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Abstract
In this paper, we study the spectrality of infinite convolutions in R

d , where the spec-
trality means the corresponding square integrable function space admits a family of
exponential functions as an orthonormal basis. Suppose that the infinite convolutions
are generated by a sequence of admissible pairs in R

d . We give two sufficient condi-
tions for their spectrality by using the equi-positivity condition and the integral periodic
zero set of Fourier transform. By applying these results, we show the spectrality of
some specific infinite convolutions in Rd .

Keywords Spectral measure · Infinite convolution · Admissible pair · Equi-positivity

Mathematics Subject Classification 28A80 · 42B05 · 42C30

1 Introduction

Let P(Rd) be the collection of Borel probability measures onRd . We call μ ∈ P(Rd)

a spectral measure if there exists a countable subset � ⊆ R
d such that the family of

exponential functions

{
eλ(x) = e2π iλ·x : λ ∈ �

}

forms an orthonormal basis for L2(μ), where · denotes the standard inner product
on R

d . The set � is called a spectrum of μ. Such orthonormal bases are used for
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Fourier series expansions of functions [39], therefore the existence of spectrum is a
fundamental question in harmonic analysis.

In 1974, Fuglede related the existence of commuting self-adjoint partial differen-
tial operators to the spectrality and proposed the following well-known spectral set
conjecture in [18].

A measurable set � ⊆ R
d with positive finite Lebesgue measure is a spectral

set, that is, the normalized Lebesgue measure on � is a spectral measure, if and
only if � tiles Rd by translations.

This conjecture has been refuted by Tao [40] and the others [24, 35] in d-dimensional
spaces with d ≥ 3, but the study of the connection between spectrality and tiling has
raised a great deal of interest, see [16, 21, 25, 28].

Fractal measures usually appear as singular measures with respect to classical
Lebesgue measures, we refer the readers to [15] for details on fractal geometry. In
[23], Jorgensen and Pedersen discovered that the self-similar measure defined by

μ( · ) = 1

2
μ(4 · ) + 1

2
μ(4 · −2)

is a spectral measure, but the standard middle-third Cantor measure is not. From then
on, the spectrality of fractal measures has been extensively investigated, and we refer
the readers to [1–14, 17, 19, 20, 23, 26, 27, 29, 30, 32–34, 37, 38]. In this paper,
we study the spectrality of infinite convolutions in R

d which may be regarded as a
generalization of self-affine measures.

We write M(Rd) for the collection of all finite nonzero Borel measures on R
d .

Note that P(Rd) ⊆ M(Rd). For μ, ν ∈ M(Rd), the convolution μ ∗ ν is given by

μ ∗ ν(B) =
∫

Rd
ν(B − x) dμ(x) =

∫

Rd
μ(B − y) dν(y),

for every Borel subset B ⊆ R
d . For a finite subset A ⊆ R

d , we define the discrete
measure

δA = 1

#A

∑
a∈A

δa,

where # denotes the cardinality of a set and δa denotes the Dirac measure concentrated
on the point a.

Let R ∈ Md(Z) be a d × d expanding integral matrix, that is, all eigenvalues have
modulus strictly greater than 1, and let B ⊆ Z

d be a finite subset of integral vectors.
If there exists a finite subset L ⊆ Z

d such that #L = #B and the matrix

[
1√
#B

e−2π i(R−1b)·�
]

b∈B,�∈L
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is unitary, we call (R, B) an admissible pair in R
d . Sometimes, to emphasize L , we

call (R, B, L) a Hadamard triple. It is easy to verify that (R, B) is an admissible pair
if and only if the discrete measure δR−1B admits a spectrum L ⊆ Z

d .
Given a sequence of admissible pairs {(Rn, Bn)}∞n=1 in R

d , let

μn = δR−1
1 B1

∗ δ(R2R1)−1B2 ∗ · · · ∗ δ(Rn ...R2R1)−1Bn . (1.1)

We assume that the weak limit of {μn} exists, and the weak limit μ is called an infinite
convolution, written as

μ = δR−1
1 B1

∗ δ(R2R1)−1B2 ∗ · · · ∗ δ(Rn ...R2R1)−1Bn ∗ · · · . (1.2)

Some sufficient and necessary conditions for the existence of infinite convolutions
were given in [31].

The admissible pair assumption implies that all discrete measures {μn} are spectral
measures. Therefore, a natural question arises as the following.

Given a sequence of admissible pairs {(Rn, Bn)}∞n=1, under what condition is the
infinite convolution μ a spectral measure?

In fact, it is easy to construct an infinite mutually orthogonal set of exponential func-
tions, but it is very difficult to show the completeness of the orthogonal set. The infinite
convolution generated by admissible pairs was first studied by Strichartz [38] to find
more spectral measures. The admissible pair condition is not enough to guarantee
that infinite convolutions are spectral measures, see [5, 32] for counterexamples. If
(Rn, Bn) = (R, B) for all n ≥ 1, then the infinite convolution μ is reduced to the
self-affine measure. Dutkay et al. [14] have proved that the self-affine measures gen-
erated by an admissible pair is a spectral measure. We refer the readers to [1, 3–5, 7–9,
17, 26, 29, 30, 32–34] for other related results on spectrality of infinite convolutions.
Currently, most of the research on spectrality of infinite convolutions focus on either
the one-dimensional case or some special examples in Rd .

We denote the tail of the infinite convolution μ by

μ>n = δ(Rn+1...R2R1)−1Bn+1
∗ δ(Rn+2...R2R1)−1Bn+2

∗ · · · .

Clearly, we have μ = μn ∗ μ>n . We also define a push-forward measure of μ>n by

ν>n = μ>n ◦ (Rn . . . R2R1)
−1 = δR−1

n+1Bn+1
∗ δ(Rn+2Rn+1)−1Bn+2

∗ · · · . (1.3)

The spectrality of the infinite convolution μ relies on the properties of {ν>n}. The
equi-positive condition and the integral periodic zero set were first used in [14] to
study the spectrality of self-affine measures.

First, provided a technical condition, we show that the existence of an equi-positive
family (see Definition 2.7) is sufficient for the spectrality of infinite convolutions in
R
d (also see Theorem 2.8). Analogous results in R can be found in [4, 32, 34].
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Theorem 1.1 Let {(Rn, Bn)}∞n=1 be a sequence of admissible pairs inR
d . Suppose that

the infinite convolution μ defined in (1.2) exists, and

lim
n→∞ ‖R−1

1 R−1
2 . . . R−1

n ‖ = 0.

Let {ν>n} be defined in (1.3). If there exists a subsequence {ν>n j } which is an equi-
positive family, then μ is a spectral measure with a spectrum in Zd .

Remark In Theorem 1.1, the support of the infinite convolution μ could be noncom-
pact. The authors and Miao [31] constructed a class of singular spectral measures
without compact support by showing equi-positivity in R. Analogous examples can
be constructed in Rd by using Theorem 1.1.

For μ ∈ P(Rd), we write

Z(μ) =
{
ξ ∈ R

d : μ̂(ξ + k) = 0 for all k ∈ Z
d
}

for the integral periodic zero set of Fourier transform of μ. Next we characterize the
spectrality by using the integral periodic zero set (also see Theorem3.1). The following
Theorems 1.2 and 1.3 in R have been proved in [30].

Theorem 1.2 Let {(Rn, Bn)}∞n=1 be a sequence of admissible pairs inR
d . Suppose that

the infinite convolution μ defined in (1.2) exists, and

lim
n→∞ ‖R−1

1 R−1
2 . . . R−1

n ‖ = 0.

Let {ν>n} be defined in (1.3). If there exists a subsequence {ν>n j } which converges
weakly to ν with Z(ν) = ∅, then μ is a spectral measure with a spectrum in Zd .

