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Abstract
We prove the following group analogue of the well-known Heyde theorem on a char-
acterization of the Gaussian distribution on the real line. Let X be a second countable
locally compact Abelian group containing no subgroups topologically isomorphic
to the 2-dimensional torus. Let G be the subgroup of X generated by all elements
of X of order 2 and let α be a topological automorphism of the group X such that
Ker(I +α) = {0}. Let ξ1 and ξ2 be independent random variables with values in X and
distributions μ1 and μ2 with nonvanishing characteristic functions. If the conditional
distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric, then
μ j are convolutions of Gaussian distributions on X and distributions supported in G.
We also prove that this theorem is false if X is the 2-dimensional torus.

Keywords Locally compact Abelian group · 2-Dimensional torus · Topological
automorphism · Gaussian distribution · Conditional distribution
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1 Introduction

The following characterization theorem was proved in [15, Theorem 3.1].
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Theorem A Let X be a second countable locally compact Abelian group with the
connected component of zero of dimension 1. Let G be the subgroup of X generated
by all elements of X of order 2 and let α be a topological automorphism of the group
X satisfying the condition

Ker(I + α) = {0}. (1)

Let ξ1 and ξ2 be independent random variables with values in X and distributions
μ1 and μ2 with nonvanishing characteristic functions. If the conditional distribution
of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric, then μ j are
convolutions of Gaussian distributions on X and distributions supported in G.

Theorem A can be considered as a group analogue for two independent random
variables of the well-known theorem of Heyde ([18], see also [19, §13.4.1]), where
the Gaussian distribution on the real line is characterized by the symmetry of the
conditional distribution of one linear form of independent random variables given
another.

Denote by R the additive group of real numbers and by T the circle group (the
one-dimensional torus), i.e., the multiplicative group of all complex numbers with
absolute value 1. The aim of the article is, firstly, to prove that Theorem A is true for
a much wider class of locally compact Abelian groups, namely for second countable
locally compact Abelian groups containing no subgroups topologically isomorphic to
the 2-dimensional torus T2 (Theorem 2.1). Secondly, to prove that Theorem A is false
when X is the 2-dimensional torus T2 (Theorem 3.1). We emphasize that the proof of
Theorem 2.1 given in the article is fundamentally different from the proof of Theorem
A, which is based on the proof of the theorem for the group X of the form X = R×D,
where D is a second countable totally disconnected locally compact Abelian group,
and uses complex analysis.

Many studies have been devoted to analogues of Heyde’s theorem for different
classes of locally compact Abelian groups (see e.g. [3–5, 7–13, 20–22], and also [14,
Chap. IV], where one can find additional references). In the article we continue this
research.

We use in the article standard facts related to abstract harmonic analysis, see, e.g.,
[17]. Let X be a second countable locally compact Abelian group, let Aut(X) be
the group of topological automorphisms of the group X , and let I be the identity
automorphism of a group. Denote by Y = X∗ the character group of the group X , and
by (x, y) the value of a character y ∈ Y at an element x ∈ X . For a closed subgroup
K of the group X , denote by A(Y , K ) = {y ∈ Y : (x, y) = 1 for all x ∈ K } its
annihilator. The character groupof the factor group X/K is topologically isomorphic to
the annihilator A(Y , K ). Let α : X → X be a continuous endomorphism of the group
X . The adjoint endomorphism α̃ : Y → Y is defined as follows: (αx, y) = (x, α̃y) for
all x ∈ X , y ∈ Y . Let n be a natural number. Put X (n) = {nx : x ∈ X}. A topological
isomorphism of locally compact Abelian groups X1 and X2 is denoted as X1 ∼= X2.
Denote by Z the additive group of integers.

Let f (y) be a function on the group Y and let h ∈ Y . Denote by �h the finite
difference operator

�h f (y) = f (y + h) − f (y), y ∈ Y .
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Denote by M1(X) the convolution semigroup of probability distributions on the
group X . Let μ ∈ M1(X). Denote by

μ̂(y) =
∫

X
(x, y)dμ(x), y ∈ Y ,

the characteristic function (Fourier transform) of the distributionμ. The characteristic
function of a signed measure is defined in the same way. Denote by σ(μ) the support
of μ. Define the distribution μ̄ ∈ M1(X) by the formula μ̄(B) = μ(−B) for any
Borel subset B in X . Then ˆ̄μ(y) = μ̂(y). If F is a Borel subgroup of X , denote by
M1(F) the subsemigroup of M1(X) consisting of all distributions concentrated on F .

