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Abstract
We prove the existence of functions that extremize the endpoint L2 to L4 adjoint
Fourier restriction inequality on the one-sheeted hyperboloid in Euclidean space R4

and that, taking symmetries into consideration, any extremizing sequence has a sub-
sequence that converges to an extremizer.

Keywords Sharp Fourier restriction theory · Sharp Strichartz estimates ·
Maximizers · Convolution of singular measures · Concentration-compactness

Mathematics Subject Classification 42B10 · 42B37 · 51M16

1 Introduction

In seminal paper [43] R. Strichartz addressed the adjoint restriction problem of the
Fourier transform to d − 1 dimensional quadric submanifolds of Euclidean space
Rd , establishing the necessary and sufficient conditions on p such that an L2 → L p

estimate holds. Recently, there has been interest in studying the existence of extrem-
izers and the sharp L2 → L p estimates for adjoint Fourier restriction operators and
progress has been made in the case of quadric curves and surfaces: the paraboloid
and parabola [22, 28], the cone [5, 22, 40], the sphere and circle [6, 8, 13, 23, 26, 36,
42], the two-sheeted hyperboloid and hyperbola [9, 10, 39] and the saddle [7, 18, 19]
(see also [1, 15, 16, 25] for the case of power curves and surfaces). The study of such
sharp L2 to L p estimates is intimately related to the study of extremizers and sharp
constants for Strichartz estimates for classical partial differential equations, such as
the Schrödinger, hyperbolic Schrödinger, wave and Klein–Gordon equations. In this
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note we address the case of the one-sheeted (or hyperbolic) hyperboloid inR4, which
is related to the so called Klein–Gordon equation with imaginary mass.

1.1 Setting

LetH3 denote the upper half of the three dimensional one-sheeted hyperboloid inR4,

H3 =
{
(x,
√

|x |2 − 1) : x ∈ R3, |x | � 1

}
,

equipped with the measure μ with density

dμ(x, t) = 1{|x |>1}(x) δ
(
t −√|x |2 − 1

) dt dx√|x |2 − 1
, (1.1)

so that for all g ∈ S(R4) it holds that

∫

H3

g(x, t) dμ(x, t) =
∫

{y∈R3:|y|>1}
g(y,

√
|y|2 − 1)

dy√|y|2 − 1
. (1.2)

A function f : H3 → R can be identified with a function from R3 to R, using
the orthogonal projection from1 H3 to R3 × {0}, and in what follows we do so. We
denote the L p(H3, μ) norm of a function f onH3 by ‖ f ‖L p(H3), ‖ f ‖L p(μ) or simply
‖ f ‖L p , ‖ f ‖p if it is clear from context.

The Fourier extension operator on the hyperboloid H3, also known as the adjoint
Fourier restriction operator, is given by

T f (x, t) =
∫

{y∈R3:|y|>1}
eix ·yeit

√
|y|2−1 f (y,

√
|y|2 − 1)

dy√|y|2 − 1
, (1.3)

where (x, t) ∈ R3 ×R and f ∈ S(R4). Note that T f (x, t) = f̂ μ(−x,−t), with the
Fourier transform inR4 defined by ĝ(x, t) = ∫

R3×R

e−i(x ·y+ts)g(y, s) dy ds.

Strichartz proved in [43] that for all 10
3 � p � 4 there exists Cp < ∞ such that

for all f ∈ L2(H3) the following estimate for T f holds

‖T f ‖L p(R4) � Hp‖ f ‖L2(H3), (1.4)

1 Strictly speaking, it is identified with a function with domain {x ∈ R4 : |x | � 1} but we will ignore this
minor point and, whenever necessary, it will be understood that f is extended to be equal to zero inside the
unit ball. We could have chosen to write our operator as acting on a weighted L2 space of Euclidean space,
but we will take this geometric point of view instead.
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where Hp < ∞ denotes the best constant in (1.4),

Hp = sup
0 �= f ∈L2(H3)

‖T f ‖L p(R4)

‖ f ‖L2(H3)

. (1.5)

The (full) one-sheeted hyperboloid is defined by

H3 := {(x, t) ∈ R3 × R : t2 = |x |2 − 1, |x | � 1
}
,

and we endow it with the Lorentz invariant measure μ̄ = μ+ + μ− where μ+ = μ as
in (1.1)–(1.2) is supported onH3, and μ− is given by

dμ−(x, t) = 1{|x |>1} δ
(
t +√|x |2 − 1

) dt dx√|x |2 − 1
,

so that μ− equals the reflection of μ via the reflection map (x, t) �→ (−x,−t) and is

supported on −H3. The adjoint Fourier restriction operator on H3
is

T f (x, t) = f̂ μ̄(−x,−t) =
∫

H3

ei(x ·y+ts) f (y, s) dμ̄(y, s)

=
∫

{y∈R3:|y|>1}
eix ·yeit

√
|y|2−1 f+(y)

dy√|y|2 − 1

+
∫

{y∈R3:|y|>1}
eix ·ye−i t

√
|y|2−1 f−(y)

dy√|y|2 − 1
,

(1.6)

where f = f+ + f−, the function f+ is supported on the upper half of the one-sheeted
hyperboloid,H3, and the function f−, on the lower half, −H3, and we have identified
their domains with R3 via the orthogonal projection as stated before. We see that
T f (x, t) = T f+(x, t) + T f−(x,−t).

The triangle inequality and (1.4) imply that for 10
3 � p � 4 the following estimate

holds

‖T f ‖L p(R4) � Hp‖ f ‖
L2(H3

)
, (1.7)

where Hp < ∞ is the sharp constant

Hp = sup
0 �= f ∈L2(H3

)

‖T f ‖L p(R4)

‖ f ‖
L2(H3

)

. (1.8)

The Lorentz group on R4, denoted L, preserves H3
, μ̄, and acts on functions on

H3
by composition: L∗ f (x, t) := f (L(x, t)), L ∈ L (see Sect. 2 for more details). In
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particular, we have ‖ f ‖
Lq (H3

)
= ‖L∗ f ‖

Lq (H3
)
and ‖T f ‖L p(R4) = ‖T (L∗ f )‖L p(R4),

for all p, q ∈ [1,∞].
Definition 1.1 An extremizer (or maximizer) for (1.4) is a function 0 �= f ∈ L2(H3)

that satisfies ‖T f ‖L p(R4) = Hp‖ f ‖L2(H3). An L2-normalized extremizing sequence
for (1.4) { fn}n ⊂ L2(H3) is such that ‖ fn‖L2(H3) = 1 and ‖T fn‖L p(R4) → Hp, as
n → ∞. A corresponding definition holds for extremizers and extremizing sequences
for (1.7).

1.2 Main Results

This paper is devoted to the study of the sharp instances of (1.4) and (1.7) in the
endpoint case p = 4, that is, the inequalities

‖T f ‖L4(R4) � H4‖ f ‖L2(H3), (1.9)

‖T g‖L4(R4) � H4‖g‖L2(H3
)
, (1.10)

andourmain results concern the existence of extremizers aswell as the precompactness
of extremizing sequences. The statements of the main results of this paper are as
follows.

Theorem 1.2 There exists an extremizer in L2(H3) for inequality (1.9). Moreover,
for every L2-normalized complex valued extremizing sequence { fn}n for (1.9),
there exist a subsequence { fnk }k and a sequence {(xk, tk)}k ⊂ R3 × R such that

{eixk ·yeitk
√

|y|2−1 fnk }k is convergent in L2(H3).

Theorem 1.3 There exists an extremizer in L2(H3
) for inequality (1.10). Moreover,

for every L2-normalized complex valued extremizing sequence { fn}n for (1.10), there
exist a subsequence { fnk }k and sequences {ξk}k ⊂ R4 and {Lk}k ⊂ L such that

{eiξk ·ξ L∗
k fnk }k is convergent in L2(H3

).

In the statement of the theorems we are writing eixk ·yeitk
√

|y|2−1 fnk for the function

y �→ eixk ·yeitk
√

|y|2−1 fnk (y) and eiξk ·ξ L∗
k fnk for the function ξ �→ eiξk ·ξ fnk (Lkξ).

Remark 1.4 Note the qualitative difference regarding existence of extremizers between
the one-sheeted hyperboloid and the two-sheeted hyperboloid (or their upper sheets)
equipped with its Lorentz invariant measure, which are defined respectively by

{(x, t) ∈ R3 × R : t2 = |x |2 + 1}, ( δ(t −√|x |2 + 1
)
+ δ

(
t +√|x |2 + 1

)) dt dx√|x |2 + 1
,

both of which can be considered as “perturbations” of the cone. It was shown in [39]
that for the L2 to L4(R4) adjoint Fourier restriction inequality on the two-sheeted
hyperboloid and on its upper sheet, extremizers do not exist and the best constant
was calculated explicitly. On the other hand, for the L2 to L4(R4) adjoint Fourier
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restriction inequality on the cone, extremizers exist, their exact form was obtained and
the best constant was calculated (see [5]).

We note that the results in [21] do not apply to the case of the hyperboloid due to the
lack of scale invariance, but information can be obtained from the arguments therein,
although we will not go that route. See the discussion in [39, Sect. 2] for some details
in the related context of the two-sheeted hyperboloid.

We take this opportunity to indicate a correction to [39, Thm. 1.2, Prop. 7.5], where
the value of the best constant for the L2 → L6 adjoint Fourier restriction inequality
on the two-sheeted hyperboloid inR2, there denoted H̄2,6, is incorrect. Details can be
found in version 3 of [39] available at www.arxiv.org.

The convolution form of inequalities (1.9) and (1.10), obtained via Plancherel’s

theorem, tells us that in both cases, H3 and H3
, there exist nonnegative real valued

extremizers, and the symmetrization method used in [23], or the one in [35], can be

adapted to show that if a function f is a nonnegative real valued extremizer for T onH3

then f is necessarily an even function: f (x, t) = f (−x,−t), for μ̄-a.e. (x, t) ∈ H3
.

We discuss the details in Sect. 2.
It would be of interest to treat the endpoint p = 10

3 as well, and more generally
to study the existence of extremizers at the endpoint and non-endpoint cases for all2

d � 2, as was recently done for non-endpoint cases of the two-sheeted hyperboloid
in [9, 10]. Our analysis here extends the known results on sharp Fourier extension
inequalities for quadric manifolds as studied in Strichartz paper [43].

1.3 Organization of the Paper and Outline of the Proofs of theMain Theorems

From now on, references to the sharp inequalities (1.4) and (1.7) are understood with
p = 4, unless it is explicitly said otherwise.

An important tool in our proofs is [20, Prop. 1.1] which we include next for the
convenience of the reader.

Proposition 1.5 Let H be a Hilbert space and S : H → L p(Rd) be a continuous
linear operator, for some p ∈ (2,∞). Let { fn}n ⊂ H be such that:

(i) ‖ fn‖H = 1,
(ii) lim

n→∞ ‖S fn‖L p(Rd ) = ‖S‖H→L p(Rd ),

(iii) fn⇀ f and f �= 0,
(iv) S fn → S f a.e. inRd .

Then fn → f inH. In particular, ‖ f ‖H = 1 and ‖S f ‖L p(Rd ) = ‖S‖H→L p(Rd ).

To prove Theorem 1.2 we apply Proposition 1.5 with p = d = 4, H equals to
L2(H3) and S equals T . We need to verify (iii) and (iv), as (i) and (ii) are immediate

2 When d = 1 the one-sheeted hyperboloid coincides with the two-sheeted hyperboloid after a 90◦ rotation,
and the later has been studied in [9]. They consider only one of the two branches but it is not difficult to
see that the existence argument in the non-endpoint cases carries through to the two branches. On the other
hand, an argument is needed to settle the endpoint p = 6 for two branches (this is also the case when d = 2
and p = 6 as clarified in the correction to [39] alluded to before).

www.arxiv.org
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for a normalized extremizing sequence. We handle (iv) as in [38, Prop. 8.3] and [21].
To prove (iii) we will see that the only way it can fail, the failure being that a weak
limiting function equals zero, is that the extremizing sequence concentrates at infinity,

which is defined as follows for H3, with an analogous definition forH3
.

Definition 1.6 We say that the sequence { fn}n ⊂ L2(H3) concentrates at infinity if
inf
n

‖ fn‖L2(H3) > 0 and for every ε, R > 0 there exists N ∈ N such that for all n � N

‖ fn1{|y|�R}‖L2(H3) < ε,

where, as mentioned before, we are identifying a function on H3 with a function on
{y ∈ R3 : |y| � 1}.

Finally, to discard the possibility of concentration at infinity we will use a compar-
ison argument with the cone.

In the case of the full one-sheeted hyperboloid H3
there is the addition of Lorentz

invariance, and our proof of Theorem 1.3 will require additional steps when compared
to the case of the upper half, H3. Because of this, in addition to the use of Proposi-
tion 1.5 and a comparison to the double cone, wewill use a concentration-compactness
argument to be able to discard concentration at infinity.

More in detail, the organization of the paper is as follows. In Sect. 3 we explicitly
calculate the double convolutionμ∗μwhich we use in Sect. 4 to prove the strict lower
bounds

H4 > (2π)5/4, H4 >
(3
2

)1/4
(2π)5/4, (1.11)

which tell us that the best constant for the adjoint Fourier restriction operator on the
(resp. full) one-sheeted hyperboloid is strictly greater than that for the (resp. double)
cone.

In Sect. 5 we prove Theorem 1.2 by collecting the necessary ingredients to use
Proposition 1.5. Here the first inequality in (1.11) is used to show that the L2 mass
of an extremizing sequence can not tend to infinity (i.e. there is no concentration at
infinity).

From Sect. 6 onward we focus on the full one-sheeted hyperboloid H3
. As men-

tioned before, the existence of Lorentz invariance adds complexity to the proof of
Theorem 1.3, compared to the much simpler proof of Theorem 1.2. We will use a
concentration-compactness type argument that we discuss in Sect. 9. In short, given
an L2 normalized extremizing sequence { fn}n for T , three possibilities hold (possi-
bly after passing to a further subsequence): compactness, vanishing or dichotomy. In
Sect. 10 we prove bilinear estimates at (radial) dyadic scales and show that they imply
that dichotomy can not occur. In Sect. 11 we obtain a (radial) dyadic refinement of
(1.7) and use it to show that vanishing can not occur.

To treat the compactness case, it will be necessary to study so called “cap bounds”
or refinements of the L2 → L4 estimate for the adjoint Fourier restriction operators T
and T and this we achieve in Sect. 8 by “lifting” to the hyperboloid the results for the
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sphere in R3, as proved in [13], and recalled in Sect. 7 (more precisely we study so
called δ-quasi-extremals and their relationship with caps). By doing this lifting of the
cap refinements available for the sphere, we do not have to develop bilinear estimates
in the angular variable, but only in the radial variable.

In Sect. 12 we study some limiting relationships between the hyperboloid and the
cone. The results of this section together with the second strict inequality in (1.11)
are used to study the compactness alternative in the case of an extremizing sequence
concentrating at infinity, discarding some possible behaviors.

Finally, in Sect. 13 we put together all the preliminary results of previous sections
to show that if an extremizing sequence satisfies compactness then it is precompact in

L2(H3
), modulo multiplication by characters and composition with Lorentz transfor-

mations, completing the proof of Theorem 1.3.
Although our approach to the proof of Theorem 1.3 depends on the Lebesgue

exponent “4” being an even integer, which for other works in this field has meant to
restrict to nonnegative (and possibly symmetric) extremizing sequences, we point out
that we are able to handle the case of general complex valued extremizing sequences.
Besides the fact that some arguments are simpler if one works with an even integer
as we can multiply out some expressions, they could (in principle) be reworked for
general real Lebesgue exponents. In the view of the author, the crucial step where
evenness is used is in the inequality ‖T ( f )‖L4(R4) � ‖T (| f |)‖L4(R4), which may not
hold for non even exponents. This is used in the proof of Theorem 1.3, Case 1.

Having explained our methods, we now mention a different possible path to two
aspects of our proof. As stated earlier, in this work we obtain a relationship between
quasi-extremals and caps by lifting the known results for the sphere but we mention
that there is the alternative route through bilinear estimates to obtain cap refinements
of inequalities (1.9) and (1.10). The works [9, 10] treat the related two-sheeted hyper-
boloid in the non-endpoint cases andof particular interest is the development of bilinear
estimates in the angular and radial variables which offer a template to obtain similar
results for the one-sheeted hyperboloid (see also [2–4]).

A second aspect of our proof is the use of a concentration-compactness type argu-
ment. There is a different possible approach, the missing mass method3 (MMM). This
is a general framework to address the problem of existence in optimization problems;
in this particular setting of maximizers for adjoint Fourier restriction inequalities it
was first introduced by Frank et al. [26] for the case of the sphere, and later also suc-
cessfully applied to power curves and (hyper-)surfaces [15, 25]. It has the advantage
of allowing complex valued functions in the setting of general Lebesgue exponents,
which could be useful when addressing the remaining cases (specially the endpoint
cases) of (1.4) and (1.7), that is, when 10/3 � p < 4 and the ambient space isR4, as
well as the remaining Strichartz estimates for the one-sheeted hyperboloid in Rd+1,
where 2(d + 2)/d � p � 2(d + 1)/(d − 1), d � 2, and 6 � p < ∞ if d = 1.

3 It is also possible to use profile decompositions but we will not discuss that alternative here. For the
MMM, see the introduction in [26] for some historical references and the main idea of the method.
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1.4 Notation and Some Definitions

The set of natural numbers is N = {0, 1, 2, . . . } and N∗ = {1, 2, 3, . . . }.
For s > 0, we let H3

s := {(x, t) : x ∈ R3, t = √|x |2 − s2}, equipped with the
measure

dμs(x, t) = 1{|x |>s} δ
(
t −√|x |2 − s2

) dx dt√|x |2 − s2
, (1.12)

and adjoint Fourier restriction operator Ts ,

Ts f (x, t) = ̂f μs(−x,−t) =
∫

{y∈R3:|y|>s}
eix ·yeit

√
|y|2−s2 f (y)

dy√|y|2 − s2
.

(1.13)

There are corresponding definitions of H3
s , μ̄s and T s in analogy with the case

s = 1.
The cone inR4 is denoted �3 := {(y, |y|) : y ∈ R3} which comes with its Lorentz

and scale invariant measure σc,

∫

�3

f dσc =
∫

R3

f (y, |y|) dy|y| .

The adjoint Fourier restriction operator on the cone, Tc, is given by the expression

Tc f (x, t) =
∫

R3

eix ·yeit |y| f (y) dy|y| , (1.14)

which acts, a priori, on functions f ∈ S(R3). The adjoint Fourier restriction operator

on the double cone, �
3 := �3 ∪ −�3, denoted by T c, is given by the expression

T c f (x, t) =
∫

R3

eix ·yeit |y| f (y, |y|) dy|y| +
∫

R3

eix ·ye−i t |y| f (y,−|y|) dy|y| , (1.15)

f ∈ S(R4). We let C4,C4 < ∞ denote the best constants in the inequalities

‖Tc f ‖L4(R4) � C4‖ f ‖L2(�3), ‖T c f ‖L4(R4) � C4‖ f ‖
L2(�

3
)
,

respectively. We sometimes use the alternative notation ‖T ‖ = H4, ‖T ‖ = H4,
‖Tc‖ = C4 and ‖T c‖ = C4.
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The sphere of radius r > 0 inR3 is S

2
r := {y ∈ R3 : |y| = r}. The sphere of radius

1 is denoted simply S

2. On S

2
r we consider the measure σr ,

∫

S2r

f dσr =
∫

S2

f (rω)r dσ(ω), (1.16)

where σ is the surface measure on S

2. With this choice, σr (S
2
r ) = rσ(S2), for all

r > 0. For r > 0 and a function f : R3 → C we set fr : S

2 → R by fr (·) = f (r ·).
We let S denote the best constant in the convolution form of the Tomas–Stein

inequality for the sphere S

2,

‖ f σ ∗ f σ‖L2(R3) � S2‖ f ‖2L2(S2)
.

