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Abstract

We establish weak-type (1, 1) bounds for the maximal function associated with ergodic
averaging operators modeled on a wide class of thin deterministic sets B. As a corol-
lary we obtain the corresponding pointwise convergence result on L. This contributes
yet another counterexample for the conjecture of Rosenblatt and Wierdl from 1991
asserting the failure of pointwise convergence on L! of ergodic averages along arith-
metic sets with zero Banach density. The second main result is a multiparameter
pointwise ergodic theorem in the spirit of Dunford and Zygmund along B on L?,
p > 1, which is derived by establishing uniform oscillation estimates and certain
vector-valued maximal estimates.

1 Introduction

The work presented in this paper has two parts. The first part is a one-parameter
pointwise ergodic theorem on L', which contributes another counterexample for a cel-
ebrated conjecture of Rosenblatt and Wierdl, and the second part is a multi-parameter
pointwise result in the spirit of Dunford and Zygmund, see for example 1.11. Before
precisely stating our results, some historical remarks are in order.

1.1 Brief Historical Remarks

In 1991 Rosenblatt and Wierdl [25, Conjecture 4.1] formulated a famous conjec-
ture asserting that for any arithmetical set A with zero Banach density and for
any (X, B, u, T) aperiodic probability dynamical system, there exists a function
f e L}L(X), such that
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1
MANf = —— Z foT" does not converge almost everywhere,
[ANTL N neAN[1,N]

i.e. thesetof x € X suchthatlimy_. oo Ma, n f(x) does not exist has positive measure.
This was disproven in 2006 by Buczolich [5], where he provided a counterexample by
constructing inductively an appropriate set A of zero Banach density for which one
gets the pointwise convergence of the ergodic averages M y f forall f € L.

Calder6n’s transference principle suggests that such questions are closely related
to the study of weak type (1, 1) estimates for the maximal function corresponding to
those averages over the integer shift system, namely for the operator

1
M =sup ——— Y —n)|.
Af(X) :/l;% lA n [1’ N]| neAN[1,N] |f(x n)|

A year later it was shown [26] that for A = {[n] : n € N} with ¢ € (1, %), the
operator M 4 is of weak type (1, 1), and as a corollary the authors proved pointwise
convergence on L' for the corresponding ergodic averages along the set A, providing
a counterexample of the aforementioned conjecture given by a concrete formula. This
class of examples was extended in [20] where the author established the weak type
(1,1) bounds for M 4 and the corresponding pointwise ergodic theorem on L! for sets
of the form {[n“¢(n)| : n € N}, where c is close to 1 and ¢ is a certain kind of
slowly varying function, for example any iterate of log, see Definitions 1.1,1.2 below.
Finally, another class of examples appeared in [7], where for any r € Q N (1, 00),
certain sequences {a, },<n of algebraic nature were constructed such that @, >~ n” and
such that the associated maximal operator is of weak type (1, 1). Comparing this with
the failure of the estimate for A = {nk : n € N} for any k > 2, see [6] and [18], one
sees that determining whether the weak type (1, 1) bound holds for M 4 is a delicate
problem which is rather sensitive to perturbations of the sequence. For example, even
the case correspoding to A = {|nlogn] : n € N} remains open.

One of the main results of the present work is a natural extension of the result from
[20] and in order to formulate it, we must introduce two families of functions that one
may think of as slowly varying and regularly varying functions respectively.

Definition 1.1 Fix xo > 1 and let £ denote the set of all functions £: [xg, 0c0) —

[1, c0) such that
£(x) = exp </X &dt>
X0 t

where ¥ € C2([xg, o0)) is a real-valued function satisfying

B(x) = 0, x0'(x) > 0,x%0"(x) = 0 asx — oo.
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Definition 1.2 Fix xo > 1 and let £y denote the set of all functions £: [xg, 00) —

[1, o0) such that
£(x) =exp <[x mdt>
X0 t

where 9 € C2([xg, 00)) is a positive and decreasing function satisfying

x (x) X297 (x)
,— —> 0 asx — oo,
9 (x) 9 (x)

J(x) —> 0,

and such that for all & > 0 we have ¥ (x) 2, x~¢ and lim,_, o, £(x) = oo.

We note that £y € £ and we give some examples of these slowly varying functions.
Fora > 0,b € (0,1), k € Nand ¢ € R, we have

alogh x

log” x € Lo, e € Ly, logo---ologx € Ly, log°x € L, oclog’x c L.
———

k times

We proceed by defining a family of regularly varying functions.

Definition 1.3 Fix xg > 1, ¢ € (1,00) and let R, be the set of all functions
h: [xg,00) — [1,00) such that & is strictly increasing, convex and of the form
h(x) = x“£(x) for some ¢ € L. We define R analogously with the extra assumption
that £ € L.

We are now ready to give the definitions of the arithmetic sets we are interested in.
Let c1, ¢ € [1,2) and let us fix /1 and &y in R, and R, respectively. Let ¢ and
@2 be the compositional inverses of /1 and &, and for convenience, let y; = 1/c¢; and
y2 = 1/c>. Fix a function ¥ : [1, 0c0) — (0, 1/2], ¥ € C2([1, 00)) such that

Y(x) ~ @3(x), ¥ (x) ~ey(x), ¥"(x) ~ ¢y (x)asx — oo.

We can now define By = {n € N : {pi(n)} < ¥v(n)} and B = {n € N :
{—p1(m)} < ¥ (n) }, where {x} = x — |x].

Those sets have been introduced and studied in [17], where the authors proved that
the Hardy-Littlewood majorant property holds for them, as a corollary of a restriction
theorem. Recently, the author [9] proved an analogous result for P N By, see The-
orem 1.8 in [9], as well as Roth’s theorem in these sets, namely, it was shown that
any subset of the primes of the form By with positive relative upper density contains
infinitely many non-trivial three-term arithmetic progressions.

Following [9] we repeat and extend some comments on the sophisticated nature of
the sets B+. To motivate the definition of B4, we note that

neB_. < dImeN: 0<m—o@i(n) <y
< ImeN: gi(n) <m < @(n) +v¥{Hn)
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Im e N: n < hi(m) < hi(p1(n) + ¥ (n))
&= dm e N: hi(m) € [n, h1(p1(n) + ¥ (n))).

Fory € (0,1),h1(x) = ha(x) = x'/7 and ¥ (x) = @1 (x+1)—¢i (x), note that the last
condition becomes m'/Y € [n,n+ 1) orn = |m"/? |, thus B_ = { |[m"/V|: m € N}.
It is not difficult to see that any set

Nj = {Lh(m)]: m e N}, heRe (1.4)

can also be brought in the form B_ by similar appropriate choices. Thus the family of
sets we consider includes the fractional powers with exponent close to 1 and even the
more general sets considered in [20].

1.2 One-Parameter Ergodic Theorem on L'

We state one of the main results of our paper. Due to some technical complications,
we demand further that ¢1 >~ ¢;, and note that this implies that ¢; = ¢;.

Theorem 1.5 (Weak-type (1,1) inequality for Mp,) Assume ¢; € (1,30/29) and
@1 = @2. Then the maximal function

1
Mp f)=sup ————= Y |f(x—n)|

NeN | B+ N[1, N]| neBAPILN]

is of weak-type (1,1), i.e.:
x € Z: IMp, f)] > M} < CA M £l z-

By interpolation, this implies that for all p € (1, 00), there exists a constant C, > 0
such that

IMp, fllerzy < Cpll fllerz)-

We use this, together with 2-oscillation estimates, see Theorem 1.12, to obtain the
following pointwise convergence result.

Theorem 1.6 (Pointwise ergodic theorem) Assume ¢ € (1,30/29), ¢1 >~ ¢ and let
(X, B, i, T) be an invertible o -finite measure preserving system. For any p € [1, 00)
and any f € Lﬁ(X), we have that

Mp, nf(x)= Z f(T"x) converges ji-a.e. on X.

1B N[L NI 25 v

Before discussing the strategy of our proofs, we would like to further examine the sets
B and give some concrete examples. Note that

Birkhduser



Journal of Fourier Analysis and Applications (2024) 30:37 Page 50f50 37

neBy < IMmeN:0<¢(n)—m<yYn)
< dm e N:me (p1(n) — Y (n), p1(n)].

Now assume that n € By, and m € N is such that m € (¢1(n) — ¥ (n), ¢1(n)] and
assume that n is the smallest integer such thatm € (¢1(ng) — ¥ (ng), ¢1(np)]. Evenin
simple examples, we should expect that B, will contain a lot of consecutive integers
after ng. For example, for any ¢; inverse of a function in R, let ¢ = C100¢7, where
C is the doubling constant of ¢}, namely, ¢} (x) < C¢'(2x), and let = ¢}. Since ¢;
is increasing and Y = ¢} is decreasing, we get that ¢ — 1 is increasing and thus since
m ¢ (p1(ng—1)—y¥(mg—1), ¢1(no— 1)], we get that m > ¢ (ng — 1). We claim that
foralll € {0, ---,99}, we get that m € (¢1(ng +1) — ¥ (no + 1), ¢1(np + 1)1, which
implies that B contains 99 consecutive integers after ng. Clearly, m < ¢;(ng+1) for
all I € Ny. If we assume for the sake of a contradiction that for some [ € {0, ..., 99}
we have that m < @1 (ng +1) — Y1 (no + 1), then

p1(ng — 1) < gi(ng+1) — Yo +1)
and by the Mean Value Theorem, there exists a §,,; € (no — 1, ng + ) such that

C100¢] (ng + 1) _ oo+ D —gi(no — 1)
[+1 [+1
= @1 (Eng1) < @1 (np — 1) < Cp|(2ng —2)
< Coy(no +1D).

Thus
100 < [ + 1 which is a contradiction.

This shows that the set B considered here contains infinitely many full blocks of 100
consecutive integers. Such a set By stands in sharp contrast to the sets of the form
Ny ={|h(m)]: m € N}, h € R, as the gaps between members of such sets tend to
infinity.
In general, the constant sup, <[ o) % determines an important qualitative aspect
’ 1

of the form of the sets By, see Lemma 2.4. Loosely speaking, for big intervals of
integers where the ratio is bigger than L, we expect that B1 will contain blocks of
length at least L/C, where C is the doubling constant of ¢}. The technical issues
that arose when trying to handle the case where B contains arbitrarily long intervals
of integers (specifically in the counting Lemma 5.1) forced the author to impose the
@5 (x)

2— could oscillate
@1(x)

restriction ¢ = @5, which is equivalent to ¢ 2~ ¢,. We note that

and thus B+ could contain blocks of various oscillating lengths.

We give certain explicit examples to enhance and extend the heuristics described
above as well as to illustrate the reach of the main theorems of the present work. We
begin by considering the sets N. = {|m°] : m € N}, and by observing that

neN, < ImeN:n<m<n+1l, 1.7
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which means that n € N, if and only if the interval [r, n + 1) “contains a c-power”.
Introducing the sets B+ allows us to consider intervals of various lengths.
Intervals of fixed length Let ¢ > 1, y = 1/c. With the choices

1 1
1) =x7". @(x) = —x", Yx)= (x + —)y —x7,

100 100
we get
€B. < dmeN Ce[ + ! )
neB_ m i m n,n+—),
100
or equivalently B_ = NN U(i%'gCJ :m e Nt

The previous example is readily generalizable. Letc > 1, ¥ = 1/c and fix A > 0,
B >0and C € N, and let

Cx BY cr!
p1(x) = (—x - —) , pa(x) = x?,

A A AY
Cx 1- B\’ Cx B\’
‘/’(x)=<7+T> ‘(7‘2)
Then
nGB_<:>3m€N:Q—§<mC<2+1_—B<=>
A AT A A
dm e N: Canm"+B<Cn+1(=}3meN:n=LAmc+BJ,

and thus

| Am® + B]

B_=Nﬂ{ .meN}.