Generally, it is a challenging problem to compute the integral periodic zero set of
Fourier transform. We provide a sufficient condition for the integral periodic zero set
of Fourier transform to be empty (also see Theorem 3.3).

Theorem 1.3 Let μ ∈ P(Rd). Suppose there exists a Borel subset E ⊆ R
d such that

μ(E) > 0, and

μ(E + k) = 0

for all k ∈ Z
d \ {0}. Then we have Z(μ) = ∅.

Remark Assume that μ ∈ P(Rd) has a compact support, denoted by spt(μ). If there
exists x0 ∈ spt(μ) such that x0 + k /∈ spt(μ) for all k ∈ Z

d \ {0}, then we can
conclude that Z(μ) = ∅. This is because by the compactness of spt(μ), there exists a
sufficiently small open neighborhood U of x0 such that (U + k) ∩ spt(μ) = ∅ for all
k ∈ Z

d \ {0}. Then the set E = U is desired in Theorem 1.3.
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In the following, we apply Theorems 1.2 and 1.3 to show the spectrality of some
infinite convolutions in Rd . First, we state a general result (also see Theorem 5.2).

Theorem 1.4 Let {(Rn, Bn)}∞n=1 be a sequence of admissible pairs inR
d . Suppose that

(i)
lim
n→∞ ‖R−1

1 R−1
2 . . . R−1

n ‖ = 0,

and there exists a cube C = t0 + [0, 1]d for some t0 ∈ R
d such that

(ii) for each n ≥ 1, we have R−1
n (C + b) ⊆ C for every b ∈ Bn,

(iii) there exists an admissible pair (R, B), which occurs infinitely times in the sequence
{(Rn, Bn)}∞n=1, such that R−1(C + b0) ⊆ int(C) for some b0 ∈ B.

Then the infinite convolution μ defined in (1.2) exists and is a spectral measure with
a spectrum in Zd .

Next,we focus on admissible pairs consisting of diagonalmatrices and digit sets that
satisfy the assumption (ii) for C = [0, 1]d in Theorem 1.4. For the one-dimensional
case, An et al. [4] showed that given a sequence of admissible pairs {(Rn, Bn)}∞n=1 in
R, if Rn ≥ 2 and Bn ⊆ {0, 1, . . . , Rn − 1} for all n ≥ 1, and

lim inf
n→∞ #Bn < ∞,

then the infinite convolution μ defined in (1.2) is a spectral measure with a spectrum
in Z. We generalize their result in the higher dimension.

In R
d , we use Dd to denote the set of all pairs (R, B) of a diagonal matrix R =

diag(m1,m2, . . . ,md), where m1,m2, . . . ,md ≥ 2 are integers, and a nonempty
subset

B ⊆ {0, 1, . . . ,m1 − 1} × {0, 1, . . . ,m2 − 1} × · · · × {0, 1, . . . ,md − 1}.

Given a sequence {(Rn, Bn)}∞n=1 ⊆ Dd , by Theorem 1.1 in [31], the infinite convolu-
tion μ defined in (1.2) exists. If, moreover, {(Rn, Bn)}∞n=1 is a sequence of admissible
pairs, thenwe obtain the spectrality ofμ under some conditions (also seeTheorem5.3).

Theorem 1.5 In R
d , suppose that {(Rn, Bn)}∞n=1 ⊆ Dd is a sequence of admissible

pairs. If there exists an admissible pair (R, B) that occurs infinitely times in the
sequence {(Rn, Bn)}∞n=1, and moreover, all diagonal elements of R are greater than
or equal to d +1, then the infinite convolution μ defined in (1.2) is a spectral measure
with a spectrum in Zd .

Remark The value d+1 is a necessarily technical condition appearing in Theorem 4.1.

In particular, if {(Rn, Bn)}∞n=1 ⊆ Dd is chosen from a finite set of admissible pairs,
then the spectrality of infinite convolutions follows directly (also see Theorem 5.5).
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Theorem 1.6 In Rd , given a sequence of admissible pairs {(Rn, Bn)}∞n=1 ⊆ Dd , if

sup
n≥1

‖Rn‖ < ∞,

then the infinite convolution μ defined in (1.2) is a spectral measure with a spectrum
in Zd .

Finally, we give some examples in R2 to illustrate our results.

Example 1.7 Let

R1 =
(
4 0
4 −4

)
, B1 =

{(
2
0

)
,

(
3
0

)
,

(
2
1

)
,

(
3
1

) }
.

Then the discrete measure δR−1
1 B1

admits a spectrum

L1 =
{(

0
0

)
,

(
2
0

)
,

(
2

−2

)
,

(
4

−2

) }
.

Let

R2 =
(
3 −3
3 3

)
, B2 =

{ (
0
2

)
,

(
1
2

)
,

(
0
3

) }
.

Then the discrete measure δR−1
2 B2

admits a spectrum

L2 =
{(

0
0

)
,

(
3
1

)
,

(
3

−1

) }
.

By calculation, we have ‖R−1
1 ‖ = (1 + √

5)/8 < 1 and ‖R−1
2 ‖ = √

2/6 < 1. For
ω = (ωk)

∞
k=1 ∈ {1, 2}N, the sequence of admissible pairs {(Rωk , Bωk )}∞k=1 satisfies all

assumptions for C = [0, 1]2 in Theorem 1.4. Therefore, for ω = (ωk)
∞
k=1 ∈ {1, 2}N,

the infinite convolution

μω = δR−1
ω1 Bω1

∗ δ(Rω2 Rω1 )−1Bω2
∗ · · · ∗ δ(Rωk ...Rω2 Rω1 )−1Bωk

∗ · · ·

is a spectral measure with a spectrum in Z2.

Example 1.8 Forn ≥ 1, ifn is odd, let Rn = diag(3, 3) and Bn = {(0, 0), (0, 2), (2, 0)};
if n is even, let Rn = diag(n, n) and Bn = {(0, 0), (n−1, n−1)}. Then {(Rn, Bn)}∞n=1
is a sequence of admissible pairs that satisfies neither the assumption in Theorem 1.4
nor the assumption in Theorem 1.6. It follows from Theorem 1.5 that the infinite
convolution

μ = δR−1
1 B1

∗ δ(R2R1)−1B2 ∗ · · · ∗ δ(Rn ...R2R1)−1Bn ∗ · · ·

is a spectral measure with a spectrum in Z2.
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The rest of paper is organized as follows. In Sect. 2, we first review some definitions
and some known results, and then we give the proof of Theorem 1.1. In Sect. 3, we
study the integral periodic zero set of Fourier transform and prove Theorem 1.2 and
Theorem 1.3. In Sect. 4, we prove a key theorem for the later proof. Finally, we prove
Theorems 1.4, 1.5, and 1.6 in Sect. 5.

2 Spectrality of Infinite Convolutions

Let |x | denote the Euclidean norm of a vector x ∈ R
d , and let |z| also denote the

modulus of a complex number z ∈ C. The operator norm of a d × d real matrix
M ∈ Md(R) is denoted by ‖M‖, and MT denotes the transpose of M . The open ball
centred at x with radius γ in Rd is denoted by U (x, γ ).

For a finite nonzero Borel measure μ ∈ M(Rd), the support of μ is defined to be
the smallest closed set with full measure, and we also say that μ is concentrated on a
Borel subset E of Rd if

μ
(
R
d \ E

) = 0.

For a Borel probability measure μ ∈ P(Rd), the Fourier transform of μ is given
by

μ̂(ξ) =
∫

Rd
e−2π iξ ·x dμ(x), ξ ∈ R

d .

Let μ,μ1, μ2, . . . ∈ P(Rd). We say that {μn} converges weakly to μ if

lim
n→∞

∫

Rd
f (x) dμn(x) =

∫

Rd
f (x) dμ(x)

for all f ∈ Cb(R
d), where Cb(R

d) is the set of all bounded continuous functions
on R

d . The following well-known theorem characterizes the weak convergence of
probability measures.