A distribution γ ∈ M1(X) is called Gaussian [24, Chap. IV, §6] if its characteristic
function can be represented in the form

γ̂ (y) = (x, y) exp{−ϕ(y)}, y ∈ Y , (2)

where x ∈ X and ϕ(y) is a continuous nonnegative function on the group Y satisfying
the equation

ϕ(u + v) + ϕ(u − v) = 2[ϕ(u) + ϕ(v)], u, v ∈ Y . (3)

A Gaussian distribution is called symmetric if x = 0 in (2). Denote by �(X) the
set of Gaussian distributions on the group X . Note that in particular, the degenerate
distributions are Gaussian. Let x ∈ X . Denote by Ex the degenerate distribution
concentrated at the point x ∈ X .

Denote by mX a Haar measure on the group X . It is well known that mX is unique
up to a positive multiplicative constant. If X is a compact group, then mX (X) < ∞.
We suppose that in this case mX ∈ M1(X). Note that, if X is an arbitrary locally
compact Abelian group and K is a compact subgroup of X , then the characteristic
function m̂K (y) is of the form

m̂K (y) =
{

1, if y ∈ A(Y , K ),

0, if y /∈ A(Y , K ).
(4)

2 Proof of theMain Theorem

The main result of the article is the following theorem.

Theorem 2.1 Let X be a second countable locally compact Abelian group containing
no subgroups topologically isomorphic to the 2-dimensional torus T2. Let G be the
subgroup of X generated by all elements of X of order 2 and let α be a topological
automorphism of the group X satisfying condition (1). Let ξ1 and ξ2 be independent
random variables with values in the group X and distributions μ1 and μ2 with non-
vanishing characteristic functions. If the conditional distribution of the linear form
L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric, then μ j ∈ �(X) ∗M1(G), j = 1, 2.
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To prove Theorem 2.1 we need some lemmas.

Lemma 2.2 ([21, Lemma 3.8], see also [14, Corollary 9.7]) Let X be a second count-
able locally compact Abelian group and let α be a topological automorphism of X.
Let ξ1 and ξ2 be independent random variables with values in the group X. If the
conditional distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is
symmetric, then the linear forms P1 = (I + α)ξ1 + 2αξ2 and P2 = 2ξ1 + (I + α)ξ2
are independent.

Lemma 2.3 ([6, Lemma 10.1]) Let X be a second countable locally compact Abelian
group with character group Y . Let α j , β j , j = 1, 2, be continuous endomorphisms of
the group X. Let ξ1 and ξ2 be independent random variables with values in the group X
and distributionsμ1 andμ2. The linear forms L1 = α1ξ1+α2ξ2 and L2 = β1ξ1+β2ξ2
are independent if and only if the characteristic functions μ̂ j (y) satisfy the equation

μ̂1(̃α1u+˜β1v)μ̂2(̃α2u+˜β2v) = μ̂1(̃α1u)μ̂2(̃α2u)μ̂1(˜β1v)μ̂2(˜β2v), u, v ∈ Y . (5)

Lemma 2.4 ([7, Lemma 6], see also [14, Lemma 5.1]) Let Y be a locally compact
Abelian group and let A(y) be a continuous function on the group Y satisfying the
equation

�2k�
2
h A(y) = 0, y, k, h ∈ Y ,

and the conditions A(−y) = A(y), A(0) = 0. Let

Y =
⋃

ι

(yι + Y (2)), y0 = 0, (6)

be a Y (2)-coset decomposition of the group Y . Then the function A(y) can be
represented in the form

A(y) = ϕ(y) + rι, y ∈ yι + Y (2), (7)

where ϕ(y) is a continuous function on the group Y satisfying Eq. (3).

Let us recall some definitions. Let X be an Abelian group. We do not assume that
X is a topological group. If each element of X has finite order, then we say that X is a
torsion group. We say that X is a torsion-free group if each element of X , except zero,
has infinite order. The subgroup consisting of all elements of finite order of the group
X is called a torsion part of X .

We formulate as a lemma the following corollary of the well-known Baer–Fomin
theorem ([16, Theorem 100.1]).

Lemma 2.5 Let Y be an Abelian group and let H be a torsion part of Y . If H is a
bounded subgroup, then H is a direct factor of Y .

Using Lemma 2.5 we shall prove the following statement.
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Lemma 2.6 Let X be a locally compact Abelian group containing no subgroups topo-
logically isomorphic to the circle group T. Let K be a closed bounded subgroup of X.
Then the factor group X/K also contains no subgroups topologically isomorphic to
the circle group T.