Similarly, appropriate choices of parameters give B_ the following form

B_={neN:3dmecNwithm® € [n+aj,n+ a)}
with 0 < o < apand ¢ > 1. (1.8)

For ap — o1 > 2, we have that B_ is a union of intervals of length at least cx —
a1 — 1 “around c-powers”, see also the proof of Lemma 2.4. This set highlights the
aforementioned qualitative difference of B+ with any Ny for 4 € R, considered in
[20], namely, the sets B4 can contain consecutive integers.

Intervals of oscillating lengths For certain choices of parameters one produces a set
B_ which is comprised of intervals of oscillating lengths around c-powers. Let ¢ > 1,
y = 1/c and

p1(x) =xY, @(x) = x”(99sin(loglog x) + 100),
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¥ (x) = (x +99sin(loglog x) + 100)Y — x7.
Thenn € B_ <= n <m° < n+ 99sin(loglogn) + 100, and thus
B_ ={n e N: Im € Nwith m® € [n,n + 99 sin(loglogn) + 100)}.

We believe that the examples illustrate the flexibility in the choices of parameters
defining B+ and consequently the reach of Theorem 1.6.

Let us remark that the examples given are readily generalizable, for example, m¢
can be replaced by /1 (m) with i € R.,. Routine but lengthy calculations show that
all the choices we made for our parameters are compatible with the conditions in the
definition of the set B, as well as the technical assumption ¢; >~ ¢;, except possibly
for small values of x, which is insignificant since only the tail of the set B+ plays a
role in our results.

Let us restrict our attention to the sets B, which we call B from now on, as the
results for B_ are of equal difficulty. We make the following remarks.

Remark 1.9 (Smooth dyadic maximal operator) To establish Theorem 1.5, it is conve-
nient to work with a smooth dyadic variant of the maximal operator. More precisely,
let us fix n € C*°(R) such that 0 < n(x) < 1 for all x € R, supp(n) < (1/2,4) and
n(x) = 1 for all x € [1, 2]. We define

s 1 n
MG fx) = sup {m Dolf— ”)|77<2—k>}

keNp neB

and note that

1 sd)
Mg f(x) < sup {— If(x—n)l} S MED £ (x).
keN LB NI2K, 264D neBﬂ%‘:,Zk‘*") ’

The first inequality is straightforward, and for the second one, note that Lemma 2.1
implies that

|[BN[1,N]|~|BN[N/2, N)| >~ ¢2(N) for sufficiently large N.

Thus it suffices to establish the weak type (1,1) bound for ./\/lgd) which we denote by
M, and let
Ky = —— 35, 0m( %)
NX)=—— X)n — ),
¢2(N) = "7 AN

so that M f(x) = supyen, {Kor * | f[(x)}.

We give a brief overview of the main ideas of the proof of Theorem 1.5. We use
a subtle variation of the Calderén-Zygmund decomposition that was introduced by
Fefferman [11], see also [8], in a similar manner to [26] and [20]. More specifically,
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after approximating K, * K, by suitable well-behaving functions, see Lemma 5.2,
we employ a refined Calderén-Zygmund decomposition which allows us to use £2-
estimates for the “very bad” part of the decomposition, see subsection 5.2. The
aforementioned approximation is analogous to the one presented in section 5 of [20]
and similar techniques are used here. The novelty lies in the sophisticated nature
of the sets B which complicates the situation substancially. For example, bounding
| K, * K. (x)] for small values of x, see Lemma 5.1, is precisely what forced the author
to impose the extra assumption ¢; =~ ¢;. To carry out the approximation one needs
to estimate certain exponential sums and the main tool is Van der Corput’s inequality.
Some of the necessary exponential sum estimates can be readily found in section 3
of [20] and suitable extensions are already established by the author in [9]. Finally,
we formulate an abstract result, see Theorem 5.5, which ~is a generalization of Theo-
rem 6.1 of [20], adapted to our approximation for K, x K,,. We give the full proof of
Theorem 1.5 in Sect. 5 and the reader is encouraged to compare it with section 3 of
[26], and section 5 and 6 of [20].

Combining Theorem 1.5 with the trivial estimate || Mpgllecz)—eo@) S 1, we
obtain by interpolation that [|Mp|lerz)—erzy Sp 1, for all p € (1, oo]. Calderén’s
transference principle implies that for any invertible o-finite measure preserving
system (X, B, u, T') we have

I sup Mp.N f |l gy Sp 11z x) for p € (1, 00), and
€

11zt oxy
p(fx € X : | sup Mgy f(x)] > A}) S —+—,
NeN A
and a standard argument shows that Eg = { f € Lﬁ(X )

limy—oo Mp, n f exists u-a.e.} is closed in L, (X), for all p € [1,00), and thus
to establish Theorem 1.6 it suffices to exhibit an L} -dense class of functions D),
contained in L’é. The exponential sum estimates of Lemma 2.1 together with a
straightforward adaptation of the argument presented in section 3 of [20], which uses
ideas from [4], shows that one may take D, = L Z X)n Li (X) and conclude. Instead
of this, we derive the pointwise convergence immediately by the much stronger uni-
form 2-oscillation Lﬁ-estimates of Theorem 1.12, which are also exploited in the
sequel.

1.3 Multi-Parameter Ergodic Theorem

The second main result of our paper is a multi-parameter variant of Theorem 1.6. Here
we discard the assumption @1 =~ ¢, and the acceptable range of ¢ and c; is consid-
erably larger. In contrast to the one-parameter situation, weak-type (1, 1) estimates
do not hold here, which is comparable with the failure of Lebesgue’s differentiation
theorem for rectangles with sides parallel to the axes on L.

To make the exposition slightly cleaner, let us fix k € N and By, ..., B as in the
introduction, where (i, h2,;) € Rey; X Re,, are as in the definition of B;, and we
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assume that c;; € [1,2) and ¢p; € [1,6/5) for all i € [k]. We are ready to state the
second main result.

Theorem 1.10 Assume (X, B, 1) is a o -finite measure space and {S; : i € [k]} is a
Sfamily of invertible p-invariant commuting transformations. Then for any p € (1, 00)
and any f € Lﬁ(X) we have that

1
lim —_ E fo S(l)(x) exists for p-a.e. x € X
. k ’
min{N{,...,Ny}—>o00 Hizl |B; N1, N;]| le]_[k BN, ]
i=1"21 LR

where S0l = Sil 0---0 S,lck.

Apart from the larger range of exponents, the absence of the condition ¢ >~ ¢»
allows us to consider a variety of additional sets here. We provide some examples.
Shrinking intervals The fact that we can choose ¢; < ¢y allows us to consider
shrinking intervals. Let 1 < ¢ < ¢, y1 = 1/c1 and y» = 1/c3, and let

yleZ
p1(x) =x", p(x) = ,
V2

Y(x) = (x +x277)" -y,

Then

neB. < dmeN: n<m <n+n2™N
= dm e N: m“ ¢ [n,n—i—n}’z*”‘),

which gives B_ the following form,
B_ = {n € N: Im € Nwithm® € [n,n +n_0)},
for ¢ > 1,0 > 0 and close to 1 and O respectively, which in turn, means that we only
consider integers that “approach c-powers” rapidly.
Expanding intervals Analogously, with appropriate choices with c; > ¢2, we get
B_ = {n e N: Im € Nwithm® € [n,n+n9)},
forc > 1,0 > 0 and close to 1 and O respectively, which is a union of intervals of
expanding lengths, and again, such sets are not of the form Nj. For an example of
expanding intervals when c¢; = ¢»,letc > 1, y = 1/c and let
p1(x) =x", @(x) =x"(2logx), Y(x)=(x+2logx)" —x7.
Note that then

B_ ={neN: 3m € Nwithm® € [n,n + 2logn)}.
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We make some brief historical remarks. In 1951 Dunford [10] and Zygmund [28]
independently showed that given a o-finite measure space (X, B, i) and a family of
p-invariant transformations {7; : i € [k]}, for any p € (1, 00) and any f € L,’i(X),
we have

1 ! I
_ T,'---T,*x) converges p-a.e.on X
Ni--- Ni Z ST k%) 8es i
Le[Tr_ 11,1
and in L? norm as min{Ny, ..., Ny} — oo.

Notably, for k > 2, pointwise convergence fails on L!. Motivated by that observation
and after his seminal work on pointwise ergodic theory [2—4], Bourgain showed that
forany p € (1,00) and any f € L,’i(X), we have

1 Pi) Pl
_ f(T IR Ml x) converges jt-a.e. on X
Ni--- N kZ 1 k
Te[T5_ [1,N;]
as min{Ny, ..., Ny} — oo,
where Py, ..., Py € Z[x], P1(0) = --- = P(0) = 0 and {7T; : i € [k]} is a family

of commuting and invertible p-invariant transformations. In contrast to Dunford and
Zygmund’s result, the commutativity assumption turns out to be indispensable for the
polynomial case. For a more thorough exposition on the matter we refer the reader to
Section 1.2 in [23] as well as the introduction from [1], see page 3. In the spirit of the
above, Theorem 1.10 establishes the multi-parameter result for orbits along sets of the
form B. For example, for appropriate choices of parameters, Theorem 1.10 implies
that for any p € (1, 00) and any f € Lﬁ(X), we have

1

- Z f(TUl"llJ e TU’ika) converges /-a.e. on X
Ni--- Ng 1 k e

Le[TA 11,N:]
as min{Ny, ..., Ny} — oo, (1.11)
wherecy, ..., ck € (1,6/5) and {T; : i € [k]}isafamily of commuting and invertible

p-invariant transformations. To the best of the author’s knowledge, this is the first
time multi-parameter pointwise convergence is established for orbits along fractional
powers in the spirit of Dunford and Zygmund.

Using an abstract multi-parameter oscillation result from [23], we reduce the task of
proving the above theorem to establishing some useful quantitative uniform estimates,
which may be of independent interest.

Before precisely formulating these estimates, we note that for any ¥ € X C R,
with | X| > 2, we have that

Sy X)={{lp <---<I;} € X}and Of’l(a,(x): tey)
J—1

=(X s law-a, (x>|2)1/2.

j=0 te[lj,1j+1)NY
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For the basic properties of oscillations as well as the definition of multi-parameter
oscillations we refer the reader to section 2 from [23].