Theorem 2.1 Let μ,μ1, μ2, . . . ∈ P(Rd). Then {μn} converges weakly to μ if and
only if lim

n→∞ μ̂n(ξ) = μ̂(ξ) for every ξ ∈ R
d . Moreover, if {μn} converges weakly to

μ, then for every h > 0, the sequence μ̂n(ξ) converges uniformly to μ̂(ξ) for |ξ | ≤ h.

The next theorem is often used to check whether a probability measure is spectral.
The proof for compactly supported probability measures refers to Lemma 3.3 in [23].
Actually, it holds for all probability measures (see [32] for a detailed proof).

Theorem 2.2 Let μ ∈ P(Rd). A countable subset � ⊆ R
d is a spectrum of μ if and

only if for all ξ ∈ R
d we have

Q(ξ) =
∑
λ∈�

|μ̂(λ + ξ)|2 = 1.
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The spectrality is invariant under affine transformations. For a d × d nonsingular
real matrixM and a vector b ∈ R

d , we define TM,b : Rd → R
d by TM,b(x) = Mx+b.

Lemma 2.3 Let ν ∈ P(Rd) be a spectral measure with a spectrum �. Then μ =
ν ◦ T−1

M,b is a spectral measure with a spectrum (MT)−1� for any d × d nonsingular

real matrix M and any vector b ∈ R
d .

Proof Note that μ̂(ξ) = e−2π ib·ξ ν̂(MTξ). Let �′ = (MT)−1�, and then we have

Q(ξ) =
∑

λ′∈�′
|μ̂(ξ + λ′)|2

=
∑

λ′∈�′
|e−2π ib·(ξ+λ′)ν̂

(
MT(ξ + λ′)

)|2

=
∑
λ∈�

|̂ν(MTξ + λ)|2

= 1.

It follows from Theorem 2.2 that �′ = (MT)−1� is a spectrum of μ. ��
Next lemma allows us to construct new spectral measures by convolution. One can

also see Theorem 1.5 in [19].

Lemma 2.4 Suppose that δA admits a spectrum L ⊆ R
d , where A ⊆ R

d is a finite
subset. If ν ∈ P(Rd) admits a spectrum � ⊆ R

d such that

a · λ ∈ Z for all a ∈ A and λ ∈ �,

then μ = δA ∗ ν is a spectral measure with a spectrum L + �.

Proof Note that

δ̂A(ξ) = 1

#A

∑
a∈A

e−2π ia·ξ .

Since a · λ ∈ Z for all a ∈ A and λ ∈ �, we have

δ̂A(ξ + λ) = δ̂A(ξ) for all λ ∈ � and ξ ∈ R
d .

Let �′ = L + �, and then by Theorem 2.2 we have

Q(ξ) =
∑

λ′∈�′
|μ̂(ξ + λ′)|2 =

∑
λ′∈�′

|̂δA(ξ + λ′)̂ν(ξ + λ′)|2

=
∑
�∈L

∑
λ∈�

|̂δA(ξ + � + λ)̂ν(ξ + � + λ)|2

=
∑
�∈L

∑
λ∈�

|̂δA(ξ + �)̂ν(ξ + � + λ)|2
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=
∑
�∈L

|̂δA(ξ + �)|2

= 1.

It follows from Theorem 2.2 that �′ = L + � is a spectrum of μ. ��
Corollary 2.5 If δA is a spectral measure, where A ⊆ Z

d is a finite subset, and ν ∈
P(Rd) be a spectral measure with a spectrum in Z

d , then μ = δA ∗ ν is a spectral
measure.

We list some useful properties of admissible pairs in the following lemma, see [14,
26] for details.

Lemma 2.6 Suppose that (R, B) is an admissible pair inRd and the discrete measure
δR−1B admits a spectrum L ⊆ Z

d . Then

(i) L + �0 is also a spectrum of δR−1B for all �0 ∈ R
d .

(ii) The elements in L are distinct modulo RT
Z
d , and if L̃ ≡ L (mod RT

Z
d), then L̃

is also a spectrum of δR−1B.
(iii) For 1 ≤ j ≤ n, let (R j , Bj ) be an admissible pairs in R

d and let L j ⊆ Z
d be a

spectrum of δR−1
j B j

. Write

R = RnRn−1 . . . R1, B = (RnRn−1 . . . R2)B1 + · · · + RnBn−1 + Bn .

Then (R,B) is an admissible pair, and δR−1B admits a spectrum

L = L1 + RT
1 L2 + · · · + (RT

1 R
T
2 . . . RT

n−1)Ln .

Next, we state the definition of equi-positivity, and then prove Theorem 1.1.

Definition 2.7 We call � ⊆ P(Rd) an equi-positive family if there exists ε > 0 and
γ > 0 such that for x ∈ [0, 1)d and μ ∈ �, there is an integral vector kx,μ ∈ Z

d such
that

|μ̂(x + y + kx,μ)| ≥ ε

for all |y| < γ, where kx,μ = 0 for x = 0.

Theorem 2.8 Let {(Rn, Bn)}∞n=1 be a sequence of admissible pairs inR
d . Suppose that

the infinite convolution μ defined in (1.2) exists, and

lim
n→∞ ‖R−1

1 R−1
2 . . . R−1

n ‖ = 0.

Let {ν>n} be defined in (1.3). If there exists a subsequence {ν>n j } which is an equi-
positive family, then μ is a spectral measure with a spectrum in Zd .
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Proof Since {(Rn, Bn)}∞n=1 is a sequence of admissible pairs in Rd , by definition, for
each n ≥ 1, the discrete measure δR−1

n Bn
admits a spectrum Ln ⊆ Z

d . By Lemma 2.6
(i), we may assume that 0 ∈ Ln for all n ≥ 1.

Since the family {ν>n j } is equi-positive, there exists ε > 0 and γ > 0 such that for
x ∈ [0, 1)d and j ≥ 1, there is an integral vector kx, j ∈ Z

d such that

|̂ν>n j (x + y + kx, j )| ≥ ε

for all |y| < γ, and kx, j = 0 for x = 0.
For q > p ≥ 0, we define Rp,q = Rq Rq−1 . . . Rp+1,

Bp,q = Rq Rq−1 . . . Rp+2Bp+1 + Rq Rq−1 . . . Rp+3Bp+2 + · · · + Rq Bq−1 + Bq ,

and

Lp,q = L p+1 + RT
p+1L p+2 + · · · + (RT

p+1R
T
p+2 . . . RT

q−1)Lq .

By Lemma 2.6 (iii), Lp,q is a spectrum of δR−1
p,qBp,q

.

We construct a sequence of finite subsets � j ⊆ Z
d for j ≥ 1 by induction. Let

m1 = n1 and �1 = L0,m1 . Note that 0 ∈ �1 and �1 is a spectrum of μm1 . For j ≥ 2,
suppose that � j−1 has been defined with 0 ∈ � j−1 and � j−1 is a spectrum of μm j−1 .

Since ‖(RT
1 RT

2 . . . RT
n )−1‖ = ‖R−1

1 R−1
2 . . . R−1

n ‖ tends to 0 as n → ∞, we may
choose a sufficiently large integer m j in the sequence

{
n j

}
such that m j > m j−1 and

for all λ ∈ � j−1,

∣∣∣(RT
1 R

T
2 . . . RT

m j

)−1
λ

∣∣∣ <
γ

2
. (2.1)

Now we define

� j = � j−1 + RT
0,m j−1

{
λ + RT

m j−1,m j
kλ, j : λ ∈ Lm j−1,m j

}
, (2.2)

where, by the equi-positivity of {ν>n j }, the integral vectors kλ, j ∈ Z
d are chosen to

satisfy

∣∣∣̂ν>m j

(
(RT

m j−1+1 . . . RT
m j

)−1λ + y + kλ, j

)∣∣∣ ≥ ε (2.3)

for all |y| < γ , and kλ, j = 0 for λ = 0. Since � j−1 is a spectrum of μm j−1 =
δR−1

0,m j−1
B0,m j−1

, by Lemma 2.6 (ii) and (iii), we conclude that � j is a spectrum of

μm j = δR−1
0,m j−1

B0,m j−1
∗ δ(Rm j−1,m jR0,m j−1 )−1Bm j−1,m j

.