Proof The lemma is true if K = X , so we suppose that K �= X . Assume that the
factor group X/K contains a subgroup F such that F ∼= T. Let us prove that in this
case we arrive at a contradiction. Let p : X → X/K be the natural homomorphism.
Put S = p−1(F). The group S is closed and hence locally compact. Consider the
restriction of p to the subgroup S. We have p : S → S/K and S/K ∼= T. Thus, we
can prove the lemma assuming that X/K ∼= T. By the structure theorem for locally
compact Abelian groups, the group X is topologically isomorphic to a group of the
form R

m × G, where a locally compact Abelian group G contains a compact open
subgroup. Since K is a bounded subgroup, K ⊂ G. It follows from X/K ∼= T that
m = 0, i.e., the group X itself contains a compact open subgroup. Denote by Y the
character group of the group X .

First suppose that X is a compact group. Then Y is a discrete group. Denote by H
the torsion part of the group Y . We have A(Y , K ) ∼= (X/K )∗. Since X/K ∼= T, this
implies that

A(Y , K ) ∼= Z. (8)

Inasmuch as K is a bounded group, there is a natural n such that nx = 0 for all x ∈ K .
It follows from this that ny ∈ A(Y , K ) for each y ∈ Y , i.e.,

Y (n) ⊂ A(Y , K ). (9)

In particular,
H (n) ⊂ A(Y , K ). (10)

In view of (8), (10) implies that
H (n) = {0}. (11)

Hence H is a bounded group. By Lemma 2.5, H is a direct factor of Y . We have
Y = H × L , where L is a torsion-free group. Taking into account (11), this implies
that Y (n) = L(n). For this reason, it follows from (8) and (9) that L ∼= Z. This implies
that the group X contains a subgroup topologically isomorphic to the circle group T,
contrary to the assumption. Thus, the lemma is proved if the group X is compact.

Consider the general case. Let B be a compact open subgroup of the group X . As far
as p is a continuous open epimorphism, p(B) is an open subgroup of the factor group
X/K . Since X/K ∼= T, we have p(B) = X/K . Moreover, p(B) ∼= B/(K ∩ B).
Thus, B/(K ∩ B) ∼= T. As has been shown above, this implies that the group B, and
hence the group X , contains a subgroup topologically isomorphic to the circle group
T, contrary to the assumption. 
�

Let Rℵ0 be the space of all sequences of real numbers considering in the product
topology. We will need the definition of the Gaussian distribution in R

ℵ0 . The space
R

ℵ0 is one of the simplest examples of a locally convex space. We note that Gaussian
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distributions in arbitrary locally convex spaces are studied in details in the fundamental
monograph [1].

Denote byRℵ0∗ the space of all finitary sequences of real numberswith the topology
of strictly inductive limit of spaces Rn . Let t = (t1, t2, . . . , tn, . . . ) ∈ R

ℵ0 and s =
(s1, s2, . . . , sn, 0, . . . ) ∈ R

ℵ0∗. Set

〈t, s〉 =
∞
∑

j=1

t j s j .

Let μ be a distribution on R
ℵ0 . We define the characteristic function of μ by the

formula

μ̂(s) =
∫

R
ℵ0
exp{i〈t, s〉}dμ(t), s ∈ R

ℵ0∗.

Let A = (αi j )
∞
i, j=1 be a symmetric positive semidefinite matrix, i.e., the quadratic

form

〈As, s〉 =
∞
∑

i, j=1

αi j si s j

is nonnegative for all s = (s1, s2, . . . , sn, 0, . . . ) ∈ R
ℵ0∗.

A distribution μ on the group R
ℵ0 is called Gaussian if its characteristic function

is represented in the form

μ̂(s) = exp{i〈t, s〉 − 〈As, s〉}, s ∈ R
ℵ0∗,

where t ∈ R
ℵ0 and A = (αi j )

∞
i, j=1 is a symmetric positive semidefinite matrix.

Lemma 2.7 ([2], see also [6, §3])Let X be a second countable locally compact Abelian
group containing no subgroups topologically isomorphic to the circle group T. Then
there exists a continuous monomorphism p : E → X, where either E = R

n for
some n or E = R

ℵ0 , such that if γ is a symmetric Gaussian distribution on X, then
γ = p(M), where M is a symmetric Gaussian distribution on E.

Lemma 2.8 Let X be a second countable locally compact Abelian group containing
no subgroups topologically isomorphic to the circle group T. Let G be the subgroup
of X generated by all elements of X of order 2. Let μ ∈ �(X) ∗ M1(G) and suppose
that the characteristic function of the distribution μ does not vanish. If μ = μ1 ∗ μ2,
where μ j ∈ M1(X), then μ j ∈ �(X) ∗ M1(G), j = 1, 2.

