by translated copies of Uτs . We will use U ‖ Uτs to indicate U is one

of the translated copies. If U ‖ Uτs , then we define SU f by

SU f = ( ∑

θ⊂τs

| fθ |2
)1/21U . (30)

We can think of SU f as the wave envelope of f localized in U in the physical space
and localized in τs in the frequency space. We have the following inequality of Guth,
Wang and Zhang (see [6, Theorem 1.5]):

Theorem 3 [Wave envelope estimate] Suppose supp f̂ ⊂ NR−1(C). Then

‖ f ‖44 ≤ CεR
ε

∑

R−1/2≤s≤1

∑

τs∈Ss

∑

U‖Uτs

|U |−1‖SU f ‖42, (31)

for any ε > 0.

There is a refined version of the wave envelope estimate proved by Guth and
Maldague (See [5, Theorem 2]):

Theorem 4 [Amplitude dependent wave envelope estimate] Suppose supp f̂ ⊂
NR−1(C). Then for any α > 0,

α4|{x ∈ R
3 : | f (x)| > α}| ≤ CεR

ε
∑

R−1/2≤s≤1

∑

τs∈Ss

∑

U∈Gτs (α)

|U |−1‖SU f ‖42, (32)

for any ε > 0. Here, Gτs (α) =
{

U ‖ Uτs : |U |−1‖SU f ‖22 � | log R|−1 α2

(#Ss )2

}

.
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Remark In the original paper [5], their definition for Gτs (α) is

Gτs (α) =
{

U ‖ Uτs : |U |−1‖SU f ‖22 � α2

(#τs)2

}

,

where #τs = #{τs ∈ Ss : fτs �≡ 0}. Noting that #τs ≤ #Ss , we see our Gτs (α) is a
bigger set, and hence our (32) is weaker than the original version ([5] Theorem 2).

Proof of Theorem 2 Case 1:p ≥ 8 This is just by Cauchy–Schwarz inequality, since

#�β(R−1) ∼ Rβ. Case 2:2 ≤ p ≤ 4
We have (31). By dyadic pigeonholing on s, we can find s such that

‖ f ‖44 �
∑

τ∈Ss

∑

U‖Uτ

|U |−1‖SU f ‖42. (33)

We fix this s. Denote U := {U : U ‖ Uτ for some τ ∈ Ss}. Then the inequality above
can be written as

‖ f ‖44 �
∑

U∈U
|U |−1‖SU f ‖42. (34)

We remind readers that eachU ∈ U has size Rs2×Rs×R. We also have the following
L2 estimate:

‖ f ‖22 ∼
∑

U∈U
‖SU f ‖22. (35)

We provide a quick proof for (35). We have

‖ f ‖22 =
∑

τ∈Ss
‖ fτ‖22 ∼

∑

τ∈Ss

∑

U‖Uτ

‖ fτ‖2L2(U )
.

Noting that { fθ : θ ⊂ τ } are locally orthogonal on any translation ofUτ and recalling
(30), we have

‖ f ‖22 ∼
∑

τ∈Ss

∑

U‖Uτ

∫

U

∑

θ⊂τ

| fθ |2 =
∑

U∈U
‖SU f ‖22.

Next, we will do dyadic pigeonholing on ‖SU f ‖22. (Actually, we only need to prove
a local version of the inequality, so we just care about thoseU that intersect BR . There
are in total RO(1) of them.) We can find a number W > 0 and set U′ = {U ∈ U :
‖SU f ‖22 ∼ W }, so that

‖ f ‖44 � |U |−1#U′W 2, (36)

‖ f ‖22 ≈ #U′W . (37)
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Since every U ∈ U has the same measure R3s2, there is no ambiguity to write |U |−1

in (36).
Let α be such that 1

p = α
4 + 1−α

2 . Then α = 4( 12 − 1
p ). Applying Hölder’s inequality

gives

‖ f ‖p
p ≤ ‖ f ‖α p

4 ‖ f ‖(1−α)p
2 � |U |−p( 12− 1

p )#U′W
p
2 ≤ |U |−p( 12− 1

p )
∑

U∈U
‖SU f ‖p

2 .

Next we are going to exploit more orthogonality for SU f . Suppose U ‖ Uτ . By
definition

‖SU f ‖22 =
∫

U

∑

θ⊂τ

| fθ |2 =
∫

U

∑

θ⊂τ

∣
∣
∣

∑

γ⊂θ

fγ
∣
∣
∣

2
.

