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Abstract
In this paper we consider the semiclassical version of pseudo-differential operators
on the lattice space �Z

n . The current work is an extension of the previous work
(Botchway et al. in J Funct Anal 278(11):108473, 33, 2020) and agrees with it in the
limit of the parameter � → 1. The various representations of the operators will be
studied as well as the composition, transpose, adjoint and the link between ellipticity
and parametrix of operators. We also give the conditions for the �p, weighted �2

boundedness and �p compactness of operators. We investigate the relation between
the classical and semi-classical quantization in the spirit of Ruzhansky and Turunen
(Pseudo-differential operators and symmetries. Pseudo-differential operators, vol 2.
Theory and Applications, Birkhäuser, Basel, 2010; J Fourier Anal Appl 16(6):943–
982, 2010) RTspsJFAA and employ its applications to Schatten–von Neumann classes
on �2(�Z

n). We establish Gårding and sharp Gårding inequalities, with an application
to the well-posedness of parabolic equations on the lattice �Z

n . Finally we verify that
in the limiting case where � → 0 the semi-classical calculus of pseudo-differential
operators recovers the classical Euclidean calculus, but with a twist.
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1 Introduction

The main aim of this work is to develop a calculus of pseudo-differential operators on
the lattices

�Z
n = {x ∈ R

n : x = �k, k ∈ Z
n},

where � ∈ (0, 1] is a small parameter. The particular case when � = 1 has been
considered in [1]. The dual space of �Z

n is the torus T
n and pseudo-differential

operators in this setting have been established in, see e.g. [27, 28]. Our analysis will
allow to solve difference equations on the lattice �Z

n that can appear either as the
discretisation of the continuous counterpart, or naturally in modelling problems such
as the visualization of physical phenomena etc. We also investigate the behaviour of
the calculus in the limit � → 0.

The recent works [3, 5] on a semi-classical version of the nonhomogeneous heat
equation on �Z

n is one of the main motivations for our analysis. More generally, the
analysis of Cauchy problems with space variable on the lattice, see e.g. the parabolic
Andersonmodel [13] with many applications in real word problems, stimulate the cur-
rentwork and in particular the development of the semi-classical calculus. Importantly,
and still referring to the example of the parabolic Anderson model, the investigation
of the limiting case when � → 0, allows for the study of the continuous analog of the
parabolic Anderson model [8] initiating from its discretized analysis.

The literature on the analysis on lattices is extensive, with elements of the operator
theory and some applications going back to [7, 9, 24–26]. However, the calculus
treatment is much more limited, essentially restricted to [1]. The main novelty of this
paper is to provide a seminclassical version of this calculus by considering a family
of lattices �Z

n , and to analyse the limiting behaviour of the calculus as � → 0.
Let us consider a rigorous and rather simple example of a discretised difference

equation: for g being a function on the lattice �Z
n , and a ∈ C, we regard the equation:

n∑

j=1

(
f (k + �v j ) + f (k − �v j )

)
− 2a f (k) = g(k), k ∈ �Z

n, (1.1)

where v j = (0, . . . , 0, 1, 0, . . .) ∈ Z
n , and the only non-zero element of the vector v j

is the j th element and is equal to 1. In the case where Re(a) �= 0, and g ∈ �2(�Z
n)

the solution f to Eq. (1.1) is given by the following expression

f (k) =
∫

Tn
e2π

i
�
k·θ 1

2
∑n

j=1 cos(2πθ j ) + a
ĝ(θ)dθ, (1.2)
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where ĝ denotes the Fourier transform of g on the lattice �Z
n ; that is the expression

ĝ(θ) =
∑

k∈�Zn

e−2π i
�
k·θg(k), θ ∈ T

n . (1.3)

Additionally, it follows that whenever g ∈ �2(�Z
n) then we also have f ∈ �2(�Z

n).
Importantly,weknow that the formula (1.2) for the solution toEq. (1.1) can be extended
to give solutions also in the case where g is any tempered growth distribution, i.e.,
when g ∈ S ′(�Z

n). For instance, whenever g satisfies the estimate

∑

k∈�Zn

(1 + |k|)s |g(k)|2 < ∞

then the solution f satisfies the same estimate; that is we have

∑

k∈�Zn

(1 + |k|)s | f (k)|2 < ∞,

see Example (3) in Sect. 8.
We point out that the operators that are of the form (1.1) extend the classical notion

of difference operators on a discrete setting like in particular the lattice case �Z
n .

Indeed, as shown in Sect. 7 the calculus of pseudo-differential operators in our semi-
classical setting agrees with the classical pseudo-differential calculus in the Euclidean
setting. Thus, in this workwe adopt the terminology pseudo-differential operators as it
exists already in the literature, see e.g. [26], to describe the operators that we consider,
emphasising this way that they extend the usual class of difference operators into a
∗-algebra.

Hence, the analysis here aims to develop a global calculus of pseudo-differential
operators on the lattice �Z

n that will be employed to deal with problems around

• the type of the difference equations that can be solved within the developed
framework;

• the properties of the function g as in (1.1) that can be transferred to the solution
f ;

• the solvability of equation of the form (1.1) in the case where the coefficient of
the operators depend also on the variable k ∈ �Z

n .

2 Preliminary Notions and Tools

In this section we aim to recall the necessary toolkit and notions that shall be used for
our analysis developed in later sections.

To begin with let us start with the formal definition of the Fourier transform of a
function f ∈ �1(�Z

n) (semi-classical Fourier transform) that is given by

F�Zn f (θ) := f̂ (θ) :=
∑

k∈�Zn

e−2π i
�
k·θ f (k), θ ∈ T

n = R
n/Z

n . (2.1)
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In the formula (2.1), as well as in the sequel, the product k · θ for k = �(k1, . . . , kn) ∈
�Z

n, θ = (θ1, . . . , θm) ∈ T
n , is calculated by the following expression

k · θ = �

n∑

j=1

k jθ j .

The Plancherel formula for the lattice �Z
n reads

∑

k∈�Zn

| f (k)|2 =
∫

Tn
| f̂ (θ)|2dθ. (2.2)

To prove the inverse Fourier transform we perform the following computations: Let
f ∈ �1(�Z

n). If we set k = �l, l ∈ Z
n , and f�(l) := f (�l), then f� is a function

from Z
n to C and using (2.1) we have:

F�Zn f (θ) =
∑

k∈�Zn

e−2π i
�
k·θ f (k) =

∑

l∈Zn

e−2π il·θ f (�l) = FZn f�(θ).

Now, using the inverse Fourier transform on the lattice Z
n we can write

f�(l) =
∫

Tn
e2π il·θFZn f�(θ)dθ =

∫

Tn
e2π

i
�
k·θ f̂ (θ)dθ,

and thus we have shown that the inverse Fourier transform on �Z
n is given by

f (k) =
∫

Tn
e2π

i
�
k·θ f̂ (θ)dθ, k ∈ Z

n . (2.3)

A measurable function σ� : �Z
n × T

n → C, defines a sequence Op�(σ�) by

Op�(σ�) f (k) :=
∫

Tn
e2π

i
�
k·θσ�(k, θ)F�Zn f (θ) dθ, (2.4)

provided that there are some rational restrictions on σ�. The operator (2.4) shall be
called a semi-classical pseudo-differential operator on �Z

n corresponding to the sym-
bol σ�(k, θ) on �Z

n × T
n , or in short a ��DO . The process of associating a symbol

σ� to a pseudo-differential operator Op�(σ�), i.e., the mapping σ� �→ Op�(σ�), is
called �Z

n-quantization, or simply quantization.
The space of rapidly decreasing functions S(�Z

n) on the lattice shall be called the
Schwartz space. This consists of functions ϕ : �Z

n → T
n for which for every N < ∞

there exists a constant cϕ,N (depending on the function ϕ and on the choice of N ) so
that

|ϕ(k)| ≤ cϕ,N (1 + |k|)−N , for all k ∈ �Z
n,
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where we have denoted by |k| the �2-norm of k, i.e., we have |k| = �

(∑n
j=1 k

2
j

) 1
2
.

The topology of S(�Z
n) is given by the seminorms p j (ϕ), j ∈ N0,1 where p j (ϕ) :=

supk∈�Zn (1+ |k|) j |ϕ(ξ)|. The space of tempered distributions S ′(�Z
n) is the dual of

S(�Z
n); that is the continuous linear functionals on S(�Z

n).
Informal discussion. The main underlying idea behind the definition of the

pseudo-differential operator as (2.4) is that given a linear continuous operator A :
�∞(�Z

n) → S ′(�Z
n), the image of the functions eθ = (k �→ e2π

i
�
k·θ ) for θ ∈ T

n

via the operator A completely determines the operator A. To this end we define the
symbol σ� of operator A = Op(σ�) by testing the operator A on the functions eθ

yielding Aeθ (k) = e2π
i
�
k·θσ�(k, θ), i.e., we define

σ�(k, θ) := e−2π i
�
k·θ Aeθ (k), (2.5)

see Proposition 3.9 for the proof of (2.5).
We claim that for a symbol σ� as in (2.5) the operator A is indeed the operator

arising as the quantization of σ�. Indeed, with the use of the inverse Fourier transform
(2.3) we have

A f (k) = A

(∫

Tn
e2π

i
�
k·θ f̂ (θ) dθ

)

=
∫

Tn
A
(
e2π

i
�
k·θ) f̂ (θ) dθ

=
∫

Tn
e2π

i
�
k·θσ�(k, θ) f̂ (θ) dθ = Op(σ�) f (k),

and we have proved our claim.

3 Representation of9�DO’s

3.1 Symbol Classes

Let us begin this section by defining the notion of difference operators (or semi-
classical difference operators) in our setting; these are exactly the operators that can
be served as the analogues of the derivatives with respect to the Fourier variable in the
Euclidean setting.

Definition 3.1 (semi-classical difference operator) For α = (α1, . . . , αn), we define
the difference operator 
α

�
in our setting, as the operator acting on functions g :

�Z
n → C via


α
�
g(k) = 1

�|α|

∫

Tn
e2π

i
�
k·θ(e2π

i
�
θ − 1

)α

ĝ(θ)dθ, (3.1)

1 Throughout the paper we will use the notation N0 = N ∪ {0}.
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where we have used the notation

(
e2π

i
�
θ − 1

)α =
(
e2π

i
�
θ1 − 1

)α1
. . .

(
e2π

i
�
θn − 1

)αn
. (3.2)

The usual (semi-classical) difference operators 
�, j , j = 1, . . . , n, on �Z
n are as

follows: Let v j = (0, . . . , 0, 1, 0, . . . , 0) be the vector with 1 is at the j th position.
Then the formula for the operator 
�, j when acting on g is given by


�, j g(k) = 1

�

[∫

Tn
e2π

i
�
(k+�v j )·θ ĝ(θ)dθ −

∫

Tn
e2π

i
�
k·θ ĝ(θ)dθ

]
(3.3)

= g(k + �v j ) − g(k)

�
. (3.4)

It is then easy to check the following decomposition


α
�

= 

α1
�,1 · · · · · 


αn
�,n . (3.5)

Remark 3.2 • We note that formulae (3.5) and (3.3) give an alternative characteri-
sation to representation (3.1). Hence, their combination can be considered instead
as the definition of the (semi-classical) difference operators 
�Zn .

• It is easy to verify that the difference operators satisfy many useful properties,
including the Leibniz formula, summation by parts formula, and Taylor expansion
formula; see [30] and [29, Sect. 3.3].

We point out that the representation formula (3.1) is applicable also to g ∈ S ′(�Z
n).

Indeed, in this case we have ĝ ∈ D′(Tn) and the formula (3.1) can be viewed in terms
of the distributional duality on T

n ; i.e., it reads as follows


α
�
g(k) = 1

�|α| 〈ĝ, e2π
i
�
k·θ (e2π iθ − 1)α〉. (3.6)

The following operators shall be used in the definition of symbol classes. Additionally,
they are useful in the torodial analysis, and their precise form, see (3.7) is related to
the Stirling numbers; see [29, Sect. 3.4] for a detailed discussion.

Definition 3.3 (Partial derivatives on T
n) For our purposes it is useful to introduce

the partial derivatives type operators on T
n as follows. For β ∈ N

n
0 we define:

D(β)

�,θ := D(β1)

�,θ1
. . . D(βn)

�,θn
,

Dβ

�,θ
:= Dβ1

�,θ1
. . . Dβn

�,θn
,
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where for β j ∈ N0,

D
(β j )

�,θ j
:= �

β j

⎛

⎝
β j−1∏

�=0

1

2π i

∂

∂θ j
− �

⎞

⎠ ,

D
β j

�,θ j
:= �

β j

(
1

2π i

∂

∂θ j

)β j

.

(3.7)

By the above it follows that

D(β)

�,θ
= �

|β|
⎛

⎝
β1−1∏

�=0

1

2π i

∂

∂θ1
− �

⎞

⎠ . . .