We also use the following convention. For f : H3 → R we write f = f+ + f−,
where f+ is supported onH3 and f− on the reflection ofH3 with respect to the origin,
−H3, and we further identify their domains with R3 via the orthogonal projection.
For A ⊆ R3 we define

∫
A

f dμ :=
∫

{(x,t)∈H3 : x∈A}
f dμ.

f ∈ L1(H3), while for H3
,

∫
A

f dμ̄ :=
∫

{(x,t)∈H3 : x∈A}

f dμ̄ :

f ∈ L1(H3
), so that in both cases the integral over A ⊂ R3 equals to the integral

over the “lift” of A toH3 or H3
, as it corresponds.

An element R ∈ SO(4) that preserves the t-axis, R(0, 0, 0, 1) = (0, 0, 0, 1),
is canonically identified with an element of SO(3), and as such we will just write
R ∈ SO(3).

We let ψs(r) = √
r2 − s21{r�s}, φs(t) = ψ−1

s (t) = √
t2 + s21{t�0}. The (closed)

ball of radius r > 0 centered at y ∈ R3 is B(y, r). For a set A, 1A denotes the
characteristic function of A and A�, the complement of A with respect to a set con-

taining A that will be understood from context, usuallyR3,H3 orH3
. We sometimes

slightly abuse notation and use |A| to denote themeasure of a set A, where themeasure
used must be understood from context, for instance, if A is an interval it refers to the
Lebesgue measure, if A ⊆ S

2, it refers to the surface measure, etc. The support of a
function f is denoted supp( f ).

We will use the usual asymptotic notation X � Y , Y � X if there exists a constant
C (independent of X ,Y ) such that |X | � CY ; we use X � Y if X � Y and Y � X ;
when such constants depend on parameters of the problem that we want to make
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explicit, such as α, . . . etc., we write �α,...,�α,... and �α,.... At times we will use the
common asymptotic notation o(·) and O(·). Thus, gn = o( fn) if gn/ fn → 0 as n →
∞, while gn = O( fn) if |gn| � C | fn| for all n. If there is more than one parameter,
say n ∈ N and s > 0, then gn(s) = on( fn(s)) means the limit of gn/ fn → 0 is taken
with respect to n and is uniform in s, that is sups |gn(s)|/| fn(s)| → 0 as n → ∞.

2 Lorentz Invariance, Symmetrization and Caps

2.1 Lorentz Invariance

Recall that the Lorentz group on R4, denoted L, is defined as the group of invertible
linear transformations in R4 that preserve the bilinear form

B(x, y) = x4y4 − x3y3 − x2y2 − x1y1,

for x = (x1, x2, x3, x4) ∈ R4 and y = (y1, y2, y3, y4) ∈ R4. If L ∈ L then | det L| =
1. Given that we can write H3 = {(x, t) ∈ R3+1 : B((x, t), (x, t)) = −1} it is

direct that L preserves the hyperboloid: L(H3
) = H3

, for every L ∈ L. Moreover, L
preserves the measure μ̄, in the sense that for every f ∈ L1(H3

) and L ∈ L
∫

H3

f (x, t) dμ̄(x, t) =
∫

H3

f (L(x, t)) dμ̄(x, t). (2.1)

To see this, note that a simple calculation shows that we can write

dμ̄(x, t) = δ
(
t2 − |x |2 + 1

)
dx dt

so that

∫

R4

f (x, t) dμ̄(x, t) =
∫

R4

f (x, t) δ
(
t2 − |x |2 + 1

)
dt dx .

Then, if L is a Lorentz transformation and f ∈ L1(H3
), (2.1) can be seen to hold

by the change of variable formula.
For t ∈ (−1, 1) the Lorentz boost Lt ∈ L is the linear map

Lt (ξ1, ξ2, ξ3, τ ) =
(

ξ1 + tτ√
1 − t2

, ξ2, ξ3,
tξ1 + τ√
1 − t2

)
, (2.2)

while Lt denotes the rescaling Lt := (1− t2)1/2Lt , so that (Lt )
−1 = (1− t2)−1/2L−t .
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2.2 Convolution Form

With the Fourier transform in Rd normalized as F̂(x) = ∫
Rd

e−i x ·y F(y) dy we have

the identities

̂F ∗ G = F̂ Ĝ, ‖F̂‖L2(Rd ) = (2π)d/2‖F‖L2(Rd ),

so that using T f (x, t) = f̂ μ(−x,−t) and T g(x, t) = ĝμ̄(−x,−t) we find the
equalities

‖T f ‖L4(R4) = 2π‖ f μ ∗ f μ‖1/2
L2(R4)

, ‖T g‖L4(R4) = 2π‖gμ̄ ∗ gμ̄‖1/2
L2(R4)

.

(2.3)

Using this convolution form of the L4 norm and the triangle inequality we see
that ‖T f ‖L4(R4) � ‖T | f |‖L4(R4) and ‖T g‖L4(R4) � ‖T |g|‖L4(R4), so that if f is
an extremizer for (1.4) (resp. g for (1.7)), then so is | f | (resp. |g|), showing that if
extremizers exist then there are nonnegative real valued extremizers.

2.3 Symmetrization

Let f ∈ L2(H3
) be a complex valued function.Denote the reflection of f by f̃ (x, t) =

f (−x,−t) and the nonnegative L2-symmetrization of f by

f�(x, t) =
( | f (x, t)|2 + | f (−x,−t)|2

2

)1/2

.

Regarding the relationship between f and f� we have the following lemma.

Lemma 2.1 Let f ∈ L2(H3
) be a complex valued function. Then

‖ f μ̄ ∗ f μ̄‖L2(R4) � ‖ f�μ̄ ∗ f�μ̄‖L2(R4). (2.4)

Proof As in [23, Proof of Prop. 3.2] we write

f μ̄ ∗ f̃ μ̄(ξ, τ ) =
∫

f (y, s) f (−x,−t) δ
(
(ξ, τ ) − (y, s) − (x, t)

)
dμ̄(y, s) dμ̄(x, t)

= 1

2

∫
( f (y, s) f (−x,−t) + f (−y,−s) f (x, t))

× δ
(
(ξ, τ ) − (y, s) − (x, t)

)
dμ̄(y, s) dμ̄(x, t),

and apply the Cauchy–Schwarz inequality

| f (y, s) f (−x,−t) + f (−y,−s) f (x, t)| � 2 f�(y, s) f�(x, t),
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to obtain that for all (ξ, τ ) ∈ R4

| f μ̄ ∗ f̃ μ̄(ξ, τ )| � f�μ̄ ∗ f�μ̄(ξ, τ ).

Then

‖ f μ̄ ∗ f μ̄‖L2(R4) = ‖ f μ̄ ∗ f̃ μ̄‖L2(R4) � ‖ f�μ̄ ∗ f�μ̄‖L2(R4).

��

Since we also have

‖ f ‖L2(μ̄) = ‖ f�‖L2(μ̄),

it follows that if extremizers exist for T , then there exist real valued extremizers for T
which are nonnegative even functions onH3

. Moreover, any nonnegative real valued
extremizer is necessarily even. This can be explained by studying the cases of equality
in (2.4) by following the proof of the inequality (see [8] for a detailed discussion in
the case of the sphere) or, alternatively, by using the same method as in the proof of
[35, Lemma 6.1] where a different approach to symmetrization is used and the cases
of equality were studied. Therefore, we have the following result.

Proposition 2.2 If f ∈ L2(H3
) is a nonnegative real valued extremizer for (1.7), then

f (x, t) = f (−x,−t) for μ̄-a.e. (x, t) ∈ H3
.

There are some interesting problems that we do not address in this article:

(i) the nonnegativity of all real valued extremizers,
(ii) the relationship between complex and real valued extremizers,
(iii) the smoothness of extremizers.

We provide the following comments in the context of the L2(Sd−1) → L p(Rd)

adjoint Fourier restriction inequality on the sphere. Christ and Shao [14] showed that
for the case of the the sphere S

2 in R3 and p = 4 each complex valued extremizer is
of the form x �→ ceix ·ξ F(x), for some ξ ∈ R3, some c ∈ C and some nonnegative
extremizer F , and that extremizers are of class C∞; these results were later expanded
to all dimensions d � 2 and even integers p in [36, Lemma 2.2, Thm. 1.2] and [37].
Note that the answer obtained for (ii) resolves (i). By using the outline in [14, 36, 37],
the Euler–Lagrange equation, which can be obtained as in [12], and the results in [11]

we expect similar relationships for the case of H3 and H3
, but have not investigated

the extent to which the arguments would need to be changed.
A related question is that of the rate of decay at infinity of an extremizer for which

the argument in [27] gives a possible route; see also [35].
We remark that Theorems 1.2 and 1.3 are stated for general (possibly complex val-

ued) extremizing sequences, that is, we do not assume nonnegativity and/or symmetry.
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2.4 Caps

A (closed) spherical cap C ⊆ S

2 is a set of the form C = {x ∈ S

2 : |x − x0| � t} for
some x0 ∈ S

2 and t > 0. If we want to be explicit about the dependence on x0 and t
we write C(x0, t).

A cap C of H3
s is a set of the form

C =
{
(rω,

√
r2 − s2) : r ∈ [a, b], ω ∈ C

}
, (2.5)

where s � a < b � ∞ and C ⊆ S

2 is a spherical cap. When a = s 2k and b = s 2k+1

for some k ∈ Z we say that C is a dyadic cap. We identify a cap C as before with its
orthogonal projection to R3 × {0}, and moreover we use spherical coordinates and
write the cap in (2.5) as C = [a, b] × C, where the hyperboloid it belongs to will be

understood from context. A cap C of H3
s is such that either C ⊆ H3

s or its reflection
with respect to the origin (−C) ⊆ H3

s is a cap on H3
s .

The μs-measure of a cap is easily calculated

μs(C) = σ(C)

b∫
a

r2√
r2 − s2

dr = σ(C)

2

(
s2 ln

(
r +

√
r2 − s2

)+ r
√
r2 − s2

)∣∣∣b
a
.

(2.6)

For a capC = [a, b]×C inH3
s and t > 0wedefine the rescaled cap tC = [ta, tb]×C

as the cap inH3
ts given by

tC =
{
(rω,

√
r2 − (ts)2) : r ∈ [ta, tb], ω ∈ C

}
,

and note that

μts(tC) = t2μs(C). (2.7)

We also note that for such a cap C ⊂ H3
s there exist R ∈ SO(3) and ε ∈ [0, π ]

such that

R−1(C) = {(rω,
√
r2 − s2) : a � r � b,

ω = (cosϕ, cos θ sin ϕ, sin θ sin ϕ), θ ∈ [0, 2π ], ϕ ∈ [0, ε]}.
(2.8)

Keeping this notation in mind for the rest of the section we study the use of Lorentz
transformations and scaling in the regimes where μ̄(C) is large and small. The fol-
lowing two lemmas will be useful in Sect. 13 when dealing with the full one-sheated

hyperboloidH3
. To motivate them, let us see how their need arises as we try to prove
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the precompactness of an extremizing sequence. Let { fn}n ⊂ L2(H3
) be an extrem-

izing sequence for T . Because of “cap refinements” of (1.10) (Lemma 8.1), for each

fn we can find a dyadic cap Cn = [2Nn , 2Nn+1] × Cn ⊂ H3
, Cn ⊆ S

2, such that

∫
Cn

| fn| dμ̄ � μ̄(Cn)1/2.

If we could find Lorentz transformations Ln ∈ L such that for each n ∈ N, L−1
n (Cn)

is contained in a fixed ball ofR4, independent of n, then {L∗
n fn}n does not concentrate

at infinity and then its precompactnessmodulomultiplication by characters ξ �→ eiξn ·ξ
would easily follow (this is the content of Proposition 5.2 below). For this reason, it
is useful to study when such Lorentz transformations can be found. As noted in [9,
Lemma 4] for the two-sheeted hyperboloid, there are Lorentz transformations that
can map certain caps of bounded measure into a ball whose radius depends only
on the value of the measure of the cap. We record this property for the one-sheeted
hyperboloid in the next lemma.

Lemma 2.3 Let s > 0, k ∈ N and Ck ⊂ H3
s be a dyadic cap of the form Ck =

[s2k, s2k+1] × Ck , for some spherical cap Ck ⊆ S

2. Let R and ε be associated to Ck
as in (2.8), then:

(i) The μ̄s -measure of Ck satisfies

μ̄s(Ck) = 3πs2(1 + ok(1))2
2k(1 − cos ε)

= 3πs2

1 + cos ε
(1 + ok(1))2

2k sin2 ε.
(2.9)

(ii) Suppose ε ∈ [0, π
2 ]. Then, there exists t ∈ [0, 1) such that the orthogonal projec-

tion of L−t R−1(Ck) ⊂ H3
s toR

3 is contained in a ball ofR3 of radius comparable
to s + s−1μ̄s(Ck) + μ̄s(Ck)1/2.

Proof Without loss of generality, we may assume that Ck is contained in the upper half
H3

s . For part (i), (2.6) implies that the μ̄s-measure of Ck is given by the expression

μ̄s(Ck) = πs2(1 − cos ε)
(
ln
(2k+1 + √

22(k+1) − 1

2k + √
22k − 1

)
+ 2k+1

√
22(k+1) − 1 − 2k

√
22k − 1

)
.

The expression involving the logarithm converges to ln(2) as k → ∞, while

2k+1
√
22(k+1) − 1 − 2k

√
22k − 1 = 3 · 22k(1 + ok(1)).

For part (ii), let R ∈ SO(3) and ε ∈ [0, π
2 ] be such that (2.8) holds. The image of

R−1(Ck) under the Lorentz boost L−t is

L−t R−1(Ck) =
{(r cosϕ − t

√
r2 − s2√

1 − t2
, r cos θ sin ϕ, r sin θ sin ϕ,

√
r2 − s2 − tr cosϕ√

1 − t2

)
:
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r ∈ [s2k , s2k+1], θ ∈ [0, 2π], ϕ ∈ [0, ε]
}
. (2.10)

Let t = √
1 − 2−2(k+1), so that the first coordinate of a point in the set on the right

hand side of (2.10) is bounded as follows

∣∣∣∣r cosϕ − t
√
r2 − s2√

1 − t2

∣∣∣∣ = 2k+1r | cosϕ −
√
1 − 2−2(k+1)

√
1 − (s/r)2|

� 22(k+1)s(1 − cosϕ) + 22(k+1)s(1 − (1 − 2−2(k+1)))

= 22(k+1)s(1 − cos ε) + s

� μ̄s(Ck)
s

+ s,

where in the last line we used (2.9). The second and third coordinates are bounded as
follows

|r cos θ sin ϕ|, |r sin θ sin ϕ| � 2k+1s sin ε �
√

μ̄(Ck).

Then L−t R−1(Ck) is contained in the set

{
(x, t) ∈ H3

s : |x | � C
(√

μ̄s(Ck) + μ̄s(Ck)
s

+ s
)}

,

for some constant C independent of k and s. ��
Continuing with the comment before Lemma 2.3, suppose now that the mea-

sure of the caps Cn is such that limn→∞ μ̄(Cn) = ∞, and set sn = 2−Nn → 0 as
n → ∞, so that if Rn, εn are related to Cn as in (2.8), then, (2.9) implies μ̄(Cn) �
s−2
n sin2(εn) → ∞ as n → ∞.We rescale and define C̃n := snCn = [1, 2]×Cn ⊂ H3

sn
so that μ̄sn (C̃n) = s2n μ̄(Cn). We may also rescale the sequence { fn}n by setting

gn := s−1
n fn(s−1

n ·) ∈ L2(H3
sn ), which then satisfies

∫

C̃n

|gn| dμ̄sn � μ̄sn (C̃n)1/2. (2.11)

If the sequence {μ̄sn (C̃n)}n (possesses a subsequence that) is bounded below away
from zero, then we will be able to use a comparison argument with the cone, as in

a sense the H3
sn ’s are approaching the cone �

3
, as n → ∞. In this way, it will be

established that this possibility does not arise and here the strict inequality between
the best constants of this two manifolds comes into play. We are then lead to consider
the complementary case, that is, when {μ̄sn (C̃n)}n converges to zero. In this scenariowe
would like to use Lorentz transformations together with dilations in the following way.
We want to find a sequence {Ln}n ⊂ L such that f̃n := L∗

n fn can be appropriately

rescaled so that g̃n := a−1
n f̃n(a−1

n ·) ∈ L2(H3
an ), for some sequence an → 0 as
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n → ∞, satisfies (2.11) with the corresponding sequence {μ̄an (C̃n)}n bounded below
away from zero. In this waywewill also be able to rule out this scenario. The following
lemma will tell us how to find the Ln’s and the an’s.

Lemma 2.4 Let s � 1
2 , C ⊆ S

2 be a spherical cap and C = [1, 2] × C be a cap
in the hyperboloid H3

s . Let R and ε be as in (2.8) and suppose that ε ∈ [0, π
2 ] and

s−2 sin2 ε � 8. Then there exist 0 � t < 1 such that L−1
t R−1(C) ⊂ H3

s√
1−t2

satisfies

μ s√
1−t2

(L−1
t R−1(C)) � π

2 and L−1
t R−1(C) ⊆ [ 7

16 ,
33
16 ] × S

2. (2.12)

Moreover, if ε ∈ [0, π
3 ], we can take t = cos ε, while if ε ∈ (π

3 , π
2 ] we can take

t = 0.

We point out that the value “8” in the inequality s−2 sin2 ε � 8 is meant to mean
“large” and can be change to any other positive constant with the understanding that
the values in (2.12) will change accordingly. Note that in the comment before the
statement of the previous lemma we had s−2

n sin2(εn) → ∞ as n → ∞ so that in the
application that condition will surely be fulfilled. We will then take tn = cos εn and
an = sn/

√
1 − t2n = (s−1

n sin εn)
−1 → 0, as n → ∞.

Proof of Lemma 2.4 With R ∈ SO(3) and ε ∈ [0, π
2 ] satisfying (2.8), note that

L−1
t R−1(C) = (1−t2)−1/2L−t R−1(C) ⊆ H3

s(1−t2)−1/2 , for every t ∈ (−1, 1).Accord-
ing to (2.6), the μs-measure of C satisfies

μs(C) = 2π(1 − cos ε)
( s2
2
ln
(√

r2 − s2 + r
)

+ r

2

√
r2 − s2

)∣∣∣2
1

� π(1 − cos ε)(
√
4 − s2 −

√
1 − s2) � π(1 − cos ε),

so that in what follows we can assume cos ε � 1/2, otherwise we are done by taking
t = 0. From (2.7), for t ∈ (0, 1),

μ s√
1−t2

(L−1
t R−1(C)) = (1 − t2)−1μs(C),

so that choosing t = cos ε gives μs(1−t2)−1/2(L−1
t R−1(C)) � π

1+cos ε
� π

2 . On the
other hand, we have

L−1
t R−1(C) =

{
(1 − t2)−1/2

(r cosϕ − t
√
r2 − s2√

1 − t2
,

r cos θ sin ϕ, r sin θ sin ϕ,

√
r2 − s2 − tr cosϕ√

1 − t2

)
: r ∈ [1, 2],

θ ∈ [0, 2π ], ϕ ∈ [0, ε]
}
,
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and since cosϕ � cos ε and 1 � r � 2 we obtain that the fourth coordinate of any
point in L−1

t R−1(C) is bounded as follows

√
r2 − s2 − tr cosϕ

1 − t2
= r(

√
1 − (s/r)2 − t cosϕ)

1 − t2
� 2

1 − cos2 ε

1 − cos2 ε
= 2,

and

r
(√

1 − (s/r)2 − t cosϕ
)

1 − t2
= r

sin2 ε

(√
1 − (s/r)2 − cos ε cosϕ

)

� r

sin2 ε

(√
1 − (s/r)2 − cos ε

)

= r√
1 − (s/r)2 + cos ε

(
1 − 1

r2s−2 sin2 ε

)

� r

2

(
1 − 1

8r2

)
� 7

16
.

Therefore

L−1
t R−1(C) ⊆ [φ s√

1−t2
( 7
16 ), φ

s√
1−t2

(2)] × S

2.