Since 0 ∈ Lm j−1,m j and 0 ∈ � j−1, we have 0 ∈ � j and � j−1 ⊆ � j .
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We write

� =
∞⋃
j=1

� j ,

and prove that � is a spectrum of μ. By Theorem 2.2, it is equivalent to show that for
all ξ ∈ R

d ,

Q(ξ) =
∑
λ∈�

|μ̂(λ + ξ)|2 = 1.

For ξ ∈ R
d , since � j is a spectrum of μm j , by Theorem 2.2, we have

∑
λ∈� j

∣∣μ̂m j (λ + ξ)
∣∣2 = 1. (2.4)

It follows that

∑
λ∈� j

|μ̂(λ + ξ)|2 =
∑
λ∈� j

∣∣μ̂m j (λ + ξ)
∣∣2 ∣∣μ̂>m j (λ + ξ)

∣∣2

≤
∑
λ∈� j

∣∣μ̂m j (λ + ξ)
∣∣2

≤ 1.

Letting j tend to the infinity, we obtain that

Q(ξ) ≤ 1 (2.5)

for all ξ ∈ R
d .

Fix ξ ∈ R
d . We define

f (λ) = |μ̂(λ + ξ)|2, λ ∈ �,

and

f j (λ) =
{

|μ̂m j (ξ + λ)|2, if λ ∈ � j ,

0, if λ ∈ � \ � j ,

for each j ≥ 1. For each λ ∈ �, there exists jλ ≥ 1 such that λ ∈ � j for j ≥ jλ, and
hence

lim
j→∞ f j (λ) = lim

j→∞ |μ̂m j (ξ + λ)|2 = f (λ),
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where the last equality follows from Theorem 2.1 and the fact that {μm j } converges
weakly to μ. Choose an integer j0 ≥ 1 sufficiently large such that for j > j0

∣∣∣(RT
1 R

T
2 . . . RT

m j
)−1ξ

∣∣∣ <
γ

2
. (2.6)

For each λ ∈ � j where j > j0, by (2.2), we have that

λ = λ1 + (Rm j−1 . . . R2R1)
Tλ2 + (Rm j . . . R2R1)

Tkλ2, j ,

where λ1 ∈ � j−1 and λ2 ∈ Lm j−1,m j . By (2.1) and (2.6), we have that

∣∣∣(RT
1 R

T
2 . . . RT

m j
)−1(λ1 + ξ)

∣∣∣ < γ.

It follows from (2.3) that

f (λ) = |μ̂(λ + ξ)|2 = ∣∣μ̂m j (λ + ξ)
∣∣2 ∣∣μ̂>m j (λ + ξ)

∣∣2

= ∣∣μ̂m j (λ + ξ)
∣∣2

∣∣∣̂ν>m j

(
(RT

1 R
T
2 . . . RT

m j
)−1(λ + ξ)

)∣∣∣
2

= ∣∣μ̂m j (λ + ξ)
∣∣2 ∣∣∣̂ν>m j

(
(RT

m j−1+1 . . . RT
m j

)−1λ2 + (RT
1 . . . RT

m j
)−1(λ1 + ξ) + kλ2, j

)∣∣∣
2

≥ ε2 f j (λ).

Therefore, for j > j0,

f j (λ) ≤ ε−2 f (λ)

for all λ ∈ �.
Let ρ be the counting measure on the set �. We have that

∫

�

f (λ) dρ(λ) =
∑
λ∈�

|μ̂(λ + ξ)|2 = Q(ξ).

By (2.5), f (λ) is integrable with respect to the counting measure ρ. Applying the
dominated convergence theorem and (2.4), we obtain that

Q(ξ) = lim
j→∞

∫

�

f j (λ) dρ(λ)

= lim
j→∞

∑
λ∈� j

|μ̂m j (λ + ξ)|2

= 1.

Hence, by Theorem 2.2, � is a spectrum of μ, and μ is a spectral measure. ��
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3 Integral Periodic Zero Set

First, we give the proof of Theorem 1.2.

Theorem 3.1 Let {(Rn, Bn)}∞n=1 be a sequence of admissible pairs inR
d . Suppose that

the infinite convolution μ defined in (1.2) exists, and

lim
n→∞ ‖R−1

1 R−1
2 . . . R−1

n ‖ = 0.

Let {ν>n} be defined in (1.3). If there exists a subsequence {ν>n j } which converges
weakly to ν with Z(ν) = ∅, then μ is a spectral measure with a spectrum in Zd .

Proof By Theorem 1.1, it suffices to show that the family {ν>n j }∞j= j0
is equi-positive

for some large j0 ≥ 1.
SinceZ(ν) = ∅, for each x ∈ [0, 1]d , there exists kx ∈ Z

d such that ν̂(x+kx ) �= 0.
Thus, there exists εx > 0 and γx > 0 such that

|̂ν(x + kx + y)| ≥ εx (3.1)

for all |y| < γx . Note that

[0, 1]d ⊆
⋃

x∈[0,1]d
U (x, γx/2).

By the compactness of [0, 1]d , there exist finitely many x1, x2, . . . , xq ∈ [0, 1]d such
that

[0, 1]d ⊆
q⋃

�=1

U (x�, γx�
/2). (3.2)

Since ν̂(0) = 1 and ν̂(ξ) is continuous, there exists γ0 > 0 such that

|̂ν(y)| ≥ 1/2 (3.3)

for all |y| < γ0.
Let ε = min

{
1/4, εx1/2, εx2/2, . . . , εxq /2

}
and γ = min{γ0, γx1/2, γx2/2, . . . ,

γxq /2}. Let h = √
d+γ +max

{|kx1 |, |kx2 |, . . . , |kxq |
}
. Since {ν>n j } convergesweakly

to ν, by Theorem 2.1, we have ν̂>n j (ξ) converges uniformly to ν̂(ξ) for |ξ | ≤ h. Thus,
there exists j0 ≥ 1 such that

|̂ν>n j (ξ) − ν̂(ξ)| < ε (3.4)

for all j ≥ j0 and all |ξ | ≤ h.
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For each x ∈ [0, 1)d \ {0}, by (3.2), we may find 1 ≤ � ≤ q such that |x − x�| <

γx�
/2. For j ≥ j0 and |y| < γ , noting that |x + kx�

+ y| < h, it follows from (3.4)
that

|̂ν>n j (x + kx�
+ y)| ≥ |̂ν(x + kx�

+ y)| − ε.

Since |x − x� + y| < γx�
/2 + γ ≤ γx�

, by (3.1), we have that

|̂ν(x + kx�
+ y)| = |̂ν(x� + kx�

+ x − x� + y)| ≥ εx�
≥ 2ε.

Thus, for j ≥ j0 and |y| < γ ,

|̂ν>n j (x + kx�
+ y)| ≥ ε.

For x = 0, it follows from (3.3) and (3.4) that for j ≥ j0 and for |y| < γ ,

|̂ν>n j (y)| ≥ |̂ν(y)| − ε ≥ 1/4 ≥ ε.

Therefore, the family {ν>n j }∞j= j0
is equi-positive. ��

Next, we study the integral periodic zero set of Fourier transform. Recall that the
integral periodic zero set is given by

Z(μ) =
{
ξ ∈ R

d : μ̂(ξ + k) = 0 for all k ∈ Z
d
}

.