We remind readers that {τ } are 1 × s × s2-caps; {θ} are 1 × R−1/2 × R−1-caps; {γ }
are 1 × R−β × R−1-caps. Since U is too small for { fγ : γ ⊂ θ} to be orthogonal on
U , we need to find a larger rectangle. First, let us look at the rectangles {γ : γ ⊂ θ}.
We want to find a rectangle νθ as big as possible, such that {γ +ν : γ ⊂ θ} are finitely
overlapping. Actually, we can choose νθ to be of size R1/2−β × R−β × R−1 (here
the edge of νθ with length R1/2−β (respectively R−β , R−1) are parallel to the edge
of θ with length 1 (respectively R−1/2, R−1). See Fig. 6: the left hand side is θ and
{γ : γ ⊂ θ}; the right hand side is our νθ . It is not hard to see {γ + νθ : γ ⊂ θ}
are finitely overlapping. Let ν∗

θ be the dual of νθ in the physical space, then ν∗
θ has

size Rβ− 1
2 × Rβ × R and we have the local orthogonality (we just ignore the rapidly

decaying tail for simplicity):

∫

ν∗
θ

∣
∣
∣

∑

γ⊂θ

fγ
∣
∣
∣

2 ∼
∫

ν∗
θ

∑

γ⊂θ

| fγ |2

Define
Vθ = Uτ + ν∗

θ , (38)

which is a rectangle of size

max{Rs2, Rβ− 1
2 } × max{Rs, Rβ} × R.

We tile R
3 with translated copies of Vθ , and we write V ‖ Vθ if V is one of the tiles.

Noting that Rβ− 1
2

Rs2
≤ Rβ

Rs , we will discuss three scenarios: 1. Rβ− 1
2

Rs2
≤ Rβ

Rs ≤ 1; 2.

Rβ− 1
2

Rs2
≤ 1 ≤ Rβ

Rs ; 3. 1 ≤ Rβ− 1
2

Rs2
≤ Rβ

Rs .
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θ

γ

R−1/2

R−β

νθ

R1/2−β

R−β

Fig. 6 Small caps

• If Rβ− 1
2

Rs2
≤ Rβ

Rs ≤ 1, then Vθ is essentially Uτ . In this case, we already have the
orthogonality of { fγ : γ ⊂ θ} on U (‖ Uτ ). Therefore,

‖ f ‖p
p � |U |−p( 12− 1

p )
∑

τ∈Ss

∑

U‖Uτ

( ∫

U

∑

θ⊂τ

|
∑

γ⊂θ

fγ |2
) p

2

∼ |U |−p( 12− 1
p )

∑

τ∈Ss

∑

U‖Uτ

( ∫

U

∑

γ⊂τ

| fγ |2
) p

2

≤
∑

τ∈Ss

∑

U‖Uτ

∫

U

( ∑

γ⊂τ

| fγ |2
) p

2

=
∑

τ∈Ss

∫

R3

( ∑

γ⊂τ

| fγ |2
) p

2

≤
∫

R3

( ∑

γ∈�β(R−1)

| fγ |2
)p/2

.
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• In the other two scenarios, we proceed as follows.

‖ f ‖p
p � |U |−p( 12− 1

p )
∑

τ∈Ss

∑

U‖Uτ

( ∫

U

∑

θ⊂τ

| fθ |2
)p/2

≤ |U |−p( 12− 1
p )

∑

τ∈Ss

∑

U‖Uτ

#{θ ⊂ τ } p
2 −1

∑

θ⊂τ

( ∫

U
| fθ |2

)p/2

≤ |U |−p( 12− 1
p )#{θ ⊂ τ } p

2 −1
∑

τ∈Ss

∑

θ⊂τ

∑

V ‖Vθ

(∫

V
| fθ |2

)p/2

(By orthogonality) ∼ |U |−p( 12− 1
p )#{θ ⊂ τ } p

2 −1
∑

τ∈Ss

∑

θ⊂τ

∑

V ‖Vθ

( ∫

V

∑

γ⊂θ

| fγ |2
)p/2

(Hölder) ≤ |U |−p( 12− 1
p )#{θ ⊂ τ } p

2 −1
∑

τ∈Ss
∑

θ⊂τ

∑

V ‖Vθ

|V |p( 12− 1
p )

∫

V

( ∑

γ⊂θ

| fγ |2
)p/2

≤
( |V |

|U |
)p( 12− 1

p )

#{θ ⊂ τ } p
2 −1

∥
∥
∥

( ∑

γ∈�β(R−1)

| fγ |2
) 1

2
∥
∥
∥

p

p

=
(

max
{ Rβ

Rs
, 1

}

max
{ Rβ− 1

2

Rs2
, 1

})p( 12− 1
p )

(sR
1
2 )

p
2 −1

∥
∥
∥

( ∑

γ∈�β(R−1)

| fγ |2
) 1

2
∥
∥
∥

p

p
.