Theorem 1.12 (Uniform 2-oscillation and vector-valued maximal estimates) Assume
c1 €[1,2), c; €[1,6/5) and B as in the introduction. Assume (X, B, i) is a o -finite
measure space and T is an invertible j-invariant transformation. Let

1 n
Mp:f(x)= BOLl Z F(T"x).

neBN[1,¢]

Then for any p € (1, 00), there exists a constant C, such that

sup  sup ||0%](MB,tf 1re N)”LZ(X)
JeNIeG;(N)
< Cpll fll oy forany f € LE(X) (1.13)

and such that
N 1/2
[ (X (sup Mz 51)?)
jez teN
<o (S
JEZ

Li(X)

L,f;(x)f‘” any (f))jez € LE(Z: (). (1.14)

We now comment on the proof of Theorem 1.12. Again, Calderén’s transference
principle suggests that it suffices to establish these estimates for the integer shift sys-
tem. Ultimately, those estimates are derived from the analogous ones for the standard
discrete Hardy—Littlewood averaging operator. For the vector-valued maximal inequal-
ity we use the exponential sum estimates of Lemma 2.1 together with the fact that
behaves “like a constant” in dyadic blocks in order to eventually be able to use the
corresponding estimates for the Hardy—Littlewood averaging operator (for example
see Theorem 1 in [12] or Theorem C in [21]). The situation is much more compli-
cated for the oscillations. We follow the strategy from [22] and [27], and we break
our analysis into short and long oscillations, and instead of opting to handle as our
“long oscillations” the rather natural choice {2" : n € Ny}, we choose a much denser
set, namely {|_2"TJ : n € Ny}, for v small. This affords us to bound the short oscilla-
tions straightforwardly. Loosely speaking, the long oscillations are treated in similar
manner to the vector-valued maximal inequality, but the fact that the 2-oscillations
are not a positive operator makes the use of the fact that ¢ behaves nicely in dyadic
blocks difficult. Here, we adapt the argument from section 5 in [24] to our oscilla-
tion setting in order to compare averages with different weights. Again, we use the
uniform oscillation estimates for the discrete Hardy-Littlewood averaging operator
to conclude (which one may find for example in [15] or [19]). Finally, we mention
that the exponential sum estimates help us understand some error terms on £2, and
Riesz—Thorin interpolation together with trivial bounds coming from the fact that we
deal with averaging operators help us establish the corresponding £7 bounds.
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1.4 Notation

We denote by C a positive constant that may change from occurrence to occurrence.
If A, B are two non-negative quantities, we write A < B or B 2 A to denote that
there exists a positive constant C such that A < CB. Whenever A < Band A 2 B
we write A >~ B. For two complex-valued functions f, g we write f ~ g to denote
that lim,_, oo % = 1. For any topological space X, we denote by C(X) the set of
all complex-valued continuous functions. We denote the average value of a function
f:Z — Cover afinite set Q € Z by [flp = ‘IE erQ f(x). For any natural

number N, we let [N]={1,2,..., N}.

2 Basic Properties of the Sets B

In this section we collect some useful properties of the sets B. We begin by stating
an exponential sum estimate proven in [17]. Here, and for the following two sections,
we fix two constants ¢y, ¢z such that ¢; € [1,2) and ¢; € [1,6/5), as well as hy,
hy € R, and R, respectively and v, y1, y», B are as in the introduction and all the
implied constants may depend on them. We note that we use the basic properties of
those functions as described in Lemma 2.6 and Lemma 2.14 from [20] without further
mention.

Lemma 2.1 Assume x > 0 is such that (1 — y1) + 3(1 — y2) + 6x < 1. Then there
exists a real number y' > 0 such that

Z Ip(n)—leZm'nS _ Z e2m’n§ + O(NI—X—X/) 2.2)
neBN[N] ne[N]
as well as
3T = 3 Y 4 0(p(N)N A 2.3)
neBN[N] ne[N]

where the implied constant does not depend on & or N.

Proof We note that one is derived from the other using summation by parts. The proof
can be found in page 6 as well as Lemma 3.2 in [17]. O

Lemma 2.4 If g2 < @1, then B does not contain arbitrarily long intervals in 7.

Proof Assume that ¢y < ¢ andlet{n,n+1,...,n+1— 1} C B, we wish to bound
1. First of all let us notice that B may be partitioned as follows

B:UBm

meN

where B, ={n € N : 0 < ¢1(n) —m < ¥ (n) }, note that B,, N By = ¥ form # k.
For sufficiently large m, k with m < k, we have that dist(B,,, Br) > 2 since if we
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assume for the sake of a contradiction that dist(B,,, Bx) = 1 then there existsn € By,
such that and n + 1 € By. But then

0<gi(n)—m <y and 0 <pi(n+1)—k<yn+1)
and thus
(k—m) =y () <pi(n+1)—ei(n),
which implies
pi(n+1) —ei(n) > 1/2.

By the Mean Value Theorem there exists &, € (n,n + 1) such that ¢} (§,) > 1/2,
which will be a contradiction for sufficiently large n, since ¢} (x) — 0, as x — oo.
Thus, ignoring some first few terms of B, the fact that {n,n+1,...,n4+1—1} C B,

together with our previous observation, imply that there exists an m € N such that
{n,n+1,...,n+1—1} € By,. Then by combining n,n +1 — 1 € B,,, we obtain

pr(n+1—1) —¢1(n) <y (n+1)
which by the Mean Value Theorem becomes
(= Dein+1D) == DgjE) <+ < prn+1)

and thus ({ — 1) < Z?EZE; < g&ig < 1, since ¢ < ¢;. Thus B does not contain
1

arbitrarily long intervals. O

3 Uniform 2-oscillation Estimates

We prove the first half of Proposition 1.12, namely we establish the estimate (1.13).
By the Calderén Transference Principle, in order to establish that estimate for any o -
finite measure preserving system, it suffices to establish it for the integer shift system,
namely for (Z, P(Z), | - |, S) where S is the shift map S(x) = x — 1 and the | - | is the
counting measure. To simplify the notation, we let B; = B N [1, ¢] and write

1
Mif@) = pm D flx—n).

neB;

We therefore wish to show that for any p € (1, 00), there exists a contant C), such that

sup sup |07 ;(Mf it € N)llpzy < Cpllfllerczy forany f € €7(Z).  (3.1)
JeNy 1€6;(N)
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To obtain this result, we break the 2-oscillations into short and long ones, and we
will need to carefully choose some Farameters first. Let po e (1, o0) be such that
p € (po, p), let T € (0, min {25 }) and let D; = {2"° : n € Np}. It is not
difficult to see that

sup sup (|07 ;(M;f it € N)enz)
JeNTeG;(N)

Ssup sup (|07 (Mo f it € D) lerzy
JeNT1e&;(Dy)

> T 1\ 2 172
+‘ <Z V(M. re 2,20 )
n=0

3.2)

2(Z)

where

VA(Mif@ e [2, 205 07))
J—1 ) 12
=sup  sup (DM S0 = My f0R)
JeN  fo<--<iy =0
t,-e[z"r,z("ﬂﬁ)

see [23] page 17. One may adapt the argument appearing in Lemma 1.3 in [16] to
establish this. We deal with the second term of (3.2). Note that

00 N 1/2
H (ZVZ(MJ Lre 2,20 )
n=0 P (Z)
J-1 12\ 2\ 1/2
(sup sup (UM f - My, 11P) ) )

JeN 1<..ty =0
l,‘ c |:2nr ’2(7H~l)f )

(S o (Smswn))”

JeN fp<..ly =0
te[2007 20427 g

P (zZ)

P (Z)

where we have used the fact that || - ||, < || - || ;1, together with the fact that M; f (x) =
M; f(x) whenever B; = Bs. Forany n € N, let{ W e {0,...,ln}} be an

increasing enumeration of [ 2= (42" ) N B. Then we use the triangle inequality
to bound the last expression by

n 2\ 1/2
(S (S

n=1

ZP(Z)'
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Let K;(x) = ﬁ ZneB, 8, (x), where 8,(x) = 1y;)(x), and note that M, f(x) =
K: % f(x). Thus we rewrite the expression above as

00 In 2\ 1/2
(S e ) )

We firstly consider the case p € (2, c0). We get

12 (Z).

> T T 2 1/2
‘(ZVZ(M,f: te[2m, 20D )) >
n=0 (2
00 I 2\ 172
5'( (( Ky — Ko |*|f|)> )
; o Pt (@)
00 In 2\ p/2\ 1/p
= > ((Z Ky = Ky | |f|(x))> ) )
x€Z “n=l1 m=1
I 172
(Z (|Kﬁ<n) PONE |f|(x)) ) ) )
n=1 “m=1 xeZ

2 1/2
S Ky = Ky 1% |f|||ep(Z)) )
2172
Z ” Koo = Kﬁj:jl “zl(z)”f”/zp(z)) )
2 1/2
(Z ”Kﬂfé’) — Ky “zl(z)> ) I fllerz)

where we have used Minkowski’s inequality for p/2 > 1and p > 1, and then Young’s
convolution inequality. In the case where p € (1, 2], we note

N
3
<
o
—~

T T 2 1/2
Mif e 2, 200)) )

()

2\ 1/2
((Z|K ) — ﬂr(:)l|>|<|f|>>>
=1
> P\ 1/p
K n _K n

Z<<Zl| A ﬁf,,L'*'f'))) )

> In pN\ U/p
5( Z((ZIKM)—Kﬁ’<’711|*|f|(x))> )

x€Z n=1 m=1

LP(Z)
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> p1/p\ P\ /P
< (Z( (X (1K, — Ky 1%151)") ) )
n=1 “m=1 xeZ m=1
> by N\ 1/p
= (Z (Z 1Ky = Ko 15 |f|||mZ)) )
n=1 “m=1
> In pN\ 1/p
= (Z (Z ||Kﬁ)(’;’) - Kﬂ’g‘ll ||[l(Z)||f”ZP(Z)> )
n=1 “m=1
S PN\ 1/p
= (Z ( Z “ Kﬂ,(n”) - Kﬂ,(;:ll] “gl(z)> ) Il fller z)

where we have used Minkowski’s inequality and Young’s convolution inequality.
Combining the two cases gives

H < Z V2 Mf [2*”7 2(n+1)r)>2)]/2

n=0

q\ 1/q
S <Z ( Z ”K (n) ﬂr(:ll ”@1(Z)> ) ”f”(ZP(Z) (3.3)

n=1

£ (2)

where ¢ = min{2, p}. We focus on ”Kﬁgl) — Kﬂ,(:l] ”el(Z), note that

1 1
K n — K n = -
” ﬂy(n) '3:”11 ”H(Z) xeBZ() |Bﬁ(n)|| |Bﬂ(n)|
By " !
1
* Z [Bgonl

X€B 40 \Bﬁ(n)
Pm m—1

_ 1Byl = 1By [ 1By A By |

IBﬁ<n>| IBﬁ,(pI
|B,w| — |B,mw |
— 2 Bm B ﬁmfl
| .3;31)|
thus
Iy In B n)| — B n
| ﬂf/' | ﬂ,(,,L' < [Byaor | — | By |

K n _K n <
mX_:l ” pim ‘3'('111 ||£1(Z) ~ |B/S,(n”)| ~ | By |

m=1
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We know that there exists ¢ > 0 such that |B;| = ¢2(t)(1 + O(t7%)), (see [17], page
5), thus we get

In
Z ” Kﬁf,f) - Kﬂ'(:ll ”zl(Z)
m=1

_ 20T — 201 4 4 20T 0 21T
- @2 (201=D7)

T T T T T
(p2(2("+2) )279(11—1) ¢2(2("71> +3 )2*6(’1*1) —e(n—17 .
Note that #2275 — < PP <27¢0=D" §ince 0 < 7 < 1/2,

@7 isincreasing and @2 (4x) < @2 (x). We also note that by the Mean Value Theorem for
fx) = (2"’) on theinterval [n — 1, n+2] we get that there exists x, € (n—1, n+2)
such that

@MDY — 20D f(n42)— f(n—1)
3 - 3
= () = @ (2")2% log(2)Txy !
S @@ -1 <)@ - 1)
< VY H - 1!
< @YY m - 1T

Thus
Do K = Ky [y S (0= D7 2o,

which implies

In

<§: < 2Ky =y |’e'<z)>q>1/q

n=1 “m=1

oo 1/q o 1/q
S+ (Z(n - 1)‘1“‘)) + <Zz€q("‘>’)
n=1

n=2

Note that if p > 2 then ¢ = 2 and then ¢g(1 — 7) > 2(1 — 1/2) = 1 thus the
first sum converges. Similarly, if p < 2, then g = p. Note that T < (p9 — 1)/2 <
(po —1)/po = 1/py, but then g(1 — 7) > p(1 — 1/py) = p/po > 1, as desired. In
either case, the first series is summable. The second series is also summable, since for
example 2-qen” S n~2, and thus (3.3) becomes

Spe 1 llerzy-
e (Z)

0 . N2 1/2
H(Z V2(M,f: te2m,20th )) )
n=0
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To establish the estimate (3.2), it remains to bound the first term. Note that

sup sup |07 ,(Mif i1 € Do)lerczy
JeNTeS;(Dy)

2
=sup sup [Of ;(Myr f:neNo)lerz),
JeNy 1€6 ;(Np)

and we now establish the following estimate.