Proof Since the group X contains no subgroups topologically isomorphic to the circle
group T, let p be a continuous monomorphism p : E → X which exists by Lemma
2.7.As far as p is amonomorphism,we have p(E)∩G = {0}. Hence p can be extended
to a continuous monomorphism p̄ : E × G → X by the formula p̄(t, g) = p(t) + g,
t ∈ E , g ∈ G, and p̄ generates an isomorphism of the semigroups M1(E × G) and
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M1(p(E) × G). Let μ = γ ∗ ω, where γ ∈ �(X), ω ∈ M1(G). We can assume,
without loss of generality, that γ is a symmetric Gaussian distribution. By Lemma
2.7, γ = p(M), where M ∈ �(E). Hence μ = p̄(N ), where N = M ∗ ω. Obviously,
the distribution μ is concentrated on the Borel subgroup p(E) × G of the group X .
Substituting, if it is necessary, the distributions μ j by their shifts, we can assume that
μ j are also concentrated on the Borel subgroup p(E) × G. Since the semigroups
M1(E × G) and M1(p(E) × G) are isomorphic, we have μ j = p̄(N j ), where N j ∈
M1(E × G) and N j is a factor of N . By [4, Lemma 5 and Remark 4], we have
N j = Mj ∗ ω j , where Mj ∈ �(E), ω j ∈ M1(G). Hence

μ j = p̄(N j ) = p̄(Mj ∗ ω j ) = p̄(Mj ) ∗ p̄(ω j ) = p(Mj ) ∗ ω j = γ j ∗ ω j ,

where γ j = p(Mj ). Since γ j ∈ �(X), the lemma is proved. 
�
Proof of Theorem 2.1 Assume that a locally compact Abelian group X contains no
subgroups topologically isomorphic to the 2-dimensional torus T2 but contains a sub-
group topologically isomorphic to the circle groupT. Obviously, there can be only one
such subgroup. Hence it is invariant with respect to each topological automorphism
of the group X . Since Aut(T) = {±I }, this implies that there is no topological auto-
morphism α of the group X satisfying condition (1) Hence we can prove the theorem
assuming from the beginning that the group X contains no subgroups topologically
isomorphic to the circle group T.

Denote by Y the character group of the group X . By Lemma 2.2, the symmetry
of the conditional distribution of the linear form L2 given L1 implies that the linear
forms P1 = (I +α)ξ1 + 2αξ2 and P2 = 2ξ1 + (I +α)ξ2 are independent. By Lemma
2.3, it follows from this that the characteristic functions μ̂ j (y) satisfy Eq. (5), which
takes the form

μ̂1((I + α̃)u + 2v)μ̂2(2α̃u + (I + α̃)v)

= μ̂1((I + α̃)u)μ̂2(2α̃u)μ̂1(2v)μ̂2((I + α̃)v), u, v ∈ Y . (12)

Put ν j = μ j ∗ μ̄ j . We have ν̂ j (y) = |μ̂ j (y)|2 > 0 for all y ∈ Y , j = 1, 2. The
characteristic functions ν̂ j (y) also satisfy Eq. (12). Set ψ j (y) = − ln ν̂ j (y), j = 1, 2.
It follows from (12) that the functions ψ j (y) satisfy the equation

ψ1((I + α̃)u + 2v) + ψ2(2α̃u + (I + α̃)v) = A(u) + B(v), u, v ∈ Y , (13)

where

A(y) = ψ1((I + α̃)y)+ψ2(2α̃y), B(y) = ψ1(2y)+ψ2((I + α̃)y), y ∈ Y . (14)

Equation (13) has already appeared earlier in the study of Heyde’s theorem on various
locally compact Abelian groups (see, e.g., [10, 11]). For completeness, we give here
its solution. We use the finite difference method. Take an arbitrary element h1 of the
group Y . Substitute u + (I + α̃)h1 for u and v − 2α̃h1 for v in Eq. (13). Subtracting
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Eq. (13) from the obtaining equation we get

�(I−α̃)2h1ψ1((I + α̃)u + 2v) = �(I+α̃)h1 A(u) + �−2α̃h1B(v), u, v ∈ Y . (15)

Take an arbitrary elementh2 of the groupY . Substituteu+2h2 foru andv−(I+α̃)h2
for v in Eq. (15). Subtracting Eq. (15) from the resulting equation we obtain

�2h2�(I+α̃)h1 A(u) + �−(I+α̃)h2�−2α̃h1B(v) = 0, u, v ∈ Y . (16)