Now, from the definition of t and the assumption that s−2 sin2 ε � 8 we obtain

s√
1 − t2

= s

sin ε
�

√
2

4
,

so that the following inequalities hold

r � φ s√
1−t2

(r) =
√
r2 + s2(1 − t2)−1 �

√
r2 + 1/8,

from where φ s√
1−t2

( 7
16

)
� 7

16 and φ s√
1−t2

(2) � 33
16 and then we find L−1

t R−1(C) ⊆[ 7
16 ,

33
16

]× S

2. ��

3 Calculation of a Double Convolution

In previous studies of quadric surfaces and curves and their perturbations it has become
clear the importance of the double or triple, and more generally the n-th fold, convolu-
tion of the underlyingmeasure. Its propertiesmay determine existence or nonexistence
of extremizers and in some cases it can be used to find their explicit form and/or the
value of the best constant in the corresponding adjoint Fourier restriction inequality.
In the case of the one-sheeted hyperboloid and its upper half, the double convolution
will be used to prove that extremizing sequences do not concentrate at infinity.
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Let μs ∗ μs denote the double convolution of μs with itself, defined by duality

〈μs ∗ μs, f 〉 =
∫

(R4)2

f (x + x ′, t + t ′) dμs(x, t) dμs(x
′, t ′),

for all f ∈ S(R4). It is not difficult to see that μs ∗ μs is absolutely continuous
with respect to the Lebesgue measure in R4, indeed this follows from (1.4) since
e−τ (μs ∗ μs) ∈ L2(R4), it being the (inverse) Fourier transform of the L2(R4)

function (̂e−τμs)
2 (see also [34, Prop. 2.1]). In what follows we identify μs ∗μs with

its Radon–Nicodym derivative with respect to the Lebesgue measure in R4.

Proposition 3.1 Let μs be the measure on H3
s defined in (1.12). Then

(i) The support of the convolution measure μs ∗ μs is

supp(μs ∗ μs) = {(ξ, τ ) ∈ R4 : τ � 0, |ξ | �
√

τ 2 + s2 + s}.

(ii) For every (ξ, τ ) ∈ R4 with τ � 0 we have the formula

μs ∗ μs(ξ, τ ) = 2π

|ξ |

⎛
⎜⎝|ξ |

(
1 + 4s2

τ 2 − |ξ |2
) 1

2
1{|ξ |<√

τ 2+s2−s} + τ1{√
τ 2 + s2 − s � |ξ | �

√
τ 2 + (2s)2

}

+
(
τ − |ξ |

(
1 + 4s2

τ 2 − |ξ |2
) 1

2
)
1{√

τ 2+(2s)2<|ξ |�√
τ 2+s2+s

}
⎞
⎟⎠ . (3.1)

When ξ = 0 and τ > 0weunderstand that in (3.1)μs∗μs(0, τ )= 2π

(
1+ 4s2

τ 2

)1/2

.

We postpone the proof of Proposition 3.1 and study the behavior of μs ∗ μs(ξ, τ )

for large τ .

Lemma 3.2 For all τ > 0,

2π
(
1 + 4s2

τ 2

)1/2
� sup

ξ∈R3
μs ∗ μs(ξ, τ ) � 2π

(
1 + 2s

τ

)
.

In particular

lim
τ→∞ sup

ξ∈R3
μs ∗ μs(ξ, τ ) = 2π.

Proof We start by noting that

μs ∗ μs(sξ, sτ) = μ ∗ μ(ξ, τ ),

hence it is enough to consider the case s = 1.We analyze the different cases in formula
(3.1).
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Case 1: |ξ | <
√

τ 2 + 1 − 1. Then

(
1 + 4

τ 2

)1/2
�
(
1 + 4

τ 2 − |ξ |2
)1/2

�
(√

τ 2 + 1 + 1√
τ 2 + 1 − 1

)1/2 = τ√
τ 2 + 1 − 1

.

Case 2:
√

τ 2 + 1 − 1 � |ξ | �
√

τ 2 + 4. Then

τ√
τ 2 + 4

� τ

|ξ | � τ√
τ 2 + 1 − 1

.

Case 3:
√

τ 2 + 4 < |ξ | �
√

τ 2 + 1 + 1. Then |ξ |2 − τ 2 > 4 and

|ξ | �→ τ

|ξ | −
(
1 + 4

τ 2 − |ξ |2
)1/2

,

is a decreasing function of |ξ |. Then
τ

|ξ | −
(
1 + 4

τ 2 − |ξ |2
)1/2

� τ√
τ 2 + 4

,

and

τ

|ξ | −
(
1 + 4

τ 2 − |ξ |2
)1/2

� τ√
τ 2 + 1 + 1

−
(
1 − 2√

τ 2 + 1 + 1

)1/2 = 0.

As a conclusion, for all τ > 0 and ξ∈R3

μ ∗ μ(ξ, τ ) � 2πτ√
τ 2 + 1 − 1

= 2π
((

1 + 1

τ 2

)1/2 + 1

τ

)
� 2π

(
1 + 2

τ

)
,

and for τ > 0

sup
ξ∈R3

μ ∗ μ(ξ, τ ) � 2π
(
1 + 4

τ 2

)1/2
.

��
We now turn to the proof of Proposition 3.1.

Proof of Proposition 3.1 Part (i) is a simple calculation and is left to the reader. For part
(ii) we start by discussing a change of coordinates that was used in the proof of [22,
Lemma 5.1] in the arxiv’s second version of [22]; see also Appendix 3 on the arxiv’s
version of [39] where an outline of the computation of the double convolution of the
Lorentz invariant measure on the two-sheeted hyperboloid was given using the same
technique.

For each fixed ξ �= 0 we consider a spherical coordinate system with axis ξ ,
that is, each η ∈ R3 is described as η = (ρ cos θ sin ϕ, ρ sin θ sin ϕ, ρ cosϕ), where
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ρ = |η| � 0, ϕ ∈ [0, π ] is the angle between ξ and η and θ ∈ [0, 2π ] is a polar
coordinate angle on the plane orthogonal to ξ . Then dη = ρ2 sin ϕ dρ dθ dϕ.

Define the new variable ς = |ξ − η|, which corresponds to the size of the side
opposite to the origin, 0, in the triangle whose vertices are located at 0, ξ and η. Then

ς2 = |ξ |2 + ρ2 − 2|ξ |ρ cosϕ.

Changing variables from ϕ to ς , gives ς dς = |ξ |ρ sin ϕ dϕ, so that in the variables
(ρ, ς, θ) we have dη = ρς

|ξ | dρ dς dθ . The range of ς can be seen by using that ς ,
|ξ | and ρ are the sizes of the sides of a triangle, so |ρ − ς | � |ξ | � ρ + ς , which
translates into ||ξ | − ρ| � ς � |ξ | + ρ.

Using delta calculus (see for instance the survey article [24]) and the previous
change of variables we have

μs ∗ μs(ξ, τ ) =
∫

η∈R3

|η|�s
|ξ−η|�s

δ
(
τ −√|ξ − η|2 − s2 −√|η|2 − s2

)
√|ξ − η|2 − s2

√|η|2 − s2
dη

= 2π

|ξ |
∫

|ρ−ς |�|ξ |
ρ+ς�|ξ |
ρ�s, ς�s

δ
(
τ −√ς2 − s2 −√ρ2 − s2

)
√

ς2 − s2
√

ρ2 − s2
ρς dρ dς

= 2π

|ξ |
∫
Rs

δ
(
τ − u − v

)
du dv,

where we changed variables u = √
ρ2 − s2, v = √

ς2 − s2 and Rs = Rs(ξ) is the
image of the region {(ρ, ς) : |ρ − ς | � |ξ |, ρ + ς � |ξ |, ρ � s, ς � s} under the
transformation (ρ, ς) �→ (u, v). Using the change of variables a = u−v, b = u+v,
so that 2 du dv = da db, we obtain

μs ∗ μs(ξ, τ ) = π

|ξ |
∫

R̃s

δ
(
τ − b

)
da db = π

|ξ | |R̃s ∩ �̃τ | = π

|ξ |
√
2|Rs ∩ �τ |,

(3.2)

where R̃s = R̃s(ξ) is the image of Rs(ξ) under the map (u, v) �→ (a, b), �̃τ is the
horizontal line {(a, b) ∈ R2 : b = τ }, �τ is the line {(u, v) ∈ R2 : u + v = τ } and
|Rs ∩ �τ | denotes the measure of Rs ∩ �τ as a subset of �τ with the induced Lebesgue
measure. In order to calculate |Rs ∩ �τ | we divide the analysis into two cases.

Case 1: |ξ | � 2s. The boundary of the region

{
(ρ, ς) : |ρ − ς | � |ξ |, ρ + ς � |ξ |, ρ � s, ς � s

}
,
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consists of two (bounded) line segments and two half lines. Its image in the (u, v)-
plane, Rs , is bounded by two line segments and two curves and is symmetric with
respect to the diagonal u = v. The line segments have equations

{
(u, v) : u = 0, 0 � v �

√
(|ξ | + s)2 − s2

}
,

{
(u, v) : 0 � u �

√
(|ξ | + s)2 − s2, v = 0

}
,

and the curves have equations

{
(u, v) : u � 0, v =

(
(
√
u2 + s2 + |ξ |)2 − s2

)1/2}
,

{
(u, v) : u �

(
(|ξ | + s)2 − s2

)1/2

, v =
(

(
√
u2 + s2 − |ξ |)2 − s2

)1/2}
.

(3.3)

Then |Rs ∩ �τ | is given by

|Rs ∩ �τ | =
{√

2τ , if 0 � τ �
√

(|ξ | + s)2 − s2√
2|u − v| , if τ >

√
(|ξ | + s)2 − s2,

where in the last expression u and v are related to (ξ, τ ) by the equations u + v = τ

and v = ((√u2 + s2 + |ξ |)2 − s2
)1/2. Therefore

√
2|Rs ∩ �τ | = 2τ1{τ�

√
(|ξ |+s)2−s2}

+ 2((
√
u1(ξ, τ )2 + s2 + |ξ |)2 − s2)1/2 − u1(ξ, τ ))1{

τ >
√

(|ξ | + s)2 − s2
},

where u1(ξ, τ ) and (ξ, τ ) are related by the expression

τ = u1(ξ, τ ) + ((√u1(ξ, τ )2 + s2 + |ξ |)2 − s2
)1/2

, (3.4)

and 0 � u1(ξ, τ ) � τ
2 .

Case 2: |ξ | > 2s. Now the boundary of the region {(ρ, ς) : |ρ − ς | � |ξ |, ρ + ς �
|ξ |, ρ � s, ς � s} consists of three (bounded) line segments and two half lines and the
region Rs is now bounded by two line segments and three curves. The line segments
have equations

{(u, v) : u = 0,
√

(|ξ | − s)2 − s2 � v �
√

(|ξ | + s)2 − s2},
{(u, v) :

√
(|ξ | − s)2 − s2 � u �

√
(|ξ | + s)2 − s2, v = 0}.
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The next two curves have equations as in (3.3). The last boundary curve is the image
of the segment {(ρ, ς) : ρ + ς = |ξ |, s � ρ � |ξ | − s}. Its equation is

{
(u, v) : 0 � u �

(
(|ξ | − s)2 − s2

)1/2
, v = ((|ξ | −

√
u2 + s2)2 − s2

)1/2}
,

and note that it is the graph of a strictly decreasing and concave function of u. It follows
that

|Rs ∩ �τ | =

⎧⎪⎨
⎪⎩

√
2(τ − |u2 − v2|) , if

√
(|ξ | − s)2 − s2 � τ �

√|ξ |2 − (2s)2,√
2τ , if

√|ξ |2 − (2s)2 � τ �
√

(|ξ | + s)2 − s2,√
2|u1 − v1| , if τ �

√
(|ξ | + s)2 − s2,

where (u1, v1), (u2, v2) are the solutions to the equations u1 + v1 = τ, u2 + v2 = τ ,

v1 =
((√

u21 + s2 + |ξ |
)2

− s2
)1/2

and v2 =
((

|ξ | −
√
u22 + s2

)2

− s2
)1/2

.

Then

√
2|Rs ∩ �τ | = 2

(
τ −

(((
|ξ | −

√
u2(ξ, τ )2 + s2

)2

− s2
)1/2

− u2(ξ, τ )

))
1{

√
(|ξ |−s)2−s2�τ<

√
|ξ |2−(2s)2}

+ 2τ1{
√

|ξ |2−(2s)2�τ�
√

(|ξ |+s)2−s2}

+ 2

(((√
u1(ξ, τ )2+s2 + |ξ |

)2

−s2
)1/2

−u1(ξ, τ )

)
1{τ>

√
(|ξ |+s)2−s2},

where u1(ξ, τ ) is as in (3.4) and u2(ξ, τ ) and (ξ, τ ) are related by the expression

τ = u2(ξ, τ ) +
((√

u2(ξ, τ )2 + s2 − |ξ |
)2

− s2
)1/2

,

and 0 � u2(ξ, τ ) � τ
2 . Algebraicmanipulation shows that for (ξ, τ ) in their respective

domains of definition

τ − 2ui (ξ, τ ) = |ξ |
(
1 + 4s2

τ 2 − |ξ |2
)1/2

, i = 1, 2. (3.5)

Collecting all in one expression we have

√
2|Rs ∩ �τ | = 2τ1{τ�

√
(|ξ |+s)2−s2}1{|ξ |�2s}

+ 4u2(ξ, τ )1{
√

(|ξ |−s)2−s2�τ<
√

|ξ |2−(2s)2}1{|ξ |>2s}

+ 2τ1{
√

|ξ |2−(2s)2�τ�
√

(|ξ |+s)2−s2}1{|ξ |>2s}
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+ 2(τ − 2u1(ξ, τ ))1{τ>
√

(|ξ |+s)2−s2}.

Replacing u1(ξ, τ ) and u2(ξ, τ ) using (3.5) we obtain using (3.2)

μs ∗ μs(τ, ξ) = 2π

|ξ |
(

τ1{τ�
√

(|ξ |+s)2−s2}1{|ξ |�2s}

+
(
τ − |ξ |

(
1 + 4s2

τ 2 − |ξ |2
)1/2)

1{
√

(|ξ |−s)2−s2�τ<
√

|ξ |2−(2s)2}1{|ξ |>2s}

+ τ1√
|ξ |2−(2s)2�τ�

√
(|ξ |+s)2−s2

1{|ξ |>2s}

+ |ξ |
(
1 + 4s2

τ 2 − |ξ |2
)1/2

1{τ>
√

(|ξ |+s)2−s2}

)
.

(3.6)

Rearranging (3.6) we find that μs ∗ μs can be written in the equivalent form (3.1).
��

More generally, the same method used in the proof of Proposition 3.1 allows us to
write an explicit formula forμs ∗μt , for any s, t � 0. For instance, as it will be useful
in Sect. 12, we have

μs ∗ μ0(ξ, τ ) = π

|ξ |
∫

Q̃s (ξ)

δ
(
τ − b

)
da db, (3.7)

where Q̃s(ξ) is the imageof the set {(ρ, ς) : |ρ−ς | � |ξ |, ρ+ς � |ξ |, ρ � 0, ς � s}
under the transformations (ρ, ς) �→ (u, v) = (ρ,

√
ς2 − s2) �→ (a, b) = (u−v, u+

v). Hereμ0 equals σc, the Lorentz invariant measure on the cone. A calculation similar
to the one for μs ∗ μs gives the following explicit formula

μs ∗ σc(ξ, τ ) = 2π

|ξ |
( |ξ |(τ 2 − |ξ |2 + s2)

τ 2 − |ξ |2 1{τ�s}1{|ξ |<τ−s}

+ (τ + |ξ |)2 − s2

2(τ + |ξ |) 1{τ�0}1{|τ−s|�|ξ |<√
τ 2+s2}

+ s2 − (|ξ | − τ)2

2(|ξ | − τ)
1{τ�0}1{√τ 2+s2�|ξ |�τ+s}

)
.

(3.8)

Using (3.8) we see that for each τ � 0

sup
ξ∈R3

μs ∗ σc(ξ, τ ) = 2π ·

⎧⎪⎨
⎪⎩

τ√
τ 2+s2

, 0 � τ � s
2 (2(

√
5 − 1))1/2,

1 + (s−√
s2−τ 2)2

τ 2
, s
2 (2(

√
5 − 1))1/2 � τ � s,

1 + s
2τ−s , τ � s,

(3.9)

and ‖μs ∗ σc‖L∞(R4) = 4π .
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Themethods introduced in this section allow us towrite explicit formulas for double
convolutions of the form f μs ∗ f μs , for f regular enough (continuous, for instance)
similar to those for the sphere [13, pp. 282]. Indeed, unwinding the changes of variables
leading to (3.2) in the proof of Proposition 3.1 (as well as the ones leading to (3.7)),
for ξ ∈ R3 \ {0} we let

αs(a, b, θ) = |ξ |2 + ab

|ξ |√(a + b)2 + 4s2
, βs(a, b, θ) = |ξ |2 + ab − s2

|ξ |(a + b)
,

ωs(a, b, θ) = (√1 − αs(a, b, θ)2 cos θ,
√
1 − αs(a, b, θ)2 sin θ, αs(a, b, θ)

)
,

ϑs(a, b, θ) = (
√
1 − βs(a, b, θ)2 cos θ,

√
1 − βs(a, b, θ)2 sin θ, βs(a, b, θ)

)
,

and

Fs(a, b) =
2π∫
0

f
(
ξ −

√
( a+b

2 )2 + s2 ωs(a, b, θ)
)
f
(√

( a+b
2 )2 + s2 ωs(a, b, θ)

)
dθ,

Gs(a, b) =
2π∫
0

f
(
ξ − a+b

2 ϑs(a, b, θ)
)
f
( a+b

2 ϑs(a, b, θ)
)
dθ,

H0(a, b) =
2π∫
0

f
(
ξ − a+b

2 ω0(a, b, θ)
)
f
( a+b

2 ω0(a, b, θ)
)
dθ.

Recalling the sets R̃s(ξ) and Q̃s(ξ) from (3.2) and (3.7) we have

f μs ∗ f μs(ξ, τ ) = 1

2|ξ |
∫

R̃s (ξ)

Fs(a, b) δ
(
τ − b

)
da db = 1

2|ξ |
∫
R

Fs(a, τ )1R̃s (ξ)(a, τ ) da,

(3.10)

f μs ∗ f σc(ξ, τ ) = 1

2|ξ |
∫

Q̃s (ξ)

Gs(a, b) δ
(
τ − b

)
da db = 1

2|ξ |
∫
R

Gs(a, τ )1Q̃s (ξ)(a, τ ) da,

(3.11)

and

f σc ∗ f σc(ξ, τ ) = 1
2|ξ |

∫
{(a,b):|a|�|ξ |�b}

H0(a, b) δ
(
τ − b

)
da db

= 1
2|ξ |
∫
R

H0(a, τ )1{(a,b):|a|�|ξ |�b}(a, τ ) da. (3.12)

It is worth noting that 1Q̃s (ξ) → 1{(a,b):|a|�|ξ |�b} and 1R̃s (ξ) → 1{(a,b):|a|�|ξ |�b}
pointwise inR2 as s → 0+.Moreover, when f is continuous, Fs → H0 andGs → H0
pointwise in the region {(a, b) : a + b � 0} ⊂ R2, as s → 0+.
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4 Comparison with the Cone

Recall that σc denotes the scale and Lorentz invariant measure on the cone �3 and Tc
denotes its associated adjoint Fourier restriction operator. From [5] we know the value
of the sharp constant

sup
0 �= f ∈L2(σc)

‖ f σc ∗ f σc‖2L4(R4)

‖ f ‖4
L2(σc)

= 2π. (4.1)

We had defined the numerical constants

C4 = sup
0 �= f ∈L2(σc)

‖Tc f ‖L4(R4)

‖ f ‖L2(σc)

= 2π sup
0 �= f ∈L2(σ )

‖ f σc ∗ f σc‖1/2L4(R4)

‖ f ‖L2(σc)

,

H4 = sup
0 �= f ∈L2(μ)

‖T f ‖L4(R4)

‖ f ‖L2(μ)

= 2π sup
0 �= f ∈L2(μ)

‖ f μ ∗ f μ‖1/2
L4(R4)

‖ f ‖L2(μ)

.