We just need to check

(

max
{ Rβ

Rs
, 1

}

max
{ Rβ− 1

2

Rs2
, 1

})p( 12− 1
p )

(sR
1
2 )

p
2 −1 � R(β− 1

2 )(p−2). (39)

∗ If Rβ− 1
2

Rs2
≤ 1 ≤ Rβ

Rs , then the left hand side of (39) equals R(β− 1
2 )(

p
2 −1), which is ≤

the right hand side of (39).

∗ If 1 ≤ Rβ− 1
2

Rs2
≤ Rβ

Rs , then the left hand side of (39) equals

(R2β−2s−2)
p
2 −1,

which is less than the right hand side of (39) since s−1 ≤ R1/2.
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Case 3:4 ≤ p ≤ 8
Note that

‖ f ‖p
p ∼

∑

α dyadic

α p|{x ∈ R
3 : | f (x)| ∼ α}|.

We can assume the range of α is R−100‖ f ‖∞ ≤ α ≤ ‖ f ‖∞. Other α are considered
as negligible.

By dyadic pigeonholing, we can find α > 0 such that

‖ f ‖p
p � (log R) · α p|{x ∈ R

3 : | f (x)| ∼ α}| + negligible term.

We just need to fix this α, and prove an upper bound for α p|{x ∈ R
3 : | f (x)| > α}|.

By (32), we have

α4|{x ∈ R
3 : | f (x)| > α}| ≤ CεR

ε
∑

R−1/2≤s≤1

∑

τs∈Ss

∑

U∈Gτs (α)

|U |−1‖SU f ‖42.

By pigeonholing again, we can find s such that

α4|{x ∈ R
3 : | f (x)| > α}| �

∑

τ∈Ss

∑

U∈Gτ (α)

|U |−1‖SU f ‖42. (40)

We fix this s. We also remind readers the definition of Gτ (α):

Gτ (α) := {U ‖ Uτ : |U |−1
∫

U

∑

θ⊂τ

| fθ |2 � (αs)2},

since #Ss ∼ s−1. Continuing the estimate in (40), we have

α4|{x ∈ R
3 : | f (x)| > α}| �

∑

τ∈Ss

∑

U∈Gτ (α)

|U |−1
(∫

U

∑

θ⊂τ

| fθ |2
)2

�
∑

τ∈Ss

∑

U∈Gτ (α)

|U |−1
(∫

U

∑

θ⊂τ

| fθ |2
) p

2
(

|U |(αs)2
)2− p

2

.

Moving the power of α to the left hand side, we obtain

α p|{x ∈ R
3 : | f (x)| > α}| �

∑

τ∈Ss

∑

U∈Gτ (α)

|U |1− p
2

( ∫

U

∑

θ⊂τ

| fθ |2
) p

2

s4−p. (41)

Our final goal is to prove that the right hand side above is

� R
β p
2 + p

4 −2
∥
∥
∥

( ∑

γ

| fγ |2
)1/2∥∥

∥

p

p
. (42)
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θ

γ

R−1/2

R−β

R−1s−2

R−1s−1

U∗

π

Fig. 7 Small caps

To do that,we again need to exploit the orthogonality of { fγ : γ ⊂ θ}. The argument

is different from that in Case 2:2 ≤ p ≤ 4 . In Case 2:2 ≤ p ≤ 4 , we expand the
integration domain U to a bigger rectangle V to get orthogonality, whereas here we
are going to use Cauchy–Schwarz inequality.

We discuss the geometry of these caps. Fix a τ ∈ Ss . By definition, Uτ is a Rs2 ×
Rs × R-rectangle in the physical space. Then U∗

τ is a R−1s−2 × R−1s−1 × R−1-
rectangle. We make the following observation: for each θ ⊂ τ , we can show that
U∗

τ is comparable to another rectangle, which has the same size but with the edges
parallel to the corresponding edges of θ . We explain it with more details. Let Uθ,s be
the Rs2 × Rs × R-rectangle which is made from the 1 × R1/2 × R-rectangle θ∗ by
dilating the corresponding edges. Then U∗

θ,s is a R−1s−2 × R−1s−1 × R−1-rectangle
whose edges are parallel to the corresponding edges of the 1× R−1/2× R−1-rectangle
θ . We want to show U∗

τ and U∗
θ,s are comparable. This is equivalent to show Uτ and

Uθ,s are comparable, which is an observation we made at (29). Therefore, for any
θ ⊂ τ , we can assume the edges of U∗

τ are parallel to the corresponding edges of θ .
Fix a U ‖ Uτ , then U∗ = U∗

τ . See Fig. 7: on the left is θ and {γ : γ ⊂ θ}; on
the middle is our U∗. We will discuss two scenarios depending on whether R−β (the
width of γ ) is bigger than R−1s−1 (the width of U∗).