Claim There exists a constant C, ; > 0 such that

2
sup  sup (|07 ;(My f 2 n € No)llerzy < Cpell fller@).-
JeNTeS ;(Nyp)

Proof We introduce some auxiliary averaging operators. Let

1 1
Hzf(x)=; Z flx —s) andAtf(x)=m Z Y(s)f(x —s)= (L f)x)

l<s<t M <s<t

where L;(x) = ﬁ lesgt ¥ (s)8s(x). We may compare M; with A; as follows

sup  sup (|07 ;(Myr f 2 n € No)ller(zy
JeNy 1eS j(Np)

< sup sup  [|OF ;(Myr f = Ay [ € No)lleray
JeNg 1€ j(Np)

+sup  sup OF (A f i n e No)llerz
JeNy 1€ ;(Np)

< (X My £ — Ay 1)

neNy

+sup  sup  OF ,(Apr f 1 n € No)ller@y. (3.4)
JeNy I1eS ;(Np)

e (Z)

The first term of the expression (3.4) will be bounded by using Lemma 2.1 and
interpolation. More specifically, we start with p = 2, and we note

12 12
H( D My f - Azn’f|2> e ( D My f - Az*t’f”?z(Z))

neNy neNy

and for each n € Ny we have

||Mznf f - Aznf f||22(z) = ||(K2nf - LG’) * f||eZ(Z)
= (Kot — Lowt) fllp2¢my < 1Kpnr = Lowt lLoo(my | f 112z
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and note that there exists y > 0 such that for any £ € T we get

Z w(s)eZntsé

I<s<2n®

Byl 25

~ —~ 1 .
|Kye () = Ly ()] = D e |B 3

< @27

< <o
Byt |

and thus

||M2n’f Azn’f”zz(Z) 2" xn’ ||f||z2(z)

which gives

H( Z | Mo f — Aznfﬂz)l/2

neNg e@
o\ 1/2
(X 27) Ciflew S flew:
neNy

For the case of p # 2, firstly, let us assume that p € (2, c0). Note that there exists a
positive constant C such that

[Mour f = Agur I < IMy= £ + 1A fl, Clrfl

£P6 (Z) el’(’) Z) el’o (Z) ep(’) @
since
H| 2 FC=9) =Wy, and
seB (Z)
1
Y-8 , = VNN ST
H| Bi| 12; oy~ |Bil o £Po(z) €70

where we have used the trigonometric estimates [17], page 6, for £ = 0. We may choose

6 € (0, 1) such that % = % + 1});,9 and use Riesz—Thorin interpolation theorem. Since
0
for any n € Ny we have

|Myr f = Ager fllazy < C27%" and | Myur f — Agur £l < CIIfll

€70 zZ) — 2% zy’

we interpolate to obtain
Myt f = Agur fllerzy < (C27XYCY O Fllovzy = CRTXN | fller -
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Note that since p/2 > 1, we have

H( Z | Mo f — Azn’f|2>l/2

er(Z)
neNy
\P/2\1/P
= (X (X M 1) = A f0)2) )
x€Z neNy
2/p\ 172
= (X (XM r @) = Ay rol?) )
neNg xe€Z
172
= ( Z ||M2nff - Azn’f”%p(z:))
neNo
172
=c( X ) Ciflew = Cpell flo.
neNy

The case of p € (1,2) is similar; we choose 8 € (0, 1) such that % = % + 11);00.
Riesz-Thorin interpolation theorem yields the same estimate as before

1My f = Ager Fllerzy < CRTXN || fller (2,

and we note that

H( Z | Mo f — 1“2n’f|2>1/2

1/p
< § Moyt f — Aqyr ”)
mm‘”( | My f 2z f
nENO nENO

< (X My f = Age £l r <c( > @ 1/p||f||£p(Z)
@)

neNy neNy
< Cpll fllerz-

e (Z)

We have appropriately bounded the first term of equation (3.4). We now focus on the
second term. We will reduce the 2-oscillation £7 estimates for A,, to the correspond-
ing ones for the standard H,,r . Firstly, the analysis of the 2-oscillations will be made
easier if we adjust A; to the following very similar operator

1
D == —5).
 f(x) S e lggwmf(x 5)
Note that
1 1
'Az"tf(x)_D?”f(“'z'(wzm‘zmnf wm) Y v fx—s)|.

1<s<2n®
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Thus

| 3yt ¥(5) = 1Byt
|BZ"T | Z]stznf Iﬂ(s)

(pz(znf )2—Xn
|anf |

> vOIfllera

1<s<2nt

||A2)lT f - [)2)1r f”l/’(Z) =<

A

I fllerzy S 275" N1 fller zy-

One may use a similar argument to the one presented earlier to compare A,,r with
D, and obtain

sup  sup ||0%J(A2,,rf tne NO)”ZP(Z)
JeNy 1€ 7 (Np)

< sup sup IIO?,,(Aznrf — Dy f 2 n € No)llerzy
JeNy 1€S ;(Np)

+ sup  sup ||0%J(D2nrf: n € No)llerz)
JeNy IeS ;(Np)

12
S ”( D Ay f - Dzﬂ’ﬂz)
nENo

+sup  sup  [O7 ;(Dyr f 2 n € No)llerz). (3.5)
JeNy 1eS 7 (Np)

er(z)

Using the estimate || Ayt f — Dot fllerzy S 2—xn’ Il f llerz), we can bound the first
term of equation (3.5) by Cp, < || fll¢r(z) and our task has been reduced to estimating
the 2-oscillations of D,, . In fact, we will be able to estimate the 2-oscillations of D,
by comparing it with H,. For convenience, let W (k) = ) ., ¥ (s). We perform
summation by parts o

Dif(x) = wo DY@ fx—s)
1<s<k

= 5o (v PIELEEE 1<§_1 (];Sf(x ~ D)W+ 1) =)
0 - 769 _ SWGEFD =) 5 fr=D

vk 1§5k 15§—1 k) 1§Xl§:s
kK, SW G +1) = ¥(s)
= S B - 1<§71 0 Hi f (x)

=Y MH ()

s=1
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where

SO -Y D)
WO i ) <5 <k — 1

ro= A ifs =k
0 if s > k.

We have shown Dy f(x) = Zf‘;l )»f H; f (x). Without loss of generality, ¥ (s) is
decreasing, and thus ()JSc )s.keN 1s a family of non-negative real numbers (in the spirit
of Lemma 2 from [24]) and we note that for any k € N we have that

00 k—1

2:“ SWE) —y s+ D) k)
W (k) k)

s=1 s=1

and we also have that for any fixed N € N the sequence Zﬁvzl Ak is decreasing in k,
since

ikk= oo TV W) w1l SN k-1
* ifN >k

—

and forany 1 < N <k — 1 we have

\D(k)z s (s) —Yls + 1) = — Zwm N¢<N+1))

W (k) (

For anyk € N we introduce the function Ny : [0, 1) —> N such that N () = min{N €
N: Zl 1 Ak > t} and we also introduce Ik N, Yqsh ={r €0, 1) : Ni(t) = s}.
We note that for all k € N, Nj is increasing in 7. Also, since for any fixed N € N
the sequence Ziv: 1 kf is decreasing in k, we have that for any fixed ¢ € [0, 1), the
sequence Ni(t) is increasing in k. Note that |Isk| = Af. Then

Dif(x) =Y MH f(x) =Y |IFH f(x)

s=1 s=1

00 1
= Z/Ik Hy o) f (0)dt = /0 Hyy o) f (x)dt.
s=1%"s

Finally, for any J € Ng and any I = {Iy, ..., I;} € G;(Np), we have that

07 ;(Def(x): keN)

o}_,(ifosf(x) ke N)

s=1

1
= O%,J(fo Hy, o f(x)dt : k € N)
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2)1/2

1
fo (Hnpoy f(x) — Hy,, o f@x))dt

J—1
(X
j:0 lj§k<[j+1

J—1 1 2\ 1/2
< <Z (/ sup  [Hyn f(x) — HN,i(t)f(x)|dt> )
=0 0 1/§k<1j+]
J—1

1 A1/
< [(Z, s itmofo - ty,ofor) o,

j=0Tisk<ljn
and we finish the argument by noting that

107, (Dif(x) : k € N)llercz

S(Z J—1

! 1/2
/0 (Z sup  |Hw(ny f (%) = HNIj(t)f(x)|2) dt
x€Z

=0 Ij<k<ljy1

p>1/p
J-1

1
< [(Z(X, s tHvofe =0 rer)") ar

xez  j=01ik<lj
J-1

1 ) p/2\1/p
< (Z (Z sup [Hpn f(x) — HN,j o f0)] ) ) dt
0 “rez j=0 Ni; (t)§m<N,j+1 ()

1
— 2 .
_/(; ”O{Nro(x) ,,,,, Ni; b NI @) Nrj(t)}\—l(Hmf(x) sme N)””(Z)dt

1
< [ s swp 102 (s ) m e N)lrdt = Gyl fllrca
0 jeNiesN) '

where we have used the uniform 2-oscillation £”-estimates for the standard averaging
operator for p € (1, 00), see [15] or [19], or more precisely

sup sup ||OIgj(Hmf(x) me N)Ilzp(z)
JeNTe&(N) '

Sp W fllerzy-

We note that

sup  sup ||0%’J(D2nrf ne N())Hep(z)
JeNy 1€6 ;(Np)

<sup sup |07 ;(Dif): ke N)lwa Spllfler.
JeNTeG(N)

This establishes the estimate (1.13). m]
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4 Vector-Valued Maximal Estimates and Concluding the Proof of
Theorem 1.10

In this section we establish the vector-valued estimates for the maximal function corre-
sponding to M;, namely the estimate (1.14). By the Calderén Transference Principle,
it suffices to prove the following.