The next proposition gives a comparison between C4 and H4 and its role is the
analog of the comparison of the best constant for the sphere and the paraboloid inR3

as used in [13] where a strict inequality was needed to rule out concentration at a pair
of antipodal points. In our present case, a strict inequality will rule out concentration
at infinity.

Proposition 4.1 H4 > C4.

Proof For s > 0 we consider the family of trial functions fa(y) = e− a
2

√
|y|2−s2 ,

a > 0, and claim that

sup
a>0

‖Ts fa‖L4(R4)

‖ fa‖L2(H3
s )

> sup
0 �= f ∈L2(σc)

‖Tc f ‖L4(R4)

‖ f ‖L2(σc)

.

Using spherical coordinates, the L2(H3
s )-norm of fa is given by the expression

‖ fa‖2L2(H3
s )

=
∫

R3

e−a
√

|x |2−s2 dx√|x |2 − s2
= 4π

∞∫
s

e−a
√
r2−s2 r2√

r2 − s2
dr

= 4π

∞∫
0

e−aτ
√

τ 2 + s2 dτ.

It is easier to estimate ‖Ts fa‖L4(R4) if we use the convolution form (2.3),

‖Ts fa‖L4(R4) = 2π‖ faμs ∗ faμs‖1/2L2(R4)
.
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As in [39, Appendix 2], using that fa is the restriction to H3
s of the exponential of

the linear function in R4, (ξ, τ ) �→ e− a
2 τ , we obtain

faμs ∗ faμs(ξ, τ ) = e− a
2 τ
(
μs ∗ μs(ξ, τ )

)
.

It will be enough for our purpose to use

μs ∗ μs(ξ, τ ) �2π

|ξ |
(

|ξ |
(
1 + 4s2

τ 2 − |ξ |2
) 1

2
1{|ξ |<√

τ 2+s2−s} + τ1{√τ 2+s2−s�|ξ |�
√

τ 2+(2s)2}

)
,

as obtained from (3.1). In this way

faμs ∗ faμs(ξ, τ )

� 2π

|ξ | e
− a

2 τ

(
|ξ |
(
1 + 4s2

τ 2 − |ξ |2
) 1

2
1{|ξ |<√

τ 2+s2−s} + τ1{√τ 2+s2−s�|ξ |�
√

τ 2+(2s)2}

)
,

so that using spherical coordinates we obtain

‖ faμs ∗ faμs‖2L2(R4)
� (2π)2

∫

R3×R

e−aτ

(
|ξ |2
(
1 + 4s2

τ 2 − |ξ |2
)
1{|ξ |<√

τ 2+s2−s}

+ τ 21{√τ 2+s2−s�|ξ |�
√

τ 2+(2s)2}

)
dτ

dξ

|ξ |2

= 16π3

∞∫
0

e−aτ

(
τ 2
√

τ 2 + 4s2 − 2

3
(τ 2 + 4s2)

√
τ 2 + s2 + 8s3

3

+ 2s2τ log
(τ + √

τ 2 + s2

s

))
dτ.

Since by scaling it is enough to consider s = 1 (see Sect. 14) we let

I (a) = 16π3

∞∫
0

e−aτ
(
τ 2
√

τ 2 + 4 − 2
3 (τ

2 + 4)
√

τ 2 + 1 + 8
3

+ 2τ log
(
τ +

√
τ 2 + 1

))
dτ,

I I (a) = 16π2
( ∞∫
0

e−aτ
√

τ 2 + s2 dτ

)2

,

then

‖ faμ ∗ faμ‖2
L2(R4)

‖ fa‖4L2(μ)

� I (a)

I I (a)
.
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From Lemma A.1 in the Appendix, we conclude that for all a > 0 small enough

‖ faμ ∗ faμ‖2
L2(R4)

‖ fa‖4L2(μ)

> 2π. (4.2)

This finishes the proof in view of (4.1). ��
Remark 4.2 The easy lower bound we can obtain for ‖ faμ ∗ faμ‖2

L2(R4)
‖ fa‖−4

L2(μ)

using the analog of [34, Lemma 6.1] is not good enough in this case to obtain (4.2).

Let us now move to the full one-sheeted hyperboloid H3
. Recall that T c denotes

the adjoint Fourier restriction operator on the double cone �
3
. An argument in [22]

can be used to show that

C4 =
(3
2

) 1
4
C4, (4.3)

see for instance [39, Prop. 7.3]. We now compare the best constants for T and T c.

Proposition 4.3 H4 > C4.

Proof Let fa(y) = e− a
2

√
|y|2−1 be as in the proof of Proposition 4.1 and set ga =

fa,+ + fa,−, where fa,+ = c fa and fa,− = c fa (here there are domain identifications
through projections to R3), in other words, ga(ξ, τ ) = ce− a

2 |τ |1H3(ξ, τ ), where c is

such that ga is L2 normalized. Expanding and using the positivity of fa,+ and fa,−
(which for brevity we simply call f+ and f−, respectively) we see that

‖T ga‖4L4 = ‖T f+‖4L4(R3)
+ ‖T f−‖4L4(R3)

+ 4‖(T f+)(T f−(·,−·))‖2L2

+ 4(2π)4〈 f+μ ∗ f+μ, f+μ ∗ f−μ−〉
+ 4(2π)4〈 f+μ ∗ f−μ−, f−μ− ∗ f−μ−〉

� ‖T f+‖4L4(R3)
+ ‖T− f−‖4L4(R3)

+ 4‖(T f+)(T f−(·,−·))‖2L2 .

On the other hand T f−(·,−·) = T f+, the complex conjugate, since f−(y) =
f+(−y). Then ‖(T f+)(T f−(·,−·))‖2

L2 = ‖T f+‖4
L4(R3)

= ‖T f−‖4
L4(R3)

and we
obtain

‖T ga‖4L4 � 6‖T fa,+‖4L4(R3)
.

If a > 0 is small enough, then from (4.2) in the proof of Proposition 4.1 and using
‖ fa,+‖L2(μ) = √

2/2, we obtain

H
4
4 � ‖T ga‖4L4 � 6‖T fa,+‖4L4(R3)

> 6C4
4‖ fa,+‖4L2(μ)

= 3

2
C4
4.

The conclusion follows using (4.3). ��
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5 The Upper Half of the One-Sheeted Hyperboloid

In this section we present the proof of Theorem 1.2. The proof of precompactness
of extremizing sequences, modulo multiplication by characters, is much simpler for

the upper half of the one-sheeted hyperboloid as the full Lorentz invariance of H3
is

absent forH3.
In what follows we collect the necessary results to invoke Proposition 1.5 and the

first such step is to show that, with enumeration as in Proposition 1.5, (i) and (iii)
imply (iv), possibly after passing to a subsequence.

Proposition 5.1 Let { fn}n be a sequence in L2(H3) satisfying supn ‖ fn‖L2(H3) < ∞.
Suppose that there exists f ∈ L2(H3) such that fn⇀ f as n → ∞. Then, there exists
a subsequence { fnk }k such that T f nk → T f a.e. inR4.

The previous result implies an analogous one for the full two-sheeted hyperboloid

H3
. Recall the Fourier multiplier notation

eit
√−�−s2u(x) = 1

(2π)3

∫

{y∈R3 : |y|�s}
eix ·yeit

√
|y|2−s2 û(y) dy, (5.1)

and the homogeneous Ḣ1/2(R3) Sobolev norm and inner product

‖u‖2
Ḣ1/2(R3)

:=
∫

R3

|û(y)|2|y| dy, 〈u, v〉Ḣ1/2(R3) :=
∫

R3

û(y)v̂(y)|y| dy. (5.2)

Proof of Proposition 5.1 The proof follows similar lines to the proofs of [21, Thm. 1.1]
and [38, Prop. 8.3]. We start by splitting fn = fn1B(0,2) + fn1B(0,2)� =: fn,1 + fn,2,
respectively, and f = f 1B(0,2) + f 1B(0,2)� =: f1 + f2. The conclusion of the
proposition will follow if we show that there exists a subsequence { fnk }k such that
T fnk ,1 → T f1 and T fnk ,2 → T f2 a.e. inR4.

Since fn,1⇀ f1 in L2(H3) and the support of fn,1 is contained on the compact set
B(0, 2), it follows that T fn,1(x, t) → T f1(x, t) for all (x, t) ∈ R4 provided that the
function (y, s) �→ eix ·yeits1B(0,2)(y) belongs to L2(H3), which is the case.

To study the pointwise convergence of T fn,2 define gn and g by their Fourier
transforms as follows

ĝn(y) = fn,2(y)√|y|2 − 1
, ĝ(y) = f2(y)√|y|2 − 1

.

Because

‖ fn,2‖2L2(H3)
=

∫

{y∈R3:|y|�2}
| fn(y)|2 dy√|y|2 − 1

� sup
k

‖ fk‖2L2(H3)
� 1,
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we see that the norms of the gn’s in the homogeneous Sobolev space Ḣ1/2(R3) are
uniformly bounded

‖gn‖2Ḣ1/2(R3)
=
∫

R3

|ĝn(y)|2|y| dy � 2√
3

∫

{y∈R3:|y|�2}
| fn(y)|2 dy√|y|2 − 1

� 1.

The weak convergence of { fn,2}n to f2 in L2(H3) easily implies gn⇀g as n → ∞
in Ḣ1/2(R3). On the other hand

(2π)3‖gn‖2L2(R3)
= ‖ĝn‖2L2(R3)

� 1√
3

∫

{y∈R3:|y|�2}
| fn,2(y)|2 dy√|y|2 − 1

� 1,

so {gn}n is uniformly bounded in L2(R3).
The operator T applied to fn,2 equals (2π)3eit

√−�−1gn , where the operator

eit
√−�−1 is understood in the Fourier multiplier sense as in (5.1). Let t ∈ R be

fixed. By the continuity of eit
√−�−1 in Ḣ1/2(R3) we obtain

eit
√−�−1gn⇀eit

√−�−1g,

weakly in Ḣ1/2(R3), as n → ∞. Then, by the Rellich–Kondrashov Theorem ([17,
Thm. 7.1]), for any R > 0

eit
√−�−1gn → eit

√−�−1g,

strongly in L2(B(0, R)), as n → ∞. Denote by

Fn(t) :=
∫

|x |<R

∣∣∣∣eit
√−�−1(gn − g)

∣∣∣∣
2

dx = ‖eit
√−�−1(gn − g)‖2L2(B(0,R))

.

By Hölder’s inequality and Sobolev embedding, [17, Thm. 6.5], we obtain

Fn(t) = ‖eit
√−�−1(gn − g)‖2L2(B(0,R))

� CR‖eit
√−�−1(gn − g)‖2L3(B(0,R))

� CR‖eit
√−�−1(gn − g)‖2

Ḣ1/2(R3)
� R,

then, by the Fubini and Dominated Convergence Theorems we have that

R∫
−R

Fn(t)dt =
R∫

−R

∫
|x |<R

∣∣∣∣eit
√−�−1(gn − g)

∣∣∣∣
2

dx dt → 0,
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as n → ∞. This implies that, up to a subsequence,

eit
√−�−1gn(x) − eit

√−�−1g(x) → 0 a.e. (x, t) ∈ B(0, R) × (−R, R).

Repeating the argument on a discrete sequence of radii Rn such that Rn → ∞, as
n → ∞ we conclude, by a diagonal argument, that there exists a subsequence {gnk }k
of {gn}n such that

eit
√−�−1gnk (x) − eit

√−�−1g(x) → 0 a.e. for (x, t) ∈ R4,

or equivalently, in terms of the sequence { fn,2}n and the operator T ,

T fnk ,2(x, t) → T f2(x, t) a.e. (x, t) ∈ R4.

��
Wenow show that the only obstruction to precompactness of extremizing sequences

is the possibility of concentration at infinity, as in Definition 1.6.

Proposition 5.2 Let { fn}n ⊂ L2(H3) be an L2 normalized extremizing sequence for
T . Suppose that { fn}n does not concentrate at infinity. Then there exist a subsequence
{ fnk }k anda sequence {(xk , tk)}k ⊂ R4 such that

{
eixk ·yeitk

√
|y|2−1 fnk

}
k is convergent

in L2(H3).

Proof If { fn}n does not concentrate at infinity, then there exist ε, R > 0 with the
property that for all N ∈ N there exists n � N such that

‖ fn1B(0,R)‖L2(H3) � ε.

We can generate a subsequence, { fnk }k , such that ‖ fnk1B(0,R)‖L2(H3) � ε for all
k ∈ N. Rename the subsequence as { fn}n , if necessary. Writing fn = fn1B(0,R) +
fn1B(0,R)� =: fn,1 + fn,2, respectively, we have

‖T fn,1‖L4(R4) = ‖T ( fn − fn,2)‖L4(R4) � ‖T fn‖L4(R4) − ‖T fn,2‖L4(R4)

� ‖T fn‖L4(R3) − H4‖ fn,2‖L2(H3)

= ‖T fn‖L4(R3) − H4

(
1 − ‖ fn,1‖2L2(H3)

)1/2

� ‖T fn‖L4(R3) − H4

√
1 − ε2. (5.3)

As the right hand side in (5.3) converges to c := H4 −H4
√
1 − ε2 > 0 as n → ∞

we see that

‖T fn,1‖L4(R4) � c

2
> 0, (5.4)

for all large n.
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We may use the argument in the proof of [20, Thm. 1.1] to construct the sequence
{(xn, tn)}n . In brief, the argument goes as follows. Taking any p̄ ∈ [ 10

3 , 4
)
, inter-

polating the L4 norm of T fn,1 between L p̄ and L∞ and using (5.4) together
with the boundedness of T in L p̄ imply that ‖T fn,1‖L∞(R4) � 1, so that there
exists a sequence {(xn, tn)}n ⊂ R4 such that |T fn,1(xn, tn)| � C > 0, that

is, |(T (eixn ·yeitn
√

|y|2−1 fn,1))(0, 0)| � C > 0. The compact support of fn,1
implies that T fn,1 belongs to C∞(R4) and ‖T fn,1‖L∞(R4) � ‖ fn,1‖L1 � 1,
‖∇x,t T fn,1‖L∞(R4) � ‖ fn,1‖L1 � 1. By the Arzelá–Ascoli Theorem, it follows

that {T (eixn ·yeitn
√

|y|2−1 fn,1)}n is precompact in the space of continuous functions
on the unit ball of R4. On the other hand, passing to a subsequence, we may assume

Fn := eixn ·yeitn
√

|y|2−1 fn,1⇀ f1 weakly in L2(H3), for some f1 ∈ L2(H3), and then
T (Fn)(x, t) → T f1(x, t) for all (x, t) ∈ R4. Moreover, T (Fn) → T f1 uniformly in
the unit ball, so that |T f1(0, 0)| � C > 0, which implies that f1 �= 0.

Compactness of the unit ball in L2(H3) in the weak topology implies that, after

passing to a further subsequence, eixn ·yeitn
√

|y|2−1 fn⇀ f , for some f ∈ L2(H3).
Since f1 = f 1B(0,R) a.e. in R3 we conclude that f �= 0. Therefore condition (iii) of
Proposition 1.5 is satisfied. Proposition 5.1 implies that condition (iv) is also satisfied.

As (i) and (ii) are immediate, we conclude that eixn ·yeitn
√

|y|2−1 fn → f in L2(H3),
and we are done. ��

To conclude the precompactness of extremizing sequences we need to discard the
possibility of concentration at infinity. For this we use a comparison argument with
the cone where the upper bound for μs ∗ μs as found in Lemma 3.2 will be useful.

Lemma 5.3 Let a > 1 and f ∈ L2(H3) be supported in the region where |y| � a.
Then

‖ f μ ∗ f μ‖2L2(R4)
� 2π

(
1 + 1√

a2 − 1

)
‖ f ‖4L2(μ)

.

Proof If f is supported where |y| � a, then the support of f μ ∗ f μ is contained in
the region {(ξ, τ ) ∈ R4 : τ � 2

√
a2 − 1}. The Cauchy–Schwarz inequality provides

the a.e. pointwise bound

| f μ ∗ f μ|2(ξ, τ ) �
(| f |2μ ∗ | f |2μ)(ξ, τ )

(
μ ∗ μ

)
(ξ, τ ),

which together with the upper bound in Lemma 3.2 imply

| f μ ∗ f μ|2(ξ, τ ) � 2π
(
1 + 1√

a2 − 1

)(| f |2μ ∗ | f |2μ)(ξ, τ ),

for a.e. (ξ, τ ) ∈ R4. Integrating over (ξ, τ ) ∈ R4 yields the result. ��
It is now direct to prove our first main theorem.
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Proof of Theorem 1.2 We start by noting that if an L2-normalized sequence { fn}n con-
centrates at infinity, then for any a > 1, ‖ fn1B(0,a)‖L2(μ) → 0 as n → ∞, therefore,
for such a sequence we obtain, using Lemma 5.3, that

lim sup
n→∞

‖ fnμ ∗ fnμ‖2
L2(R4)

‖ fn‖4L2(μ)

� 2π.

Using Proposition 4.1 we conclude that an extremizing sequence for T does not
concentrate at infinity. We apply Proposition 5.2 to conclude. ��

6 The Full One-Sheeted Hyperboloid

Our task in the sections to come is to prove Theorem 1.3, the existence of extremals

for the adjoint Fourier restriction inequality on the one-sheeted hyperboloid H3
. In

the L4 case, there is an argument available for the cone �3 that allows to relate the

best constant and extremizers for �3 with that for the double cone �
3
. It relies on the

observation that the algebraic sums �3 +�3 and �3 + (−�3) intersect on a null set of
R3, namely, (�3 + �3) ∩ (�3 + (−�3)) = �3, so that for any f+, g+, h+ ∈ L2(�3)

and f− ∈ L2(−�3) one has

〈
f+σc ∗ g+σc, h+σc ∗ f−σ̃c

〉
L2(R4)

= 0,

where σ̃c denotes the reflection of σc, supported on −�3. An analogous property in
the L4 case applies to the two-sheeted hyperboloid inR4 and allows one to obtain its
best constant from that of the upper sheet only (see [39, Prop. 7.3, Cor. 7.4]). This

approach is not applicable to H3
because here H3 + H3 and H3 + (−H3) intersect

on a set of infinite Lebesgue measure.
The argument we use to prove precompactness of extremizing sequences (modulo

multiplication by characters and Lorentz transformations) is close to that of Brocchi,
Oliveira e Silva and the author [1] and of [38] by the author using a concentration-
compactness argument, a refined cap estimate, comparison to the cone and the use of
Lorentz invariance. It borrows from the Christ–Shao argument [13] the cap refinement
of the Tomas–Stein inequality for S

2 to obtain a similar refinement for the hyperboloid,
as well as the understanding that it will be necessary to compare to a “limiting”
manifold, in our case, the cone.