Let Td = R
d/Zd , and we write M(Td) for the set of all complex Borel measures

onTd . The following theorem is the uniqueness theorem of Fourier coefficients which
is often contained in Fourier analysis or harmonic analysis. Here we give a proof for
the readers’ convenience.

Theorem 3.2 Let ν ∈ M(Td). If the Fourier coefficient

ν̂(k) =
∫

Td
e−2π ik·x dν(x) = 0

for all k ∈ Z
d , then ν = 0.

Proof By the Stone–Weierstrass theorem, every continuous function on T
d can be

approximated uniformly by trigonometric polynomials. Since all Fourier coefficients
ν̂(k) = 0 for k ∈ Z

d , it follows that

∫

Td
f (x) dν(x) = 0

for every continuous function f on T
d . By the Riesz representation theorem [36,

Theorem 6.19], we conclude that ν = 0. ��
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We apply the uniqueness theorem of Fourier coefficients to prove Theorem 1.3.

Theorem 3.3 Let μ ∈ P(Rd). Suppose there exists a Borel subset E ⊆ R
d such that

μ(E) > 0, and

μ(E + k) = 0

for all k ∈ Z
d \ {0}. Then we have Z(μ) = ∅.

Proof For k = (k1, . . . , kd) ∈ Z
d , we write

Ck = [k1, k1 + 1) × · · · × [kd , kd + 1).

Since μ(E) > 0, there exists k0 ∈ Z
d such that μ(E ∩Ck0) > 0. Replacing the set E

by E ∩ Ck0 , we may assume that E ⊆ Ck0 for some k0 ∈ Z
d . Let Ẽ = E − k0 and

μ̃ = μ ∗ δ{−k0}. Then Ẽ ⊆ [0, 1)d . Note that for all Borel subset F ⊆ R
d , we have

that

μ̃(F) = μ ∗ δ{−k0}(F) = μ(F + k0).

It follows that μ̃
(
Ẽ

) = μ(E) > 0, and μ̃
(
Ẽ+k

) = μ(E+k) = 0 for all k ∈ Z
d \{0}.

Since ̂̃μ(ξ) = e2π ik0·ξ μ̂(ξ), we have Z(μ̃) = Z(μ). Therefore, we assume that
E ⊆ [0, 1)d in the following.

For ξ ∈ R
d , we define a complex measure μξ on Rd by

dμξ = e−2π iξ ·x dμ. (3.5)

Consider the natural homomorphism π : Rd → T
d , and let ρξ = μξ ◦ π−1 be the

image measure on T
d of μξ by π , i.e., for each Borel subset F ⊆ T

d ,

ρξ (F) = μξ (F + Z
d) =

∑

k∈Zd

μξ (F + k). (3.6)

Since μ(E) > 0, we write

ν( · ) = 1

μ(E)
μ( · ∩ E)

for the normalized measure of μ on E .
Suppose that Z(μ) �= ∅. Arbitrarily choose ξ0 ∈ Z(μ), and we have that μ̂(ξ0 +

k) = 0 for all k ∈ Z
d . This implies that

ρ̂ξ0(k) =
∫

Td
e−2π ik·x dμξ0 ◦ π−1(x)

=
∫

Rd
e−2π ik·π(x) dμξ0(x)
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=
∫

Rd
e−2π ik·x e−2π iξ0·x dμ(x)

= μ̂(ξ0 + k)

= 0

for all k ∈ Z
d . By Theorem 3.2, we conclude that ρξ0 = 0. By (3.5) and (3.6), it

follows that

∫

E+Zd
e−2π iξ0·x dμ(x) = μξ0(E + Z

d) = ρξ0(E) = 0.

Since μ(E + k) = 0 for all k ∈ Z
d \ {0}, we obtain that

∫

E
e−2π iξ0·x dμ(x) = 0.

It follows that

ν̂(ξ0) = 1

μ(E)

∫

E
e−2π iξ0·x dμ(x) = 0.

Note that ξ0 + k ∈ Z(μ) for all k ∈ Z
d . Thus, we have that for all k ∈ Z

d ,

ν̂(ξ0 + k) = 0.

Let νξ0 be defined by

dνξ0 = e−2π iξ0·x dν. (3.7)

Since ν is concentrated on E ⊆ [0, 1)d , νξ0 can be viewed as a complex measure on
T
d . Moreover, the Fourier coefficients ν̂ξ0(k) = ν̂(ξ0 + k) = 0 for all k ∈ Z

d . By
Theorem 3.2, we have that νξ0 = 0. But, by (3.7) and Theorem 6.13 in [36], we have
the total variation |νξ0 | = ν �= 0, and this leads to a contradiction.

Therefore, we conclude that Z(μ) = ∅. ��

The following conclusion is an immediate consequence.

Corollary 3.4 Let μ ∈ P(Rd) with spt(μ) ⊆ [0, 1]d . If Z(μ) �= ∅, then we have

spt(μ) ⊆ [0, 1]d \ (0, 1)d .

Remark It has been showed in [4] that for μ ∈ P(R) with spt(μ) ⊆ [0, 1], Z(μ) �= ∅
if and only if μ = 1

2δ0 + 1
2δ1.
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4 A Key Ingredient

In order to prove Theorems 1.5 and 1.6, we need the following Theorem 4.1 to show
that the assumption in Theorem 1.3 is satisfied by a class of measures. Recall that
M(Rd) denotes the collection of all finite nonzero Borel measures on R

d .

Theorem 4.1 Let (R, B) ∈ Dd where R = diag(m1,m2, . . . ,md) with m1,m2, . . . ,

md ≥ d+1. Associated with the digit set B, a positive weight vector (pb)b∈B is given.
Let μ ∈ M(Rd) with spt(μ) ⊆ [0, 1]d . Set

ν = (λ ∗ μ) ◦ R where λ =
∑
b∈B

pbδb.

Then there exists a Borel subset E ⊆ R
d such that ν(E) > 0 and

ν(E + n) = 0

for all n ∈ Z
d \ {0}.

Remark The condition that all diagonal elements of R are ≥ d + 1 is necessary. Here
we give an example in R

2. Let

R =
(
2 0
0 2

)
, B =

{ (
1
0

)
,

(
0
1

) }
, μ = 1

2
δ{(0,0)} + 1

2
δ{(1,1)}.

Set ν = (δB ∗ μ) ◦ R. By simple calculation, we have

ν = 1

4
δ{(0,1/2)} + 1

4
δ{(1,1/2)} + 1

4
δ{(1/2,0)} + 1

4
δ{(1/2,1)}.

The conclusion in Theorem 4.1 fails, and moreover, we have (1/2, 1/2) ∈ Z(ν).

For later application, we note that

spt(ν) = R−1B + R−1spt(μ) ⊆ [0, 1]d . (4.1)

We first show Theorem 4.1 in R.

Lemma 4.2 Theorem 4.1 holds in R.

Proof For d = 1, note that spt(ν) ⊆ [0, 1], and R ≥ 2 is an integer. If spt(ν)∩(0, 1) �=
∅, then the set E = spt(ν)∩ (0, 1) is desired. Otherwise, we have that spt(ν) ⊆ {0, 1}.

If both 0 and 1 are in spt(ν), then by (4.1) there exist b1, b2 ∈ B such that

0 ∈ R−1b1 + R−1spt(μ) and 1 ∈ R−1b2 + R−1spt(μ).

Since spt(μ) ⊆ [0, 1], it follows that

b1 = 0, b2 = R − 1, {0, 1} ⊆ spt(μ).
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By (4.1), we obtain 1/R ∈ spt(ν). Since R ≥ 2, we have 0 < 1/R < 1. This yields
a contradiction. Thus, we conclude that spt(ν) = {0} or spt(ν) = {1}. Then the set
E = spt(ν) is desired. ��

Next, we prove Theorem 4.1 by induction on the dimension d.