Proposition 4.1 For any p € (1, 00), there exists a constant C, such that for any
(f))jez € LP(Z: *(Z)) we have

H (Z ( sup M;lf; |)2) 1/2

ez 1elloo)

= |(Zn)”

LP(Z) jEZ ()

Proof Firstly, we note that SUP;e[1,00) M| fl(x) S sup,en, M2» | f1(x) and thus

(2 )

: H<Z( sup M2n|fj|)2)l/2

t€[1,00) LP(Z) jez neNy LP(Z)
N 1/2
= | (D2 (sup [Malfs1 = Azl 1] + sup A1 £51)°)
jez, "€No neNo e
S\ 172
< (Z( sup [Man| £l — Al £l ))
jez. "No @)
N 1/2
+”<Z( sup Ay|fl) )
jez "€No e @
N 1/2
= (3 X (Ml = az115F)
Jj€Z neNy w®
N 1/2
(32 (sup A1)’ - 2
jez "<No & @

We focus on the first term, for p = 2 we note that

H(Z Z | Mo | £ _A2"|fj||2>l/2

j€Z neNy

— (XX Ml - Anl o)

x€Z jeZ neNy

12
= (Z Z | Mo i1 — A2”|fj|||?2<z)) .

Jj€Z neNy

()

By Plancherel theorem combined with Lemma 2.1 we obtain the following
1Mo fj] = Az il 2zy < 271 fill 22y
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and thus

H SN [ Malfil - Axl ] )

jeZ neNy 02(7)
_ 1/2 1/2

< (Z Z 2 an”fj”i(z)) < (Z ”fj”?z(z))

Jj€Z neNy jEZ

1/2 1/2
2 2

(X wr) = [(Z 1)

JEL xeL JEZ

For the case of p # 2, we proceed in a manner identical to the one of the previous
section. Firstly, let us assume that p € (2, 00). We fix a pg > p and we note that there
exists a positive constant C such that

(IMon f — Aon fllerozy < IIMan fllerozy + I1A2n fllerozy < CIl fllero(zys

since

E — < p & E —
H | B | forS AR £P0(Z) 1/ lero2) H | B; | 1<Y<tw(S)f( g £r0(Z)

P < P

< Ile ]gsftl/f(S)llflle 0z) S I llero-

We may choose 6 € (0, 1) such that % = % + 11);09 and use Riesz-Thorin interpolation
theorem. Since for any n € Ny we have

IMan f — Ao flle2zy = C27X" N fll2(zy & IM2n f = Aon fllerozy = ClILf lero(zys

we interpolate to obtain
|Man f — Aon fllerzy < (C27XC 0 fllerzy = CRTXY N fller @y (43)

Thus if we let T;,: £P(Z) — £P(Z) such that T,, f = Mo f — Aon f, then we know
that 7, is a bounded linear operator with ||T,l¢rz)—erz) < C (2%?)="_ Thus, we
know that T}, has an ¢2-valued extension (see for example [13], page 386) with the
same norm, that is

1/2 1/2

X mar] |, =ce[|Zue] |, @

JEZL JEZ
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Finally, since p/2 > 1, we get

1/2

” >0 [Mrlfil - Axi £l

J€Z neNy

1/p
) <Z< 2 2 Mz 1100 = Azn|f,-|<x>|2)p/2)

xeZ neNyg jeZ
P22\ /2
( PAICIR )

e (Z)

IA

neNy er ]eZ

> (S 1m?)

172
. )
neNy JEZ tr (@)
1 2 12
= ( Z c? 22X9) ! Z |fJ / Z/?(Z))
neNy =4
1 2
<c (LM,
neNp 2/
1/2
NP ‘ Z |fj EP(Z)
JEZ

For p e (1, 2) the situation is similar, we choose pg € (1, p),and 8 € (0, 1) such that
[17 = 2 + 1= " 9 and Riesz-Thorin interpolation theorem yields the estimate of (4.3),
which in turn implies the estimate (4.4). Since p < 2, we have

”(Z D Mol £yl - Aznlfjllz)l/2

J€Z neNy

1/p
) (Z (XX i) - Azn|f,~|<x>lz)p/2>

xe€Z neNy jeZ

= (Z( > [(j%|Tn|fj|(x)|2)1/2]2>p/2)1/,,

xe€Z neNy

= (Z x5 )"

xeZneNg  jeZ

e (z)

1/
LS (S ] )
neNy J€Z @
< ( Z 2—px6n “ Z|f] 1/2 Z’(Z))I/P
neNy JjEZ
Sp ||(Z|fj|2)l/2|ep(z:)-
JEL
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We have bounded appropriately the first term of (4.2) and all is left is to bound the
second term. We firstly observe that for any n € Ny we get

Az 1) = 7 Z Y| fx—9)] < Z Y U9l
| 1< <2n k 02L<S<2k+|
1
|an Z |BN [Zk 2k+1)|m Z V()| f(x — )
2k < <2k+1

|an+1| 1
< p—

| Ban | kseuI\II)o |B N [2k, 2k+1))| 2k5§k+. Y| f(x =)

n+1 ) ik

< @2(2 + ) (/)2(2 ) ~
RERZICD) kseI\lI)()|Bﬂ[2k,2k+l)|2k<§k+]|f (x =)

1 (rk\nk
<sp 202 L5y

k pk+Ty| 2k
ken [B N[25 27701 2 2k <s <2kt

1 1
Ssup o Do 1fG=9) < sup o > Ifx =9l = sup Hyl f1(x)
S €lNo

keNo = ok oy okt 07 <k
since

e 22k (2N

~ ~ 1.
|B N [2k, 26+1)| 7 |B N [2K, 2k+1)]

Since n € Ny was arbitrary, we have shown that sup,cy, A2n|f|(x) <
sup,en, Han|f1(x), and thus the second term of 4.2 may dominated by

172 n1/2
H(Z(sup Ayl fil) ) < H(Z(sup H2n|fj|))
ez neNy P (Z) jez neNp P (Z)
< 2\1/2
A [OIT/ID R .
J€EZ
This completes the proof. O

The work of Sects. 3 and 4 proves Proposition 1.12. We describe how Proposition 1.12
implies Theorem 1.10.

Proof of Theorem 1.10 assuming Proposition 1.12 We simply apply Proposition 4.1
from [23] to establish a multi-parameter uniform 2-oscillation estimate, which accord-
ing to Remark 2.4 together with Proposition 2.8, page 15, from the same paper yield
the desired result. O
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5 Proof of the Weak-Type (1,1) Inequality

Throughout this section we have fixed a set B with ¢1 >~ ¢y and ¢y = ¢ = ¢ €
(1,30/29). All constants may depend on ¢1, ¢2 and i but on nothing else, unless
stated otherwise. We remind the reader that it suffices to establish the weak type (1,1)
bound for the smooth dyadic maximal function

M(f)(x) = sup (Ko * | f|(x), where Ky (x)

keNy

1 n
= m ’; Sn (x)n<ﬁ>, see Remark 1.9.

The next two lemmas are devoted to studying the properties of K y * Ky and they will
be key ingredients for establishing the weak-type (1,1) bound.

Lemma 5.1 There exists a positive constant C such that for all N € N and all x € Z
with C < |x| < ¢1(N), we have that |Ky * Ky (x)| < CN— L

Proof We have assumed that ¢» >~ ¢ and thus, by Lemma 2.4, there exists a uniform
bound Cp for the length of intervals contained in B. For any x € Z such that |x| >
Cp + 1, we get

1 n+x>

Ky * Ky(x) = PNTOE ’213(71)13(11 +x)77(%)77( ¥

and with a change of variables we see that Ky * K Nx) =Ky % K ~(—x), and thus,
without loss of generality, let us assume that x > Cp + 1. Since supp(n) < (1/2, 4)
and 0 < n(x) < 1, we have

Ky * Ky(x) < HneZ:nn+xeBN(N/2,4N)}|

@2(N)?

and all is left to do is to estimate the cardinality of that set. Let A}, = {n € Z :
n,n+x € BN(N/2,4N)}, and notice that for any n € A3}, we have that there exists
a unique s, m € Ny such that

O0<pin+x)—(m+s)<yym+x)and0 < ¢1(n) —m < Y (n).

Notice that since x > Cp, we have that s > 1, since n and n + x cannot correspond
to the same m. By combining the previous set of inequalities we obtain

p1(n+x)—@i(n) —Y(m+x) <s <pi(n+x)—e1(n) + ).
For constants depending only on ¢1, ¢» and i, we have
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P1(n+x) —@1(n) + Y (n) < Cxg|(N) + Cp3(N) = Cx¢|(N) + Ce(N)

—Cx+ 1)901](\7N) < foﬂll(VN)

and similarly

P1(n+x) —@i1(n) —Y(n+x) = cx@)(N) — cgy(N) = cxgi(N) — cg) (N)
1(N) - Cx(ﬂl(N)
N N

>c(x—1)

Thus s >~ x—‘”}\EN). We have that m < @1 (4N) < @1 (N) and m > ¢((n) — ¢ (n) >
e1(n) — Coj(n) > @1()(1 — C/n) = Co1(N), when n € (N/2,4N) thus m =
©1(N). We also note that

hi(p1(n) — Y (n)) < hi(m) < n and
hi(pi(n+x) =Y +x)) <hi(m+s)<n+x

and thus

x—(n+x—hi(gi(n+x) — Y +x)))
<hi(m+s)—hi(m) <x+ (n—hi(gi(n —¥(n))).

Note that for all / we get that [ — i1 (@1 (1) — ¥ (1)) = hi (@1 (1)) —hi (o1 (1) — ¥ (1) =

V(DR (&), for some & € (p1(1) — ¥ (), ¢1(1), and thus I — hy(p1() — ¥ (D) <

(pé(l)h’l(gal ) = Z?—Eg. Since ¢y =~ ¢1, we get that there exists an absolute constant
1

T,suchthat! — h(p1(l) — ¥ ()) < T, and thus

hiim+s)—hi(m) € B(x,T).

Consider the set By, = {(s,m) e Nx N : 5 ~ X"”T(N), m >~ @1(N), hiyim + 5) —
h1(m) € B(x, T)} and note that for any (s, m) € By there are at most Cg number
of n’s in A}, corresponding to m. Therefore | A}, | < |By |, and everything reduces to

estimating IBj‘\, |. Foreverys > 1suchthats ~ ’”’”T(N), we wish to estimate the number
of m’s such that (s, m) € B’,‘\,. Notice that if we define g(m) = hy(m + s) — h{(m)
then by the Mean Value Theorem we get

gm+1)—gm)=hm+1+s)—hi(m+1)—hi(m+s)+h(m)
=hi(m+ s+ &) — hy(m + &)
= (s+& — &) (m + &)

for some &1,& € (0, 1) and &3 € (m, m + s + 1). Thus

(m 4+ 1) = gm) = sH{(pr (V) = — o
¢ T TN
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Sincex — T < hi(m +s) —h1(m) < x + T, according to the previous calculation,
for any fixed s >~ WlT(N), we have that there are at most 1 + C T“”T(N) < @, where

in the last estimate we used that x < ¢(N). The number of s’sin [1, C X‘“T(N)], where

C is the implied fixed constant appearing in s ~ me(N)’ are bounded by C me(N)’ and
therefore

xp1(N) p1(N) _ 1(N)?