Take an arbitrary element h of the group Y . Substituting u + h for u in Eq. (16) and
subtracting Eq. (16) from the obtaining equation we get

�h�2h2�(I+α̃)h1 A(u) = 0, u ∈ Y . (17)

It follows from properties of adjoint homomorphisms that if a topological automor-
phism α satisfies condition (1), then the subgroup (I + α̃)(Y ) is dense in Y . Taking
into account that h, h1, h2 are arbitrary elements of the group Y , it follows from (17)
that the function A(y) satisfies the equation

�2k�
2
h A(y) = 0, y, k, h ∈ Y . (18)

By Lemma 2.4, (18) implies that the function A(y) is represented in the form (7),
where the function ϕ(y), as is easily seen, is nonnegative. Denote byμ the distribution
of the random variable P1 = (I + α)ξ1 + 2αξ2. It is obvious that

μ = (I + α)(μ1) ∗ (2α)(μ2).

Put ν = μ ∗ μ̄. Then

ν = (I + α)(μ1) ∗ (2α)(μ2) ∗ (I + α)(μ̄1) ∗ (2α)(μ̄2). (19)

It follows from (14) and (19) that the characteristic function ν̂(y) is of the form

ν̂(y) = e−A(y), y ∈ Y . (20)

Denote by γ the Gaussian distribution on the group X with the characteristic
function

γ̂ (y) = exp{−ϕ(y)}, y ∈ Y . (21)

Taking into account (6) and (7), define on the group Y the function g(y) by the formula

g(y) = exp{−rι}, y ∈ yι + Y (2). (22)

Since g(y) = ν̂(y)/γ̂ (y), the function g(y) is continuous. Moreover, (22) implies that
the function g(y) is invariant with respect to the subgroup Y (2). Check that g(y) is a
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positive definite function. Note that

A(X ,Y (2)) = G. (23)

Consider decomposition (6) and take a finite set of elements yι j , j = 1, 2, . . . , n.

Let H be a subgroup of Y generated by all cosets yι j + Y (2). Obviously, it suffices
to verify that the restriction of the function g(y) to H is a positive definite function.
The subgroup H consists of a finite number of cosets yι + Y (2). Put K = A(X , H).
Then H∗ ∼= X/K and obviously, K ⊂ G. Consider the restriction of the function
g(y) to H . This restriction is invariant with respect to the subgroup Y (2) and hence
defines a function on the factor group H/Y (2). We note that H/Y (2) is a finite group
and all its nonzero elements are of the order 2. It follows from this that any real-valued
function on the factor group H/Y (2) is the characteristic function of a signed measure.
In particular, the restriction of the function g(y) to the subgroup H is the characteristic
function of a signed measure � . Since (H/Y (2))∗ ∼= A(X/K ,Y (2)), we can consider
the signed measure� as a signed measure on the finite subgroup F = A(X/K ,Y (2)).
It follows from (7) and (20)–(22) that the restriction of the characteristic function ν̂(y)
to H is the characteristic function of the convolution of a Gaussian distribution λ on
X/K and the signed measure� on F . We verify that the signed measure� is actually
a distribution and this proves that g(y) is a positive definite function.

Since K ⊂ G, by Lemma 2.6, the factor group X/K contains no subgroups topo-
logically isomorphic to the circle group T. Then by Lemma 2.7, applying to the group
X/K , there exists a continuous monomorphism p : E → X/K , where either E = R

n

for some n or E = R
ℵ0 , such that λ = p(M), where M is a symmetric Gaussian

distribution on E . Hence the Gaussian distribution λ is concentrated on the Borel
subgroup p(E) of the group X/K . Note that all nonzero elements of the group F are
of the order 2 and hence

p(E) ∩ F = {0}. (24)

Since the convolution λ ∗ � is a distribution, in view of (24), � is also a distribution.
Thus, we proved that g(y) is a continuous positive definite function such that g(0) = 0.
By theBochner theorem, there exists a distributionω ∈ M1(X) such that ω̂(y) = g(y),
y ∈ Y . Since g(y) = 1 for y ∈ Y (2), in view of (23), we have an inclusion

σ(ω) ⊂ A (X , {y ∈ Y : g(y) = 1}) ⊂ A(X , Y (2)) = G.

It follows from ν̂(y) = γ̂ (y)g(y) for all y ∈ Y , that ν = γ ∗ ω ∈ �(X) ∗ M1(G). By
Lemma 2.8, (19) implies that (I + α)(μ1) ∈ �(X) ∗M1(G). Taking into account that
I + α is a continuous monomorphism, we get μ1 ∈ �(X) ∗ M1(G).