In the next section we review the aforementioned cap refinement for the Tomas–
Stein inequality for S

2 that will be used in the subsequent section to obtain a
corresponding cap refinement for the adjoint Fourier restriction inequality on the
hyperboloid via a lifting method. In later sections we consider the concentration-
compactness argument.
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7 The Tomas–Stein Inequality for S

2 and Refinements

The sharp convolution form of the Tomas–Stein inequality for S

2 states that for all
f ∈ L2(S2) we have

‖ f σ ∗ f σ‖L2(R3) � S2‖ f ‖2L2(S2)
, (7.1)

where S = (2π)1/4 is the sharp constant, as obtained in [22].
In this section we review some refinements of (7.1) that will be useful in the next

section. The exposition here follows that of [13, Sect. 6]. We start by setting things
up to define the X p spaces, p ∈ [1,∞), and the first step is to generate increasingly
finer “grids” for the sphere S

2. With this in mind, for each integer k � 0 choose a
maximal subset {y j

k } j ⊂ S

2 satisfying |y j
k − ylk | � 2−k , for all j �= l. Then, for each

k � 0, the spherical caps C j
k := C(y j

k , 2−k+1) have finite overlap and cover S

2, that

is, ∪ jC
j
k = S

2, and there exists a constant C , independent of k, such that any point in

S

2 belongs to no more than C caps in {C j
k } j , for every k � 0. For p ∈ [1,∞), the X p

norm of f is defined by the expression

‖ f ‖4X p
=
∑
k�0

∑
j

2−4k
(

1

|C j
k |
∫

C
j
k

| f |p dσ
)4/p

. (7.2)

Moyua et al. showed in [31] that there is a continuous inclusion L2(S2) ⊂ X p for
all p ∈ (1, 2) and that for any p � 12

7 there existsC < ∞ such that for all f ∈ L2(S2)

‖ f̂ σ‖L4(R3) � C‖ f ‖X p . (7.3)

Let us define

�k, j ( f ) =
(
|C j

k |−1
∫

C
j
k

| f | dσ
)(

|C j
k |−1

∫

S2

| f |2 dσ
)−1/2

,

which by Hölder’s inequality satisfies �k, j ( f ) � 1. It was shown in [13, Lemma 6.1]
that for any p ∈ [1, 2), there exists C < ∞ and γ > 0 such that for any f ∈ L2(S2),

‖ f ‖X p � C‖ f ‖L2(S2) sup
k, j

(�k, j ( f ))
γ . (7.4)

Combining the two results, (7.3) and (7.4), by choosing any p ∈ [ 127 , 2), we obtain
the following “cap refinement” of (7.1): there exists C < ∞ and γ > 0 such that for
all f ∈ L2(S2)

‖ f̂ σ‖L4(R3) � C‖ f ‖L2(S2) sup
k, j

(�k, j ( f ))
γ . (7.5)
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A δ-quasi-extremal for the sphere is a function f �= 0 that satisfies
‖ f σ ∗ f σ‖L4(R3) � δ2S2‖ f ‖2

L2(S2)
. With the aid of the previous inequality, Christ

and Shao proved the following result regarding δ-quasi-extremals.

Lemma 7.1 ([13, Lemma 2.9]) For any δ > 0 there exists Cδ > 0 and ηδ > 0 with
the following property. If f ∈ L2(S2) satisfies ‖ f σ ∗ f σ‖2 � δ2S2‖ f ‖22 then there
exist a decomposition f = g + h and a spherical cap C ⊆ S

2 satisfying

0 � |g|, |h| � | f |, (7.6)

g, h have disjoint supports, (7.7)

|g(x)| � Cδ‖ f ‖2|C|−1/21C(x) for all x, (7.8)

‖g‖2 � ηδ‖ f ‖2. (7.9)

Moreover (7.8)and (7.9)holdwith constants that satisfyCδ � δ−1/γ andηδ � δ1/γ ,
where γ > 0 is a universal constant4.

Itwill be our task in the next section to obtain an analogous result for the hyperboloid
and for this it will be convenient to briefly discuss the construction of the function g and
the cap C in the conclusion of the previous lemma. Letting f ∈ L2(S2) be a δ-quasi-
extremal, inequality (7.5) implies that there is a constant c0 ∈ (0,∞), independent of
f , such that

sup
k, j

�k, j ( f ) � 2c0δ
1/γ .

It follows that there exist k and j such that �k, j ( f ) � c0δ1/λ. Let C := C
j
k . Then,

∫
C

| f | dσ � c0δ
1/γ |C|1/2‖ f ‖L2(S2). (7.10)

Let R = ( 12c0δ
1/γ |C|1/2)−1‖ f ‖L2(S2), A = {x ∈ C : | f | � R}, g = f 1A and

h = f − f 1A. It is now a simple exercise to prove that g, h and C satisfy the
conditions stated in the lemma.

Remark 7.2 Let us consider the following scenario: a measurable set E ⊆ R
and a measurable function F : E × S

2 → C that satisfies F ∈ L2(E × S

2),
‖Frσ ∗ Frσ‖L2(R3) � δ2S2‖Fr‖2L2(S2)

> 0 for all r ∈ E , where Fr (x) = F(r , x),

(r , x) ∈ E × S

2. Applying Lemma 7.1 to Fr for each r ∈ E generates caps Cr ⊆ S

2

and functions Gr and Hr , and in this way functions G, H : E × S

2 → C, which a
priori may not be measurable in the product space E ×S

2. This can be overcome if we
are careful with the choice of the caps as we now proceed to explain. For a collection
of spherical caps {Cr }r∈E satisfying (7.10) with C = Cr and f = Fr , for all r ∈ E ,

4 The power dependence of Cδ and ηδ on δ can be found in the proof of the lemma in [13, pp. 277–278]
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denote

G0 = {(r , x) : r ∈ E, x ∈ Cr },
G1 =

{
(r , x) ∈ G0 : |Fr (x)| �

( 1
2c0δ

1/γ |Cr |1/2
)−1‖Fr‖L2(S2)

}
.

Then, as explained following (7.10), we can take G = F1G1 and H = F − F1G1 .
We need to argue that we can have G0 and G1 measurable, by choosing the collection
{Cr }r∈E appropriately.When r ∈ E , then supk, j �k, j (Fr ) � 2c(δ), for some universal

constant c(δ). The cap Cr = C
j
k is to be chosen so that �k, j (Fr ) � c(δ), that is,

|Cr |−1/2
∫
Cr

|Fr | dσ � c(δ)‖Fr‖L2(S2).

The set of caps {C j
k : k, j} in S

2 is parametrized by indices k and j where k ∈ N
and j ∈ {1, 2, . . . , Jk}, for some Jk < ∞. Let Z = {(k, j) : k ∈ N, j ∈ {1, . . . , Jk}}
and define the function � : E × Z → R by

�(r , k, j) = |C j
k |−1/2‖Fr‖−1

L2(S2)

∫

C
j
k

|Fr | dσ.

By Fubini’s theorem, for each fixed (k, j) ∈ E × Z , �(·, k, j) is a measurable
function. By assumption, for each r ∈ E , supk, j �(r , k, j) � 2c(δ). We want to find
a measurable function τ : E → Z such that

�(r , τ (r)) � sup
k, j

�(r , k, j) − c(δ) � c(δ),

a so called c(δ)-maximizer. That this is possible is a consequence of measurable
selection theorems, see for instance [41, Thm. 4.1].

For such a measurable selection function τ write τ(r) = (k(r), j(r)) ∈ Z , then
the function E → S

2, r �→ y j(r)
k(r) , is measurable and we can write G0 = {(x, r) :

r ∈ E, |x − y j(r)
k(r) | � 2−k(r)+1}. We can therefore assume that the sets G0 and G1 are

measurable sets in E × S

2, so that G and H are measurable functions. In this way, we
have the following lemma.

Lemma 7.3 Let E ⊆ R be a measurable set and F : E × S

2 → C be a measurable
function satisfying F ∈ L2(E × S

2), ‖Frσ ∗ Frσ‖L2(R3) � δ2S2‖Fr‖2L2(S2)
> 0 for

all r ∈ E, where Fr (x) = F(r , x), (r , x) ∈ E × S

2. Then, there are spherical caps
{Cr }r∈E and measurable functions G, H satisfying: F = G + H, G and H have
disjoint supports, 0 � |G|, |H | � |F |, and for all r ∈ E:

|Gr (x)| � Cδ‖Fr‖2|Cr |−1/21Cr (x), x ∈ S

2 and ‖Gr‖2 � ηδ‖Fr‖2.
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We now prove a slight improvement of Lemma 7.1 that adds one more restriction
to the function g. It tells us that we can replace a δ-quasi-extremal for the sphere for
a better controlled one at the expense of powers of δ.

Lemma 7.4 For any δ > 0 there exists Cδ > 0, ηδ > 0 and λδ > 0 with the fol-
lowing property. If f ∈ L2(S2) satisfies ‖ f σ ∗ f σ‖2 � δ2S2‖ f ‖22 then there exist a
decomposition f = g+ h and a spherical cap C satisfying (7.6), (7.7), (7.8), 7.9 and

‖gσ ∗ gσ‖2 � λδS2‖ f ‖22. (7.11)

Moreover (7.8), (7.9) and (7.11) hold with constants that satisfy Cδ � δ−1/γ , ηδ �
δ1+1/γ and λδ � δ6+4/γ , where γ > 0 is a universal constant.

Remark 7.5 It is not difficult to see (e.g. [38, Lemma 6.2]) that for a function g satis-
fying (7.8) and (7.9) there is a lower bound for the L1 norm of the form

∫
C

|g| dσ � η2δ

Cδ

‖ f ‖2|C|1/2. (7.12)

Note that the sharp estimate (7.1) for S

2 implies that for g satisfying (7.11) we have

S‖g‖2 � ‖gσ ∗ gσ‖1/22 � λ
1/2
δ S‖ f ‖2,

so that

‖g‖L2(S2) � λ
1/2
δ ‖ f ‖L2(S2). (7.13)

Proof of Lemma 7.4 Take Cδ and ηδ as in the conclusion of Lemma 7.1. We claim that
the lemma at hand holds with respective constants Cδ , δηδ/

√
2 and λδ = (δ3η2δ /8)

2.
To see this we employ a decomposition algorithm, reminiscent of that in [13, Sect. 8,
step 6A], defined in the following inductive way.

Let G0 = f and f0 = 0 and suppose that for N � 0 we have defined GN and fk ,
for 0 � k � N , satisfying:

f = GN + f0 + · · · + fN , (7.14)

supp(GN ), supp( f0), . . . , supp( fN ) are pairwise disjoint, (7.15)

‖GNσ ∗ GNσ‖2 � 1

2
δ2S2‖ f ‖22. (7.16)

The previous conditions are satisfied if N = 0. We now define the inductive step
of the algorithm. If (7.14), (7.15) and (7.16) hold for N we define GN+1 and fN+1 in
the following way.

Given that ‖GNσ ∗ GNσ‖2 � 1
2δ

2S2‖ f ‖22 � 1
2δ

2S2‖GN‖22 we can apply
Lemma 7.1 to GN to obtain a decomposition GN = gN + hN and a cap CN . Define
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GN+1 = hN and fN+1 = gN . The functions GN+1 and fN+1 therefore have disjoint
supports and satisfy

| fN+1(x)| � Cδ‖GN‖2|CN |−1/21CN (x) � Cδ‖ f ‖2|CN |−1/21CN (x) for all x,

(7.17)

‖ fN+1‖2 � ηδ‖GN‖2 � 1√
2
ηδδ‖ f ‖2, (7.18)

where the second inequality in (7.18) follows as in (7.13).
The algorithm terminates at N � 1 when either ‖ fNσ ∗ fNσ‖2 � λδS2‖ f ‖22 or

‖GNσ ∗ GNσ‖2 < 1
2δ

2S2‖ f ‖22. In the former case we say the algorithm stops in a
win and set g = fN , h = GN + f0 + · · · + fN−1, C = CN and the Lemma is proved.

Let Nδ := �2η−2
δ δ−2�.We claim that the algorithm stops in awin for some N � Nδ .

We first show that the algorithm can not run for more than Nδ steps, otherwise, using
(7.18) we have

‖ f ‖2 �
(Nδ+1∑

k=1

‖ fk‖22
)1/2

� 1√
2
(Nδ + 1)1/2ηδδ‖ f ‖2 > ‖ f ‖2,

which is impossible.
Second, we show that if the algorithm has not stopped in a win during the first N

steps for some N � 2Nδ , then we can perform the step N + 1. More precisely,
if ‖ fkσ ∗ fkσ‖2 < λδS2‖ f ‖22 for all 1 � k � N , for some N � 2Nδ , then
‖GNσ ∗ GNσ‖2 � 1

2δ
2S2‖ f ‖22. Indeed, using Plancherel’s theorem and then the

triangle inequality we obtain

‖GNσ ∗ GNσ‖1/22 � ‖ f σ ∗ f σ‖1/22 −
N∑

k=1

‖ fkσ ∗ fkσ‖1/22 � δS‖ f ‖2 − Nλ
1/2
δ S‖ f ‖2

� (δ − 2Nδλ
1/2
δ )S‖ f ‖2

� 1

2
δS‖ f ‖2.

It follows that the algorithm stops in a win for some N � Nδ . This finishes the
proof. ��

The next topic we review is that of “weak interaction between distant caps”. For
spherical caps C, C′ ⊆ S

2 there is a notion of distance. Let (y, a), (y′, a′) ∈ S

2 ×
(0,∞) denote the centers and radii of the spherical caps C, C′,

C = {x ∈ S

2 : |x − y| � a}, C′ = {x ∈ S

2 : |x − y′| � a′}.

The distance between C and C′ is defined by the expression

�(C,C′) = min(d(C,C′), d(C,−C′)), (7.19)
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where, as in [33], we can take d to be the hyperbolic distance between (y, a) and
(y′, a′) in the upper half space model, that is5

d(C,C′) = arc cosh
(
1 + (a − a′)2 + |y − y′|2

2aa′
)
.

The following lemma quantifies the notion of weak interaction between distant
caps.

Lemma 7.6 ([13, Lemma 7.6]) For any ε > 0 there exists ρ < ∞ such that

‖1Cσ ∗ 1C′σ‖L2(R3) < ε|C|1/2|C′|1/2, whenever �(C,C′) > ρ.

An inspection of the proof of the previous statement in [13, Lemma 7.6] shows that
an analog result holds if we have caps C ⊆ S

2
r and C

′ ⊆ S

2
t , with r , t ∈ [1, 2], that is,

denoting 1
r C the rescale of C to S

2,

1
r C = {x ∈ R3 : r x ∈ C},

we have the following lemma.

Lemma 7.7 Let r , t ∈ [1, 2], C ⊆ S

2
r and C′ ⊆ S

2
t . Then for any ε > 0 there exists

ρ < ∞ such that ‖1Cσr ∗1C′σt‖L2(R3) < ε|C|1/2|C′|1/2, whenever �( 1r C, 1
t C

′) > ρ.

8 Lifting to the Hyperboloid the Inequality for the Sphere

The aim of this section is to use the Tomas–Stein inequality for the sphere S

2 to obtain
qualitative properties of δ-quasi-extremals for the hyperboloid. The connection here
between the hyperboloid and the sphere is that the latter corresponds to horizontal
traces of the former. This connection between the adjoint Fourier restriction operator
on a hypersurface and on its traces appears, for instance, in the work of Nicola [32].
An alternative approach to the methods in this section can be developed using refined
bilinear estimates, but we choose to give a different and new argument. The main
result of this section is the following lemma.

Lemma 8.1 Let 0 � s � 1
2 . For any δ > 0 there exists Cδ > 0, ηδ > 0 and νδ > 0with

the following property. If f (x, t) ∈ L2(H3
s ) supported where 1 � |x | � 2 satisfies

5 We point out that for the two lemmas that follow we don’t need d to be a distance. It would be perfectly
fine to consider instead the expression

(a − a′)2
aa′ + |y − y′|2

a2
+ |y − y′|2

(a′)2 ,

so that caps are far apart if either a/a′ or a′/a is large or the distance from y to y′ is much larger than either
a or a′.
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‖ f μs ∗ f μs‖L2(R4) � δ2H2
4‖ f ‖2

L2 then there exist a decomposition f = g + h, a

spherical cap C ⊆ S

2 and a cap C = [1, 2] × C ⊂ H3
s satisfying

0 � |g|, |h| � | f |, (8.1)

g, h have disjoint supports, (8.2)

supp(g) ⊆ C, (8.3)

|g(x, t)| � Cδ‖ f ‖L2μs(C)−1/21C(x, t) for all (x, t), (8.4)

‖g‖L2 � ηδ‖ f ‖L2 , (8.5)

‖g‖L1 � νδμs(C)1/2‖ f ‖L2 . (8.6)

The constants Cδ, ηδ and νδ are uniform in s � 1
2 .

Remark 8.2 The previous lemma is equivalent to the analog result forH3
s . Indeed, that

the result forH3
s implies a similar one forH3

s is immediate. On the other direction, if

f ∈ L2(H3
s ) is a δ-quasi-extremal for (1.10), that is

‖T s f ‖4L4(R4)
= (2π)4‖ f μ̄s ∗ f μ̄s‖2L2(R4)

� (2π)4δ4H
4
4‖ f ‖4

L2(H3
s )

,

then, writing f = f+ + f− so that T s f = Ts f+ + Ts f−(·,−·) and ‖ f ‖2
L2(H3

s )
=

‖ f+‖2
L2(H3

s )
+ ‖ f−‖2

L2(H3
s )
we obtain that

‖ fεμs ∗ fεμs‖2L2(R4)
� 2−4δ4H

4
4‖ fε‖4L2(H3

s )
,

for ε = + or for ε = −, so that if both ‖ f+‖2
L2(H3

s )
� δ2‖ f ‖2

L2(H3
s )
and ‖ f−‖2

L2(H3
s )

�

δ2‖ f ‖2
L2(H3

s )
, then we obtain the conclusions in Lemma 8.1 for f from the ones for

f+ or f−, as it corresponds. On the other hand, if say ‖ f−‖2
L2(H3

s )
< δ2‖ f ‖2

L2(H3
s )
,

then ‖ f+‖2
L2(H3

s )
� (1 − δ2)‖ f ‖2

L2(H3
s )
and

‖T f+‖L4 � ‖T f ‖L4 − ‖T f−‖L4 � 2πδ(H4 − H4)‖ f ‖
L2(H3

s )
� cδH4‖ f+‖L2(H3

s )
,

so that Lemma 8.1 applied to f+ yields the result for f .
The support condition 1 � |x | � 2 can be changed to a � |x | � b for any

a � s and b < ∞, understanding that the implicit constants may depend on a, b.
We can alternatively state the previous lemma for f ∈ L2(H3) supported where
2N � |x | � 2N+1, N � 1, the implicit constants independent of N , as can be easily
checked by the use of scaling.

Recall that we write ψs(r) = √
r2 − s21{r�s} and φs(t) = ψ−1

s (t) =√
t2 + s21{t�0} and for f ∈ S(R3) and r > 0 we denote by f σr the measure
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supported on S

2
r := {y ∈ R3 : |y| = r} given by

〈 f σr , ϕ〉 =
∫

S2

f (r y)ϕ(r y)r dσ(y).

We denote fr the function x �→ f (r x), which we consider as a function from S

2

to C.
In the next lemma we show that we can write the double convolution of functions

on the hyperboloid H3
s as an integral of convolutions of sliced spheres.

Lemma 8.3 Let s � 0. For f , g ∈ L2(H3
s ) we have the representation formula

(
f μs ∗ gμs

)
(x, t) =

t∫
0

(
f σφs (t ′) ∗ gσφs (t−t ′)

)
(x) dt ′, (8.7)

for a.e. (x, t) ∈ R3 × R+.

Proof Let ϕ ∈ C∞
c (R4). Using spherical coordinates we have

〈 f μs ∗ gμs , ϕ〉 =
∫

|x |,|y|�s

ϕ(x + y, ψs(x) + ψs(y)) f (x)g(y)
dx dy√|x |2 − s2
√|y|2 − s2

=
∞∫
s

∞∫
s

∫

S2

∫

S2

ϕ(rω + r ′ω′, ψs(r) + ψs(r
′)) f (rω)g(r ′ω′) r2r ′2 dω dω′ dr dr ′

√
r2 − s2

√
r ′2 − s2

.

Wechangevariables (r , r ′) �→ (u, u′) = (ψs(r), ψs(r ′)) = (
√
r2 − s2,

√
r ′2 − s2)

and obtain

〈 f μs ∗ gμs, ϕ〉 =
∞∫
0

∞∫
0

∫

S2

∫

S2

ϕ(φs(u)ω + φs(u
′)ω′, u + u′)

× f (φs(u)ω)g(φs(u
′)ω′)φs(u)φs(u

′) dω dω′ du du′.

We change variables (u, u′) �→ (t, t ′) = (u + u′, u) and obtain

〈 f μs ∗ gμs, ϕ〉 =
∞∫
0

t∫
0

∫

S2

∫

S2

ϕ(φs(t
′)ω + φs(t − t ′)ω′, t)

× f (φs(t
′)ω)g(φs(t − t ′)ω′)φs(t

′)φs(t − t ′) dω dω′ dt ′ dt

=
∞∫
0

t∫
0

(∫

R3

ϕ(x, t)
(
f σφs (t ′) ∗ gσφs (t−t ′)

)
(x)dx

)
dt ′ dt
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=
〈 t∫
0

(
f σφs (t ′) ∗ gσφs (t−t ′)

)
(x) dt ′, ϕ

〉
,

where we used Fubini’s Theorem and that for any r , r ′ > 0,

〈 f σr ∗ gσr ′, ϕ(·, t)〉 =
∫

R3

ϕ(x, t)
(
f σr ∗ gσr ′

)
(x) dx

=
∫

S2r×S2s

ϕ(x + x ′, t) f (x)g(x ′) dσr (x) dσr ′(x ′)

=
∫

S2×S2

ϕ(rω + r ′ω′, t) f (rω)g(r ′ω′)rr ′ dσ(ω) dσ(ω′).