Proof of Theorem 4.1 We assume that Theorem 4.1 holds in R
d−1 for some d ≥ 2. In

the following, we prove that Theorem 4.1 also holds in Rd . The proof is split into two
cases.

Case I: there exists 1 ≤ j ≤ d such that μ
({(x1, . . . , xd) ∈ [0, 1]d : 0 < x j <

1}) > 0. Without loss of generality, we assume that μ
([0, 1]d−1 × (0, 1)

)
> 0.

Let μ1 and μ2 be the restrictions of μ on [0, 1]d−1 × (0, 1) and [0, 1]d−1 × {0, 1},
respectively. Thenμ = μ1+μ2. Set ν1 = (λ∗μ1)◦R and ν2 = (λ∗μ2)◦R. Then ν =
ν1+ν2.Note that ν1 is concentrated on [0, 1]d−1×([0, 1]\{0, 1/md , 2/md , . . . , 1}

)
, ν2

is concentrated on [0, 1]d−1×{0, 1/md , 2/md , . . . , 1}, and these two sets are disjoint.
Thus, ν1 and ν2 are the restrictions of ν on [0, 1]d−1×([0, 1]\{0, 1/md , 2/md , . . . , 1}

)
and [0, 1]d−1 × {0, 1/md , 2/md , . . . , 1}, respectively.

Define πd,d−1 : Rd → R
d−1 by (x1, x2, . . . , xd) �→ (x1, x2, . . . , xd−1). Let μ′ =

μ1 ◦ π−1
d,d−1, R

′ = diag(m1,m2, . . . ,md−1) and B ′ = πd,d−1(B). For b′ ∈ B ′, let

pb′ =
∑

b∈π−1
d,d−1(b

′)

pb.

Then (pb′)b′∈B′ is a positive weight vector associated with B ′. Let

λ′ =
∑
b′∈B′

pb′δb′ , ν′ = (λ′ ∗ μ′) ◦ R′.

Since Theorem 4.1 holds in R
d−1, there exists a Borel subset E ′ ⊆ R

d−1 such that
ν′(E ′) > 0 and

ν′(E ′ + n′) = 0

for all n′ ∈ Z
d−1 \ {0}.

It’s straightforward to verify that

ν′ = ν1 ◦ π−1
d,d−1

Construct a Borel subset of Rd by

E = E ′ × ([0, 1] \ {0, 1/md , 2/md , . . . , 1}
)
.

Note that ν1 is concentrated on [0, 1]d−1 × ([0, 1] \ {0, 1/md , 2/md , . . . , 1}
)
. Then

ν′(E ′) = ν1
(
π−1
d,d−1(E

′)
) = ν1(E

′ × R)
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= ν1

(
E ′ × ([0, 1] \ {0, 1/md , 2/md , . . . , 1}

))

= ν1(E).

Thus, ν1(E) = ν′(E ′) > 0, and it follows that ν(E) > 0.
Take n = (n1, . . . , nd) ∈ Z

d \ {0}. If nd �= 0, then (E + n) ∩ [0, 1]d = ∅, and
hence ν(E + n) = 0. If nd = 0, then n′ = (n1, . . . , nd−1) ∈ Z

d−1 \ {0}, and we have

ν1(E + n) = ν1

(
(E ′ + n′) × ([0, 1] \ {0, 1/md , 2/md , . . . , 1}

))

= ν1
(
(E ′ + n′) × R

)

= ν1
(
π−1
d,d−1(E

′ + n′)
)

= ν′(E ′ + n′) = 0.

Since ν2 is concentrated on [0, 1]d−1×{0, 1/md , 2/md , . . . , 1}, we have ν2(E+n) =
0. Thus, we conclude that ν(E + n) = 0. Therefore, the set E is desired.

Case II: for each 1 ≤ j ≤ d, we have μ
({(x1, . . . , xd) ∈ [0, 1]d : 0 < x j < 1}) =

0. Note that spt(μ) ⊆ [0, 1]d . Thus, we conclude that

spt(μ) ⊆ {(x1, x2, . . . , xd) ∈ [0, 1]d : x j ∈ {0, 1}}. (4.2)

If 0 /∈ spt(μ), then arbitrarily take τ = (τ1, τ2, . . . , τd) ∈ spt(μ). We have τ j =
0 or τ j = 1 for 1 ≤ j ≤ d. We define φ : R

d → R
d by (x1, x2, . . . , xd) �→

(y1, y2, . . . , yd) where y j = 1 − x j if τ j = 1 and y j = x j if τ j = 0. Note that
φ−1 = φ and φ(τ) = 0. Set ν′ = ν ◦ φ. Then we have

ν′ = (λ ∗ μ) ◦ R ◦ φ = (
(λ ◦ ψ) ∗ (μ ◦ φ)

) ◦ R,

where ψ : Rd → R
d is defined by (x1, x2, . . . , xd) �→ (y1, y2, . . . , yd) where y j =

m j − 1 − x j if τ j = 1 and y j = x j if τ j = 0. Write λ′ = λ ◦ ψ and μ′ = μ ◦ φ. It
follows that

ν′ = (λ′ ∗ μ′) ◦ R.

Set B ′ = ψ(B) and pb′ = pψ(b′) for b′ ∈ B ′. Then we have λ′ = ∑
b′∈B′ pb′δb′ . Note

that (R, B ′) ∈ Dd and spt(μ′) = φ
(
spt(μ)

) ⊆ [0, 1]d .
Assume that there exists a Borel subset E ′ ⊆ R

d such that ν′(E ′) > 0 and ν′(E ′ +
n′) = 0 for all n′ ∈ Z

d \ {0}. Let E = φ(E ′). Then ν(E) = ν
(
φ(E ′)

) = ν′(E ′) > 0.
For n = (n1, n2, . . . , nd) ∈ Z

d \ {0}, let n′ = (n′
1, n

′
2, . . . , n

′
d) where n

′
j = −n j if

τ j = 1 and n′
j = n j if τ j = 0. Then we have

ν(E + n) = ν
(
φ(E ′) + n

) = ν
(
φ(E ′ + n′)

) = ν′(E ′ + n′) = 0.

The set E is desired. Thus, it suffices to show the conclusion holds for ν′. Note that
0 = φ(τ) ∈ φ

(
spt(μ)

) = spt(μ′). Therefore, without loss of generality, we assume
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that 0 ∈ spt(μ). Thus, by (4.1) we have

R−1B ⊆ spt(ν).

In the following, we show that there exists b ∈ B such that

R−1b + n /∈ spt(ν) for any n ∈ Z
d \ {0}. (4.3)

Then the set E = {R−1b} is desired.
Now arbitrarily take b(1) = (b(1)

1 , b(1)
2 , . . . , b(1)

d ) ∈ B. If (4.3) holds, then we are

done. Otherwise, there exists n(1) = (n(1)
1 , n(1)

2 , . . . , n(1)
d ) ∈ Z

d \ {0} such that

R−1b(1) + n(1) ∈ spt(ν).

Note that spt(ν) ⊆ [0, 1]d . Thus, there exists 1 ≤ i1 ≤ d such that

n(1)
i1

= 1 and b(1)
ii

= 0. (4.4)

On the other hand, by (4.1), we can find b(2) = (b(2)
1 , b(2)

2 , . . . , b(2)
d ) ∈ B and y(1) ∈

spt(μ) such that

R−1b(1) + n(1) = R−1b(2) + R−1y(1). (4.5)

Combining (4.4) and (4.5), one has b(2)
i1

= mi1 − 1.