To complete the proof of the theorem, it remains to prove thatμ2 ∈ �(X)∗M1(G).
Take an arbitrary element k of the groupY and substitute v+k for u in (16). Subtracting
Eq. (16) from the resulting equation we obtain

�k�−(I+α̃)h2�−2α̃h1B(v) = 0, v ∈ Y .
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Consider the distribution of the random variable P2 = 2ξ1+ (I +α)ξ2. Arguing in the
same way as in the case when we considered the distribution of the random variable
P1, we prove that μ2 ∈ �(X) ∗ M1(G). 
�

Evidently, if the connected component of zero of a second countable locally com-
pact Abelian group X has dimension 1, then X contains no subgroups topologically
isomorphic to the 2-dimensional torus T2. For this reason Theorem A follows from
Theorem 2.1.

We note that the statement of Theorem 2.1 in the case if a topological automorphism
α of the group X satisfies the conditions

I ± α ∈ Aut(X) (25)

follows from [7, Theorem 1].
It is obvious that if a locally compact Abelian group X contains no elements of

order 2, then X contains no subgroups topologically isomorphic to the 2-dimensional
torus T2. Hence Theorem 2.1 implies the following characterization of the Gaussian
distribution proved earlier in [10, Theorem 3], see also [14, Theorem 9.9].

Corollary 2.9 Let X be a second countable locally compact Abelian group containing
no elements of order 2. Let α be a topological automorphism of the group X satisfying
condition (1). Let ξ1 and ξ2 be independent random variables with values in the group
X and distributions μ1 and μ2 with nonvanishing characteristic functions. Then the
symmetry of the conditional distribution of the linear form L2 = ξ1 + αξ2 given
L1 = ξ1 + ξ2 implies that μ j ∈ �(X), j = 1, 2.

Let X be a second countable locally compact Abelian group, let G be the subgroup
of X generated by all elements of X of order 2, and letα be a topological automorphism
of the group X . Suppose that K = Ker(I + α) �= {0}. Let ξ1 and ξ2 be independent
identically distributed randomvariableswith values in the subgroup K and distribution
μ. It is obvious that αx = −x for all x ∈ K . It is easy to see that the conditional
distribution of the linear form P2 = ξ1−ξ2 given P1 = ξ1+ξ2 is symmetric. Hence if
we consider independent random variables ξ1 and ξ2 as independent random variables
taking values in X , then the conditional distribution of the linear form L2 = ξ1 + αξ2
given L1 = ξ1 + ξ2 is also symmetric. Since μ is an arbitrary distribution, from what
has been said it follows that a necessary condition for a topological automorphism α

for Theorem 2.1 to be true is an inclusion

Ker(I + α) ⊂ G. (26)

However, generally speaking, this condition is not sufficient. The corresponding
example can be constructed in the case, when the group X is an a-adic solenoid.

Recall the definition of an a-adic solenoid. Let a = (a0, a1, . . . , an, . . . , ), where
all a j ∈ Z and a j > 1. Let�a be the group of a-adic integers and let B be the subgroup
of the group R × �a of the form B = {(n, nu)}∞n=−∞, where u = (1, 0, . . . , 0, . . . ).
The factor group �a = (R×�a)/B is called an a-adic solenoid (see, e.g., [17, §10]).
The group �a is compact, connected, has dimension 1, and contains no subgroups
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topologically isomorphic to the circle group T. Moreover, �a can contain at most one
element of order 2. Assume that the group �a contains an element of order 2 and
denote by G the subgroup of �a generated by this element. It follows from the results
proved in [12], see also [14, Proposition 11.19, Theorem 11.20 and Remark 11.22]
that the following statement holds.

Proposition 2.10 Let �a be an a-adic solenoid containing an element of order 2. Let
α be a topological automorphism of the group �a such that

Ker(I + α) = G (27)

and hence condition (26) holds. Then there exist independent random variables ξ1
and ξ2 with values in the group �a and distributions μ1 and μ2 with nonvanishing
characteristic functions such that the conditional distribution of the linear form L2 =
ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric, whereas μ j /∈ �(�a) ∗ M1(G), j = 1, 2.

Anexample of an a-adic solenoid�a and a topological automorphismα ∈ Aut(�a)

such that (27) holds is �a, where a = (3, 3, . . . , 3, . . . ), and α is the multiplication
by −3.