��
Next, we record a formula for the L p(H3

s ) norm in terms of the L p norm of the
slices.

Lemma 8.4 Let f ∈ L p(H3
s ). Then

‖ f ‖p
L p(H3

s )
=

∞∫
0

‖ fφs (t)‖p
L p(S2)

φs(t) dt . (8.8)

Proof Using spherical coordinates we have

‖ f ‖p
L p(H3

s )
=

∞∫
s

∫

S2

| f (rω)|p r2√
r2 − s2

dω dr =
∞∫
0

∫

S2

| f (φs(t)ω)|pφs(t) dω dt

=
∞∫
0

‖ fφs (t)‖p
L p(S2)

φs(t) dt .

��
We now analyze the dependence of ‖ f σr ∗ gσr ′ ‖L2(R3) in (r , r ′). We start with the

scaling property of̂f σr as a function of r . We have

(̂f σr )(x) =
∫

S2r

e−i x ·y f (y) dσr (y) =
∫

S2

e−ir x ·y f (r y)r dσ(y) = r(̂frσ)(r x).

Thus

‖̂f σr‖L4(R3) = r1/4‖̂frσ‖L4(R3) � (2π)3/4r1/4S‖ fr‖L2(S2).
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Then, the Cauchy–Schwarz inequality implies that for any r , r ′ > 0

‖̂f σr ĝσr ′ ‖L2(R3) � ‖̂f σr‖L4 ‖̂gσr ′ ‖L4 � (2π)3/2S2(rr ′)1/4‖ fr‖L2(S2)‖gr ′ ‖L2(S2),

so that

‖ f σr ∗ gσr ′ ‖L2(R3) � S2(rr ′)1/4‖ fr‖L2(S2)‖gr ′ ‖L2(S2), (8.9)

and in particular, when r = r ′ we obtain

‖ f σr ∗ gσr‖L2(R3) = r1/2‖ frσ ∗ grσ‖L2(R3) � S2r1/2‖ fr‖L2(S2)‖gr‖L2(S2).

(8.10)

Definition 8.5 A quasi-cap of H3
s is a measurable set G ⊆ H3

s for which there exist
E ⊆ R and spherical caps Ct ⊆ S

2, for t ∈ E , such that

G = {(x, t) ∈ R4 : t ∈ E, x ∈ φs(t)Ct }. (8.11)

We note that a cap is also a quasi-cap; the difference in a generic quasi-cap is that
the spherical caps may not be the same as in the case of a cap, and the set E may not
be an interval.

In our main result of the section, Lemma 8.1, we want to obtain an analog of
Lemma 7.1 for a compact subset of the hyperboloid. The idea is to use the cap
Lemma 7.1 for the sphere on horizontal slices of the hyperboloid via (8.7) in a mea-
surable way (recall Remark 7.2), and show that there are enough aligned sliced caps
of similar size to obtain a cap for the hyperboloid. We do it for the upper sheet as
the full one-sheeted hyperboloid follows from this as already noted in Remark 8.2.
The proof of Lemma 8.1 is accomplished in the following way. First, we show that
on a large subset of t’s in [ψs(1), ψs(2)] we can apply Lemma 7.4 to the function
x ∈ S

2 �→ f (φs(t)x) in a measurable way. This will allow us to prove a version of
Lemma 8.1 where instead of a cap we have a quasi-cap. Next, we show that a subset
of the quasi-cap of large relative measure is comparable to a cap and satisfies the
requirements of Lemma 8.1, which then are shown to be satisfied by the cap itself. To
prove this last point, we will make use of the quantitative version of the statement that
“distant spherical caps interact weakly” as stated in Lemmas 7.6 and 7.7.

Proof of Lemma 8.1 In what follows, c(δ) denotes a constant that depends only on δ

and is allowed to change from line to line.6 Recall from Remark 7.5 that (8.6) can be
obtained from (8.4) and (8.5) with νδ = η2δ /Cδ .

We first argue that we can assume that the support of f (·, t) does not contain
antipodal points for each t ∈ [ψs(1), ψs(2)]. We can cover S

2 as the union of finitely
many spherical caps {Ck}k=1,...,κ each of radius 1

4 , whose centers form a maximally
1
4 -separated set on S

2, and induce a decomposition of H3
s as the union of the caps

6 Reviewing the argument one can see that such constants can be taken to depend only on powers, positive
and negative, of δ.
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{[s,∞) × Ck}k=1,...,κ . By the triangle inequality we can therefore assume that f is
supported on the cap [s,∞) × Ck , for some k, at the expense of changing δ by δ/κ .
The reason for doing this is to ensure that there are no nearly antipodal spherical caps
later on.

Let us start by noting that for (x, t) in the support of f and s ∈ [0, 1
2 ] we have

|x | ∈ [1, 2] and t = ψs(x) ∈ [ψs(1), ψs(2)] = [√1 − s2,
√
4 − s2] ⊆ [

√
3
2 , 2], and

that from Lemma 8.4

ψs (2)∫
ψs (1)

‖ fφs (t)‖2L2(S2)
dt � ‖ f ‖2L2(H3

s )
� 2

ψs (2)∫
ψs (1)

‖ fφs (t)‖2L2(S2)
dt .

On the other hand ( f μs ∗ f μs)(x, t) is supported where 2ψs(1) � t � 2ψs(2).
From Lemma 8.3 for a.e. (x, t) ∈ R4 we have

f μs ∗ f μs(x, t) =
ψs (2)∫

ψs (1)

( f σφs (t ′) ∗ f σφs (t−t ′))(x) dt
′, (8.12)

(recall that φs(τ ) = 0 for τ < 0). Let

Eγ =
{
t ∈ [ψs(1), ψs(2)] :

‖ f σφs (t) ∗ f σφs (t)‖L2(R3) � γ 2δ2H2
4S

2‖ fφs (t)‖22,
‖ fφs (t)‖2 � γ δH4‖ f ‖2

}
,

and

Eγ,λ =
{
t ∈ [ψs(1), ψs(2)] : ‖ f σφs (t) ∗ f σφs (t)‖L2(R3) � γ 2δ2H2

4S
2‖ fφs (t)‖22,

λδH4‖ f ‖2 � ‖ fφs (t)‖2 � γ δH4‖ f ‖2

}
.

Here, ‖ fφs (t)‖2 = ‖ f (φs(t) ·, t)‖L2(S2), while ‖ f ‖2 = ‖ f ‖L2(H3
s )
. We claim that

|Eγ | � c(δ) and |Eγ,λ| � c(δ) if γ andλ are chosen small and large enough depending
on δ, respectively. Let us first analyze |Eγ |. From (8.12), using Fubini’s theorem and
Minkowski’s integral inequality we have

δ2H2
4‖ f ‖22 �

∥∥∥
ψs (2)∫

ψs (1)

( f σφs (t ′) ∗ f σφs (t−t ′))(x) dt
′
∥∥∥
L2
t,x

�
∥∥∥

ψs (2)∫
ψs (1)

‖ f σφs (t ′) ∗ f σφs (t−t ′)‖L2
x
1E�

γ
(t ′) dt ′

∥∥∥
L2
t

+
∥∥∥

ψs (2)∫
ψs (1)

( f σφs (t ′) ∗ f σφs (t−t ′))(x)1Eγ (t ′) dt ′
∥∥∥
L2
x,t

.
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Plancherel’s theorem and the Cauchy–Schwarz inequality give

‖ f σφs (t ′) ∗ f σφs (t−t ′)‖L2
x

� ‖ f σφs (t ′) ∗ f σφs (t ′)‖1/2L2
x
‖ f σφs (t−t ′) ∗ f σφs (t−t ′)‖1/2L2

x
,

so that using the sharp estimate for ‖ f σφs (t−t ′) ∗ f σφs (t−t ′)‖L2
x
as in (8.10), recalling

that φs(t ′), φs(t − t ′) ∈ [1, 2], we obtain

∥∥∥
ψs (2)∫

ψs (1)

‖ f σφs (t ′) ∗ f σφs (t−t ′)‖L2
x
1E�

γ
(t ′) dt ′

∥∥∥
L2
t

� 2γ δH4S2
∥∥∥

ψs (2)∫
ψs (1)

‖ fφs (t ′)‖2‖ fφs (t−t ′)‖2 dt ′
∥∥∥
L2
t

+ 2γ δH4S2‖ f ‖2
∥∥∥

ψs (2)∫
ψs (1)

‖ fφs (t−t ′)‖2 dt ′
∥∥∥
L2
t

� 8γ δH4S2‖ f ‖22.

Therefore, choosing γ = δH4/(16S2) we obtain

∥∥∥
ψs (2)∫

ψs (1)

( f σφs (t ′) ∗ f σφs (t−t ′))(x)1Eγ (t ′) dt ′
∥∥∥
L2
x,t

� 1

2
δ2H2

4‖ f ‖22.

For this choice of γ we then obtain

1

2
δ2H2

4‖ f ‖22 �
∥∥∥

ψs (2)∫
ψs (1)

( f σφs (t ′) ∗ f σφs (t−t ′))(x)1Eγ (t ′) dt ′
∥∥∥
L2
x,t

�
∥∥∥

ψs (2)∫
ψs (1)

‖ f σφs (t ′) ∗ f σφs (t−t ′)‖L2
x
1Eγ (t ′) dt ′

∥∥∥
L2
t

� 2S2
∥∥∥

ψs (2)∫
ψs (1)

‖ fφs (t ′)‖L2
x
‖ fφs (t−t ′)‖L2

x
1Eγ (t ′) dt ′

∥∥∥
L2
t

� 2S2|Eγ |1/2
ψs (2)∫

ψs (1)

‖ fφs (t)‖2L2
x
dt � 2S2‖ f ‖22|Eγ |1/2,

and therefore |Eγ | � H4
4δ

4/(16S4).
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To analyze |Eγ,λ| we use

Eγ,λ = Eγ ∩ {t ∈ [ψs(1), ψs(2)] : ‖ fφs (t)‖2 � λδH4‖ f ‖2}.

Chebyshev’s and Hölder’s inequalities imply

|{t ∈ [ψs(1), ψs(2)] : ‖ fφs (t)‖2 > λδH4‖ f ‖2}| � 1

λδH4‖ f ‖2

ψs (2)∫
ψs (1)

‖ fφs (t)‖2 dt

� 2

λδH4
.

Therefore, choosing λ = 64S4/(H5
4δ

5) we obtain

|Eγ,λ| � |Eγ | − |{t ∈ [ψs(1), ψs(2)] : ‖ fφs (t)‖2 > λδH4‖ f ‖2}| � H4
4

32S4
δ4.

From now on, let us fix such values of γ and λ and let E := Eγ,λ. From the
definition of E and (8.10), we have that for t ∈ E

‖ fφs (t)σ ∗ fφs (t)σ‖L2(R3) � cφs(t)
−1/2δ4‖ fφs (t)‖2L2(S2)

,

so that Lemma 7.1 imply that for t ∈ E there are caps Ct ⊆ S

2 and a decomposition
fφs (t) = Gφs (t) + Hφs (t). In this way we obtain a decomposition f = g + h, where
g(φs(t)x, t) = Gφs (t)(x)1E (t), x ∈ S

2, t ∈ [ψs(1), ψs(2)]. As argued in Remark 7.2
and recorded in Lemma 7.3, by using a measurable selection theorem we can perform
this decomposition in such a way that g and h are measurable functions and G0 :=
{(x, t) ∈ R4 : t ∈ E, x ∈ φs(t)Ct } is a measurable subset ofH3

s , so that G0 is a quasi-
cap. According to Lemma 7.1, g and h satisfy the following conditions: f = g + h,
0 � |g|, |h| � | f |, g and h have disjoint supports, g(x, t) = 0 if t /∈ E ,

|g(φs(t)x, t)| � Cδ‖ fφs (t)‖2|Ct |−1/21Ct (x), for all t ∈ E, x ∈ S

2,

‖gφs (t)‖2 � ηδ‖ fφs (t)‖2, ‖gφs (t)‖1 � η2δ

Cδ

|Ct |1/2‖ fφs (t)‖2, for all t ∈ E .

(8.13)

Note that Lemma 8.4 and (8.13) imply

‖g‖2 � ηδ‖ f ‖2.

Given that for t ∈ E we have δ2H4‖ f ‖2 � ‖ fφs (t)‖2 � δ−4H4‖ f ‖2 we conclude,
possibly by changing the constants that depend on δ, that the function g satisfies

|g(φs(t)x, t)| � Cδ‖ f ‖2|Ct |−1/21Ct (x)1E (t), for all t ∈ [ψs(1), ψs(2)], x ∈ S

2,
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(8.14)

and

‖gφs (t)‖L2(S2) � ηδ‖ f ‖2 and ‖gφs (t)‖L1(S2) � η2δ

Cδ

|Ct |1/2‖ f ‖2, for each t ∈ E .

(8.15)

Summing up, we can restate what has been done so far in the following way: If
f ∈ L2(H3

s ) satisfies ‖ f μs∗ f μs‖2 � δ2H2
4‖ f ‖22 and is supportedwhere 1 � |x | � 2

then there exist a decomposition f = g + h, a set E ⊆ [ψs(1), ψs(2)] satisfying
|E | � δ4 and a quasi-cap G0 (associated to E as in (8.11)) such that g and h have
disjoint supports,

|g(x, t)| � Cδ‖ f ‖2|Ct |−1/21G0(x, t), for all (x, t) ∈ H3
s ,

and (8.15) holds. This is the analog of Lemma 8.1 with a quasi-cap instead of a cap.
Using the quasi-cap analog of Lemma 8.1, as described in the previous paragraph,

we can argue exactly as in Lemma 7.4 for the sphere to ensure, possibly after changing
the constants that depend on δ, that there exist a quasi-cap,whichwe continue to denote
G0, associated to a set E ⊆ [ψs(1), ψs(2)] with |E | � δ4, and functions g and h with
the properties of the previous paragraph and additionally

‖gμs ∗ gμs‖L2(R4) � cδ‖ f ‖22. (8.16)

The next and final step is to show that the caps Ct , t ∈ E , which define G0 are
aligned for a large fraction of the t’s, and by this we mean that they have close radii
and centers, up to powers of δ.

Recall that for caps C, C′ ⊆ S

2 there is a distance function �(C,C′), defined in
(7.19), that is relevant in Lemmas 7.6 and 7.7. For ρ > 0 define

Aρ = {(t, t ′) ∈ E × E : �(Ct ,Ct ′) � ρ}.

Then, starting from (8.16) we have the estimate

cδ‖ f ‖22 � ‖gμs ∗ gμs‖2 =
∥∥∥

ψs (2)∫
ψs (1)

(gσφs (t ′) ∗ gσφs (t−t ′))(x) dt
′
∥∥∥
L2
x,t

�
∥∥∥

ψs (2)∫
ψs (1)

‖gσφs (t ′) ∗ gσφs (t−t ′)‖L2
x
1Aρ (t ′, t − t ′) dt ′

∥∥∥
L2
t

+
∥∥∥

ψs (2)∫
ψs (1)

‖gσφs (t ′) ∗ gσφs (t−t ′)‖L2
x
1A�

ρ
(t ′, t − t ′) dt ′

∥∥∥
L2
t
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�
∥∥∥

ψs (2)∫
ψs (1)

‖gσφs (t ′) ∗ gσφs (t−t ′)‖L2
x
1Aρ (t ′, t − t ′) dt ′

∥∥∥
L2
t

+ C2
δ ‖ f ‖22

∥∥∥
ψs (2)∫

ψs (1)

|Ct ′ |−1/2

× |Ct−t ′ |−1/2‖1φs (t ′)Ct ′ σφs (t ′) ∗ 1φs (t−t ′)Ct−t ′ σφs (t−t ′)‖L2
x
1

(E×E)∩A�
ρ
(t ′, t − t ′) dt ′

∥∥∥
L2
t

�
∥∥∥

ψs (2)∫
ψs (1)

‖gσφs (t ′) ∗ gσφs (t−t ′)‖L2
x
1Aρ (t ′, t − t ′) dt ′

∥∥∥
L2
t

+ cδ

2
‖ f ‖22,

where in the second to last line we used (8.14) and the last line holds if ρ is large
enough as a function of7 δ, by the use of Lemma 7.7. For such choice of ρ we can
therefore ensure that

∥∥∥
ψs (2)∫

ψs (1)

‖gσφs (t ′) ∗ gσφs (t−t ′)‖L2
x
1Aρ (t

′, t − t ′) dt ′
∥∥∥
L2
t

� cδ

2
‖ f ‖22. (8.17)

Note that (8.14) implies ‖gφs (t)‖2 � Cδ‖ f ‖2 for all t ∈ E . This and (8.17) imply
that

cδ

2
‖ f ‖22 � 2S2

∥∥∥
ψs (2)∫

ψs (1)

‖gφs (t ′)‖2‖gφs (t−t ′)‖21Aρ (t
′, t − t ′) dt ′

∥∥∥
L2
t

� 2S2C2
δ ‖ f ‖22

ψs (2)∫
ψs (1)

‖1Aρ (t
′, t − t ′)‖L2

t
dt ′

� 4S2C2
δ ‖ f ‖22 |Aρ |1/2,

where ρ = ρ(δ) is the already fixed function of δ and |Aρ | denotes the Lebesgue
measure of Aρ ⊆ R2. As |Aρ | � 2 we conclude that |Aρ | � c(δ). By Fubini’s
theorem, the fibers Aρ(t) := {t ′ ∈ E : (t, t ′) ∈ Aρ} = {t ′ ∈ E : �(Ct ,Ct ′) � ρ}
are a.e. measurable, the function t ∈ E �→ |Aρ(t)| = |{t ′ ∈ E : �(Ct ,Ct ′) � ρ}| is
measurable and |Aρ | � 2 ess supt∈E |Aρ(t)|. We then obtain the following estimate

c(δ) � ess sup
t∈E

|{t ′ ∈ E : �(Ct ,Ct ′ ) � ρ}| � sup
(y,a)∈S2×(0,∞)

|{t ′ ∈ E : �(C(y, a),Ct ′ ) � ρ}|,

from where we conclude the existence of a spherical cap C(y0, a0) such that

|{t ∈ E : �(C(y0, a0),Ct ) � ρ}| � c(δ).

Denote C0 = C(y0, a0) and Bρ = {t ∈ E : �(C0,Ct ) � ρ}. For t ∈ Bρ , the
radii and the distance between the centers of the caps C0 and Ct are of the same order

7 From the proof of Lemma 7.6 in [13] one can see that cosh ρ can be taken to be a power of δ−1.
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modulo powers of δ. More precisely, if we let (y, a) denote the center and radius of a
cap Ct , t ∈ Bρ , then the definition of the distance function � ensures that

c(δ)a0 � a � c′(δ)a0, and |y0 − y| � c′′(δ)a0. (8.18)

This is the only place where we used the assumption that f is supported on a cap
[1, 2] × C, were the radius of C is 1

4 , because this implies that the centers of the caps
associated to gφs(t), t ∈ E , can be chosen to be at distance at most 1

2 from each other
and therefore any two caps Ct , Ct ′ for t, t ′ ∈ E are not nearly antipodal.