If b(2) satisfies (4.3), then we are done. Otherwise, by (4.1), one can find n(2) =
(n(2)

1 , n(2)
2 , . . . , n(2)

d ) ∈ Z
d \ {0}, b(3) = (b(3)

1 , b(3)
2 , . . . , b(3)

d ) ∈ B and y(2) ∈ spt(μ)

such that

R−1b(2) + n(2) = R−1b(3) + R−1y(2). (4.6)

By the above argument, there exists i2 ∈ {1, 2, . . . , d} \ {i1} such that n(2)
i2

= 1 and

b(2)
i2

= 0. Note that b(2)
i1

= mi1 − 1, b(2)
i2

= 0 and n(2)
i2

= 1 . Thus (4.6) implies the
following facts

b(3)
i1

≥ mi1 − 2, b(3)
i2

= mi2 − 1.

If b(3) satisfies (4.3), then we are done. Otherwise, one can find b(4) =
(b(4)

1 , b(4)
2 , . . . , b(4)

d ) ∈ B satisfying

b(4)
i1

≥ mi1 − 3, b(4)
i2

≥ mi2 − 2, b(4)
i3

= mi3 − 1 where i3 ∈ {1, 2, . . . , d} \ {i1, i2}.

We can continue the above process at most d steps to obtain b ∈ B which satisfies
(4.3). This is because all mi ≥ d + 1 and so at the d-th step, one can find b(d+1) =
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(b(d+1)
1 , b(d+1)

2 , . . . , b(d+1)
d ) ∈ B satisfying b(d+1)

i ≥ 1 for all 1 ≤ i ≤ d. This b(d+1)

clearly satisfies (4.3).
Now, by assuming that Theorem 4.1 holds in R

d−1, we have showed that Theo-
rem 4.1 holds in R

d . By Lemma 4.2, Theorem 4.1 holds in R. By induction on the
dimension d, we complete the proof. ��

We end this section by giving a corollary of Theorem 4.1.

Corollary 4.3 In R
d , given a sequence {(Rn, Bn)}∞n=1 ⊆ Dd , for the infinite convolu-

tion

ν = δR−1
1 B1

∗ δ(R2R1)−1B2 ∗ · · · ∗ δ(Rn ...R2R1)−1Bn ∗ · · · ,

we have Z(ν) = ∅.
Proof Let R = Rd . . . R2R1, and

B = Rd Rd−1 . . . R2B1 + Rd Rd−1 . . . R3B2 + · · · + Rd Bd−1 + Bd .

Then (R, B) ∈ Dd , and all diagonal elements of R are ≥ 2d ≥ d + 1. The measure ν

can be written as

ν = (δB ∗ μ) ◦ R,

where μ = δR−1
d+1Bd+1

∗ δ(Rd+2Rd+1)
−1Bd+2

∗ · · · . Note that spt(μ) ⊆ [0, 1]d . It follows
from Theorems 4.1 and 1.3 that Z(ν) = ∅. ��

5 Proofs of Theorem 1.4, 1.5 and 1.6

First, we recall a criterion for the convergence of infinite convolutions, and then we
prove Theorem 1.4.

Theorem 5.1 [22, Theorem 1] Let μ1, μ2, . . . ∈ P(Rd). A necessary and sufficient
condition for the convergence of the infinite convolution μ1 ∗ μ2 ∗ · · · is that for any
arbitrarily chosen sequence {kn} of positive integers, {ρn} converges weakly to δ0 as
n → ∞, where ρn = μn+1 ∗ · · · ∗ μn+kn .

Theorem 5.2 Let {(Rn, Bn)}∞n=1 be a sequence of admissible pairs inR
d . Suppose that

(i)

lim
n→∞ ‖R−1

1 R−1
2 . . . R−1

n ‖ = 0,

and there exists a cube C = t0 + [0, 1]d for some t0 ∈ R
d such that

(ii) for each n ≥ 1, we have R−1
n (C + b) ⊆ C for every b ∈ Bn,

(iii) there exists an admissible pair (R, B), which occurs infinitely times in the sequence
{(Rn, Bn)}∞n=1, such that R−1(C + b0) ⊆ int(C) for some b0 ∈ B.
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Then the infinite convolution μ defined in (1.2) exists and is a spectral measure with
a spectrum in Zd .

Proof Let {μn} be defined in (1.1). We have

spt(μn) = R−1
1 B1 + (R2R1)

−1B2 + · · · + (Rn . . . R2R1)
−1Bn .

By the assumption (ii), we have R−1
n (Bn + C) ⊆ C for all n ≥ 1. Thus,

R−1
1 B1 + (R2R1)

−1B2 + · · · + (Rn . . . R2R1)
−1Bn + (Rn . . . R2R1)

−1C

= R−1
1 B1 + (R2R1)

−1B2 + · · · + (Rn−1 . . . R2R1)
−1

(
R−1
n (Bn + C)

)

⊆ R−1
1 B1 + (R2R1)

−1B2 + · · · + (Rn−1 . . . R2R1)
−1Bn−1 + (Rn−1 . . . R2R1)

−1C

⊆ · · · · · ·
⊆ R−1

1 (B1 + C)

⊆ C .

It follows that

spt(μn) ⊆ C − (Rn . . . R2R1)
−1C . (5.1)

Choose a sequence {kn}∞n=1 of positive integers in an arbitrary way. For each n ≥ 1,
define

ρn = δ(Rn+1...R2R1)−1Bn+1
∗ · · · ∗ δ(Rn+kn ...R2R1)−1Bn+kn

.

Then ρn = λn ◦ (Rn . . . R2R1)where λn = δR−1
n+1Bn+1

∗· · ·∗δ(Rn+kn ...Rn+2Rn+1)−1Bn+kn
.

By the same argument for μn , we have spt(λn) ⊆ C − (Rn+kn . . . Rn+2Rn+1)
−1C .

Thus,

spt(ρn) = (Rn . . . R2R1)
−1spt(λn) ⊆ (Rn . . . R2R1)

−1C − (Rn+kn . . . R2R1)
−1C .

By the assumption (i), the sequence of sets {spt(ρn)} shrinks to the origin point 0.
Therefore, we have {ρn} converges weakly to δ0. Since the sequence {kn}∞n=1 is arbi-
trarily chosen, by Theorem 5.1, we conclude that the infinite convolution μ exists.

For γ > 0, define Cγ = C + [−γ, γ ]d . It follows from (5.1) and the assumption
(i) that for any given γ > 0, spt(μn) ⊆ Cγ for sufficiently large n. Note that {μn}
converges weakly to μ. Thus, we have spt(μ) ⊆ Cγ for all γ > 0. It follows that
spt(μ) ⊆ C . Let {ν>n} be defined in (1.3). Similarly, we also have spt(ν>n) ⊆ C for
all n ≥ 1. Since (R, B) occurs infinitely times in the sequence {(Rn, Bn)}∞n=1, let

{n1, n2, n3, . . .} = {n ≥ 1 : (Rn, Bn) = (R, B)},

where n1 < n2 < n3 < · · · . By the weak compactness of {ν>n}, the sequence
{ν>nk } has a weak convergent subsequence. By taking a subsequence, we may assume
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that {ν>nk } converges weakly to a Borel probability measure ρ. Moreover, we have
spt(ρ) ⊆ C . Note that ν>nk−1 = δR−1

nk Bnk
∗ (ν>nk ◦ Rnk ) = δR−1B ∗ (ν>nk ◦ R). Thus,

{ν>nk−1} converges weakly to ν = δR−1B ∗ (ρ ◦ R). It follows that

spt(ν) = R−1(spt(ρ) + B
)
.