⎛

⎝
βn−1∏

�=0

1

2π i

∂

∂θn
− �

⎞

⎠ .

As usual, we denote D0
�,θ

= D(0)
�,θ

= I .

We can then proceed to the definition of the classes of symbols that correspond to the
�Z

n quantization of operators.

Definition 3.4 (Symbol classes Sμ
ρ,δ(�Z

n ×T
n)) Let ρ, δ ∈ R. We say that a function

σ� : �Z
n × T

n → C is a symbol that belongs to the (semi-classical) symbol class
Sμ
ρ,δ(�Z

n × T
n) if σ�(k, ·) ∈ C∞(Tn) for all k ∈ �Z

n , and for all multi-indices
α, β ∈ N

n
0, there exists a positive constant Cα,β so that

|D(β)

�,θ

α

�,kσ�(k, θ)| ≤ Cα,β(1 + |k|)μ−ρ|α|+δ|β|, (3.8)

for all where k ∈ �Z
n, θ ∈ T

n .
If ρ = 1 and δ = 0, we will denote simply Sμ(�Z

n × T
n) := Sμ

1,0(�Z
n × T

n).
As noted already in Sect. 2 we shall denote by Op�(σ�) the operator with symbol σ�

given by

Op�(σ�) f (k) :=
∫

Tn
e2π

i
�
k·θσ�(k, θ)F�Zn f (θ) dθ.

The family of (semi-classical) pseudo-differential operators with symbols in the class
Sμ
ρ,δ(�Z

n × T
n) will be denoted by Op�(Sμ

ρ,δ(�Z
n × T

n)).

We sometimes denote 
α
�

= 
α
�,k to underline the fact that these difference

operators are acting with respect to the variable lattice variable k ∈ �Z
n .

Remark 3.5 The symbol classes Sμ
ρ,δ(T

n × Z
n) (that is, modulo interchanging the

order of the lattice and toroidal variables k and θ ) have been extensively studied in
[30] in the toroidal setting T

n . We also refer the interested reader to the monograph
[29, Chap. 4] for a more thorough analysis of their properties. Additionally, we note
that the equivalence of the Sμ

ρ,δ(T
n × Z

n) classes, in the toroidal and compact Lie
group case, to the usual Hörmander classes is proven in [32].
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The smoothing class of operators introduced below is related to the notion of
invertibility of pseudo-differential operators that is discussed in Sect. 4.

Definition 3.6 (Smoothing semi-classical pseudo-differential operators) We say that
a symbol σ� is of order −∞, and we write σ� ∈ S−∞(�Z

n × T
n), if for all (k, θ) ∈

�Z
n × T

n we have

|D(β)
θ 
α

�,kσ(k, θ)| ≤ Cα,β,N (1 + |k|)−N ,

for all N ∈ N. The latter condition is equivalent to writing that σ� ∈ Sμ
1,0(�Z

n × T
n)

for all μ ∈ R. Formally we have

S−∞(�Z
n × T

n) :=
⋂

μ∈R

Sμ
1,0(�Z

n × T
n).

The corresponding (semi-classical) pseudo-differential operators Op(σ�) may be
called smoothing pseudo-differential operators.2

3.2 Kernel of9�DO’s

Using the Fourier transform (1.3) we deduce an alternative representation of a semi-
classical pseudo-differential representation; the so-called kernel representation.

For suitable functions f we can write:

Op�(σ�) f (k) =
∫

Tn
e2π

i
�
k·θσ�(k, θ)F�Zn f (θ) dθ

=
∫

Tn

∑

m∈�Zn

e2π
i
�
(k−m)·θσ�(k, θ) f (m) dθ

=
∑

m∈�Zn

∫

Tn
e2π

i
�
(k−m)·θσ�(k, θ) f (m) dθ

=
∑

m∈�Zn

∫

Tn
e2π

i
�
(k−m)·θσ�(k, θ) f (m) dθ

=
∑

l∈�Zn

∫

Tn
e2π

i
�
l·θσ�(k, θ) f (k − l) dθ

=
∑

l∈�Zn

κ(k, l) f (k − l)

=
∑

m∈�Zn

K (k,m) f (m).

2 In the lattice setting the terminology “smoothing” is used abusively; in general in discrete setting
smoothing operators are whose symbols that have rapid decay.



Journal of Fourier Analysis and Applications (2024) 30 :41 Page 9 of 46 41

Thus the kernel of Op�(σ�) is given by

K (k,m) = κ(k, k − m) where κ(k, l) =
∫

Tn
e2π

i
�
l·θσ�(k, θ) dθ. (3.9)

The next theorem establishes an important property of the kernel K (k.m) of a semi-
classical pseudo-differential operator in the class of operators Op(Sμ

ρ,δ).

Theorem 3.7 For δ ≥ 0, let σ� ∈ Sμ
ρ,δ(�Z

n × T
n). Then, the kernel K (k,m) of the

pseudo-differential operator Op(σ�) satisfies the following property

∣∣∣K
(
k,m

)∣∣∣ ≤ CQ

(
1 + ∣∣k

∣∣
)μ+2Qδ(

1 + 1

�

∣∣∣k − m
∣∣∣
)−2Q

, ∀k,m ∈ �Z
n,

(3.10)

for all Q ∈ N0, and for some positive constant CQ > 0.

Remark 3.8 Before turning over to prove Theorem 3.7 let us note that, in contrast to the
case of pseudo-differential operators on R

n or T
n , the kernel K (k,m) is well defined

on the diagonal k = m due to the discrete nature of the lattice �Z
n × �Z

n .

Proof of Theorem 3.7 Let us first assume that k = m. Then, by definition of the kernel
we have

K
(
k, k

)
= κ(k, 0) =

∫

Tn
σ�(k, θ)dθ, (3.11)

which immediately satisfies (3.10) by the definition of the symbol class Sμ
ρ,δ . In the

case where k �= m, then also l = k − m �= 0. Let the Laplacian on the torus T
n be

denoted by Lθ . Then straightforward computations give

(1 − Lθ )e
2π i

�
l·θ =

⎛

⎝1 −
n∑

j=1

∂2

∂θ2j

⎞

⎠ e2π
i
�
l·θ = (

1 + 4π2

�2

∣∣l
∣∣2)e2π

i
�
l·θ

which implies that

e2π
i
�
l·θ = (1 − Lθ )

1 + 4π2

�2

∣∣l
∣∣2
e2π

i
�
l·θ . (3.12)

Substituting the above in the expression for κ as in (3.9) we have

κ
(
k, l

)
=

∫

Tn
e2π

i
�
l·θσ�(k, θ)dθ

=
∫

Tn

(
(1 − Lθ )

Q

(
1 + 4π2

�2

∣∣l
∣∣2
)Q

e2π
i
�
l·θ
)

σ�(k, θ)dθ
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=
(
1 + 4π2

�2

∣∣l
∣∣2
)−Q

∫

Tn
e2π

i
�
l·θ (1 − Lθ

)Q
σ�(k, θ)dθ.

Hence, by the above, taking the modulus of κ(k, l) we have

|κ(k, l)| ≤
(
1 + 4π2

�2

∣∣l
∣∣2
)−Q |(1 − Lθ

)Q
σ�(k, θ)|,

which in turn by the assumption on the symbol σ� gives

∣∣κ
(
k, l

)∣∣ ≤ CQ

(
1 + ∣∣k

∣∣
)μ+2Qδ(

1 + 4π2

�2

∣∣l
∣∣2
)−Q

,

for all Q ≥ 0. The latter gives the desired estimate if one takes into account (3.9). The
proof of Theorem 3.7 is now complete. ��

Similarly to the classical cases, one can extract the symbol of a given semi-
classical pseudo-differential operator on �Z

n . The next result provides us with the
corresponding formula.

Proposition 3.9 The symbol σ� of a semi-classical pseudo-difference operator T on
�Z

n is given by

σ�(k, θ) = e−2π i
�
k·θT eθ (k), (3.13)

where eθ (k) = e2π
i
�
k·θ , for all k ∈ �Z

n and for θ ∈ T
n.

Proof For ω ∈ T
n let eω(l) := e2π

i
�
l·ω where l ∈ �Z

n . Using (2.1), the Fourier
transform of eω is given by

êω(θ) =
∑

l∈�Zn

e−2π i
�
l·θe2π

i
�
l·ω,

Plugging in the last expression into the formula (2.4) for the symbol representation
of the operator Op�(σ�) yields

Op�(σ�)eω(k) =
∫

Tn
e2π

i
�
k·θσ�(k, θ)êω(θ)dθ

=
∫

Tn

∑

l∈�Zn

e2π
i
�
k·θσ�(k, θ)

[
e−2π i

�
l·θe2π

i
�
l·ω] dθ

=
∫

Tn

∑

l∈�Zn

e−2π i
�
(l−k)·θσ�(k, θ)e2π

i
�
l·ωdθ

=
∑

l∈�Zn

σ̂�(k, l − k)e2π
i
�
l·ω
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=
∑

m∈�Zn

σ̂�(k,m)e2π
i
�
m·ωe2π

i
�
k·ω (where m = l − k)

= σ�(k, ω)e2π
i
�
k·ω,

where σ̂� stands for the toroidal Fourier transform of σ� on the second variable, and
for the last inequality we have used the formula (2.3). This gives the proof of formula
(3.13). ��

3.3 Semi-classical Amplitudes

Writing out the semi-classical Fourier transform (2.1) as an infinite sum, suggests the
following notation for the amplitude representation of the pseudo-differential operator
Op�(σ�):

Op�(σ�) f (k) =:
∑

m∈�Zn

∫

Tn
e2π

i
�
(k−m)·θσ�(k, θ) f (m)dθ. (3.14)

Let us point out that the right-hand side of (3.14) should not be regarded as an inte-
gral operator, but rather as an operator arising via formal integration by parts. This
consideration allows performing operations like exchange of summation and integral.

Formula (3.14) gives rise to a possible generalisation where we allow the symbol
σ� to depend also on the variable m ∈ �Z

n ; such functions σ� shall be called semi-
classical amplitudes. Formally we may also define operators of the form

A f (k) = Op(a�) f (k) =
∑

m∈�Zn

∫

Tn
e2π

i
�
(k−m)·θa�(k,m, θ) f (m)dθ, (3.15)

where a� : �Z
n × �Z

n × T
n → C, for all f ∈ C∞(�Z

n).
In the next definitionwe extendDefinition 3.4 of the symbol classes Sμ

ρ,δ(�Z
n×T

n)

to the semi-classical amplitudes depending on two lattice parameters say k,m ∈ �Z
n .

The usefulness of this extended symbol classes, called amplitude classes, becomes
apparent in Theorem 4.2 on the adjoint of a semi-classical pseudo-differential operator
since its symbol is given in terms of an amplitude.

Definition 3.10 (Amplitude classes Aμ1,μ2
ρ,δ (�Z

n × �Z
n × T

n)) Let ρ, δ ∈ R. The

semi-classical amplitude classAμ1,μ2
ρ,δ (�Z

n ×�Z
n ×T

n) consists of the functions a� :
�Z

n × �Z
n × T

n → C for which we have a�(k,m, ·) ∈ C∞(Tn) for all k,m ∈ �Z
n ,

provided that for all multi-indices α, β, γ there exist a positive C�,α,β,γ > 0 such that
for some Q ∈ N0 with Q ≤ |γ | we have

|D(γ )
θ 
α

�,k

β
�,ma�(k,m, θ)| ≤ Cα,β,γ (1 + |k|)μ1−ρ|α|+δQ(1 + |m|)μ2−ρ|β|+δ(|γ |−Q).

(3.16)
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Such a function a� is called a semi-classical amplitude of order (μ1, μ2) of type
(ρ, δ). The operators with amplitudes in the amplitude classAμ1,μ2

ρ,δ (�Z
n ×�Z

n ×T
n)

will be denoted by Op(Aμ1,μ2
ρ,δ (�Z

n × �Z
n × T

n)). Moreover, by setting Q = |γ | in
(3.16) it is evident that

Op(Sμ1
ρ,δ(�Z

n × T
n)) ⊂ Op(Aμ1,μ2

ρ,δ (�Z
n × �Z

n × T
n)).

On the other hand semi-classical pseudo-differential operators arising from ampli-
tudes are also pseudo-differential operators with symbols from some appropriate
Sμ
ρ,δ(�Z

n × T
n) class. In particular, we have the inclusion

Op(Aμ1,μ2
ρ,δ (�Z

n × �Z
n × T

n)) ⊂ Op(Sμ1+μ2
ρ,δ (�Z

n × T
n)),

that is proven in Theorem 3.14. For the proof of the latter, we first need an auxiliary
result, see Lemma 3.12, which in turn makes use of a relation between generalized
difference operators, see Definition 3.11 and the inverse of the Fourier transform
operator in our setting.