• If R−β ≥ R−1s−1, then we see that {γ + U∗ : γ ⊂ θ} are finitely overlapping.
This means that { fγ : γ ⊂ θ} are locally orthogonal on U :

∫

U

∣
∣
∣

∑

γ⊂θ

fγ
∣
∣
∣

2
�

∫

U

∑

γ⊂θ

| fγ |2.
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Therefore,

‖ f ‖p
p � |U |1− p

2
∑

τ∈Ss

∑

U‖Us

( ∫

U

∑

θ⊂τ

|
∑

γ⊂θ

fγ |2
) p

2

s4−p

� |U |1− p
2

∑

τ∈Ss

∑

U‖Us

( ∫

U

∑

γ⊂τ

| fγ |2
) p

2

s4−p

(Hölder) ≤ s4−p
∑

τ∈Ss

∑

U‖Us

∫

U

( ∑

γ⊂τ

| fγ |2
) p

2

= s4−p
∑

τ∈Ss

∫

R3

( ∑

γ⊂τ

| fγ |2
) p

2

≤ s4−p
∫

R3

( ∑

γ∈�β(R−1)

| fγ |2
)p/2

.

We just need to check

s4−p ≤ R
β p
2 + p

4 −2.

Plugging s−1 ≤ R−1/2, the inequality above is reduced to

Rp/4 ≤ R
β p
2 ,

which is true since β ≥ 1/2.
• If R−β ≤ R−1s−1, we will define a set of new planks which we call π . See on the
right hand side of Fig. 7. We partition θ into a set of 1 × R−1s−1 × R−1-planks,
which we denoted by {π : π ⊂ θ}. If the partition is well chosen (the size of caps
can vary within a constant multiple), we can assume each γ fits into one π , so we
define

fπ :=
∑

γ⊂π

fγ .

Now, our key observation is that {π +U∗ : π ⊂ θ} are finitely overlapping. This
is true by noting that: the width of U∗ and π are both R−1s−1; the angle between
the longest edge of π and U∗ is less than R−1/2 and R−1s−2 · R−1/2 ≤ R−1s−1.
Therefore, we have that { fπ : π ⊂ θ} are locally orthogonal on U , i.e.,

∫

U

∣
∣
∣

∑

π⊂θ

fπ
∣
∣
∣

2
�

∫

U

∑

π⊂θ

| fπ |2. (43)
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Another step of Cauchy–Schwarz will give

∫

U

∑

π⊂θ

| fπ |2 =
∫

U

∑

π⊂θ

∣
∣
∣

∑

γ⊂π

fγ
∣
∣
∣

2 ≤ #{γ ⊂ π}
∫

U

∑

γ⊂θ

| fγ |2

= Rβ R−1s−1
∫

U

∑

γ⊂θ

| fγ |2. (44)

As a result, we obtain

∫

U
| fθ |2 � Rβ R−1s−1

∫

U

∑

γ⊂θ

| fγ |2.

Summing over θ ⊂ τ , we obtain

∫

U

∑

θ⊂τ

| fθ |2 � Rβ R−1s−1
∫

U

∑

γ⊂τ

| fγ |2.

Therefore,

‖ f ‖p
p � |U |1− p

2
∑

τ∈Ss

∑

U‖Uτ

( ∫

U

∑

θ⊂τ

| fθ |2
)p/2

s4−p

� |U |1− p
2 (Rβ R−1s−1)

p
2

∑

τ∈Ss

∑

U‖Uτ

( ∫

U

∑

γ⊂τ

| fγ |2
)p/2

s4−p

(Hölder) ≤ s4−p(Rβ R−1s−1)
p
2

∑

τ∈Ss

∑

U‖Uτ

∫

U

( ∑

γ⊂τ

| fγ |2
)p/2

≤ s4−p(Rβ R−1s−1)
p
2

∥
∥
∥

( ∑

γ∈�β(R−1)

| fγ |2
) 1

2
∥
∥
∥

p

p
.

We just need to check

s4−p(Rβ R−1s−1)
p
2 ≤ R

β p
2 + p

4 −2,

which is equivalent to

s4−
3p
2 ≤ R

3p
4 −2.

Plugging s−1 ≤ R1/2 and noting that 4 − 3p
2 < 0, we prove the result. �
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