By the assumption (ii), we have spt(ν) ⊆ C . By the assumption (iii), we have E =
spt(ν) ∩ int(C) �= ∅, and hence ν(E) > 0. For any n ∈ Z

d \ {0}, noting that E + n ⊂
int(C)+n, we have (E+n)∩C = ∅. It follows that ν(E+n) = 0 for any n ∈ Z

d \{0}.
By Theorem 1.3, we have Z(ν) = ∅. It follows from Theorem 1.2 that μ is a spectral
measure with a spectrum in Zd . ��
Remark (a) By Lemma 2.6 (i) and Lemma 2.3, the translation of the digit sets Bn

does not change the admissible pair assumption and the spectrality of the resulting
infinite convolution. Thus, in practical applications we can translate the digit sets
Bn to check whether the assumptions (ii) and (iii) are satisfied or not.

(b) If there are only finitely many terms in the sequence {(Rn, Bn)}∞n=1 not satisfying
the assumption (ii), then we can choose a sufficiently large integer n0 such that the
admissible pair (Rn, Bn) satisfies the condition (ii) for all n ≥ n0 + 1. Applying
this theorem to the sequence {(Rn, Bn)}∞n=n0+1, we obtain that ν>n0 defined in

(1.3) is a spectral measure with a spectrum in Z
d . Note that μ>n0 = ν>n0 ◦

(Rn0 . . . R2R1). By Lemma 2.3, μ>n0 admits a spectrum in (Rn0 . . . R2R1)
T
Z
d .

Finally, by Lemma 2.4, we also conclude the infinite convolution μ = μn0 ∗μ>n0
is a spectral measure.

(c) If we replace the set C by a smaller set C ′ which is contained in some cube
t0 + [0, 1]d in the statement, then the result remains valid.

By using Theorem 4.1, the proof of Theorem 1.5 is similar to that of Theorem 1.4.

Theorem 5.3 In R
d , suppose that {(Rn, Bn)}∞n=1 ⊆ Dd is a sequence of admissible

pairs. If there exists an admissible pair (R, B) that occurs infinitely times in the
sequence {(Rn, Bn)}∞n=1, and moreover, all diagonal elements of R are greater than
or equal to d +1, then the infinite convolution μ defined in (1.2) is a spectral measure
with a spectrum in Zd .

Proof Let

{n1, n2, n3, . . .} = {n ≥ 1 : (Rn, Bn) = (R, B)},

where n1 < n2 < n3 < · · · . Let {ν>n} be defined in (1.3). Since {(Rn, Bn)}∞n=1 ⊆ Dd ,
we have spt(ν>n) ⊆ [0, 1]d for all n ≥ 1. By taking the subsequence of {nk}, we may
assume that {ν>nk } converges weakly to a Borel probability measure ρ with spt(ρ) ⊆
[0, 1]d . Similarly, note that ν>nk−1 = δR−1

nk Bnk
∗ (ν>nk ◦ Rnk ) = δR−1B ∗ (ν>nk ◦ R),

and thus we have {ν>nk−1} converges weakly to ν = δR−1B ∗ (ρ ◦ R) = (δB ∗ ρ) ◦ R.
By Theorems 4.1 and 1.3, we haveZ(ν) = ∅. By Theorem 1.2,μ is a spectral measure
with a spectrum in Zd . ��



35 Page 24 of 27 Journal of Fourier Analysis and Applications (2024) 30 :35

The following lemma is needed to prove Theorem 1.6.

Lemma 5.4 For f ∈ Cb(R
d) and ε > 0, there exists n0 ≥ 1 such that for any sequence

{(Rn, Bn)}∞n=1 ⊆ Dd , we have

∣∣∣∣
∫

Rd
f (x) dμn0(x) −

∫

Rd
f (x) dμ(x)

∣∣∣∣ < ε,

where μ is the infinite convolution defined in (1.2) and {μn} is defined in (1.1).

Proof Let {ν>n} be defined in (1.3). Since {(Rn, Bn)}∞n=1 ⊆ Dd , for each n ≥ 1 we
have

spt(μn) ⊆ [0, 1]d and spt(ν>n) ⊆ [0, 1]d .

Note that ν>n = μ>n ◦ (Rn . . . R2R1)
−1. This implies that

spt(μ>n) = (Rn . . . R2R1)
−1spt(ν>n) ⊆ [0, 2−n]d .

For f ∈ Cb(R
d) and ε > 0, since f is uniformly continuous on [0, 2]d , there exists

0 < γ < 1 such that for all x, y ∈ [0, 2]d with |x − y| < γ we have

| f (x) − f (y)| < ε. (5.2)

Since

∫

Rd
f (x) dμ(x) =

∫

Rd
f (x) dμn ∗ μ>n(x)

=
∫

Rd

∫

Rd
f (x + y) dμ>n(y) dμn(x),

by choosing a sufficiently large integer n0 such that 2−n0 < γ/
√
d and (5.2), we have

that

∣∣∣∣
∫

Rd
f (x) dμn0(x) −

∫

Rd
f (x) dμ(x)

∣∣∣∣

=
∣∣∣∣
∫

Rd

∫

Rd

(
f (x) − f (x + y)

)
dμ>n0(y) dμn0(x)

∣∣∣∣

≤
∫

[0,1]d

∫

[0,2−n0 ]d
∣∣ f (x) − f (x + y)

∣∣ dμ>n0(y) dμn0(x)

< ε,

as desired. ��
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Theorem 5.5 In Rd , given a sequence of admissible pairs {(Rn, Bn)}∞n=1 ⊆ Dd , if

sup
n≥1

‖Rn‖ < ∞, (5.3)

then the infinite convolution μ defined in (1.2) is a spectral measure with a spectrum
in Zd .

Proof Let H = {(Rn, Bn) : n ≥ 1}. The assumption (5.3) implies that the set H is
finite, denoted by

H = {(R′
1, B

′
1), (R

′
2, B

′
2), . . . , (R

′
m, B ′

m)}.

Let � = {1, 2, . . . ,m}N. For ω = (ωk)
∞
k=1 ∈ �, let

μω = δ(R′
ω1

)−1B′
ω1

∗ δ(R′
ω2

R′
ω1

)−1B′
ω2

∗ · · · ∗ δ(R′
ωk

...R′
ω2

R′
ω1

)−1B′
ωk

∗ · · · .

For q ≥ 1, we write

μω,q = δR−1
ω1 Bω1

∗ δ(Rω2 Rω1 )−1Bω2
∗ · · · ∗ δ(Rωq ...Rω2 Rω1 )−1Bωq

.

For the infinite convolutionμ defined in (1.2), there exists η ∈ � such thatμ = μη.
Let {ν>n} be defined in (1.3), and let σ denote the left shift on �. Then we have

ν>n = μσ n(η).

By the compactness of �, there exists a subsequence {n j } of positive integers such
that {σ n j (η)}∞j=1 converges to ζ in � for some ζ ∈ �.

For f ∈ Cb(R
d) and ε > 0, by Lemma 5.4, there exists q0 ≥ 1 such that for all

j ≥ 1,

∣∣∣∣
∫

Rd
f (x) dμσ

n j (η),q0(x) −
∫

Rd
f (x) dμσ

n j (η)(x)

∣∣∣∣ <
ε

2
,

and
∣∣∣∣
∫

Rd
f (x) dμζ,q0(x) −

∫

Rd
f (x) dμζ (x)

∣∣∣∣ <
ε

2
.

Since {σ n j (η)}∞j=1 converges to ζ , there exists j0 ≥ 1 such that for j ≥ j0, we have

μσ
n j (η),q0 = μζ,q0 .

Thus, it follows that for j ≥ j0,

∣∣∣∣
∫

Rd
f (x) dμσ

n j (η)(x) −
∫

Rd
f (x) dμζ (x)

∣∣∣∣ < ε.
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Since f and ε are arbitrary, this implies that the sequence {ν>n j = μσ
n j (η)} converges

weakly to μζ .
By Corollary 4.3, we have Z(μζ ) = ∅. By Theorem 1.2, it follows that μ is a

spectral measure with a spectrum in Zd . ��
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