Definition 3.11 (Generalised semi-classical difference operators) Let q ∈ C∞(Tn).
Then for g : �Z

n → C, the corresponding q-difference operator is defined by


�,qg(k) := 1

�

∫

Tn
e2π

i
�
k·θq(θ)ĝ(θ)dθ. (3.17)

Alternatively, one can get the following, useful for our purposes, expanded formula
for (3.17) by writing out the Fourier transform of g using (2.1):


�,qg(k) = 1

�

∑

l∈�Zn

∫

Tn
e2π

i
�
(k−l)·θq(θ)g(l)dθ

= 1

�

∑

l∈�Zn

g(l)F−1
�Zn q(k − l) = 1

�
(g ∗ F−1

�Zn q)(k). (3.18)

Let us point out that as in the case of (standard) difference operators, seeDefinition 3.1,
the generalized q-difference operator can be extended to g ∈ S ′(�Z

n). Finally, we
note that the corresponding function q does not have to be smooth, provided suitable
behaviours of g, q. For instance formula (3.17) is well defined for g ∈ �2(�Z

n) and
q ∈ L2(Tn).

We can now state the following result on the behaviour of the 
�,q acting on
symbols in the classes Sμ

ρ,δ(�Z
n × T

n).

Lemma 3.12 Let 0 ≤ δ ≤ 1 andμ ∈ R. Then, for σ� ∈ Sμ
ρ,δ(�Z

n ×T
n), q ∈ C∞(Tn)

and any β ∈ N
n
0 we have

|
�,q D
(β)

�,θ σ�(k, θ)| ≤ Cq,β

�
(1 + |k|)μ+δ|β|, (3.19)
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for all k ∈ �Z
n and θ ∈ T

n.

Proof Using the expression (3.18), we can write


�,q D
(β)

�,θ
σ�(k, θ) = 1

�

∑

l∈�Zn

∫

Tn
e2π

i
�
(k−l)·ωq(ω)D(β)

�,θ
σ�(l, θ)dω

= 1

�
D(β)

�,θ
σ�(k, θ)

∫

Tn
q(ω)dω

+1

�

∑

l∈�Z
n

l �=k

∫

Tn
e2π

i
�
(k−l)·ωq(ω)D(β)

�,θ
σ�(l, θ)dω

=: T1 + T2,

where the first term is taken for l = k. Thus, for the first term we have

|T1| ≤ Cq,β

�
(1 + |k|)μ+δ|β|,

by the assumption on the symbol σ�. Now, to estimate the second term, we first assume
that β ∈ N

n
0 is such that μ + δ|β| ≥ 0. We rewrite the term T2 in terms of the M th

power, withM to be chosen later, of the toroidial Laplace operatorLω using integration
by parts and the formula (3.12) as follows:

|T2| = 1

�

∣∣∣∣∣∣∣∣

∑

l∈�Z
n

l �=k

∫

Tn

e2π
i
�
(k−l)·ω

(2π�−1)2M |k − l|2M
(
LM

ω q(ω)
)
D(β)

θ σ�(l, θ)dθ

∣∣∣∣∣∣∣∣

≤ 1

�
�
2MCq,β

∑

l∈�Z
n

l �=k

1

|k − l|2M (1 + |l|)μ+δ|β|

≤ 1

�
�
2MCq,β

∑

m �=0

1

|m|2M (1 + |k − m|)μ+δ|β| (where l = k − m)

≤ 1

�
�
2MCq,β

∑

m �=0

1

|m|2M
(

(1 + |k|)μ+δ|β| + |m|μ+δ|β|
)

= 1

�
Cq,β

∑

m̃ �=0

1

|m̃|2M
(

(1 + |k|)μ+δ|β| + �
μ+δ|β||m|μ+δ|β|

)
(where m = �m̃)

≤ 1

�
Cq,β(1 + |k|)μ (since �

μ+δ|β| ≤ 1),

where in the final estimate we have used the fact thatμ+δ|β| ≥ 0, and M is chosen so

that M >
n + μ + δ|β|

2
which allows for the series above to converge. On the other

hand, for the case where β is such that μ + δ|β| < 0, we will use Peetre inequality;
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see [29, Proposition 3.3.31] which under suitable considerations implies:

(1 + |k − m|)μ+δ|β| ≤ 2|μ|+δ|β|(1 + |k|)μ+δ|β|(1 + |m|)|μ|+δ|β|,

where |μ| stands for the absolute value of |μ|. Hence, forM such that 2M−|μ|−δ|β| >

n, and reasoning as above we have

|T2| ≤ 1

�
Cq,β

∑

m �=0

1

|m|2M (1 + |k − m|)μ+δ|β| ≤ 1

�
Cq,β(1 + |k|)μ+δ|β|.

Summarising the above we have

|
�,q D
(β)

�,θ
σ�(k, θ)| ≤ Cq,β

�
(1 + |k|)μ+δ|β|

+Cq,β

�
(1 + |k|)μ+δ|β| ≤ Cq,β

�
(1 + |k|)μ+δ|β|,

since � ≤ 1 and we have proved the estimate (3.19) for all cases. The proof of
Lemma 3.12 is now complete. ��

Let us know present a toroidal Taylor expansion that is useful for our purposes,
which is a re-scaled version of the toroidal Taylor expansion that appeared in [29,
Theorem 3.4.4]:

Theorem 3.13 (Equivalent formulation of the toroidal Taylor expansion on T
n) For

f : T
n → C, f ∈ C∞(Tn), we have the following equivalent formulation of the

toroidal Taylor expansion:

f (θ) =
∑

|α|<N

�
−|α|

α! (e2π
i
�
θ − 1)αD(α)

�,ω
f (ω)|ω=0 +

∑

|α|=N

fα(θ)(e2π
i
�
θ − 1)α,

(3.20)

where D(α)
�,ω

is given in (3.7). The functions fα ∈ C∞(Tn), where |α| ≤ N, are
products of the one-dimensional functions f j (θ), θ ∈ T, defined inductively by

f j+1(θ) :=
{

f j (θ)− f j (0)
e2π(i/�)θ−1

if θ �= 0,

D�,θ f j (θ), if θ = 0,
(3.21)

where we have set f0 := f .

Proof For simplicity we will prove (3.20) when n = 1. In this case (3.20) becomes

f (θ) =
N−1∑

j=0

�
− j

j ! (e2π
i
�
θ − 1) j D( j)

�,ω
f (ω)|ω=0 + fN (θ)(e2π

i
�
θ − 1) j . (3.22)



Journal of Fourier Analysis and Applications (2024) 30 :41 Page 15 of 46 41

For j ∈ N0 we define

f j+1(θ) :=
{

f j (θ)− f j (0)
e2π(i/�)θ−1

if θ �= 0,

D�,θ f j (θ), if θ = 0,

while if j = 0, then we set f0(θ) := f (θ). Thus

f j+1(θ) = f j (0) + f j+1(θ)(e2π(i/�)θ − 1),

while also we have

f (θ) =
N−1∑

j=0

(e2π(i/�)θ − 1) j f j (0) + fN (θ)(e2π(i/�)θ − 1)N . (3.23)

From the latter expression we see that it is enough to prove that

f j (0) = �
− j

j ! D( j)
�,θ

f (θ)|θ=0.

It is clear that if j < j0, then D( j)
�,θ

(e2π(i/�)θ − 1) j0 |θ=0 = 0. On the other hand when

j > j0, if we make the change of variable θ
�

= θ̃ , then we have

D(1)
�,θ

(e2π(i/�)θ − 1) j0 = 1

�

(
1

2π i

∂

∂θ
− j0

)(
e2π

i
�
θ − 1

) j0

=
(

1

2π i

∂

∂θ̃
− j0

)(
e2π i θ̃ − 1

) j0

= j0
(
e2π i θ̃ − 1

) j0−1
.

The latter implies that

⎡

⎣
j0∏

i=1

(
1

2π i

∂

∂θ̃
− 1

)⎤

⎦
(
e2π i θ̃ − 1

) j0 = j0!,

which in turn gives

⎡

⎣
j0∏

i=0

(
1

2π i

∂

∂θ̃
− 1

)⎤

⎦
(
e2π i θ̃ − 1

) j0 ∣∣
θ̃=0 = j0!.

Hence we get
[∏ j

i=0

(
1

2π i
∂

∂θ̃
− 1

)] (
e2π i θ̃ − 1

) j0 ∣∣
θ̃=0 = j !δ j, j0 , or after substitu-

tion, D( j)
�,θ

(
e2π

i
�
θ − 1

) j0 ∣∣
θ=0 = �

− j j !δ j, j0 . Finally an application of the operator
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D( j)
�,θ

to both sides of the equality (3.23) gives D( j)
�,θ

, as desired, and the proof is
complete. ��
In the next result we see that the (semi-classical) amplitude representations of the form
(3.15) are indeed (semi-classical) pseudo-differential operators. Particularly, if a� ∈
Aμ1,μ2

ρ,δ (�Z
n × �Z

n × T
n), then Op(a�) = Op(σ�,T ) for some σ�,T ∈ Sμ1+μ2

ρ,δ (�Z
n ×

T
n). Formally we have:

Theorem 3.14 Let 0 ≤ δ < ρ ≤ 1. For a� ∈ Aμ1,μ2
ρ,δ (�Z

n × �Z
n × T

n) let the
corresponding amplitude operator T be given by

T f (k) =
∑

l∈Zn

∫

Tn
e2π

i
�
(k−l)·θa�(k, l, θ) f (l)dθ. (3.24)

Then we have T = Op(σ�,T ) for some σ�,T ∈ Sμ1+μ2
ρ,δ (�Z

n × T
n). Moreover,

σ�,T (k, θ) ∼
∑

α

1

α!

α
�,l D

(α)
�,θ

a�(k, l, θ)

∣∣∣
l=k

; (3.25)

that is for all N ∈ N we have

σ�,T −
∑

|α|<N

1

α!

α
�,l D

(α)
�,θ

a�(k, l, θ)

∣∣∣
l=k

∈ Sμ1+μ2−N (ρ−δ)
ρ,δ (�Z

n × T
n).

(3.26)

Proof of Theorem 3.14 Wewill applyProposition3.9, tofind the formula for the symbol
σ�,T of the operator T as in the hypothesis. We have

σ�,T (k, θ) = e−2π i
�
k·θ ∑

l∈�Zn

∫

Tn
e2π

i
�
(k−l)·ωa�(k, l, ω)e2π

i
�
l·θdω

=
∑

l∈�Zn

∫

Tn
e2π

i
�
(k−l)·(ω−θ)a�(k, l, ω)dω

=
∫

Tn
e2π

i
�
k·(ω−θ)â�(k, ω − θ, ω)dω

=
∫

Tn
e2π

i
�
k·ωâ�(k, ω, ω + θ)dω, (3.27)

where â� stands for the the semi-classical Fourier transform of a� with respect to the
second variable, and in the last inequality we have replaced ω − θ by ω. Now if we
take the Taylor expansion (3.20) in our setting of â�(k, ω, ω + θ) in the third variable
θ we get

â�(k, ω, ω + θ) =
∑

|α|≤N

�
−|α|

α!
(
e2π

i
�
ω − 1

)α

D(α
�,θ

â�(k, ω, θ) + R0, (3.28)
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where R0 is the remainder term and will be analysed in the sequel. Plugging (3.28)
into (3.27) we obtain

σ�,T (k, θ) =
∫

Tn
e2π

i
�
k·ω ∑

|α|≤N

�
−|α|

α! (e2π
i
�
ω − 1)αD(α)

�,θ â�(k, ω, θ)dω + R,

(3.29)

with R in terms of R0. Now since from (3.1) we have


α
�
g(k) = 1

�|α|

∫

Tn
e2π

i
�
k·y(e2π

i
�
y − 1)α ĝ(y)dy,

we can obtain the following alternative expression for σ�,T as follows by (3.29)

σ�,T (k, z) =
∑

|α|≤N

1

α!

α
�,l D

(α)
�,θ

a�(k, l, θ)

∣∣∣
l=k

+ R,

which shows (3.25). Now, proving (3.26) amounts to analysing the remainder R, which
is a sum of terms of the form

R j (k, θ) =
∫

Tn
e2π

i
�
k·y(e2π

i
�
y − 1)αb�, j (k, y, z)dy,

where |α| = N and the b j ’s are with the use of (3.21) combinations of functions

Dα0
�,θ

F2a�(k, y, z)

for some |α0| ≤ N , where F2 stands for the Fourier transform with respect to the
second variable multiplied by some smooth functions a j . Consequently, for any β we

have that D(β)
z R j (k, z) are the sums of terms with the form

∫

Tn
e2π

i
�
k·ya j (y)(e

2π i
�
y − 1)αD(β)

�,z D
(α0)
�,z F2a�(k, y, z)dy,

which in turn implies that D(β)

�,z R j (k, z) are the sums of terms of the form

�
�,a j 

α
�,l D

(α0+β)

�,z a�(k, l, z)
∣∣∣
l=k

,

where the factor � is due to the definition (3.17). Now, since a� ∈ Aμ1,μ2
ρ,δ , an

application of Lemma 3.12 yields that that R j (k, z) satisfies

|R j (k, z)| ≤ C(1 + ∣∣k
∣∣)μ1(1 + ∣∣k

∣∣)μ2−ρ|α|+δ|α0|+δ|β|,
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for some β as in (3.16). Taking |α| = N and |α0| ≤ N we obtain that

|R j (k, z)| ≤ C(1 + ∣∣k
∣∣)μ1+μ2−(ρ−δ)N+δ|β|.