From (8.18) we conclude that for t ∈ Bρ we have |Ct | �δ |C0| and there exists
c(δ) � 1 such that the c(δ)-enlargement of C0, denoted Cδ

0 and defined by

Cδ
0 := {x ∈ S

2 : |x − y0| � c(δ)a0},

contains Ct for all t ∈ Bρ , and hence the cap C := [1, 2] × Cδ
0 ⊆ H3

s contains the
quasi-cap G1 := {(x, t) ∈ G0 : t ∈ Bρ}. Note also that |Ct | �δ |Cδ

0|, for all t ∈ Bρ .
Now, for each t ∈ E , gφs (t) is supported onCt and

∫
Ct

|gφs(t)| dσ � c(δ)|Ct |1/2‖ f ‖2,
as stated in (8.15). If in addition t ∈ Bρ , then

∫

Cδ
0

|gφs (t)| dσ =
∫
Ct

|gφs(t)| dσ � c(δ)|Ct |1/2‖ f ‖2 � c′(δ)|Cδ
0|1/2‖ f ‖2,

and so integrating in t ∈ Bρ and using that φs(t) � 1 if t � ψs(1) gives

∫
Bρ

∫

Cδ
0

|gφs(t)|φs(t) dσ dt � c(δ)|Cδ
0|1/2|Bρ |‖ f ‖2 � c′(δ)|Cδ

0|1/2‖ f ‖2.

Given that μs(C) = μs([1, 2] × Cδ
0) � |Cδ

0| we obtain
∫
C

|g1G1 | dμs =
∫
Bρ

∫

Cδ
0

|gφs(t)|φs(t) dσ dt � c(δ)μs(C)1/2‖ f ‖2.

Then g1G1 , f −g1G1 andC satisfy all of our requirements, given that supp(g1G1) ⊆
G1 ⊆ C, G1 ⊆ G0, |Ct | �δ μs(C) for all t ∈ Bρ , and thus

|g1G1(x, t)| � c(δ)‖ f ‖L2(H3
s )

μs(C)1/21C(x, t), for all (x, t),

‖g1G1‖L2(H3
s )

� c(δ)‖ f ‖L2(H3
s )

,

‖g1G1‖L1(H3
s )

� c(δ)μs(C)1/2‖ f ‖L2(H3
s )

.

��
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9 A Concentration-Compactness Lemma

The result of this section is stated for H3
s but a similar statement and proof also hold

forH3
s .

Lemma 9.1 Let {ρn}n be a sequence in L2(H3
s ) satisfying

∫

H3
s

|ρn|2 dμ̄s = λ,

where λ > 0 is fixed. Then there exists a subsequence {ρnk }k such that {|ρnk |2}k
satisfies one of the following three possibilities:

(i) (compactness) there exists �k ∈ N such that

∀ε > 0, ∃R < ∞,

∫

{s2�k−R�|y|�s2�k+R}
|ρnk |2 dμ̄s � λ − ε;

(ii) (vanishing) lim
k→∞ sup

�∈N

∫

{s2�−R�|y|�s2�+R}
|ρnk |2 dμ̄s = 0, for all R < ∞;

(iii) (dichotomy) There exists α ∈ (0, λ) such that for all ε > 0, there exist R ∈ N,

k0 � 1 and nonnegative functions ρk,1, ρk,2 ∈ L2(H3
s ) satisfying for k � k0:

‖ρnk − (ρk,1 + ρk,2)‖L2(H3
s )

� ε, (9.1)∣∣∣∣
∫

H3
s

|ρk,1|2 dμ̄s − α

∣∣∣∣ � ε,

∣∣∣∣
∫

H3
s

|ρk,2|2 dμ̄s − (λ − α)

∣∣∣∣ � ε, (9.2)

supp(ρk,1) ⊆ {y ∈ R3 : s2�k−R � |y| � s2�k+R}, (9.3)

supp(ρk,2) ⊆ {y ∈ R3 : |y| � s2�k−Rk } ∪ {y ∈ R3 : |y| � s2�k+Rk },
(9.4)

for certain sequences {�k}k and {Rk}k , where Rk → ∞ as k → ∞.

Proof The proof is identical to the proof of Lemma I.1 in [30], by defining the sequence
of functions

Qn : [0,∞) → R+, Qn(t) = sup
�∈N

∫

{s2�−t�|y|�s2�+t }
|ρn(y)|2 dμ̄s(y).

We omit the details. ��
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In the forthcoming sections, wewill be working with an L2 normalized extremizing
sequence { fn}n andwill apply the preceding lemmawith λ = 1.Wewill slightly abuse
notation and say that { fn}n satisfies either concentration, vanishingordichotomy,when
the sequence {| fn|2}n satisfies the respective alternative.

10 Bilinear Estimates and Discarding Dichotomy

In this section we show that an extremizing sequence for T can not satisfy the
dichotomy condition (iii) of Lemma 9.1. This will be a consequence of bilinear esti-
mates at dyadic scales.

Proposition 10.1 There exists a constant C < ∞ with the following property. Let
s > 0, k, k′ ∈ N and f , g ∈ L2(H3

s ) supported where 2ks � |y| � 2k+1s and
2k

′
s � |y| � 2k

′+1s respectively. Then

‖Ts f · Tsg‖L2(R4) � C2− 1
4 |k−k′|‖ f ‖L2(H3

s )
‖g‖L2(H3

s )
.

Proof Without loss of generality we can assume k′ � k. Using Lemma 8.3 we write

f μs ∗ gμs(x, t) =
t∫

0

( f σφs (t ′) ∗ gσφs (t−t ′))(x) dt
′,

so that by Minkowski’s integral inequality

‖ f μs ∗ gμs‖L2
x,t

�
∥∥∥∥

t∫
0

‖ f σφs (t ′) ∗ gσφs (t−t ′)‖L2
x
dt ′
∥∥∥∥
L2
t

. (10.1)

Recalling (8.9), the right hand side of (10.1) satisfies

∥∥∥
t∫

0

‖ f σφs (t ′) ∗ gσφs (t−t ′)‖L2
x
dt ′
∥∥∥
L4
t

� C
∥∥∥

t∫
0

φs(t
′)1/4‖ fφs (t ′)‖2 φs(t − t ′)1/4‖gφs(t−t ′)‖2 dt ′

∥∥∥
L2
t

� C

∞∫
0

φs(t
′)1/4‖ fφs (t ′)‖2

∥∥∥1{t�t ′}(t ′)φs(t − t ′)1/4‖gφs (t−t ′)‖2
∥∥∥
L2
t

dt ′

� C
∥∥∥φs(t)

1/4‖gφs (t)‖2
∥∥∥
L2
t

ψs (2k+1s)∫

ψs (2k s)

φs(t
′)1/4‖ fφs (t ′)‖2 dt ′,
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where in the last line we used the support condition for f . Recalling the support
condition for g

∥∥∥φs(t)
1/4‖gφs (t)‖L2(S2)

∥∥∥2
L2
t

=
ψs (2k

′+1s)∫

ψs (2k
′ s)

φs(t)
1/2‖gφs (t)‖2L2(S2)

dt

�
(
φs(ψs(2

k′
s))
)−1/2

∞∫
0

φs(t)‖gφs(t)‖2L2(S2)
dt

= (2k
′
s)−1/2‖g‖2L2(H3

s )
,

where in the last line we used Lemma 8.4. Similarly

ψs (2k+1s)∫

ψs (2k s)

φs(t
′)1/4‖ fφs (t ′)‖2 dt ′ �

( ψs (2k+1s)∫

ψs (2k s)

φs(t
′)1/2‖ fφs (t ′)‖22 dt ′

)1/2

×
( ψs (2k+1s)∫

ψs (2k s)

1 dt ′
)1/2

� (2ks)−1/4(ψs(2
k+1s) − ψs(2

ks))1/2‖ f ‖L2(H3
s )

� (2ks)−1/4(2ks)1/2‖ f ‖L2(H3
s )

= (2ks)1/4‖ f ‖L2(H3
s )

.

We conclude that

‖ f μs ∗ gμs‖L2
x,t

�
∥∥∥

t∫
0

‖ f σφs (t ′) ∗ gσφs (t−t ′)‖L2
x
dt ′
∥∥∥
L4
t

� 2k/4‖ f ‖L2(H3
s )
2−k′/4‖g‖L2(H3

s )

= 2− 1
4 |k′−k|‖ f ‖L2(H3

s )
‖g‖L2(H3

s )
.

��

Proposition 10.2 Let f , g ∈ L2(H3) and suppose that their supports are separated
in the sense that there exist k, k′ ∈ N, k � k′, such that supp( f ) ⊆ {|y| � 2k} and
supp(g) ⊆ {|y| � 2k

′ }. Then

‖T f · Tg‖L2(R4) � C2− 1
4 |k−k′|‖ f ‖L2(H3)‖g‖L2(H3).
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Similarly, if there exist k, R, R′ ∈ N, R � R′, such that supp( f ) ⊆ {2k−R � |y| �
2k+R} and supp(g) ⊆ {|y| � 2k−R′ } ∪ {|y| � 2k+R′ }, then

‖T f · Tg‖L2(R4) � C2− 1
4 |R−R′|‖ f ‖L2(H3)‖g‖L2(H3).

Proof We decompose f = ∑
m∈N fm and g = ∑

m′∈N gm′ where fm, gm are sup-
ported where 2m � |y| � 2m+1, m � 0. Then

‖T f · Tg‖L2(R4) =
∥∥∥∑
m,m′

T fm · Tgm′
∥∥∥
L2

�
∑
m,m′

‖T fm · Tgm′‖L2

�
∑
m,m′

2− 1
4 |m−m′|‖ fm‖L2‖gm′ ‖L2

= 2− 1
4 |k′−k+1| ∑

m�0,m′�0

2− 1
4 |m−m′|‖ fm+k−1‖L2‖gm′+k′ ‖L2

� C2− 1
4 |k′−k|‖ f ‖L2(H3)‖g‖L2(H3).

The second part of the proposition follows from the first and the triangle inequality.
��

Decomposing a function f ∈ L2(H3
) as the sum of a function f+ ∈ L2(H3) and

f− ∈ L2(−H3), f = f+ + f−, using that T f (·, ·) = T f+(·, ·) + T f−(·,−·) and the
triangle inequality we can obtain a statement analogous to the previous proposition

for functions on the full one-sheeted hyperboloid H3
: if f , g belong to L2(H3

) and
satisfy for some k, R, R′ ∈ N, R � R′:

supp( f ) ⊆ {2k−R � |y| � 2k+R}, supp(g) ⊆ {|y| � 2k−R′ } ∪ {|y| � 2k+R′ },

then

‖T f · T g‖L2(R4) � C2− 1
4 |R−R′|‖ f ‖

L2(H3
)
‖g‖

L2(H3
)
. (10.2)

Proposition 10.3 An extremizing sequence for the adjoint Fourier restriction inequal-

ity (1.10) onH 3
does not satisfy dichotomy.

Proof Let us argue by contradiction. Let { fn}n be an extremizing sequence such that
{| fn|2}n satisfies condition (iii), dichotomy, in Lemma 9.1. Let ε > 0 be given and
fn,1, fn,2, n0 be as in the conclusion of the dichotomy condition. Then, for n � n0

‖T fn − T fn,1 − T fn,2‖L4 � H4‖ fn − ( fn,1 + fn,2)‖L2 � H4 ε,

therefore

‖T fn‖L4 � H4 ε + ‖T ( fn,1 + fn,2)‖L4 . (10.3)
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Expanding, using Proposition 10.2 (or the comment thereafter) and the support
condition for fn,1 and fn,2 as in (9.1)–(9.4), there exists C < ∞ independent of ε

such that for all n large enough

‖T ( fn,1 + fn,2)‖4L4 = ‖(T ( fn,1 + fn,2))
2‖2L2 = ‖(T fn,1)

2 + 2T fn,1 · T fn,2 + (T fn,2)
2‖2L2

= ‖T fn,1‖4L4 + ‖T fn,2‖4L4 + 2〈(T fn,1)
2, (T fn,2)

2〉
+ 4〈(T fn,1)

2, T fn,1 · T fn,2〉 + 4〈(T fn,2)
2, T fn,1 · T fn,2〉

� ‖T fn,1‖4L4 + ‖T fn,2‖4L4 + ε

� H
4
4‖ fn,1‖42 + H

4
4‖ fn,2‖42 + ε

� H
4
4(α

2 + (1 − α)2) + Cε,

so that using (10.3) and taking n → ∞ we find that for any ε > 0

H
4
4 � H

4
4(α

2 + (1 − α)2) + Cε,

for some constant C < ∞ independent of ε.
We conclude 1 � α2 + (1−α)2. We reach a contradiction since α ∈ (0, 1) and the

numerical inequality α2 + (1 − α)2 < 1 holds. ��
The proof we just gave to discard dichotomy can be seen in the context of the

strict superaditivity condition as proposed by Lions [30, Sect. I.2]; see for instance
the comment at the end of Appendix A in [35].

11 Dyadic Refinements and Discarding Vanishing

In this section we prove a dyadic improvement of the L2 → L4 inequality (1.4) that
will imply that extremizing sequences for T do not satisfy the vanishing condition (ii)
of Lemma 9.1. We start with the following proposition.

Proposition 11.1 There exists a constant C < ∞ with the following property. Let
f ∈ L2(H3) and for k ∈ N let fk(y) = f (y)1{2k�|y|<2k+1}. Then

‖T f ‖L4(R4) � C

(∑
k�0

‖ fk‖3
L2(H3

)

)1/3

. (11.1)

Proof We follow [38, Proof of Prop. 3.4]. We have

‖T f ‖3L4(R4)
= ‖T f · T f · T f ‖L4/3 =

∥∥∥∑
k,l,m

T fk · T fl · T fm
∥∥∥
L4/3

�
∑
k,l,m

‖T fk · T fl · T fm‖L4/3 .
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Fix a triplet (k, l,m). We can assume without loss of generality that |k − l| =
max{|k−l|, |k−m|, |l−m|} so that the use of Hölder’s inequality and Proposition 10.1
give

‖T fk · T fl · T fm‖L4/3 � ‖T fk · T fl‖L2‖T fm‖L4

� 2− 1
4 |k−l|‖ fk‖L2‖ fl‖L2‖ fm‖L2

� 2−|k−l|/122−|k−m|/122−|l−m|/12‖ fk‖L2‖ fl‖L2‖ fm‖L2 .

We conclude that

‖T f ‖3L4(R4)
�
∑
k,l,m

2−|k−l|/122−|k−m|/122−|l−m|/12‖ fk‖L2‖ fl‖L2‖ fm‖L2 .

Applying Hölder’s inequality to the last estimate we obtain

‖T f ‖3L4(R4)
�
∑
k,l,m

2−|k−l|/122−|k−m|/122−|l−m|/12‖ fk‖3L2 �
∑
k

‖ fk‖3L2 .

��
As an application we have the following corollary.

Corollary 11.2 There exists a constant C < ∞ with the following property. Let f ∈
L2(H3) and for k ∈ N let fk(y) = f (y)1{2k�|y|<2k+1}. Then

‖T f ‖L4(R4) � C sup
k∈N

‖ fk‖1/3L2(H3)
‖ f ‖2/3

L2(H3)
. (11.2)

Proof From Proposition 11.1 we obtain

‖T f ‖L4(R4) � C
(∑
k�0

‖ fk‖3L2(H3)

)1/3 = C
(∑
k�0

‖ fk‖L2(H3) · ‖ fk‖2L2(H3)

)1/3

� C sup
k∈N

‖ fk‖1/3L2(H3)

(∑
k�0

‖ fk‖2L2(H3)

)1/3

= C sup
k∈N

‖ fk‖1/3L2(H3)
‖ f ‖2/3

L2(H3)
.

��
The same previous argument and (10.2) give

‖T f ‖L4(R4) � sup
k∈N

‖ fk‖1/3
L2(H3

)
‖ f ‖2/3

L2(H3
)
, (11.3)

and thus it is immediate that for an extremizing sequence for T the vanishing alternative
does not hold.



Journal of Fourier Analysis and Applications (2024) 30 :44 Page 55 of 76 44

Proposition 11.3 Extremizing sequences for the adjoint Fourier restriction inequality

(1.10) on H 3
do not satisfy vanishing.

12 Convergence to the Cone

The content of this section is important in the study of the compactness alternative of
Lemma 9.1, in the case in which, in addition, the extremizing sequences concentrate
at infinity.

Formally, we can write �3 = H3
0, σc = μ0 and Tc = T0. It is natural then to study

relationships between the adjoint Fourier restriction operator on the cone (�3, σc) and
on each member of the family {(H3

s , μs)}s>0, in the limit s → 0+, and this is the
content of this section (see also [29, Lemma 2.9] for related results for the case of the
two-sheeted hyperboloid).

Note that if 0 � t � s and |y| � s, then the inequality
√|y|2 − s2 �

√|y|2 − t2

implies that for f ∈ L2(μs)

‖ f 1{|y|�s}‖L2(σc)
� ‖ f 1{|y|�s}‖L2(μt )

� ‖ f ‖L2(μs )
,

and for f ∈ L2(μs), extended to be zero in the region where |y| � s,

lim
t→0+ ‖ f ‖L2(μt )

= ‖ f ‖L2(σc)
.

Throughout this section we will commonly encounter the situation of having f ∈
L2(H3

s ) and regard it as a function in L
2(H3

t ), 0 � t � s, via the orthogonal projection
toR3 ×{0}. In this case, it will be understood that f is extended by zero in the region
where8 |y| � s.

Let us consider the following situation. Let a > 0, {sn}n ⊂ R satisfying sn → 0 as
n → ∞. Let { fn}n be a family of functions with fn ∈ L2(H3

sn ), supportedwhere |y| �
a and satisfying supn ‖ fn‖L2(μsn ) < ∞. As already noted, ‖ fn‖L2(μsn ) � ‖ fn‖L2(σc)

,

therefore { fn1{|y|�sn}}n is a bounded sequence in L2(σc). We can assume, possibly
after passing to a subsequence, that fn⇀ f in L2(σc). The aim of this section is to
compare ‖ f σc ∗ f σc‖2 and the limiting behavior of ‖ fnμsn ∗ fnμsn‖2, as n → ∞, in
the case when f �= 0. We have some preliminary results.

Lemma 12.1 Let a > 0 and f ∈ L2(H3
s ) for all small s > 0 and supported where

|y| � a, then

‖Ts f − Tc f ‖L4(R4) → 0 as s → 0+.

Proof From the uniform in s bound ‖Ts‖ = ‖T ‖ and density arguments, it suffices to
consider the case when f ∈ C∞

c (R3). Let b ∈ (a,∞) be such that the support of f
is contained in the region where a � |y| � b.

8 Alternatively, we can think of f as a function living in L2(R3, w dx), for different weights w.
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By Plancherel’s theorem, to show Ts f → T f in L4(R4), as s → 0+, it suffices
to show that f μs ∗ f μs → f σc ∗ f σc and f μs ∗ f σc → f σc ∗ f σc in L2(R4), as
s → 0+.

First, we claim that there is pointwise convergence f μs ∗ f μs(ξ, τ ) → f σc ∗
f σc(ξ, τ ) and f μs ∗ f σc(ξ, τ ) → f σc ∗ f σc(ξ, τ ), a.e. (ξ, τ ) ∈ R4, as s → 0+.
Indeed, as in the proof of the explicit formula for μs ∗ μs in Sect. 3, we can write
integral formulas for f μs ∗ f μs , f μs ∗ f σc and f σc ∗ f σc for any s � 0 as in (3.10)–
(3.12). Given that R̃s(ξ) and Q̃s(ξ) are explicit, we can spell out (3.10) and (3.11)
from where it becomes clear that there is a.e. pointwise convergence to f σc ∗ f σc
as s → 0+. Note that for each fixed ξ �= 0, 1R̃s (ξ)(u, v) → 1{|u|�|ξ |�v}(u, v) and
1Q̃s (ξ)(u, v) → 1{|u|�|ξ |�v}(u, v) a.e. pointwise as s → 0+.

By the Dominated Convergence Theorem, to finish it suffices to show that there
exists F ∈ L2(R4) such that | f μs ∗ f μs(ξ, τ )| � F(ξ, τ ) and | f μs ∗ f σc(ξ, τ )| �
F(ξ, τ ), for a.e. (ξ, τ ) ∈ R4. We use the inequalities

| f μs ∗ f μs(ξ, τ )|2 � ‖ f ‖4L∞
(
μs ∗ μs

)2
(ξ, τ ),

| f μs ∗ f σc(ξ, τ )|2 � ‖ f ‖4L∞
(
μs ∗ σc

)2
(ξ, τ ).