Byl <
BrIS =y x N
This implies that
~ N)? 1
Ky * Kn(x) S Mg_
Nga(N)* ™ N
and the proof is complete. O

Lemma 5.2 There exists a real number x > 0 such that Ky * EN x) =Gykx) +
En(x) forall |x| > ¢1(N) where

1 +
Gy(x) = (V)2 éw(n)wm + |x|)n(%)n<n Nx) and

En(x) = Ky * Ky(x) — Gy (x).

We also have that Gn(x) < N71, |Gy (x + h) — Gy (x)| S N72|h| and |En(x)| <
N~I7x,
Proof We note that for all n € N we have that 13(n) = |@1(n)] — [@1(n) — ¥ ()],

see [17, Lemma 2.2]. We can therefore split our kernel to several manageable pieces.

Ky Ry =~ 3 1 pn+0n( 5 )
nez

n—l—x)

@2(N)? N

1
= VP > (Llorm] = Ler () — ¥ ) ]) (L1 (n + x)]
neN

2 (

n+x)

—loi1(n+x) — ¥ (n +x)J)n(%>n( N

We will exploit a famous truncated Fourier Series. More precisely, we know that if
®(x) = {x} — 1/2 then for all M € N we get

1 : 1
D(x) = Z ﬁefzmmx + 0<min {1, m}) (see section 2 from [14]).

Importantly, we also have

1 ;
min {1, = by, e2Timx
{ M||x||} 2 bm

mez
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and

logM) 1 M
bmgmin{Og( ),—, 2}.
M m| |m|

Finally, we can rewrite

Ip(n) = le1(m)] = Lo1(n) = ()] = @1(n) — {1 ()}
—(p1(m) = ¥ () — {p1(n) — ¥ (m)})
=¥ ®) +{o1(n) =¥ ()} — {e1(n)}
=¥ () + ({p1(n) =¥ ()} = 1/2) = (g1 (n)} = 1/2)
=¥ (n) + @(p1(n) — () — P(p1(n)).

Let us use the truncated Fourier Series and define

Ay(n) =

3 U 2mim(oi ) _ 3 L ~2mimgi(n)
O<imi<M 2mwim O<iml<M 2mwim

e—2ﬂim(p1 (n)

_ 2mwimy(n) _
- Z 2wim (e 1)

and

and thus

My (n) =

Thus

O<|m|<M

M (1) = (@ (1) — Y () = P@1(m)) = Apr(w)

1 1
[0) in{l, [0 in{l, ———— ¢ ).
(mm{ M||<p1(n)—w<n>||}>+ (mm{ M||¢1<n>||})

Ip(n) =¥ (n) + Ay (n) + Iy (n).

Returning back to the splitting

Ky *EN()C) =

1
@2 (N)? Y (W) + Au ) + T () (Y (1 + %) + Ay (n + x)
neN

o ()

_ ﬁ%w(mw +x)"(%)”( N

+¢2(N)27§TW")AM(’1+XM<1’\1!)” )

Birkhauser



37 Page32o0f50 Journal of Fourier Analysis and Applications (2024) 30:37

n m Z ¥ (m) Ty (n +X)’7(%)’7(n y)

+<p(N)2 ZAM(”)W(”J”)”( ) (Vl;x)

+<p2(N)z Z“M(”W(”“)) ( ) (n]—i\;x>

Z Ap () A+ 0 (

+
@2 (N)2

+ (N)2 Z Ap (T + 00 (

. N)2 Y Ty Ay +x)n
neN

: 3
\/v\/ \/
=
S
+ =

+ <p2(N)2 Z My (T (n + )0 (

=Iix)+hLx)+---+Dhx).LetGy(x) =I1(x)and Ey(x) = Z?Zz I; (x). Letus
firstly estimate /1, we have

o ny /n4+x Ngy(N)? O
o= v2(N)? N/2§<4N v +x>n<ﬁ)n< N ) s @2 (N)? SN
N/2<n+x<4N
and for any i € Z we have
1 n n+x+h
h+h) = B < W%wm)n(ﬁ)’wm + x4+ ()
n—+x
e ”)”(T)‘
1 n
O %wmn(ﬁ)
n+x+h 1
/ (W(I)U(I/N) - 1#(t)n/(l/N)N)dt :
n+x

It suffices to consider x, & such thatn +x,n+x +h € [N /2, 4N] since the integrand
is zero outside that interval. We get

@, (N)

— <
(x+h) — ()] S (N2

NIhI(@5 (N) + @5(N)/N) S N72|h].
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This shows that Gy satisfies the desired properties. Now we bound E . Let us start
with I. We can rewrite I as

hw = — (N)zzl/f(n)AM(fl +x)n( ) (n;x>

—2mwime1(n+x)

zwz(N)z,%W") D g @ = ()

O<|m\<M
( )
N

1 1 2mi(—m)p) (n+x) < n n+x
=— E . E e w(n)n(—)n< )
¢2(N) O<|m|<M 2mim N/2<n<4N N N

N/2<n+x<4N

(eZm'mw(ner) o 1))

According to Corollary 3.121in [20], if welet FX (t) = ¥ (1)n (#) (%) (eznim‘“"”) —
1), we have that for all m € Z\{0}

‘ Z eZni(—m)gol(n+x) Fn)i (n)

N/2<n<4N
N/2<n+x<4N

< m|"2N (1 (N)oy (N)) ™1/

(s AE@EN s 0D - Eo)
N/2<n<4N N/2<n<4N
N/2<n+x<4N N/2<n+x<4N

Let us follow the notation of [20] and write N| y = max{N /2, N/2 —x}and N» x =
min{4N,4N — x}. Foralln € (N x, N2 x] we get

+ .
|F;:l(}’l)| = w(n)n(£>n(¥)|62n’lml//(n+x) _ l|
2
< 20 primy 0+ 01 £ 25 m

N2

where we used that for all real numbers x we have [¢/* —1| < |x|. Similarly, after apply-
d (F,ﬁ @)

bl

ing the mean value theorem to obtain | Fy, (n + 1) — F, (n)| < Sup,c(y n+1) ‘

we can use the following bound

R oS

Hron () () -

dt
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_}_,W(I)n(%)n’(t + x)l(eZm'mw(ter) _ 1)‘

N /N
Hw (s )a( ) (@rimy @ + xperimvie))
<¢2(N)2|m|
s Bl

Therefore we can bound I

1 1 N)?
LIS > —|m|1/2N<<p1(N)m<N>>‘/2(%(\,—2)|m|>.

O<|m|<M Im|

Since y € (29/30, 1) and ¢ ~ ¢, we getthatfor M = N'*2X e (N) Ly = 1—y
and ¢ < x/10
M3/2 N3/2+5/2x+3¢

L) < = '
LX) S Noa(N) 2 (N2~ N1+Xpy(N)201(N) /2

We use that for all 1 > 0 we have 01(x) 2¢, x ¢ and g2(x) 2¢, x7 7% to get

1
|12(x)| S N1+X N3/2+5/2X+3872)/+281+81/2.

For a fixed e1 = ¢ € (0, x/10) we get
since

3/245/2x =2y +68 <0 <= 4(1—y)+5(1—y)+6/10(1 —y) < 1
= 96/10(1 —y) <1

which is true since y > 29/30. Therefore we have shown that |l (x)| < N =X, as
desired. The term 14 is treated similarly

10 =~ Yyt oapmn (")

2
(N N
1 e—2nim(p1(n) 2mwim n ntx

B ¥(n)
= — Y Ve+n) Y (e ~ () (%)

P2(N)” I O<mren T Ve
— i X 2 e (e on( (")
= 2 -

P2N) iy TEIm N ! !

N/2<n+x<4N

(eZUimlp(n) _ 1))

Birkhduser



Journal of Fourier Analysis and Applications (2024) 30:37 Page 350f50 37

Using Corollary 3.12 in [20], for G;,,(n) = ¥ (n + x)n(%)n(%) (ezﬂim'/’(”) — 1),

we obtain in an almost identical fashion the bound |I4(x)| < N~!=X. To bound the
remaining terms, we use Lemma 3.18 [20], which we state here.

Lemma5.3 Let N > 1, p,q € {0,1}, x € Zand M > 1. Then

. 1 n n+x N log(M) NM/2 log(M)
1 — < .
me{ ’M||<p1<n+px+q)||}”(N)”( ) S T e (V)12

neN

We will also use an appropriate extension of the lemma.

Lemma54 Let N > 1, pe{0,1}, x € Zand M > 1. Then

. 1
2 min {1’ Mllg1(n+ px) — ¥ (1 + po) }"(%)”($)

neN
< Nlog(M) NM'?log(M)
~ M (o1 (N1 (N)/2

Proof We have that

1 ;
min 1’ — b emex
{ M||x||} 2 bm

meZ
and
log(M 1 M
by < min og( ),—, .
M m| im|?
Thus

. 1
2 min {1’ Mlo1(n + px) — ¥ (n + po)| }"<%)"<n;x>

neN

1
S Z min {1, m }
n+pxe(N/2,4N] llp1(n + px) — ¥ (n + px)||

— Z Z bmeZJTim(wl(n+px)—1/f(n+px)) < Z b

n+pxe(N/2,ANImeZ mezZ

2

n+pxe(N/2,4N]

g2 im (g1 (n+px)—y (n+px))

N log(M) 1 —1/2 _ Nlog(M)
<= b |Im|"> N (1 (N)oy (N < =
S—y +£| [l 2N (o1 (Vo (V)™ € =2

log(M) 1
> AN (e e )

O<|m|<M
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1/2 N log(M)

+ Z i M 12N (o1 (VYo (V) m

|m\>M

+N log(M)M ' (g1 (N)oy (N))/?

where we used Lemma 4.1 from [9] to obtain the estimate for

| Zn+pxe(N/2 AN 27 im (g1 (n+px)—y (n+px)) ‘ !