On the other hand, the terms 

β

�,k R j (k, z) can be represented as sums of terms of the
form

∫

Tn
e2π

i
�
k·w(e2π iw − 1)βa j (w)(e2π

i
�
w − 1)αb j (k, w, z)dw,

where b j and a j as of the above form. Similar to the above arguments show that

|
β

�,k R j (k, z)| ≤ C(1 + ∣∣k
∣∣)μ1+μ2−ρ|β|−(ρ−δ)N .

Taking N large enough, and following standard arguments from the classical pseudo-
differential calculus we deduce the expansion (3.25) and the proof is complete. ��

4 Semi-classical Symbolic Calculus

In this section we establish the symbolic calculus of semi-classical pseudo-differential
operators on �Z

n . In particular we develop the formulae for the composition of opera-
tors, adjoint and transpose operators. In the end of the section we establish the notion
of ellipticity in our setting.

Theorem 4.1 (Composition formula for ��DOs) Let 0 ≤ δ < ρ ≤ 1. Let σ� ∈
Sμ1
ρ,δ(�Z

n × T
n) and τ� ∈ Sμ2

ρ,δ(�Z
n × T

n). Then the composition Op(σ�) ◦ Op(τ�)

is a pseudo-differential operator with symbol ς� ∈ Sμ1+μ2
ρ,δ (�Z

n × T
n), given by the

asymptotic sum

ς�(k, θ) ∼
∑

α

1

α!D
(α)
�,θ σ�(k, θ)
α

�,kτ�(k, θ). (4.1)

Observe that the order of taking differences and derivatives in (4.1) is different from
the analogous composition formulae on the classical cases R

n and T
n , see [29, 30].

Proof of Theorem 4.1 The semi-classical pseudo-differential operators with symbols
σ� and τ� are given respectively by

Op�(σ�) f (k) =
∑

m∈�Zn

∫

Tn
e2π

i
�
(k−m)·θσ�(k, θ) f (m)dθ,

Op�(τ�)g(m) =
∑

l∈�Zn

∫

Tn
e2π

i
�
(m−l)·ωτ�(m, ω)g(l)dω,
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where f , g ∈ S(�Z
n). Consequently we have

Op�(σ�)
(
Op�(τ�)g

)
(k) =

∑

m∈�Zn

∫

Tn
e2π

i
�
(k−m)·θσ�(k, θ)Op(τ�)g(m)dθ

=
∑

m∈�Zn

∫

Tn
e2π

i
�
(k−m)·θσ�(kθ)

×
[

∑

l∈�Zn

∫

Tn
e2π

i
�
(m−l)·ωτ�(m, ω)g(l)dω

]
dθ

=
∑

l∈�Zn

∑

m∈�Zn

∫

Tn

×
∫

Tn
e2π

i
�
(k−m)·θσ�(k, θ)e2π

i
�
(m−l)·ωτ�(m, ω)g(l)dωdθ

=
∑

l∈�Zn

∫

Tn
e2π

i
�
(k−l)·ως�(k, ω)g(l)dω,

where

ς�(k, ω) =
∑

m∈�Zn

∫

Tn
e2π

i
�
(k−m)·(θ−ω)σ�(k, θ)τ�(m, ω)dθ

=
∑

m∈�Zn

∫

Tn
e2π

i
�
k·(θ−ω)e−2π i

�
m·(θ−ω)σ�(k, θ)τ�(m, ω)dθ

=
∫

Tn
e2π

i
�
k·(θ−ω)σ�(k, θ)τ̂�(θ − ω,ω)dθ

=
∫

Tn
e2π

i
�
k·θσ�(k, ω + θ)τ̂�(θ, ω)dθ (replace θ − ω by θ),

where τ̂� denotes the (semi-classical) Fourier transform of τ�(m, ω) in the first
variable.

Employing the toroidal Taylor expansion given by (3.20) on the symbolσ�(k, ω+θ)

gives

ς�(k, y) =
∫

Tn
e2π

i
�
k·ωσ�(k, θ + ω)τ̂�(ω, θ)dω

=
∫

Tn
e2π

i
�
k·ω ∑

|α|<N

�
−|α|

α! (e2π
i
�
ω − 1)αD(α)

�,θ
σ�(k, θ)τ̂�(ω, θ)dω + R,

=
∑

|α|<N

1

α!D
(α)
�,θ

σ�(k, θ)
α
�,kτ�(k, θ) + R,

where R is a remainder from the Taylor expansion and for the last equality we have
used the expression (3.1). Now, since the difference operators satisfy the Leibniz rule
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we get

|D(α)
�,θ

σ�(k, θ)
α
�,kτ�(k, θ)| ≤ Cα(1 + |k|)μ2+δ|α|(1 + |k|)μ1−ρ|α|,

that is we have

D(α)
�,θ

σ�(k, θ)
α
�,kτ�(k, θ) ∈ Sμ1+μ2−(ρ−δ)|α|

ρ,δ (�Z
n × T

n).

Finally, to estimate the remainder R we follow lines of Theorem 3.14. ��
In the following theorem we prove that in the lattice case �Z

n we still have the
desired property for the adjoint of a semi-classical pseudo-differential operator. Before
doing so, let us point out that the adjoint operator makes sense in our setting for
operators acting on the Hilbert space �2(�Z

n).

Theorem 4.2 (Adjoint of a ��DO) Let 0 ≤ δ < ρ ≤ 1. Let σ� ∈ Sμ
ρ,δ(�Z

n × T
n).

Then there exist a symbol σ ∗
�

∈ Sμ
ρ,δ(�Z

n×T
n) such that the adjoint operatorOp(σ�)∗

is a pseudo-difference operator with symbol σ ∗
�
; that is we have Op(σ�)∗ = Op(σ ∗

�
).

Moreover, we have the asymptotic expansion

σ ∗
�
(k, θ) ∼

∑

α

1

α!

α
�,k D

(α)
�,θ

σ�(k, θ). (4.2)

Proof Let f , g ∈ �2(�Z
n). We have

(
Op�(σ�) f , g

)
�2(�Zn)

=
∑

k∈�Zn

Op(σ�) f (k)g(k)

=
∑

k∈�Zn

∑

l∈�Zn

∫

Tn
e2π

i
�
(k−l)·θσ�(k, θ) f (l)g(k)dθ

=
∑

l∈�Zn

f (l)

( ∑

k∈�Zn

∫

Tn
e−2π i

�
(k−l)·θσ�(k, θ)g(k)dθ

)

=
∑

l∈�Zn

f (l)Op(σ�)∗g(l).

By the definition of the adjoint operator we must have

Op�(σ�)∗g(l) =
∑

k∈�Zn

∫

Tn
e−2π i

�
(k−l)·θσ�(k, θ)g(k)dθ,

or interchanging k with l

Op�(σ�)∗g(k) =
∑

l∈�Zn

∫

Tn
e2π

i
�
(k−l)·θσ�(l, θ)g(l)dθ,
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i.e. Op�(σ�)∗ is an amplitude operator with amplitude

a�(k, l, θ) = σ�(l, θ) ∈ Sμ
ρ,δ(�Z

n, T
n) = A0,μ

ρ,δ (�Z
n × �Z

n × T
n).

Hence Op�(σ�)∗ = Op�(σ ∗
�
), and Theorem 3.14 yields the asymptotic expansion

σ ∗
�
(k, θ) ∼

∑

α

1

α!

α
�,l D

(α)
�,θ

σ�(l, θ)

∣∣∣
l=k

.

The proof of Theorem 4.2 is now complete. ��
Before turning over to analyse the transpose (or algebraic adjoint) operator in our
setting let us first recall how the transpose operator reads in our setting:

For f , g ∈ S(�Z
n), the transpose T t of a linear operator T satisfies the

distributional duality

〈T t f , g〉 = 〈 f , Tg〉;

that is for k ∈ �Z
n we have the equality

∑

k∈�Zn

(T t f )(k)g(k) =
∑

k∈�Zn

f (k)(Tg)(k).

Theorem 4.3 (Transpose of a ��DO) Let 0 ≤ δ < ρ ≤ 1 and let σ� ∈ Sμ
ρ,δ(�Z

n ×
T
n). Then there exists a symbol σ t

�
∈ Sμ

ρ,δ(�Z
n × T

n) so that the transpose operator
Op(σ�)t is a semi-classical pseudo-differential operator with symbol σ t

�
; i.e., we have

Op(σ�)t = Op(σ t
�
). The asymptotic formula for the symbol σ t

�
is given by

σ t
�
(k, θ) ∼

∑

α

1

α!

α
�,k D

(α)
�,θ

σ�(k,−θ). (4.3)

Proof We have

∑

k∈�Zn

f (k)(Tg)(k) =
∑

k∈�Zn

∑

l∈�Zn

∫

Tn
f (k)e2π

i
�
(k−l)·θσ�(k, θ)g(l)dθ

=
∑

l∈�Zn

g(l)

( ∑

k∈�Zn

∫

Tn
e2π

i
�
(k−l)·θσ�(k, θ) f (k)dθ

)
.

By the definition of the transpose operator we must have

T t g(l) =
∑

k∈�Zn

∫

Tn
e2π

i
�
(k−l)·θσ�(k, θ)g(k)dθ,
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or equivalently

T t g(l) =
∑

k∈�Zn

∫

Tn
e2π

i
�
(l−k)·θσ�(k,−θ)g(k)dθ.

The last formula corresponds to an amplitude operator with amplitude a�(l, k, θ) =
σ�(k,−θ) ∈ A0,μ

ρ,δ (�Z
n××�Z

n×T
n). Hence T t = Op(at

�
), and Theorem 3.14 gives

σ t
�
(k, θ) ∼

∑

α

1

α!

α
�,k D

(α)
�,θ

σ�(k,−θ).

The proof of Theorem 4.3 is now complete. ��
The following result on the asymptotic sums of symbols is well-known in the

classical cases as well. This is a utility tool that can simplify the process of solving
the so-called “eliptic” partial differential equations.

Lemma 4.4 (Asymptotic sums of symbols of ��DOs) Let 1 ≥ ρ > δ ≥ 0, and
let

{
μ j

}∞
j=0 ⊂ R be a decreasing sequence such that μ j → −∞ as j → ∞. If

σ�, j ∈ S
μ j
ρ,δ(�Z

n × T
n) for all j ∈ N0, then there exists σ� ∈ Sμ0

ρ,δ(�Z
n × T

n) such
that

σ� ∼
∞∑

j=0

σ�, j ,

that is for all N ∈ N we have

σ� −
N−1∑

j=0

σ�, j ∈ SμN
ρ,δ (�Z

n × T
n).

Proof The proof is a direct consequence of [29, Theorem 4.4.1] taking into account
that the symbol classes there are the same modulo swapping the order of variables. ��

Let now demonstrate the notion of ellipticity of semi-classical pseudo-differential
operators with symbol in the symbol classes Sμ

ρ,δ(�Z
n ×T

n). The following definition
is an adaptation of the notion of ellipticity in the classical settings.

Definition 4.5 (Elliptic operators) A symbol σ� ∈ Sμ
ρ,δ(�Z

n × T
n) shall be called

elliptic (of order μ) if there exist C > 0 and M > 0 such that

|σ�(k, θ)| ≥ C(1 + |k|)μ

for all θ ∈ T
n and for |k| ≥ M , k ∈ �Z

n . The semi-classical pseudo-differential
operators with elliptic symbols shall also be called elliptic.
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In the next result we show that the ellipticity of the pseudo-differential operator on
�Z

n is equivalent, as it happens also in the classical cases, to the invertibility of it in
the algebra of operators Op(S∞(�Z

n × T
n))/Op(S−∞(�Z

n × T
n)).3

The notion of a parametrix in our setting follows the lines of the general theory
and reads as:

Definition 4.6 (parametrix) The operator T is called the right (resp. left) parametrix
of S if ST − I ∈ Op(S−∞(�Z

n ×T
n)) (resp. T S− I ∈ Op(S−∞(�Z

n ×T
n))), where

I is the identity operator.4

Theorem 4.7 (The ellipticity of a ��DO is equivalent to the existence of its
parametrix) Let 0 ≤ δ < ρ ≤ 1. An operator U ∈ Op(Sμ

ρ,δ(�Z
n × T

n)) is elliptic if

and only if there exists V ∈ Op(S−μ
ρ,δ (�Z

n × T
n)) such that

VU � I � UV modulo Op(S−∞(�Z
n × T

n)),

i.e., the operator V is the left and right parametrix of U.