3 Theorem A is False for the 2-Dimensional Torus T2

We prove in this section that Theorem A is false for the 2-dimensional torus T2. Let
X = T

2. Denote by x = (z, w), z, w ∈ T, elements of the group X . The character
group Y of the group X is topologically isomorphic to the group Z

2. Denote by
y = (m, n), m, n ∈ Z, elements of the group Y . Every automorphism α ∈ Aut(X) is

defined by an integer-valued matrix

(

a b
c d

)

, where |ad − bc| = 1 and α acts on X as

follows

α(z, w) = (zawc, zbwd), (z, w) ∈ X .

The adjoint automorphism α̃ ∈ Aut(Y ) is of the form

α̃(m, n) = (am + bn, cm + dn), (m, n) ∈ Y .

We identify α with the matrix

(

a b
c d

)

and α̃ with the matrix

(

a c
b d

)

.

It follows from the definition of the Gaussian distribution on a locally compact
Abelian group that the characteristic function of a symmetric Gaussian distribution on
the group X is of the form

γ̂ (m, n) = exp{−〈A(m, n), (m, n)〉}, (m, n) ∈ Y ,

where 〈·, ·〉 is the standard scalar product inR2, A = (ai j )2i, j=1 is a symmetric positive
semidefinite matrix.
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Theorem 3.1 Let X = T
2 and let G be the subgroup of X generated by all elements

of X of order 2. Then there exist a topological automorphism α of the group X sat-
isfying condition (1) and independent random variables ξ1 and ξ2 with values in X
and distributions μ1 and μ2 with nonvanishing characteristic functions such that the
conditional distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is
symmetric, whereas μ j /∈ �(X) ∗ M1(G), j = 1, 2.

For the proof of Theorem 3.1 we need the following lemmas.

Lemma 3.2 ([23], see also [6, Lemma 11.2]) Consider the 2-dimensional torus T2.

Let α =
(

a b
c d

)

be a topological automorphism of the group T
2. If ad − bc = 1 and

a + d < −2, then there exist symmetric positive semidefinite 2 × 2 matrices A1 and
A2 such that

det A1 = det A2 > 0 (28)

and
A1 + A2α̃ = 0. (29)

Lemma 3.3 ([6, Lemma 16.1]) Let X be a second countable locally compact Abelian
groupwith character group Y . Letα be a topological automorphism of X. Let ξ1 and ξ2
be independent random variables with values in the group X and distributionsμ1 and
μ2. The conditional distribution of the linear form L2 = ξ1 +αξ2 given L1 = ξ1 + ξ2
is symmetric if and only if the characteristic functions μ̂ j (y) satisfy the equation

μ̂1(u + v)μ̂2(u + α̃v) = μ̂1(u − v)μ̂2(u − α̃v), u, v ∈ Y . (30)

Proof of Theorem 3.1 Consider a topological automorphism α =
(

a b
c d

)

of the group

X such that det α = 1 and a + d = −3. It follows from this that det(I + α) = −1
and hence I + α ∈ Aut(X). For this reason condition (1) holds. By Lemma 3.2, there
exist symmetric positive semidefinite 2 × 2 matrices A1 and A2 such that (28) and
(29) are valid.

Note that det(I − α) = det(I − α̃) = 5. Hence I − α̃ /∈ Aut(X) and it follows
from this that H = (I − α̃)(Y ) is a proper subgroup of Y . This implies that K =
A(X , H) �= {0}.

Let us check that Y (2) \ H �= ∅. Suppose the contrary is true, i.e., Y (2) ⊂ H . Then,
on the one hand, for H we have the following possibilities:

H = {(2m, 2n) : m, n ∈ Z}, H = {(2m, n) : m, n ∈ Z}, (31)

H = {(m, 2n) : m, n ∈ Z}, H = {(2m, 2n), (2m − 1, 2n − 1) : m, n ∈ Z}. (32)

On the other hand, H = {((1 − a)m − bn,−cm + (1 − d)n) : m, n ∈ Z} and this
implies that

(−b, 1 − d), (1 − a,−c) ∈ H . (33)
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Sincea+d = −3, this implies thata andd have different parity. In viewofad−bc = 1,
we have either a is even and b, c, d are odd or d is even and a, b, c are odd. Anyway
(33) contradicts (31) and (32). Hence Y (2) \ H �= ∅.

Take 0 < κ < 1 and consider on the group X the distribution

π1 = κE(1,1) + (1 − κ)mK

and the signed measure

π2 = 1

κ
E(1,1) + κ − 1

κ
mK .

Since H = A(Y , K ), it follows from (4) that

m̂K (y) =
{

1, if y ∈ H ,

0, if y /∈ H ,

and the characteristic functions π̂ j (y) are of the form

π̂1(y) =
{

1, if y ∈ H ,

κ, if y /∈ H ,
π̂2(y) =

⎧

⎨

⎩

1, if y ∈ H ,
1

κ
, if y /∈ H .