Using the two lemmas above, together with the trivial estimates

Y (x), [Apy ()|, Ty (x)| S 1 (since 1p(n) = ¥ (n) + Ap(n) + My (n)), we may
estimate

113(x)] + s(x)| + [I7(x)| + g (x)| 4 [To(x)]

1
S o )2Z 2 (m‘“{ M||<o1<n+px>—w<n+px)||}

neN pef{0,1}

. 1
emin {1, S G ()

o1 (Nlog(M) NM'2log(M) )
~ @2(N)? M (01(N)p1 (N))1/2
- Nlog(V) N3/2Hx+e/2 1og(N)

@2(N)NH2x+e © g (N)3op (N)1/2
S NI X log(N)N! =7y X He/2 4 N1
(N5/2+2X+€/2—3)/+38/2+8 log(N)) < N—1-x

since xy =1—yand5/2+2x —3y +3¢ <0 < 10(1 — y) + 6¢ < 1 and since
y € (29/30, 1), one may choose such an appropriately small ¢ > 0. Finally, for /g we
get

1= s S s s on(E (5

" (N )22 2

neNO<|m|,|my|<M

e—2m’mltpl (n)

2mwim

e —2mwima@1 (n+x)

2mimiy(n) _ 2mimay(n) _ (i) (” +x>
(e ) 2rimy (e )y )~y
1 1
= 2 Z 2 Z
(PZ(N) O<|mi|,|ma|<M (27”) nima N1 x<n=<Nyy

_2mm1¢1(n) 2mima@) (n+x) F)Z] o (I’l)
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where F!  (n) = (ez”iml‘/’(”) - 1)(62”im2‘”(") - l)n(%)n<m> Therefore we

mip,m3 N
have that

[Ts(x)| S

1 1
@2(N)? Z |mym;]

O<|mil,lma|<M

Z e—Znimlgol(n)—Znimz(pl(n+x)Fx (n)

miy,m2

Nix <nSN2,x

2
)| < mima |y (N)? < [myma| 28 and

Forall n € (N x, Na,x] we have |F, . N?

also by the mean value theorem together with the following calculation

d(F; t
‘(m—m“)\ < I 1 (N) I (V)

dt
+lmi | (N)ma|y' (N) 4 1/N|mima |y (N)?
@2 (N)?
N3

< |mims]

~

2
we get supy, _ny A Fy iy (04 D = Fii o, (0]} S Imima| 2055 We let m =

max{m1, my} and we use Corollary 3.12 from [20] for « = 0 and ¥ = 1 to obtain

—2mwimy@1(n)—2mwimye;(n+x) x
Z e Foiomy (n)
Nix <nSN2,x

< max{my, mo}* N*2o1 (N) 7' Po1 (N) 7> Imimalga (N)*N 2.
We can now finish our estimates for Ig

sl <> maximy, ma)PN* o1 (V)T g (V)TN
0<lmi],lma|<M
_ ZO<|m1|,\m2|§M max{mjp, my
T @i(N)2BN2Bo(N)1/3
MB3/3 N8/3+16/3x+8/3¢
S <
N g1 (NN oy (N)I3 ™ g (N)IOB NN
N8/3+16/3x+8/3¢

}2/3

551 N10/3y—e1 N2/3N—61"

We wish to have that 8/3 4+ 16/3x 4+ 8/3¢ — 10/3y +2¢1 —2/3 < —1 — x, but we
have that

8/3+16/3x +8/3e —10/3y + 261 —2/3 < —1 — x
10(1 —y) + 19 4+ 8s + 61 < 1,

and we can choose ¢; > 0 to make this true. O
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We use Lemma 5.1 and Lemma 5.2 to prove the weak type (1,1) estimates of
Theorem 1.5. We state and prove a general Theorem that allows us to conclude. It is
a natural extension of Theorem 6.1 in [20], and the novelty lies in our handling of the
problematic initial part of Ky * K N-

Theorem 5.5 Let M(f)(x) = sup,en|Kn * f(x)| be the maximal function cor-
responding to a family of nonnegative kernels (K")n ey S NZ) such that

M lleczy S flleozy for all f e £°°(Z) and let ( ) <z, be a family of non-
negative functions. Assume that there are sequences (dp)neN, (Dn)nen < [1, 00) such
that |supp(K,)| = dyn, supp(K,) < [0, Dyl, supp(F,) S [—Dy, Dy, dy < Dy
for some gy € (0,1) and assume there exists a finite constant M > 1 such that
Md, <dy+1and MD, < D;11 < ol foralln € N. Also, assume that exists a real
number €1 > 0 such that for alln € N and x € Z we have

~ 1
|Kn*Kn(x)_Fn(x)|§Dn ol
and assume that there exists a constant A > 0 such that

F,(x) < dn_lfOr all x with |x| < A and | F,(x)|
< D! forall x with |x| > A. (5.6)

Finally, assume that there exists an & € (0, 1] such that
|Fp(x + ) — Fy(0)| < Dy, %|y| whenever |x|, |x + y| 2 dZ2. 5.7
Then we have that there exists a constant C > 0 such that

IMDlrzy < Cllf ez for all f € £1(Z).

Before proving the theorem let us briefly show how it implies the weak-type (1,1)
bound.

Proof of Theorem 1.5 By letting K, (x) = W > ken Ok (x)n<§), d, ~ ¢1(2"),
D,, ~ 2" we can apply the theorem for

Foo) = | Knx K, 0 < 1x] < 012"

" Gon(x), lx| > ¢1(2") ’
Lemma 5.2 guarantees the existence of a real number €1 > 0 such that | K, * K n(x) —
Fo(x)| < Dn_l_s1 for |x| > ¢1(2") and for smaller values of x the estimate is trivially
established from the definition of F,,. We also have

Knx Ry = (2,,)2213(k)13<k+x)n(2n) (25
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and thus if C is the constant appearing in Lemma 5.1, for all integers x such that
|x] < C, we get that

~ 1 -
F)] = 1Ky Ry S~

and for all x such that C < |x| < ¢1(2") we get
|Fa(0)] = |G (1) S 27" ~ D, .

We can conclude by letting e = 1, and using the estimates from Lemmas 5.1 and 5.2.
This completes the proof. O

Proof of Theorem 5.5 Let f € £'(Z) such that f > 0 and let & > 0. We will perform
a subtle variation of the Calderén-Zygmund decomposition. There exists a family of
disjoint dyadic cubes (Qs. ;) (s, j)eB> Where B € NoxZand Qy ; = [j2°, (j+1)2°)NZ
and functions g, b such that

f:g+b’

lgllerzy < I1flletz) and lIgllez) < 2et,
b =3 jeB bs.j where b; j is supported on Qyj,

Yico,; bs.i(®) =0,
Ibs, 61 z) < 4l Qs 51
o Y hes |l <@ fllo).

For every s > 0 we let

by= Y by
JEZ:
(s,j)eB

and for every n € Ny we decompose further

b (x) = bs(X) 1 {yez: |bs(y)|>ady) (X),

o hi(x) =by(x) — by (x) = by(xX)L{yez: by (y)|<ad,) (X),
o g{(x) =2 jez [hilo, ;1o
(s.))eB
o BI(x) =hi(x) —gl(x) =) jez. (h} —Ihtlo,;)o,,-

(s,/)eB
Let s(n) = min{s € Ny : 2° > D,} and decompose f as g + Zszo by = g+
s(n)—1
S0+ + B = (24 Doao ) + Ssobt + T30 B + S, B
We have that
Hx €Z: sup|Kyp* f(X)] > CozH
neN
< Hx €Z: sup Ky * <g n Zgg)(xn > ca/4H

neN $>0
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neN

+ {x €Z: sup |K, * (Zb?)(xﬂ > C(x/4H
520

n {x €Z: sup|Kn>x<< i Bg)(x)| > Ca/4”

neN

s=s(n)
s(n)—1

+ {x €Z: sup|K, * ( Z Bg)(x)l > Coz/4H
neN =0

and our treatment will be different for each summand. The following subsections are
devoted to this task, and the most difficult part will be to bound the final one, where
we will exploit the cancellation properties of B} together with the properties of F,.

5.1 Estimates for the First Three Summands

For the good part we will use £°°-bounds together with the fact that | M || geo_ g0 =
T < oo. Note that

1> et = D0 1Mo, 1o, 1< Y g, g, ()

s>0 (s,j)eB (s,))eB
< Y llbsjllo,,lo,, @)
(s,j)eB
< D lbsjlo@) @il o, 0 = Y 4alg (x) <4
(s,j)eB (s,))eB

and g(x) < 2« forall x € Z, and thus ||g + Y- &"ll¢=(z) < 6« and thus | K %
(g + 2 =0 g?)(x)| < T6a forall x € Z and n € N. Thus for any C > 24T we get

Hx el: z:g|K *(g+2gs>(x)| > Cot/4H =0

since it is the empty set.

For the second summand we use the lacunary nature of (d,),en as well as the
bounds for the cardinality of the support of K,,. Specifically, we have

Hx €Z: sup |Ky (Zb")(x)l > C(x/4H

neN
_’UUsuppK * |bY | ZZ|suppK * |bY |
neNseNg neNseNy
<Y Y IsuppKul - [suppbf| <Y Y dul{x € Z: |by(x)| > ady)|
neNseNy neNseNy

=YY di Y Hx €Z: adir = |bs(x)| > adi)|

neNseNy k>n
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k
= 2D (D)l € Z: adirs = b ()] > adid] S

seNg keN n=1
o7t YD adilfx € Z: adier = by ()] > ady)]
seNg keN
-1 —1
<o ' Y bdllag S fllo -
seNp

For the third summand we simply use the fact for any n € N and any s > s(n) we
get that 2° > D, and thus

supp(K,, * BY) C supp(K,) +supp(B!) € [0, Dyl + ) Qs €10.2°]

JEZ
(s,))eB
+ U Qs,jg U 3QS,./
JjEZ JEZL
(s,j))eB (s,))eB

where 30 denotes the interval with the same center as Q and three times its radius.
Therefore

Hx €Z: sup|K,,>k< i Bf)(x)| > Ca/4”

neN s=s(n)
=1U U sk 80| =|U U U 300
neNs>s(n) neNs>s(n) jeZ

(s,))eB

=| U 3¢ sa Il
(s.))eB

5.2 Estimates for the Fourth Summand

The fourth summand is the most difficult to estimate and here we use the regularity of
K, x K,,. We have

s(n)—1 s(n)—1

Hx €Z: sulen*< Z B;')(x)l >Ca/4” ,Sofzzsupll(,,*( Z Bf)(x)|2

neN s=0 xez "N 5s=0
s(n)—1 s(n)—1 2
) 2 -2

D) RIS D) (S 3] [ Se] i

x€ZneN 5s=0 neN s=0

s(n)—1
=a”? 1K % B2, +2 (Kn % B, Ky % B" )27 ).
02(7) 1 2 14=(Z)
neN s=0 0<sy<sy<s(n)—1

We need the following result to conclude.
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Claim There exists 0 < A < 1 suchthatforalln € Nand0 < 51 <sp <s(n) — 1 we
get

[(Kn % Bl K % BL) 2| S 27l BL g1z
+d, ' Y (8] % Bl BL) - (5.8)

ljl=A

Assuming that (5.8) holds, let us see how we can deduce the desired estimate. We
have

s(n)—1
@2y ( DoUKnx Bl 42 Y. (Kux Bl Ky Bg)gz(z)>
neN s=0 0<sy<sy<s(n)—1
s(n)—1
SaY N (RO al Bl +di DD 165 B B )
neN =0 jl<A

ey Y (AS(")_”“ I1B5, lle z)

neN0<s;<sy<s(n)—1

D 100 BY. B )

[JI<A
s(n)—1 s(n)—1
STty Y KOTIB lag ety 3o 4!
neN s=0 neN s=0
> 18, * B, B!) )]
[JI=A
+a 'Y Y OB g e Y
neN0<s;<sy<s(n)—1 neN
Z d,! Z 1(8; * By, Bg)) 2z
0<sy<s2<s(n)—1 /<A

For the first and the third term note that

-1 _
o'y Y WOTBL g

neN0<s;<sy<s(n)—1

- ail Z Z ||B;L2||£1(Z) Z )\S(n)fn

neN 1<sy<s(n)—1 0<s1<sp—1
s(n)—1
—1 () — 1 (1)
Saty 0 ROTBLlag e Y Y KOTIB o S
neN 1<s;<s(n)—1 neN s=0