Moreover, let U ∼
∞∑

l=0

Ul be an expansion of the operator U, where

Ul ∈ Op(Sμ−(ρ−δ)l
ρ,δ (�Z

n × T
n)).

Then the corresponding asymptotic expansion of the operator V can be expressed via

V ∼
∞∑

j=0

Vj with

Vj ∈ Op(S−μ−(ρ−δ) j
ρ,δ (�Z

n × T
n))

can be obtained by setting σ�,V0 := 1

σ�,U0

, and then recursively

σ�,VN (k, θ) = −1

σ�,U0(k, θ)

N−1∑

j=0

N−1∑

l=0

×
∑

|γ |=N− j−l

1

γ !
[
D(γ )

�,θ σ�,Vj (k, θ)
]



γ

�,kσ�,Ul (k, θ). (4.4)

Proof First we want to prove that given that the existence of an operator V as in the
statement satisfying

I −UV = T ∈ S−∞(�Z
n × T

n),

3 As usually, we define S∞(�Z
n × T

n) = ⋃
μ∈R

Sμ
1,0(�Z

n × T
n).

4 The notion of a parametrix is applicable to all pseudo-differential operators on �Z
n
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the ellipticity of the operator U ∈ Op(Sμ
ρ,δ(�Z

n × T
n)) can be deduced. By the

composition formula, see Theorem 4.1, we get

1 − σ�,U (k, θ)σ�,V (k, θ) ∈ S−(ρ−δ)
ρ,δ (�Z

n × T
n).

The latter means that there exists a constant C > 0 such that

|1 − σ�,U (k, θ)σ�,V (k, θ)| ≤ C(1 + |k|)−(ρ−δ).

By choosing M so that C�(1 + |M |)−(ρ−δ) <
1

2
, the last estimate yields

|σ�,U (k, θ)σ�,V (k, θ)| ≥ 1

2
, for all |k| ≥ M . (4.5)

Thus by the assumption on σ�,U we get

|σ�,U (k, θ)| ≥ 1

2|σ�,V (k, θ)| ≥ 1

2C�,V
(1 + |k|)μ, ,

and we have proved that the symbol σ�,U is elliptic of order μ.
Conversely, let us define

σ�,V0(k, θ) := 1

σ�,U (k, θ)
.

By the analogous of [29, Lemma 4.9.4] in the lattice �Z
n setting, and assuming that

|k| > M , for M as in (4.5), we get σ�,V0 ∈ S−μ
ρ,δ (�Z

n ×T
n). Hence by the composition

formula

σ�,V0U = σ�,V0σ�,U − σ�,T � 1 − σ�,T ,

for some T ∈ S−(ρ−δ)
ρ,δ (�Z

n × T
n); that is V0U = I − T . The rest of the converse

implication follows by the composition formula, see Theorem 4.1 and a functional
analytic argument as appears in the proof of [29, Theorem 4.9.6]. It will then be
omitted.

Finally let us sketch the proof of the formula (4.4). We note that I � VU which
implies that 1 � σ�,VU (k, θ). An application of the composition formula as in
Theorem 4.1 yields

1 �
∑

γ≥0

1

γ !
[
D(γ )

�,θ
σ�,V (k, θ)

]



γ

�,kσ�,U (k, θ)

�
∑

γ≥0

1

γ !
[
D(γ )

�,θ

∞∑

j=0

σ�,Vj (k, θ)
]



γ

�,k

∞∑

l=0

σ�,Ul (k, θ). (4.6)
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A combination of the formula (4.6) together with an argument similar to the one in
the proof of [29, Theorem 4.9.13] for the formula for the parametrix on T

n , completes
the proof. ��

5 Link Between Toroidal and Semi-classical Quantizations

The toroidal quantization [27, 30] gives rise to further developments and applications;
see e.g. [2, 14, 20, 21] to mention only a few. Therefore, it is important to stress out its
link with the semi-classical lattice quantization that is exactly the topic of the current
section. The idea behind this, is then to establish a way in which results on T

n can
be transferred to �Z

n and vice versa. Similar investigation has been performed in [1]
in case of Z

n , and here we verify that they still remain true after the addition of the
semi-classical parameter �. The importance of this linkwill be demonstrated in Sect. 6.
Precisely, it provides us with a characterisation of compact operators on �2(�Z

n), see
Corollary 6.4; the semi-classical version of Gohberg lemma, see Corollary 6.5; and
conditions for the semi-classical operators in the Schatten–von Neumann classes, see
Theorem 6.6.

For τTn : T
n × Z

n → C, and for v ∈ C∞(Tn), recall the toroidal quantization

OpTn (τTn )u(θ) =
∑

k∈Zn

e2π iθ ·kτTn (θ, k)(FTn u)(k). (5.1)

To distinguish between the toroidal and the semi-classical lattice quantization as in
(2.4), we will denote them by OpTn and Op�Zn (or Op�), respectively. In both cases,
wewill use the notation l, l, . . . for elements of the latticeZ

n , and the notation θ, ω, . . .

for the elements of the torus T
n .

Remark 5.1 (Relation between the toroidal and semi-classical Fourier transform)
Recall that the toiroidal Fourier transform is defined by

FTn f (k) = f̂ (k) :=
∫

Tn
e−i2πθ ·k f (θ) dθ,

where f ∈ C∞(Tn) and k ∈ Z
n . In particular the operator FTn is a bijection, with

inverse F−1
Tn : S(Zn) → C∞(Tn) given by

(F−1
Tn f )(θ) =

∑

k∈Zn

e−2πθ ·k f (k).

Recall now the semi-classical Fourier inversion formula as in (2.3). Observe that for
k ∈ Z

n :

FTn f (k) =
∫

Tn
e−2π iθ ·k f (θ)dθ

=
∫

Tn
e−2π i

�
θ ·k f (θ)dθ (where k = �k ∈ �Z

n)
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= (F−1
�Zn f )(−k)

= (F−1
�Zn f )(−�k). (5.2)

From now on we will be using the notation Op�Zn to denote a semi-classical pseudo-
differential operator, and the notation OpT for the toroidal pseudo-differential operator
in order to distinguish between the two.

The next result allows us to reduce certain properties of semi-classical pseudo-
differential operators to properties of toroidal pseudo-differential operators.

Theorem 5.2 For a function σ� : �Z
n × T

n → C we define τ� : T
n × Z

n → C by

τ�(θ, k) := σ�(−�k, θ). Then we have the following relation

Op�Zn (σ�) = F−1
�Zn ◦ OpTn (τ�)∗ ◦ F�Zn , (5.3)

where OpTn (τ�)∗ is the adjoint of the toroidal pseudo-differential operator OpTn (τ�)

with symbol depending on the semi-classical parameter �. Moreover, we have

OpTn (τ�) = F�Zn ◦ Op�Zn (σ�)∗ ◦ F−1
�Zn , (5.4)

where Op�Zn (σ�)∗ is the adjoint of the semi-classical pseudo-difference operator
Op�Zn (σ�).

Proof of Theorem 5.2 For ϕ ∈ C∞(Tn) and for σ� as in the hypothesis, consider the
operator

Tϕ(k) :=
∫

Tn
e2π

i
�
k·θσ�(k, θ)ϕ(θ)dθ,

where k = �k ∈ �Z
n . Formula (2.4) rewritten in terms of the operator T yields

Op�Zn (σ�) = T ◦ F�Zn . (5.5)

The adjoint operator T ∗ must satisfy the relation

(Tϕ, η)�2(�Zn) = (ϕ, T ∗η)L2(Tn), ϕ, η ∈ �2(�Z
n). (5.6)

Now, expanding the left-hand side of (5.6) we get

(Tϕ, η)�2(�Zn) =
∑

k∈�Zn

Tϕ(k)η(k) =
∑

k∈�Zn

∫

Tn
e2π

i
�
k·θσ�(k, θ)ϕ(θ)η(k)dθ,

or equivalently

(Tϕ, η)�2(�Zn) =
∫

Tn
ϕ(θ)

(
∑

k∈�Zn

e2π
i
�
k·θσ�(k, θ)η(k)

)
dθ.
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The latter means that

T ∗η(θ) =
∑

k∈�Zn

e−2π i
�
k·θσ�(k, θ)η(k)

=
∑

k∈�Zn

e2π ik·θσ�(−�k, θ)η(−k) (where k = �k)

=
∑

k∈�Zn

e2π ik·θ τ�(θ, k)η(−k)

=
∑

k∈Zn

e2π ik·θ τ�(θ, k)η(−�k).

(5.7)

Now since F�Zn is a bijection, there exists v such that F−1
�Znv(k) = η(k). Using the

relation (5.2) the latter implies that FTnv(−k) = F−1
�Znv(k). Hence using the formula

(5.1) and equalities (5.7) we can write

T ∗η(θ) =
∑

k∈�Zn

e2π ik·θ τ�(θ, k)η(−k)

=
∑

k∈Zn

e2π ik·θ τ�(θ, k)FTnv(k) = OpTn (τ�)v(θ). (5.8)

On the other hand, we have

(
OpTn (τ�)(F�Znη

)
(θ) =

∑

k∈Zn

e2π ik·θ τ�(θ, k)FTn F�Znη(k)

=
∑

k∈Zn

e2π ik·θ τ�(θ, k)F−1
�ZnF�Znη(−k)

=
∑

k∈Zn

e2π ik·θ τ�(θ, k)η(−k)

=
∑

k∈Zn

e2π ik·θ τ�(θ, k)FTnv(k)

= OpTn (τ�)v(θ), (5.9)

since by the above FTnv(k) = η(−k). Now a combination of (5.8) and (5.9) yields

T ∗ = OpTn (τ�) ◦ F�Zn . (5.10)

Consequently, the unitarity of the Fourier transform implies that

T = F∗
�Zn ◦ OpTn (τ�)∗ = F−1

�Zn ◦ OpTn (τ�)∗. (5.11)

Thus, combining (5.11) with (5.5), we get

Op�Zn (σ�) = F−1
�Zn ◦ OpTn (τ�)∗ ◦ F�Zn . (5.12)
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Formula (5.4) follows by (5.12) using similar arguments. This proof is now complete.
��

6 Applications

In this section we investigate the conditions that can guarantee the boundedness of
semi-classical pseudo-differential operators on �2(�Z

n) andweighted �p(�Z
n) spaces.

Additionally the conditions for the membership in the Schatten classes are studied, as
well as a condition for the pseudo-differential operators to be Hilbert–Schmidt.

6.1 Continuity of Semi-classical Pseudo-differential Operators

In this subsection we show results on the boundedness of the semi-classical pseudo-
differential operators on different �p(�Z

n) spaces. In particular, Proposition 6.1 gives
a sufficient and necessary condition on a semi-classical symbol σ� for the the corre-
sponding pseudo-differential operator to be Hilbert–Schmidt. Curiously, it also gives
a sufficient condition for the operator to be bounded from �p(�Z

n) to �q(�Z
n), where

(p, q) are conjugate exponents. Regarding the special case where p = q = 2 the
sufficient condition for the boundedness of Opσ�

becomes significantly more relaxed,
in the sense that finitely many derivatives have to be bounded; see Theorem 6.2.

Before moving on to prove our main results, let us recall that a bounded operator
T : H → H acting on a Hilbert space H is called Hilbert–Schmidt, and we write
T ∈ L (H), if it has finite Hilbert–Schmidt norm, i.e., if

‖T ‖2HS :=
∑

i∈I
‖T ei‖2H < ∞,

where {ei : i ∈ I} is an orthonormal basis of H .

Proposition 6.1 The semi-classical pseudo-diffrential operator Op�(σ�) :
�2(�Z

n) → �2(�Z
n) is a Hilbert–Schmidt operator if and only if σ� ∈ L2(�Z

n ×T
n).

In this case, the Hilbert–Schmidt norm is given by

‖Op�(σ�)‖HS = ‖σ�‖L2(�Zn×Tn)

=
(

∑

k∈�Zn

∫

Tn
|σ�(k, θ)|2dθ

) 1
2

. (6.1)

Furthermore, if σ� ∈ L2(�Z
n × T

n) then Op(σ�) : �p(�Z
n) → �q(�Z

n) is bounded
for all 1 ≤ p ≤ 2 and 1

p + 1
q = 1, and we get that

‖Op�(σ�)‖L (�p(�Zn)→�q (�Zn)) ≤ ‖σ�‖L2(�Zn×Tn). (6.2)



Journal of Fourier Analysis and Applications (2024) 30 :41 Page 29 of 46 41

Proof of Proposition 6.1 Our first claim on the Hilbert–Schmidt norm is evident if one
takes into account the Plancherel formula in this setting. The boundedness result
follows the lines of [1, Proposition 5.1] and will be omitted. ��
Theorem 6.2 Let κ ∈ N and κ > n/2. Assume that the symbol σ� : �Z

n × T
n → C

satisfies

|D(α)
�,θ

σ�(k, θ)| ≤ C, for all (k, θ) ∈ �Z
n × T

n, (6.3)

for all |α| ≤ κ. Then the semi-classical pseudo-differential operator Op(σ�) extends
to a bounded operator on �2(�Z

n).