(34)

Let us check that the characteristic functions π̂ j (y) satisfy Eq. (30). To see this we
verify that for any u, v ∈ Y both sides of Eq. (30) are equal to 1. Suppose that there
exist u, v ∈ Y such that π̂1(u + v)π̂2(u + α̃v) �= 1. In view of (34) then either
u + v ∈ H , u + α̃v /∈ H or u + v /∈ H , u + α̃v ∈ H . In both cases we obtain that
(I − α̃)v /∈ H . This is impossible because H = (I − α̃)(Y ). Thus, the left hand side
of Eq. (30) for any u, v ∈ Y is equal to 1. Reasoning similarly we check that the
right hand side of Eq. (30) for any u, v ∈ Y is also equal 1. Hence the characteristic
functions π̂ j (y) satisfy Eq. (30).

It is easy to see that since (29) is valid, the functions

h j (m, n) = exp{−〈A j (m, n), (m, n)〉}, j = 1, 2,

satisfy Eq. (30). Hence the functions

g j (m, n) = hkj (m, n)π̂ j (m, n), (m, n) ∈ Y , j = 1, 2, (35)

for any natural k also satisfy Eq. (30).
It follows from (28) that there is ε > 0 such that

〈A j (m, n), (m, n)〉 ≥ ε(m2 + n2), j = 1, 2. (36)
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Since g j (0, 0) = 1, inequalities (36) imply that for a big enough k the inequalities

∑

(m,n)∈Y
g j (m, n) < 2, j = 1, 2, (37)

hold true. Put

ρ j (z, w) =
∑

(m,n)∈Y
g j (m, n)z̄mw̄n, (z, w) ∈ X , j = 1, 2.

Since g j (−y) = g j (y) for all y ∈ Y , it follows from (37) that then ρ j (z, w) > 0 for
all (z, w) ∈ X , j = 1, 2. It is also obvious that

∫

X
ρ j (z, w)dmX (z, w) = 1, j = 1, 2.

Thus, the functions ρ j (z, w) are densities with respect tomX of some distributionsμ j

on the group X . In so doing, μ̂ j (y) = g j (y), j = 1, 2. Let ξ1 and ξ2 be independent
random variables with values in the group X and distributions μ1 and μ2. Since
the characteristic functions μ̂ j (y) satisfy Eq. (30), by Lemma 3.3, the conditional
distribution of the linear form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 is symmetric. Note
now that Y (2) = A(Y ,G). For this reason if μ ∈ M1(X) and μ ∈ �(X) ∗ M1(G),
then the restriction of the characteristic function μ̂(y) to the subgroup Y (2) is the
characteristic function of a Gaussian distribution. Since Y (2) \ H �= ∅, it follows from
(34) and (35) that μ j /∈ �(X) ∗ M1(G), j = 1, 2. 
�

In view of Theorem 3.1, it is interesting to note that Theorem A holds true for
the group T

2 if we substitute condition (1) for (25) ([4], see also [6, Theorem 16.8]).
Namely, the following statement holds.

Theorem B Consider the 2-dimensional torus T2 and let G be the subgroup of T2

generated by all elements of T2 of order 2. Assume that a topological automorphism
α of the group T

2 satisfies conditions (25). Let ξ1 and ξ2 be independent random
variables with values in the group T2 and distributions μ1 and μ2 with nonvanishing
characteristic functions. If the conditional distribution of the linear form L2 = ξ1+αξ2
given L1 = ξ1+ξ2 is symmetric, thenμ j = γ j ∗ω j , where γ j ∈ �(T2),ω j ∈ M1(G),
j = 1, 2. In so doing, the Gaussian distributions γ j are concentrated on cosets of the
same dense one-parameter subgroup in T2.

In conclusion, taking into account Theorems 2.1 and 3.1,we formulate the following
conjecture.

Conjecture 3.4 Let X be a second countable locally compact Abelian group, let G be
the subgroup of X generated by all elements of X of order 2, and let α be a topological
automorphism of the group X satisfying condition (1). Let ξ1 and ξ2 be independent
random variables with values in X and distributions μ1 and μ2 with nonvanishing
characteristic functions. The symmetry of the conditional distribution of the linear
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form L2 = ξ1 + αξ2 given L1 = ξ1 + ξ2 implies that μ j ∈ �(X) ∗M1(G), j = 1, 2,
if and only if the group X contains no subgroups topologically isomorphic to the
2-dimensional torus T2.

The sufficiency in this assertion follows from Theorem 2.1.
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