Birkhduser



Journal of Fourier Analysis and Applications (2024) 30:37 Page 43 of 50 37

s(n)
—1 K —1 K
EDD) IS AR PP DY D L] 1
neN s=0 seNg (t,j)eB
—1 —1
Sam > 4001 S a7l
(t,j)eB

where we have used the estimates from the Calder6n-Zygmund decomposition in the
beginning of the proof.
The fourth term is bounded as follows.

a3 N Ayt Y (8% B BL) ]

neN0<s;<sp<s(n)—1 1<|jl=A
) 1 .
<o« Y3 Y A Y IB G = DIBL )]
1<|j|<AneN0<s;<sy<s(n)—1 X€ZL

=a 23 33 Y a4 B = DIBLW)L.

x€Z 1<|j|<AneN0<s;<sp<s(n)—1

Fix |j| < A and x € Z such that x — j € supp(by,) for some integer sg. Since the
supports of by’s are disjoint we have that there can be at most one integer s, such that
X € supp(bx(f)). Note also that [|A5 19, ; < «, as we observed earlier. We have

Yo > & UBLG = DIBLWIS Y dy BB (= )

neN0<s;<sy<s(n)—1 neN
S dy ! (1bsy (1 yez: by (1)) <ard,) () + & Lupp by, (X))
neN

(|bs(/) (x — DN yez: |bs(/)(y)|§adn}(x -+ alsuppbs(/) (x—))
< Y by )lIbg (x = DI +a? D dy  supps,, ()
neN: neN
anIbsO(x)\/(X
dnzlbs(/)(x—j)l/a
—1 .
+ Z dn |bso(x)|alsuppbs(/) (x—J)
neN:
dn > |bsy (x)| /e
+ D d by = Dlalsupps, ()
neN:
anIbS(f)(X—/)l/a
< max{lbg, (), Ibg (x = N7y minfer/ by, (O], @/ Ibg (8 = DI} + & Lsuppiy, (x)
< Y alby )| +alb(x — DI+ D o Lapps, (¥) (5.9)

s€Np s€Np

Birkhauser



37 Page44of 50 Journal of Fourier Analysis and Applications (2024) 30:37

where we have used the existence of a finite constant M > 1 such that Md, < d,,+1.
We get that

D DD DENNUEED DINEY Y AR

neN0<s;<sy<s(n)—1 1<]jl<A
Sa?Y Y (D wlb @+ el = DI+ Y @ luppn (1))
x€Z 1<|jI<A seNy seNp
Sa Y D 20bllpg +A D Isuppb
1<|jl=A seNy seNp
Sa”'Alblog +A| U 0| se” I/ lna.
(s,))eB

A similar argument may be used to bound the second term. For the sake of completeness
we note that

s(n)—1

“*22 Z d, " Z (8 * By, B)p2(z]

neN s=0 1=<]jl=A
s(n)—1
) -1 .
<a2 3 3N A Y B - DB
1<|j|<AneN s=0 xeZ

s(n)—1

=o)X 3N 4B = DIBI)L.

x€Z 1<|j|<AneN s=0

Fix |j| < A and x € Z such that x — j € supp(by,) for some integer so. Since the
supports of by’s are disjoint we have that there can be at most one integer s, such that
x € supp(bs(f)). We have

s(n)—1

Do D dp Bl = DB < Y dy By (IIBY (x = ).

neN s=0 neN

By comparing the inequality above with (5.9), we see that an argument identical to
the one used previously may be used here. The proof will be completed once we have
established the estimate (5.8) of the claim. We do this in the following subsection.

5.3 Proof of the Estimate (5.8)
Letn e Nand 0 < sy < sp < s(n) — 1 and let us note that

[(Ku % B, Ku % B) 2z | = |(Kn % K % B BL) 2z

s1° 517 7782

< [(Fu % Bl BL) 2|

§1° 782

+[((Kn % Ky — Fy) % B2, BL) 2 -
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Now decompose Fy,(x) = Fp(x)1jxj<a + Fa()ljx=a = 3 4cjcq Fa(DS;(x) +
F,(x)1jx|>4 and let G, (x) = F,,(x)1|x|> . We obtain

[(Kn o BY, Knx By < Y IFa(DI(8) * B, B
7A<j<A
+| Gy *Bu’Bsz ZZ(Z)|
+|((Ky % Ky — Fy) * Bl BL) 2|
Sdyt Yo |6« BL B e
jl=A
+(Gn *le’Bsz Y| +

+((Kn % Ky — F) % BE B |-

In the right hand side of our inequality one of the terms of the desired estimate
already appeared and thus we can now focus on the other two summands. Let
Zn = [mZS(") (m + D2*™)NZ, Zon = [(m — D2°®, (m + 2)2°™) N Z and
E, =K, % K — F,,. Note that supp(E,) < [—D,, D,] € [— 25(m) 25 We have
that

((Kn % Ky — Fy) % B!, B Y| = | D (En % BL)(x) B (x)]

X€Z
=12 (X E)BL (= ) By )|
xe€Z yeL
<Y D IEMBLG—NBLOI<Y D> Y 1y (x—y)
X€Z yel YELMEL XEZ

|En(y) By, (x — y) By, (x)]

<D—1 512 Z |B (x)|<21~mn y)IB (x—y)|>

MELXEZm YEZ

< DB gz sup 1B 15 oz

Now we note that for any m € Z we have

1B 1z, lo@ = Y D I1Bi1z, (Mlg, (0]
keZ. xeZ
(s1,k)eB

< Y IBilg o (5.10)
keZ: (s, k)eB
Qsl,kmzm,rﬁ'/:@

On the one hand

Birkhauser



37 Page 46 of 50 Journal of Fourier Analysis and Applications (2024) 30:37

I1B5, 10, illerzy < W 1o, Ny + RS Jo, Loy illeray
< 2libs Loy, i llorzy < 4al Qs k| < 402 (5.11)

and on the other hand [{k € Z : (s1,k) € B& Qg .k N Zm,n # W} < 28 =51
since Z,, ,, can be partitioned into 3 dyadic intervals, Qy, ¢ is a dyadic interval and
s1 < s(n). Therefore

1B} 1z oz S 2771402 = 822° ™! < 8aD,, (5.12)
and finally

|(Kn % Ky — Fu) * B, BL) 2z | S Dy '8l B, [l 1z
S 27O || B |41z

since D, > 25M~1 > psm=si—1 e get

s(n)—s1

[((Kn % Ky — Fu) * Bl BL) ey | S (27°) a B Itz

as desired.
Now we focus on the last term |(Gn * Bg, ;’2)(2(2)‘. Note that supp(G,) <
[—25) 25007 We have

(G Bl BL) 2y | = | D _(Gu* BL)(x)BL ()]

X€ZL

=13 (X 6B - ) B

xX€Z yel

=Y Y (X GmBL =g, = »)BLw)

mezZxeZyy yEL

<Y sup [Gux(BRlz, V)| D B

meZ X E4m.n X€Zm,n

<sup sup [Gyx (Bylz, JOIBY @)l ).

N
MELXELy n

Let us define BY ; = B{lg, ;, and note that for any m € Z, x € Z n, we have

]Gn*(B;'IIZmV")(x)yf Z ‘Gn*(Bflgjlzm)(x),since Z B}, =Bl
JEZ: JEZ:
(s1./)eB (s1./)eB

We also note that ), Bg @1z (x) = 0. To see this note that if supp(By 2N

Zn,n = ¥, thenitis trivial, and if they intersect, we must have that supp(B;’1 j) € Znn,
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since supp(B;’l, j) C Qy,,j which is a dyadic interval of length 2! and Zm,n is the
union of three dyadic intervals of larger length. In the second case we get

> OB )1z, ()= Bl (x)=0

X€Z X€Z

from the definition of B" (x). Fix m € Z and j € Z such that (s1, j) € B and let
Xg,,;j be the center of the cube QOs,,j- Assume x € Z,, , is such that |x — xg ;| >

Cd;? 4+ C2%'. Using the cancellation property we have established together with the
regularity assumptions for F,,, we get

(G x (B2 j17,,)0] = | 32 (Gulx = ) = Gulx = x5, ) B ;017,09
yeZ
S Dy = x jlIBE ;01 z, O
Y€EZ
-2
< D 251”le j ”ll(Z)

Here we have used the fact that [x —y| > |x—xy, j|—|xs, j—y| > Cdp?4+C21 =251 >
d? and thus we may use (5.7). Taking into account (5.6) and the definition of G, we
get that for any x € Z

|G" ( ST, j )(x)| S D IHle lem,,Hél(Z)
Now we may estimate as follows

sup sup |G, (Bl1z )(x)|

S1°Zm.n
MeLxX€Zmypn

<swp sup 37 [Gux (B 17, ) ()]

MELXEZm jez:

(s1./)eB
—25s
< sup sup O
» u 1, j m,n ( )
MELXELmn e (s1,))eB
‘x—_xxl‘jlzcdjz-‘rcg'”
—1y pn ~
+ sup sup D, By, 1z, , e @)-
p su 1 Zmn 1D
MELXEZmn ey (s1,))eB

lx—xy,,j|<Cdy2 +C2%1

For the first summand note that

—2 S1
Sup Sup Z 2 ”Bsh Zmn”el(z)
MELXELm n JeZ: (s1,))eB
lx—xy,,j1=Cdy2 +C201

-2
S Dn 2S1 sup Z ”BS‘1 j mn”ll(Z)
MEL iy (5. ))eB
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< D,?2" sup ||B 13, lloi()-

mez

The calculations from (5.10), (5.12) show that sup,, 7 || B, 1 Z. etz < aD, and
thus the first summand is bounded by a constant multiple of

aD; 1251 < @21 75most < g (1/2)5 M1,

For the second summand we consider two cases. In the first case we assume that
21 < dy?. Then, any interval of radius < d;;* contains at most < 2751d;;? sets of the
form Qy,, ;. Thus we have

—lypn 1~
sup sup Z D, ”Bshjlzm"ngl(z)
MeLx€Zypn JEZ: (s1,))eB

x—xg;.| <Cd2+C251

Ssup sup [{j€Z: (s1,)) € Band [x —xy /| < 2Cd,§2}|Dn_101251
meZxeZyn
<2742 D a2

< ad,ll < o < a(l/zl—&‘o)s(ﬂ)—sl
~ DZODn_SO ~ (zs n ) —&g

where we used the estimate (5.11), the fact that d, < DZ° and the fact that 2™~ <
D, < 2°™_We have established the appropriate bound for the first case.

In the second case, we assume that 2°! > d52. In that case, any interval of radius
< 2°! contains at most S 2°127°1 = 1 sets of the form Q, ;. Thus we have

sup sup ) w8 17, @)
mELXELmn e (s1,j)eB
lx—xg,,j|<Cdy? +C281

Ssup sup [{j €Z: (s1,)) € Band |[x — x4 ;| < 2C2‘”}|Dn_1012‘1

MELXELm n

< D2t S a(1/2)S M,

This concludes the second case.
Combining everything we get

[(Gu = B, B) 27| < sup sup Gux (B 13, ) @IIBg (D)1 z

s1°
X€Zmn

(230 1)?(71) 51 1B” (X)HZ](Z)

since 271 < 2001 For A = min{27¢1, 220~} € (0, 1), we obtain the estimate (5.8)
and the proof of Theorem 5.5 is complete. O
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