Proof Let σ� be as in the hypothesis. Then the symbol τ� related to σ� as in Theo-
rem 5.2 gives rise to the bounded on L2(Tn) pseudo-differential operator OpTn (τ�);
see [29, Theorem 4.8.1]. On the other hand taking in to account that the operatorF�Zn

is an isometry from �2(�Z
n) to L2(Tn), and the relation (5.3) in Theorem 5.2 we see

that Op(σ�) ≡ Op�Zn (σ�) is bounded on �2(�Z
n) if and only if OpTn (τ�) is bounded

on L2(Tn). This completes the proof of Theorem 6.2. ��

6.2 Compactness, Gohberg Lemma, and Schatten–von Neumann Classes

In this section we study the compactness of the semi-classical pseudo-differential
operators on �2(�Z

n), the distance between them and the space of compact operators
on �2(�Z

n), and the sufficient conditions for the Schatten classes of semi-classical
pseudo-differential operators; see Corollary 6.4, 6.5 and Theorem 6.6, respectively.

To ensure a self-contained presentation of our results, in the following remark we
recall the necessary notions that are involved in the subsequent analysis.

Remark 6.3 Let us recall some useful notions:

(1) (Essential spectrum) Let T be a closed linear operator on a complex Hilbert space
H . The essential spectrum of T , usually denoted by �ess(T ) is the set of complex
numbers λ ∈ C such that

T − λI

is not a Fredholm operator, where I is the identity operator.
(2) (Schatten–von Neumann classes) Let T : H → H be a compact (linear) operator,

let |T | := (T ∗T )1/2 be the absolute value of T , and let let sn(T ) be the singular
values of T , i.e., the eigenvalues of |T |. We say that the operator T belongs to the
Schatten–von Neumann class of operators Sp(H), where 1 ≤ p < ∞, if

‖T ‖Sp :=
( ∞∑

k=1

(sk(T ))p

) 1
p

< ∞.

The space Sp is a Banach space if endowed with the natural norm ‖ · ‖Sp
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(3) (Trace class operators) The Banach space S1(H) is the space of trace-class
operators, while for T ∈ S1 the quantity

Tr(T ) :=
∞∑

n=1

(T en, en),

where (en) is an orthonormal basis in H , is well-defined and shall be called the
trace Tr(T ) of T .

In the sequel we have defined by d the following quantity:

d := lim sup
|k|→∞

sup
θ∈Tn

|σ�(k, θ)|, (6.4)

where (k, θ) ∈ �Z
n × T

n . Let us now present the main results of this subsection:

Corollary 6.4 Let σ� ∈ S0(�Z
n × T

n). Then the semi-classical pseudo-differential
operator Op�Zn (σ�) is compact on �2(�Z

n) if and only if d = 0, where d is as in
(6.4). Moreover, we have

�ess(Op�Zn (σ�)) ⊂ {λ ∈ C : |λ| ≤ d}.

Proof of Corollary 6.4 The main idea is a combination, on the one hand, of the fact that
the compactness, Fredhomlness, and the index are invariant under the action of unitary
and of the relation (5.3) in Theorem 5.2, and on the other hand of [4, Theorem 3.2] on
the toroidal pseudo-differential operators. The rest of the arguments follows the lines
of [1, Corollary 5.3] and are omitted. ��

The next result gives a lower bound for the distance between a given operator and
the space of compact operators on �2(�Z

n). Such type of statements were first shown
by Gohberg in [10], and are now bearing his name. We refer to [18, 23] for such a
result on the circle T

1, and to [4] on general compact Lie groups. The analogous result
in the lattice case was given in [1].

Corollary 6.5 Gohberg lemma Let σ� : �Z
n × T

n → C be such that

|σ�(k, θ)| ≤ C, |∇�,θ σ�(k, θ)| ≤ C, |
�,qσ�(k, θ)| ≤ C(1 + |k|)−ρ, (6.5)

for some ρ > 0 and for all q ∈ C∞(Tn) with q(0) = 0 and all (k, θ) ∈ �Z
n × T

n.
Then for all compact operators K on �2(�Z

n) we have

‖Op�Zn (σ�) − K‖L(�2(�Zn)) ≥ d.

In particular, this conclusion holds for any σ� ∈ S0(�Z
n × T

n).

Proof The proof is a consequence of (5.3) in Theorem 5.2 and [6, Theorem 3.]. See
also [1, Corollary 5.4]. ��
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The next theorem is an application of the developed calculus that presents the
conditions ensuring that the corresponding operators belong to Schatten classes.

Theorem 6.6 Let 0 < p ≤ 2. We have the following implication

∑

k∈�Zn

‖σ�(k, ·)‖p
L2(Tn)

< ∞ �⇒ Op�Zn (σ�) is p-Schatten operator on �2(�Z
n).

(6.6)

In particular, if the left-hand side of (6.6) holds true for p = 1, then the operator
Op�Zn (σ�) is trace class, and its trace can be calculated as follows:

Tr(Op�Zn (σ�)) =
∑

k∈Zn

∫

Tn
σ�(k, θ) dθ =

∑

j∈J
λ j , (6.7)

where the set {λ j , j ∈ J } is the set of eigenvalues of Op�Zn (σ�) (multiplicities
counted).

Proof of Theorem 6.6 For the case p ∈ (0, 1] the notion of p-nuclearity5 and p-Shatten
classes coincide; see [19] and [22, Sect. 6.3.2.11]. Taking this into account, the result
for the case p ∈ (0, 1] follows as a consequence of (5.3) and [4, Corollary 3.12]. For
the trace class operators, using the expression (3.11) for the kernel, one can prove the
first equality in (6.7). The second equality in (6.7) is the well-known Lidskii formula
[15]. For the case where p ∈ [1, 2] the result follows by interpolation using (6.1). This
completes the proof. ��
Remark 6.7 In [16] the authors proved a result on the analysis of the Schatten classes
of operators on locally compact separable unimodular groups of Type I, which in our
case reads as follows: for p ∈ [2,∞) and for p′ the conjugate exponent of p (i.e.
1
p + 1

p′ = 1) we have

∑

k∈�Zn

‖σ�(k, ·)‖p′
L p′ (Tn)

< ∞ �⇒ Op�Zn (σ�) is p-Schatten operator on �2(�Z
n).

6.3 Weighted �2-Boundedness

In this subsection, we present a result on the boundedness of semi-classical pseudo-
differential operators on weighted �2(�Z

n) spaces defined below:

Definition 6.8 (Weighted �
p
s (�Z

n) space) For s ∈ R and 1 ≤ p < ∞ we define the
weighted space �

p
s (�Z

n) as the space of all f : �Z
n → C such that

‖ f ‖�
p
s (�Zn) :=

(
∑

k∈�Zn

(1 + |k|)sp| f (k)|p
)1/p

< ∞. (6.8)

5 The notion of p-nuclearity initiated by Grothedieck in [11]. We refer to the work [6] for a detailed
discussion of it.
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It is easy to check that the symbol a�,s(k) = (1 + |k|)s belongs to the semi-classical
class of symbols Ss1,0(�Z

n × T
n), while also that

f ∈ �
p
s (�Z

n) if and only if Op(as) f ∈ �p(�Z
n).

The latter observation gives rise to the following identification:

�
p
s (�Z

n) = Op(a−s)(�
p(�Z

n)). (6.9)

Corollary 6.9 Let r ∈ R and let σ� ∈ Sr0,0(�Z
n × T

n). Then, the semi-classical

pseudo-differential operator Op(σ�) is a bounded from �2s (�Z
n) to �2s−r (�Z

n) for all
s ∈ R.

Proof If T = Op(σ�) ∈ Op(Sr0,0(�Z
n × T

n)), then by using the composition formula
as in Theorem 4.1 we have6

P = Op(a�,s−r ) ◦ T ◦ Op(a�,−s) ∈ Op(S00,0(�Z
n × T

n))

and the operator P is by Theorem 6.2 bounded on �2(�Z
n). We can write

T f = Op(a�,r−s) ◦ P ◦ Op(a�,s) f ,

where P is as above. Now, if f ∈ �2s (�Z
n), then, since Op(a�,s) f , (P ◦Op(a�,s)) f ∈

�2(�Z
n), we also get that T f ∈ Op(aμ−s)�

2(�Z
n). The proof is now complete in view

of the identification (6.9). ��

6.4 Gårding and Sharp Gårding Inequalities on �Z
n

Let us recall the following result on the torus T
n as in [33, Corollary 6.2]:

Corollary 6.10 (Gårding inequality on T
n) Let 0 ≤ δ < ρ ≤ 1 and m > 0. Let

B ∈ OpTn S2mρ,δ(T
n ×Z

n) be an elliptic toroidal pseudo-differential operator such that

σB(θ, k) ≥ 0, for all θ ∈ T
n and co-finitely many k ∈ Z

n. Then there exist C0,C1 > 0
such that for all f ∈ Hm(Tn) we have

Re(B f , f )L2(Tn) ≥ C0|| f ||2Hm(Tn) − C1|| f ||2L2(Tn)
.

Let us now show the semi-classical analogue of Gårding inequality on �Z
n . As there

is no regularity concept on the lattice, the statement is given in terms of weighted
�2(�Z

n)-spaces.

6 We note that in this case, and since a�,s ∈ Ss0,1(�Z
n × T

n) the asymptotic formula as in Theorem 4.1 is
well-defined.
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Theorem 6.11 (Gårding inequality on �Z
n) Let 0 ≤ δ < ρ ≤ 1 and m > 0. Let

P ∈ Op�Zn S2mρ,δ (�Z
n × T

n) be an elliptic semi-classical pseudo-differential operator
such that σ�,P (k, θ) ≥ 0 for all θ and for co-finitely many k ∈ �Z

n. Then there exist
C1,C2 > 0 such that for all g ∈ �2m(Tn) we have

Re(Pg, g)�2(�Zn) ≥ C0||g||2�2m(�Zn)
− C1||g||2�2(�Zn)

. (6.10)

Proof Let us define τ�(θ, k) = σ�,P (−k, θ), where k = �k. Then, using Theorem 5.2
we have

P = Op�Zn (σ�,P ) = F−1
�Zn ◦ OpTn (τ�)∗ ◦ F�Zn . (6.11)

The latter implies that if σ�,P ≥ 0 is elliptic on T
n , then also τ� ≥ 0 is elliptic on

�Z
n . Hence, using the Gårding inequality on T

n , see Corollary 6.10, we get that for
all f ∈ Hm(Tn)

Re(OpTn (τ�)∗ f , f )L2(Tn) = Re(OpTn (τ�) f , f )L2(Tn)

≥ C0|| f ||2Hm(Tn) − C1|| f ||2L2(Tn)

= C0||g||2�2m(�Zn)
− C1||g||2�2(�Zn)

, (6.12)

where f is such that f = F�Zn g, so that

‖g‖Hm(Tn) = ‖g‖�2m(�Zn) and ‖g‖L2(Tn) = ‖g‖�2(�Zn).

Now, by (6.14) we can write

Pg = F−1
�Zn ◦ OpTn (τ�)∗ ◦ F�Zn g = F−1

�Zn ◦ OpTn (τ�)∗ f , (6.13)

so that F�Zn Pg = OpTn (τ�)∗ f . Thus, by (6.12) we have

Re(F�Zn Pg,F�Zn g)L2(Tn) ≥ C0|| f ||2�2m(�Zn)
− C1|| f ||2�2(�Zn)

,

where the last can be rewritten as

Re(F∗
�ZnF�Zn Pg, g)L2(Tn) ≥ C0|| f ||2�2m(�Zn)

− C1|| f ||2�2(�Zn)
.

Since F∗
�ZnF�Zn = I d, we obtain

Re(Pg, g)�2(�Zn) ≥ C0||g||2�2m(�Zn)
− C1||g||2�2(�Zn)

.

This completes the proof of Theorem 6.11. ��
Next we show the sharp Gårding inequality on �Z

n . Before doing so, let us recall how
the sharp Gårding inequality on compact Lie groups, see [31, Theorem 2.1], reads in
the case of the torus T

n .
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Theorem 6.12 (Sharp Gårding inequality on T
n) Let B ∈ OpTn Sm(Tn × Z

n) be
a toroidal pseudo-differential operator with symbol σ�(θ, k) ≥ 0 for all (θ, k) ∈
T
n × Z

n. Then there exists C < ∞ such that

Re(Bg, g)L2(Tn) ≥ −C‖g‖
H

m−1
2 (Tn)

,

for all g ∈ H
m−1
2 (Tn).

Let us know prove the analogous result in the semi-classical setting �Z
n .

Theorem 6.13 (Sharp Gärding inequality on �Z
n) Let P ∈ Op�Zn Sm(�Z

n × T
n)

be a semi-classical pseudo-diffrential operator with symbol σ�,P (k, θ) ≥ 0 for all
(k, θ) ∈ �Z

n × T
n. Then there exists C < ∞ such that

Re(Pg, g)�2(�Zn) ≥ −C‖g‖�2m−1
2

(�Zn)

for all g ∈ �2m−1
2

(�Z
n).

Proof Let τ�(θ, k) = σ�,P (−k, θ), where k = �k. Using Theorem 5.2 we can write

P = Op�Zn (σ�,P ) = F−1
�Zn ◦ OpTn (τ�)∗ ◦ F�Zn . (6.14)

Following the lines of Theorem 6.11 and using the Sharp Gårding inequality on T
n

we get

Re(Pg, g)�2(�Zn) = Re(F−1
�ZnOpTn (τ�)∗ f ,F−1

�Zn f )�2(�Zn)

= Re(OpTn (τ�)∗ f , f )L2(Tn)

= Re(OpTn (τ�) f , f )L2(Tn)

≥ −C‖ f ‖
H

m−1
2 (Tn)

= −C‖g‖�2m−1
2

(�Zn).

The proof of Theorem 6.13 is now complete. ��

6.5 Existence and Uniqueness of the Solutions to Parabolic Equations on �Z
n

In this subsection we will apply the Gårding inequalities in our semi-classical setting
to prove the well-posedeness of the classical parabolic equation

{
∂w
∂t − Dw = g, t ∈ [0, T ], T > 0,

w(0) = w0,
(6.15)

where in this case the classical differential operator is replaced by a semi-classical
pseudo-differential operator denoted by D and has a symbol in the class Sm1,0(�Z

n ×
T
n).
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Theorem 6.14 Let r > 0 and D ∈ Op�Zn Sr1,0(�Z
n × T

n) be a semi-classical pseudo-
differential operator. Assume also that there exist C0 > 0 and R > 0 such that for all
θ ∈ T

n, we have

− σ�,D(k, θ) ≥ C0|k|r for |k| ≥ R. (6.16)

If forw0 and g as in (6.15), we havew0 ∈ �2(�Z
n) and g ∈ L1([0, T ], �2(�Z

n)), then
Eq. (6.15) has a unique solution w ∈ C([0, T ], �2(�Z

n)) that satisfies the estimate

‖u(t)‖2
�2(�Zn)

≤ C
(
‖u0‖2�2(�Zn)

+
∫ t

0
‖ f (s)‖2

�2(�Zn)
ds

)
, (6.17)

for some C > 0 and for all t ∈ [0, T ].
Proof Let w be the solution to Eq. (6.15). If σ ∗

�,D(k, θ) stands for the symbol of the
adjoint operator D∗, then by condition (6.16) there exists C ′

0 > 0 such that

| − (σ�,D + σ ∗
�,D)(k, θ)| ≥ C ′

0|k|r for |k| ≥ R.

Then, using the the Gårding inequality as in Theorems 6.11 and 4.2 on the adjoint
operators, we get

−
(
(D + D∗)w,w

)

�2(�Zn)
≥ C1‖w‖2

�2r
2
(�Zn)

− C2‖w‖2
�2(�Zn)

. (6.18)

On the other hand we have

∂

∂t
‖w‖2

�2(�Zn)
= ∂

∂t

(
w(t), w(t)

)

�2(�Zn)

=
(

∂w

∂t
, w

)

�2(�Zn)

+
(

w,
∂w

∂t

)

�2(�Zn)

=
(
Dw + g, w

)

�2(�Zn)

+
(

w, Dw + g

)

�2(�Zn)

=
(

(D + D∗)w,w

)

�2(�Zn)

+ 2Re(w, g)�2(�Zn). (6.19)

Hence a combination of (6.18) together with (6.19) gives

∂

∂t
‖w‖2

�2(�Zn)
≤ −C1‖w(t)‖2

�2r
2
(�Zn)

+ C2‖w(t)‖2
�2(�Zn)

+ ‖w(t)‖2
�2(�Zn)

+ ||g||2
�2(�Zn)

≤ (C2 + 1)‖w(t)‖2
�2(�Zn)

+ ‖g‖2
�2(�Zn)

.

An application of Gronwall’s lemma to the latter gives

‖w(t)‖2
�2(�Zn)

≤ C�

(
‖w0‖2�2(�Zn)

+
∫ T

0
‖ f (s)‖2

�2(�Zn)
ds

)
,
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and we have proved (6.17).
The existence of a solution w ∈ C�([0, T ], �2(�Z

n)) to Eq. (6.15) follows by a
modification of the standard Picard’s theorem.

To prove the well-posedeness, let w, v be two solutions of (6.15). Then by setting
u := w − v, we have

{
∂u
∂t − Du = 0, t ∈ [0, T ],
u(0) = 0.

Now, the estimate (6.17) implies that ‖w(t)‖�2(�Zn) = 0, which in turn gives that
w(t) = v(t) for all t ∈ [0, T ], completing the proof. ��

6.6 Boundedness and Compactness on �p(�Z
n)

In the result that follows we show the �p(�Z
n)-boundedness of a semi-classical

pseudo-differential operator. Here the bound of the operator norm depends on the
bound of the operator symbol which does not necessarily needs to be regular or obey
a decay condition. An analogous result for pseudo-differential operators on the lattice
Z
n is established in [1, Proposition 5.12], while for the special case where n = 1 in

[17].

Proposition 6.15 Let 1 ≤ p < ∞. Let also σ� : �Z
n × T

n → C be a measurable
function such that

|(FTnσ�)(k,m)| ≤ C|λ(m)|, for all k,m ∈ �Z
n,

where C > 0 is a positive constant, λ is some function on �Z
n such that λ ∈ �1(�Z

n)

and FTnσ� is the Fourier transform of σ� in the second variable. Then, Op�Zn (σ�) :
�p(�Z

n) → �p(�Z
n) is a bounded linear operator and its norm is bounded from

above. Particularly we have

‖Op(σ�)‖L (�p(�Zn)) ≤ C‖λ‖�1(�Zn).

Proof of Proposition 6.15 For g ∈ �1(�Z
n), and for k,m ∈ �Z

n we can write

Op�Zn (σ�)g(k) =
∑

m∈�Zn

g(m)

∫

Tn
e−2π i

�
(m−k)·θσ�(k, θ)dθ

=
∑

m∈�Zn

g(m)(FTnσ�)(k,m − k)

=
∑

m∈�Zn

g(m)(FTnσ�)∼(k, k − m)

= ((FTnσ�)∼(k, ·) ∗ g)(k),
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where we have defined

(FTnσ�)∼(k,m) =: (FTnσ�)(k,−m).

From the above we can estimate

‖Op�Zn (σ�)g‖p
�p(�Zn)

=
∑

k∈�Zn

|((FTnσ�)∼(k, ·) ∗ g)(k)|p

≤
∑

k∈�Zn

((|(FTnσ�)∼(k, ·)| ∗ |g|)(k))p. (6.20)

Taking into account the assumption on σ�, an application of Young’s inequality for
convolution yields

∑

k∈�Zn

((|(FTnσ�)∼(k, ·)| ∗ |g|)(k))p ≤ C p
∑

k∈�Zn

(
(|λ| ∗ |g|)(k)

)p

≤ C p‖λ‖p
�1(�Zn)

‖g‖p
�p(�Zn)

. (6.21)

The latter combined with the density of �1(�Z
n) in �p(�Z

n), where 1 ≤ p < ∞,
completes the proof. ��

In the next result we strengthen the assumption on the symbol σ� to guaran-
tee that the corresponding semi-classical pseudo-difference operator Op�Zn (σ�) :
�p(�Z

n) → �p(�Z
n) is bounded but also compact.

Theorem 6.16 Let σ� and λ be as in the hypothesis of Proposition 6.15. Let also ω be
a positive function on �Z

n. Suppose also that σ� satisfies

|(FTnσ�)(k,m)| ≤ ω(k)|λ(m)|, for all m, k ∈ �Z
n,

where

lim|k|→∞ ω(k) = 0.

Then the pseudo-difference operator Op�Zn (σ�) : �p(�Z
n) → �p(�Z

n) is a compact
operator for all 1 ≤ p < ∞.

Proof We will show that Op�Zn (σ�) is the limit (in the operator norm sense) of a
sequence of compact operators Op�Zn (σ�,n) on �p(�Z

n). To this end, we define the
sequence of the corresponding symbols σ�,n :

σ�,n(k, θ) :=
{

σ�(k, θ), |k| ≤ n,

0, |k| > n.
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For g ∈ �1(�Z
n) we have

(
Op�Z(σ�) − Op�Z(σ�,N )

)
g(k)

=
∫

Tn
e2π

i
�
k·θ (σ� − σ�,n)(k, θ)ĝ(θ)dθ

=
∑

m∈�Zn

g(m)

∫

Tn
e−2π i

�
(m−k)·θ (σ� − σ�,n)(k, θ)dθ

=
∑

m∈�Zn

g(m)(FTn (σ� − σ�,n))(k,m − k).

(6.22)

Then arguing as we did in Proposition 6.15 we get

‖(Op�Z(σ�) − Op�Z(σ�,n)
)
g‖p

�p(�Zn)

≤
∑

k∈�Zn

((∣∣(FTn (σ� − σ�,n)
)∼

(k, ·)∣∣ ∗ ∣∣g
∣∣
)
(k)

)p

≤
∑

|k|>n

((∣∣(FTnσ�

)∼
(k, ·)∣∣ ∗ ∣∣g

∣∣
)
(k)

)p

≤
∑

|k|>n0

((
ε
∣∣λ
∣∣ ∗ ∣∣g

∣∣
)
(k)

)p

,

where for the estimate in the last line we have used the condition on the symbol σ� as
in the hypothesis, together with the fact that for ω as in the hypothesis and for every
ε, there exists n0 such that |ω(k)| < ε for all k > n0. Now, an application of Young’s
inequality to the latter gives

‖(Op�Z(σ�) − Op�Z(σ�,n)
)
g‖p

�p(�Zn) ≤
∑

|k|>n0

((
ε
∣∣λ
∣∣ ∗ ∣∣g

∣∣
)
(k)

)p

= ε p‖λ ∗ g‖p
�p(�Zn)

≤ ε p‖λ‖p
�1(�Zn)

‖g‖p
�p(�Zn)

.

Finally by the density of �1(�Z
n) in �p(�Z

n) we obtain

‖Op�(σ�) − Op�(σ�,n)‖L (�p(�Zn)) ≤ ε‖λ‖�1(�Zn),

and the proof is complete. ��
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7 Approximation of the Classical Euclidean Case

In this section we recover known results on pseudo-differential operators in the
Euclidean setting by allowing � → 0 in the semi-classical setting. Observe that when-
ever� → 0, the semi-classical setting�Z

n “approximates” theEuclidean spaceR
n .We

shall use the notation x, ξ for elements in R
n , while for elements in the semi-classical

setting �Z
n and for the toroidal elements we keep the same notation.

To start our analysis, note that the definition of the difference operators 
�, j as in
(3.3), when applied on function on R

n can be regarded as follows: for fixed x ∈ R
n

we have


�, j f (x) := f (x + e j�) − f (x)

�
,

where e j = (0, . . . , 0, 1, 0, . . . , 0) is the vector with 1 is at the j th position. Then,
for a function f : R

n → R in the limiting case when � → 0 the difference 
�, j f (x)
applied on f “approximates” the corresponding classical partial derivative ∂

∂x j
f (x),

or more generally we have the “approximation” for x ∈ R
n :


α
�
f (x) = 


α1
�,1 · · ·
αn

�,n f (x) −→ ∂α1

∂x1α1
· · · ∂αn

∂xnαn
f (x)

= ∂α
x f (x), α ∈ N

n . (7.1)

We note that in the expression (7.1) we make abuse of the notation to describe the
aforesaid notion of “approximation”.

On the other hand, to ensure that the dual space of �Z
n “approximates”when � → 0

the dual space of R
n (which is R

n itself) we need to make the following change of
variable: for θ ∈ T

n we set ω = 1
�
θ ∈ T

n

�
:= T

n
�
. It is then clear that in the limiting

case the rescaled torus T
n
�
“approximates” the Euclidean space R

n . With this change

of variable, the partial-type derivatives D(β)

�,θ
introduced in Definition 3.3 become:

D(β)

�,θ = D(β1)

�,θ1
× · · · × D(βn)

�,θn

= �
β1

⎛

⎝
β1−1∏

�=0

1

2π i

∂

∂θ1
− �

⎞

⎠ × · · · × �
β1

⎛

⎝
βm−1∏

�=0

1

2π i

∂

∂θn
− �

⎞

⎠

=
⎛

⎝
β1−1∏

�=0

1

2π i

∂

∂ω1
− ��

⎞

⎠ × · · · ×
⎛

⎝
βm−1∏

�=0

1

2π i

∂

∂ωn
− ��

⎞

⎠

=: d(β1)

�,ω1
× · · · × d(βn)

�,ωn
= d(β)

�,ω
,

for some β ∈ N
n , where ω = (ω1, . . . , ωn) ∈ T

n
�
. Hence, when � → 0, we have the

following “approximation” for ξ ∈ R
n and for a function f : R

n → R:
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d(β)

�,ω
f (x) −→

(
1

2π i

)|β|
∂

β
ξ f (x), (7.2)

where |β| = β1 + · · · + βn stands for the length of β ∈ N
n .

Let us now discuss in which sense the semi-classical classes of symbols “approx-
imate” in the limiting case the usual Euclidean Hörmander classes of symbols
introduced by Hörmander in [12] and bearing his name. To begin with let us recap
both definitions.

Semi-classical classes of symbols Let ρ, δ, μ ∈ R, and let σ� : �Z
n × T

n → C.
We say that σ� ∈ Sμ

ρ,δ(�Z
n × T

n) if for all α, β ∈ N
n
0 there exists Cα,β such that

|D(β)

�,θ

α

�,kσ�(k, θ)| ≤ Cα,β(1 + |k|)μ−ρ|α|+δ|β|. (7.3)

Hörmander classes of symbols Let μ ∈ R, δ < 1, 0 ≤ δ ≤ ρ ≤ 1 and σ :
R
n × R

n → C. We say that σ ∈ Sμ
ρ,δ(R

n × R
n) if for all α, β ∈ N

n
0 there exists Cα,β

such that

|(∂α
ξ ∂β

x σ)(x, ξ)| ≤ Cα,β(1 + |ξ |)μ−ρ|α|+δ|β|. (7.4)

Let us now restate the condition (7.3)with respect to dual variableω ∈ T
n
�
involving

the partial-type derivatives d(β)

�,ω
:

σ� ∈ Sμ
ρ,δ(�Z

n × T
n
�
) if and only if |d(β)

�,ω



(α)
�,kσ�(k, ω)| ≤ Cα,β(1 + |k|)μ−ρ|α|+δ|β|.

When � approximates 0 then the latter condition becomes:

σ0 ∈ S̃μ
ρ,δ(R

n × R
n) if and only if |(∂β

ξ ∂α
x σ0)(x, ξ)| ≤ Cα,β(1 + |x |)μ−ρ|α|+δ|β|,

(7.5)

where, with an abuse of notation, we have assumed that σ�(k, ω) −−−→
�→0

σ0(x, ξ).

Observe that in the definition semi-classical classes of symbols (7.3) the order of
derivatives do not follow the lines of the classical Hörmander classes of symbols as
in (7.4). This differentiation allows, after interchanging the role of x and ξ in (7.5),
for the following “approximation” of the above symbols classes in the two different
settings provided that 0 ≤ δ ≤ ρ ≤ 1:

Sμ
ρ,δ(�Z

n × T
n
�
) −−−→

�→0
S̃μ
ρ,δ(R

n × R
n),

where we use the notation S̃μ
ρ,δ(R

n × R
n) for the associated symbol classes when the

roles of x and ξ are interchanged; that is

σ ∈ S̃μ
ρ,δ(R

n × R
n) if and only if |(∂β

ξ ∂α
x σ)(x, ξ)| ≤ Cα,β(1 + |x |)μ−ρ|α|+δ|β|.
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With the above considerations we also have that S−∞(�Z
n×T

n
�
) −−−→

�→0
S̃−∞(Rn×

R
n); that is, in the limiting case, the smoothing semi-classical pseudo-differential

operators as in Definition 3.6 can considered to be negligible in the sense that when
applied to distributions they produce rapidly decaying functions.

To give a meaning to the above “approximation” of symbol classes in the two
settings, let us state how the composition formula, see Theorem 4.1, the formulae for
the adjoint and transpose of a �DO in the semi-classical setting, see Theorems 4.2
and 4.3, respectively, and the asymptotic sum of ��DOs, see Lemma 4.4, become in
the limiting case when � approaches 0.

Below we discuss the above aspects of the symbolic calculus. With an abuse of
notation we assume that for the σ�, τ� semi-classical symbols in the hypothesis of the
aforesaid theorems, we have σ�(k, ω) −−−→

�→0
σ0(x, ξ) and τ�(k, ω) −−−→

�→0
τ0(x, ξ),

where (k, ω) ∈ �Z
n × T

n
�
and x, ξ ∈ R

n .
Composition formula when � → 0Asnoted in the discussion that follows afterThe-

orem 4.1 on the composition formula, the order of taking differences and derivatives
in the corresponding asymptotic sum (4.1) is different from the one in the Euclidean
case. However, this differentiation allows to recover the classical composition formula
for �DO in the Euclidean setting. Indeed, Theorem 4.1 when � → 0 identifies with
the Euclidean one and in particular can be regarded as: For σ0 ∈ S̃μ1

ρ,δ(R
n × R

n) and

τ0 ∈ S̃μ2
ρ,δ(R

n ×R
n), the operator Op(σ0)◦Op(τ0) has symbol ς0 ∈ S̃μ1+μ2

ρ,δ (Rn ×R
n)

given by the asymptotic sum

ς0(x, ξ) ∼
∑

α

(2π i)−|α|

α! (∂α
ξ σ0)(x, ξ)(∂α

x τ0)(x, ξ),

where the factor (2π i)−|α| is due to the “aproximation” (7.2) of partial-type derivatives,
and is exactly the composition formula for �DO with symbols in the Hörmander
classes in the Euclidean setting; see Theorem 2.5.1 in [29].

Adjoint operator when � → 0 : Before stating how the Theorem 4.2 in the semi-
classical setting reads in the limiting case, let us point out that, reasoning as above, the
�2(�Z

n)-adjoint should be regarded as the L2(Rn)-adjoint as � approaches 0. In this
sense, Theorem 4.2 in the limiting case can be viewed as: For σ0 ∈ Sμ

ρ,δ(R
n × R

n),

there exists a symbol σ ∗
0 ∈ Sμ

ρ,δ(R
n × R

n) such that Op(σ0)∗ = Op(σ ∗
0 ), where

Op(σ0)∗ is the L2(Rn)-adjoint of Op(σ0), and we have the asymptotic expansion

σ ∗
0 (x, ξ) ∼

∑

α

(2π i)−|α|

α! ∂α
ξ ∂α

x σ0(x, ξ),

where as before the factor (2π i)−|α| is due to (7.2) so that the above formula agrees
with the Euclidean one; see Theorem 2.5.13 in [29].

Transpose operator when � → 0 : When � approaches 0, Theorem 4.3 agrees with
the corresponding result in the Euclidean setting, see Sect. 2.5 in [29], and can be
regarded as follows: Forσ0 ∈ Sμ

ρ,δ(R
n×R

n), there exists a symbolσ t
0 ∈ Sμ

ρ,δ(R
n×R

n)
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so that Op(σ0)t = Op(σ t
0), and we have the following asymptotic expansion

σ t
0(x, ξ) ∼

∑

α

(2π i)−|α|

α! ∂α
ξ ∂α

x [σ0(x,−ξ)].

Asymptotic sums when � → 0 :When � approaches 0, Lemma 4.4 can be viewed as
follows: let

{
μ j

}∞
j=0 ⊂ R be a decreasing sequence such that μ j → −∞ as j → ∞,

and let If σ0, j ∈ S
μ j
ρ,δ(R

n ×R
n) for all j ∈ N0. Then, there exists σ0 ∈ Sμ0

ρ,δ(R
n ×R

n)

such that

σ� ∼
∞∑

j=0

σ�, j ,

which means that for all N ∈ N we have

σ0 −
N−1∑

j=0

σ0, j ∈ SμN
ρ,δ (R

n × R
n).

The latter agrees with Proposition 2.5.33 in [29].
In the last part of the current subsection we discuss the �2(�Z

n)-boundedness of
semi-classical operators in the limiting case when � approaches zero where the latter
statement translates into L2(Rn)-boundedness.

Let us first recall a celebrated result on the boundedness of pseudo-differential
operators in the Euclidean setting, see e.g. the monograph of Stein [34].

Theorem 7.1 If σ ∈ S0ρ,δ(R
n×R

n), thenOpRn (σ ) is a bounded operator from L2(Rn)

to L2(Rn).

On the boundedness of�� DO when � → 0 : Let us first see how Theorem 6.2
translates in the limiting case: Let κ ∈ N, κ > n/2, and let σ0 : R

n × R
n → C

be a symbol satisfying

|∂α
ξ σ0(x, ξ)| ≤ C, for all x, ξ ∈ R

n, (7.6)

where |α| ≤ κ . Then, OpRn (σ0) extends to a bounded operator on L2(Rn). Inter-
estingly, going back to the analogous result on the Euclidean setting, we see that
Theorem 7.1 implies the limiting condition (7.6) for all α ∈ N

n . Indeed, let
σ0 ∈ S0ρ,δ(R

n × R
n). Then, by the assumption on σ0 and inequality (7.4), we have

|∂α
ξ σ0(x, ξ)| ≤ C(1 + |ξ |)−ρ|α| ≤ C, for all α ∈ N

n .

Conversely, condition (7.6) implies the assumption of Theorem 7.1 provided that
δ|β| ≥ ρ|α|.
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8 Examples

In this last section we consider certain examples of difference equations where semi-
classical pseudo-differential operators are involved. In particular, in the subsequent
examples, making use of the analysis above we study: the order of the corresponding
semi-classical symbol, the boundedness of the operator, the ellipticity of the symbol
and the existence, or even the exact formula, of the parametrix.

In what follows we denote by v j the unit vector v j = (0, . . . , 0, 1, 0, . . . , 0) ∈ Z
n ,

where 1 is the j th entry of the vector.

Example 8.1 Below we list several cases of semi-classical difference equations:

(1) (Case of non-elliptic bounded operator of zero order) Let us define the operator
Dj by

Dj f (k) = f (k + �v j ) − f (k), where k ∈ �Z
n .

For θ ∈ T
n , let eθ : �Z

n → R be the function given by eθ (k) =: e2π i
�
k·θ . Then

since

Djeθ (k) = e2π
i
�
(k+�v j )·θ − e2π

i
�
k·θ ,

by Proposition 3.9 the symbol of Dj is given by

σ�,Dj (k, θ) = e2π iv j ·θ − 1 = e2π iθ j − 1.

Thus, the operator Dj is not elliptic, we have Op(σ�,Dj ) ∈ Op(S0(�Z
n × T

n))

and is bounded by Corollary 6.9 from �2(�Z) to �2(�Z).
(2) (Case of elliptic bounded operator of positive order) Let us define the operator

L j f (k) = |k|r ( f (k + �v j ) + a) − |k|s( f (k − �v j ) + b),

for some a, b ∈ R such that |a|, |β| ≥ 1. Its symbol is given by

σ�,L j (k, θ) = |k|r (e2π iθ j + e−2π i
�
k·θa) − |k|s(e−2π iθ j + e−2π i

�
k·θb).

We have σ�,L j (k, θ) ∈ Smax{s,r}(�Z
n × T

n). This symbol is elliptic of order r if
r ≥ s, and non-elliptic otherwise. Consequently, fromCorollary 6.9 and for r ≥ s,
the operator L j is bounded from the weighted space �2t+s(�Z

n) to the weighted
space �2t (�Z

n), for any t ∈ R.
(3) (Case of elliptic bounded operator of zero order) Let us define the operator

T f (k) :=
n∑

j=1

(
f (k + �v j ) + f (k − �v j )

)
+ c f (k), where c ∈ C.
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The explicit formula of its symbol can be found as follows

σ�,T (k, θ) =
n∑

i=1

(
e2π iθ j − e−2π iθ j

)
+ c = 2i

n∑

j=1

sin(2πθ j ) + c ∈ S0(�Z
n × T

n).

and is elliptic in the case where Re c �= 0 or Im c /∈ [−2n, 2n]. Under such
assumptions on c the inverse operator T−1 is also of order zero, and its symbol
that depends only on the toroidal variable θ is given by

σ�,T−1(θ) = 1

2i
∑n

j=1 sin(2πθ j ) + c
.

Hence the solution to the equation

T f (k) = g(k), (8.1)

is given by

T−1g(k) = Op(σ�,T−1g(k) =
∫

Tn
e2π

i
�
k·θ 1

2i
∑n

j=1 sin(2πθ j ) + c
ĝ(θ) dθ.

By Corollary 6.9 the operators T , T−1 are bounded from �2s (�Z
n) to �2s (�Z

n),
which implies that if g ∈ �2s (�Z

n) then for the solution to Eq. (8.1) we also have
f ∈ �2s (�Z

n).
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