On the supports of f μs ∗ f μs and f μs ∗ f σc, the functions μs ∗μs and μs ∗σc are
uniformly bounded in s ∈ (0, 1), as can be seen from Lemma 3.2 and formula (3.9).
It follows that we can take

F(ξ, τ ) = 4π‖ f ‖2L∞
(
1 + a−1)1{a�τ�2b}1{|ξ |�2b}(ξ, τ ).

��
Remark 12.2 Another possible way to prove Lemma 12.1, which does not rely on the
exponent being an even integer, can be to follow the outline in the proof of [29, Lemma
2.9 (d)] which makes use of the analysis of oscillatory integrals through the method of
stationary phase. More in detail, we could proceed as follows. As in the proof above,
we can restrict attention to the case when f ∈ C∞

c (R3), supported in the region where
a � |y| � b, for some b < ∞.

We first consider the pointwise convergence Ts f (x, t) → Tc f (x, t), as s → 0 for
a.e. (x, t) ∈ R3 × R. Recall the definitions of Ts f (x, t) and Tc f (x, t) in (1.13) and
(1.14) and note that there is pointwise convergence of their integrands, that is

eix ·yeit
√

|y|2−s2 f (y)
1{|y|>s}√|y|2 − s2

→ eix ·yeit |y| f (y)
1{|y|>0}

|y| , as s → 0,

for all (x, t) ∈ R4, y ∈ R3. On the other hand, as the support of f is contained in the
region where |y| � a, for all s ∈ (0, a/2) we have

∣∣∣∣eix ·yeit
√

|y|2−s2 f (y)
1{|y|>s}√|y|2 − s2

∣∣∣∣ � | f (y)| 1√|a|2 − s2
� 2√

3a
| f (y)|,
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so that as | f | ∈ L2(R3), we can use the dominated convergence theorem to conclude
that Ts f → Tc f pointwise inR4.

Let us take M ∈ [1,∞) and s � a/2. We have the identity

|x |2 Ts f (x, t) = −
∫

R3

eix ·y�y

(
eit

√
|y|2−s2 f (y)√|y|2 − s2

)
dy,

as can be seen by integration by parts, so that if |t | � M , we obtain

|Ts f (x, t)| �a,b
1 + M2

1 + |x |2 ‖ f ‖H2(R3) ∈ L4(R3 × [−M, M]),

where H2(R3) denotes the inhomogeneous Sobolev space with norm ‖ f ‖2
H2(R3)

=∫
R3

| f̂ (x)|2(1 + |x |2)2 dx . By the dominated convergence theorem we conclude that

Ts f → Tc f in L4(R3 × [−M, M]), as s → 0+, for each M < ∞.
To treat the region where |t | � M , recall the dispersive estimates

‖Tsg(·, t)‖L∞
x (R3) �a,b

1

t3/2
‖g‖L1(R3) and ‖Tcg(·, t)‖L2

x (R
3) �a,b

1

t
‖g‖L1(R3),

valid for any g ∈ L1(R3) supported where a � |y| � b. They can be proved
using the method of stationary phase or by studying the fundamental solutions of the
respective underlying classical partial differential equation as mentioned in the Intro-
duction. Sincewe also have the L2-norm conservation ‖Tsg‖L2

x (R
3) = ‖Tcg‖L2

x (R
3) =

‖g‖L2(R3) we obtain the interpolated estimates

‖Tsg‖L4
x (R

3) �a,b
1

t3/4
‖g‖L4/3(R3) and ‖Tcg‖L4

x (R
3) �a,b

1

t1/2
‖g‖L4/3(R3).

In this way

‖Ts f − Tc f ‖L4
x,t (|t |�M)

� ‖Ts f ‖L4
x,t (|t |�M)

+ ‖Tc f ‖L4
x,t (|t |�M)

�a,b
1

M1/4 ‖ f ‖L4/3(R3).

The previous estimate in the region {(x, t) ∈ R3 × R : |t | � M} and the L4

convergence in the region R3 × [−M, M], valid for any M ∈ [1,∞), imply the
desired result.

Recall the Fourier multiplier notation and the Ḣ1/2(R3) homogeneous Sobolev
norm and inner product from (5.1) and (5.2). We have the following lemma.

Lemma 12.3 Let a > 0, then for each fixed t ∈ R

lim
s→0

sup
u∈Ḣ1/2(R3)

supp(û)⊆{ξ∈R3:|ξ |�a}

‖eit
√−�−s2u − eit

√−�u‖Ḣ1/2(R3)

‖u‖Ḣ1/2(R3)

= 0.
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Proof For any s � 0 we have ‖eit
√−�−s2u‖Ḣ1/2(R3) = ‖u‖Ḣ1/2 . Now

eit
√

|y|2−s2 − eit |y| =
s∫

0

d

dr
eit

√
|y|2−r2 dr = −i t

s∫
0

eit
√

|y|2−r2 r√|y|2 − r2
dr .

Then,

‖(eit
√−�−s2 − eit

√−�)u‖Ḣ1/2(R3) � |t |
s∫

0

∥∥∥eit√−�−r2 r√−� − r2
u
∥∥∥
Ḣ1/2(R4)

dr

= |t |
s∫

0

∥∥∥ r√−� − r2
u
∥∥∥
Ḣ1/2(R3)

dr .

If 0 � s < a and supp(û) ⊆ {|ξ | � a}, then
∥∥∥ r√−� − r2

u
∥∥∥
Ḣ1/2(R3)

� r√
a2 − r2

‖u‖Ḣ1/2(R3),

so that

‖(eit
√−�−s2 − e−i t

√−�)u‖Ḣ1/2(R3) � |t |(a −
√
a2 − s2)‖u‖Ḣ1/2(R3),

and the conclusion follows. ��
We now address the pointwise convergence of Tsn fn to Tc f .

Lemma 12.4 Let a > 0 and {sn}n be a sequence of positive real numbers converg-
ing to zero. Let f ∈ L2(�3) and { fn}n be a sequence satisfying fn ∈ L2(H3

sn ),
supn ‖ fn‖L2(μsn ) < ∞ and supported where |y| � a, for all n. Suppose that fn⇀ f

in L2(�3), as n → ∞. Then, as n → ∞

Tsn fn(x, t) → Tc f (x, t) for a.e. (x, t) ∈ R4.

Proof Following the argument in the proof of Proposition 5.1, we start by defining vn
and v by their Fourier transforms

v̂n(y) = fn(y)√|y|2 − s2n
, v̂(y) = f (y)

|y| .

Since supn ‖ fn‖L2(�3) � supn ‖ fn‖L2(μsn ) < ∞ and the functions are supported
where |y| � a > 0 we see that

sup
n

‖vn‖2Ḣ1/2(R3)
= sup

n

∫

R3

|v̂n(y)|2|y| dy � sup
n

a√
a2 − s2n

‖ fn‖2L2(μsn )
< ∞,
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and

sup
n

‖vn‖2L2(R3)
= (2π)−3 sup

n

∫

R3

|v̂n(y)|2 dy � (2π)−3 sup
n

1√
a2 − s2n

‖ fn‖2L2(μsn )
< ∞.

If ϕ ∈ Ḣ1/2(R3), then ϕ̂(·)| · | ∈ L2(�3), from where we can deduce that vn⇀v

in Ḣ1/2(R3), as n → ∞. The operator Tsn applied to fn equals (2π)3eit
√−�−s2n vn .

Fix t ∈ R. From Lemma 12.3 we know ‖(eit
√−�−s2n − eit

√−�)1{√−��a}‖ → 0 as

n → ∞, the norm being as operators on Ḣ1/2(R3). This, added to the continuity of
eit

√−� in Ḣ1/2(R3) implies

eit
√−�−s2n vn⇀eit

√−�v,

weakly in Ḣ1/2(R3), as n → ∞. Then, by the Rellich–Kondrashov Theorem, for any
R > 0

eit
√−�−s2n vn → eit

√−�v,

strongly in L2(B(0, R)), as n → ∞. Denote by

Fn(t) :=
∫

|x |<R

∣∣∣∣eit
√−�−s2n vn − eit

√−�v

∣∣∣∣
2

dx = ‖eit
√−�−s2n vn − eit

√−�v‖2L2(B(0,R))
.

Since we have ‖v̂n‖L2(R3) �a ‖ fn‖L2(μsn ) and ‖v̂‖L2(R3) �a ‖ f ‖L2(σc)
, we obtain

Fn(t) � ‖eit
√−�−s2n vn − eit

√−�v‖2L2(R3)
� (‖vn‖L2(R3) + ‖v‖L2(R3))

2

� ‖ fn‖2L2(μs )
+ ‖ f ‖2L2(σc)

.

We can now finish exactly as in the proof of Proposition 5.1 and conclude that there
exists a subsequence {nk}k such that

Tsnk fnk − Tc f → 0 a.e. inR4.

��
Finally, we prove that the existence of an extremizing sequence that concentrates

at infinity with a nonzero weak limit, after appropriate rescaling, implies that the
operator norm of T is upper bounded by that of Tc (which in the end we will pair with
Proposition 4.1 to rule out this scenario).

Lemma 12.5 Let {sn}n be a sequence of positive real numbers converging to zero. Let
f ∈ L2(�3) be a nonzero function and { fn}n be a sequence satisfying fn ∈ L2(H3

sn ),
for all n. Suppose that:
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(i) ‖ fn‖L2(μsn ) = 1,
(ii) ‖Tsn fn‖L4 → ‖T ‖ (= ‖T1‖),
(iii) fn⇀ f �= 0 in L2(�3),

If there exists a > 0 such that

(iv) supp( f ), supp( fn) ⊆ {y ∈ R3 : |y| � a}, for all n,
then

‖T ‖ � ‖Tc‖.

If condition (iv) is relaxed to

(v) supn∈N ‖ fn1{|y|�a}‖L2(μsn ) � ε, for some ε > 0,

then

‖T ‖2‖ f 1{|y|�a}‖2L2(σc)
� ‖Tc‖2‖ f 1{|y|�a}‖2L2(σc)

+ Cε,

for someuniversal constantC. In particular, if we have supn∈N ‖ fn1{|y|�a}‖L2(μsn ) →
0 as a → 0+, then ‖T ‖ � ‖Tc‖.

An analog statement applies if we change T and Tc by T and T c, respectively, the
proof being identical.

Proof We argue as in [20]. By the weak convergence condition (iii),

‖ fn − f ‖2L2(σc)
= ‖ fn‖2L2(σc)

− ‖ f ‖2L2(σc)
+ o(1). (12.1)

Nowconsider that (iv) holds. By (i) and (iv), ‖ fn‖2L2(σc)
−‖ fn‖2L2(μsn )

→ 0. Indeed,

0 � ‖ fn‖2L2(μsn )
− ‖ fn‖2L2(σc)

=
∫

|y|�a

| fn(y)|2
∣∣∣∣ 1√|y|2 − s2n

− 1

|y|
∣∣∣∣ dy

� ‖ fn‖2L2(μsn )

∥∥∥∥ |y| −√|y|2 − s2n
|y| 1{|y|�a}

∥∥∥∥
L∞
y (R3)

=
(
1 −

√
1 − s2na

−2
)

→ 0,

(12.2)

as n → ∞. Then, (12.1) implies

‖ fn − f ‖2L2(σc)
= ‖ fn‖2L2(μsn )

− ‖ f ‖2L2(σc)
+ o(1). (12.3)

Because of conditions (iii) and (iv) andLemma12.4, Tsn fn → Tc f a.e. pointwise in
R4, as n → ∞, and we can apply the Brézis–Lieb lemma to the sequence {Tsn fn}n ⊂
L4(R4) to obtain

‖Tsn fn − Tc f ‖4L4(R4)
= ‖Tsn fn‖4L4(R4)

− ‖Tc f ‖4L4(R4)
+ o(1).
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Because by scaling the norm of the operator Tsn is independent of n (see Sect. 14)
and by (ii) ‖Tsn fn‖L4(R4) → ‖T ‖ as n → ∞, we obtain

‖Tsn‖2 = ‖T ‖2 =
‖Tsn fn‖2L4(R4)

‖ fn‖2L2(μsn )

+ o(1)

= (‖Tsn fn − Tc f ‖4L4 + ‖Tc f ‖4L4 + o(1))1/2

‖ fn − f ‖2
L2(σc)

+ ‖ f ‖2
L2(σc)

+ o(1)
+ o(1)

�
‖Tsn fn − Tc f ‖2L4 + ‖Tc f ‖2L4 + o(1)

‖ fn − f ‖2
L2(σc)

+ ‖ f ‖2
L2(σc)

+ o(1)
+ o(1)

�
‖Tsn fn − Tsn f ‖2L4 + ‖Tc f ‖2L4 + o(1)

‖ fn − f ‖2
L2(σc)

+ ‖ f ‖2
L2(σc)

+ o(1)
+ o(1), (12.4)

where in the last inequality we used the triangle inequality and that ‖Tsn f −Tc f ‖L4 →
0 as n → ∞, from Lemma 12.1. Then

‖Tsn‖2 �
‖Tsn‖2‖ fn − f ‖2

L2(μsn )
+ ‖Tc f ‖2L4 + o(1)

‖ fn − f ‖2
L2(σc)

+ ‖ f ‖2
L2(σc)

+ o(1)
+ o(1),

and hence

‖Tsn‖2(‖ fn − f ‖2L2(σc)
+ ‖ f ‖2L2(σc)

+ o(1)) � ‖Tsn‖2‖ fn − f ‖2L2(μsn )
+ ‖Tc f ‖2L4 + o(1),

which is equivalent to

‖Tsn‖2‖ f ‖2L2(σc)
� ‖Tc f ‖2L4 + ‖Tsn‖2(‖ fn − f ‖2L2(μsn )

− ‖ fn − f ‖2L2(σc)
) + o(1).

Arguing as in (12.2) we obtain ‖ fn − f ‖2
L2(μsn )

− ‖ fn − f ‖2
L2(σc)

→ 0, and

therefore,

‖T ‖ = ‖Tsn‖ � ‖Tc f ‖L4

‖ f ‖L2(σc)

� ‖Tc‖.

Finally, if we relax the support condition (iv) to the ε-small norm condition (v), it
will be enough if in (12.4) we use

‖Tsn fn‖2L4(R4)

‖ fn‖2L2(μsn )

�
‖Tsn ( fn1{|y|�a})‖2L4(R4)

‖ fn1{|y|�a}‖2L2(μsn )

+ Cε,

where C < ∞ is independent of n and a, together with fn1{|y|�a}⇀ f 1{|y|�a} in
L2(�3) and Tsn ( fn1{|y|�a}) → Tc( f 1{|y|�a}) a.e. in R4, as n → ∞, the latter
property being a consequence of the former and Lemma 12.4. ��
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13 Proof of Theorem 1.3

In previous Sects. 10 and 11, we proved that if { fn}n is an extremizing sequence for T ,
then subsequences of {| fn|2}n can not satisfy vanishing nor dichotomy of Lemma 9.1,
which as we saw, were a consequence of bilinear estimates for T . In this section we
prove that, as a consequence of the compactness alternative and Lemma 12.5 of the
previous section, extremizing sequences posses convergent subsequences and, as a
result, extremizers exist.

Proof of Theorem 1.3 Let { fn}n ⊂ L2(H3
) be an L2 normalized complex valued

extremizing sequence for T . After passing to a subsequence if necessarywe can assume
that alternative (i) in Lemma 9.1 holds for {| fn|2}n , that is, there exists {�n}n ⊂ N
with the property that for all ε > 0 there exists Rε < ∞ such that for all R � Rε and
n ∈ N

∫

{2�n−R�|y|�2�n+R}
| fn(y)|2 dμ̄(y) � 1 − ε. (13.1)

If there exists a subsequence {nk}k ⊂ N such that {�nk }k is bounded above, then we
can apply the same method provided in the proof of Proposition 5.2 for the upper half
of the hyperboloid,H3, to conclude that there exists a subsequence { fnk }k that satisfies
the conclusion of the theorem with all Lnk ’s equal to the identity matrix. Therefore,
in what follows we will assume that �n → ∞ as n → ∞.

Passing to a subsequence if necessary we can assume then that { fn}n satisfies the
following: ‖ fn‖L2 = 1, ‖T fn‖L4 → H4 and there exists a sequence {�n}n∈N ⊂ N
such that �n → ∞ as n → ∞ and for any ε > 0 there exists Rε < ∞ such that for all
R � Rε and all n ∈ N equation (13.1) holds. Therefore, with Rε as before, we have
that for all R � Rε there exists Nn ∈ [�n − R, �n + R] ∩ N such that for all n ∈ N

∫

{2Nn�|y|�2Nn+1}
| fn(y)|2 dμ̄(y) � 1 − ε

2R
.

Denote PN the dyadic cut off at scale 2N , that is, PN f (y) := f (y)1{2N�|y|<2N+1}.
Using the continuity of T and the triangle inequality we obtain

‖T (PNn fn)‖L4 � ‖T fn‖L4 − H4‖ fn − PNn fn‖L2(μ̄) � ‖T fn‖L4 − H4

(
1 − 1 − ε

2R

)1/2

= H4 − H4

(
1 − 1 − ε

2R

)1/2 + on(1).

Choosing ε = ε0 close to 0 and R = Rε0 + 1, we obtain a sequence {Nn}n ⊂ N,
with |Nn − �n| � Rε0 + 1, so that Nn → ∞ as n → ∞, and a constant c > 0 such
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that for all n large enough9

‖PNn fn‖L2(μ̄) > c, ‖T (PNn fn)‖L4 > c.

We rescale fn defining gn by gn(y) = 2Nn f (2Nn y). Letting sn = 2−Nn we have

sn → 0 as n → ∞, gn ∈ L2(H3
sn ),

‖gn‖L2(μ̄sn ) = ‖ fn‖L2(μ̄) = 1,

‖T sn gn‖L4 = ‖T fn‖L4 → H4 as n → ∞,

‖P1gn‖L2(μ̄sn ) = ‖PNn fn‖L2(μ̄) > c and (13.2)

‖T sn (P1gn)‖L4 = ‖T (PNn fn)‖L4 > c, (13.3)

as obtained by simple scaling (see Sect. 14). Moreover, from (13.1) for any small
ε > 0, R > 2Rε and n ∈ N

∫

{2−R�|y|�2R}
|gn(y)|2 dμ̄sn (y) � 1 − ε, (13.4)

so that the gn’s are “localized at scale 1”. Using Lemma 8.1 applied to T sn and P1gn ,
which is possible given (13.2) and (13.3), we obtain that for all n ∈ N there exist caps

Cn ⊂ H3
sn , which we may consider all to be contained in the upper half,H3

sn , possibly
after passing to a subsequence,10 Cn = [1, 2] × Cn ⊂ H3

sn , for some spherical caps
Cn ⊆ S

2, such that

∫

Cn
|gn(y)| dμ̄sn (y) =

∫

Cn
|P1gn(y)| dμ̄sn (y) � cμ̄sn (Cn)1/2‖P1gn‖L2(μ̄sn ) � μ̄sn (Cn)1/2,

as a consequence of (8.6). Equivalently

∫

2NnCn

| fn(y)| dμ̄(y) � μ̄(2NnCn)1/2. (13.5)

Let α = lim supn→∞ μ̄sn (Cn). Two cases arise.
Case 1: α > 0. Passing to a subsequence if necessary, we can assume that there

exists a constant c > 0 such that for all n
∫
Cn

|gn(y)| dμ̄sn (y) � c > 0.

9 By redefining the sequence { fn}n , if necessary, we will assume that the property holds for all n � 1.
10 Otherwise we reflect the fn ’s and gn ’s with respect to the origin, as necessary, by considering the
sequences {L∗ fn}n and {L∗gn}n where L ∈ L is the reflection map L(x, t) = (−x, −t)
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We can view gn as a function on the double cone via the usual identification using
the orthogonal projection ontoR3, where we extend it to be zero in the region where
|y| � sn . Since ‖gn‖L2(σ̄c)

� ‖gn‖L2(μ̄sn ) = 1 and

0 < c <

∫
Cn

|gn(y)| dμ̄sn (y) �
∫
Cn

|gn(y)| dσ̄c(y), (13.6)

for all n large enough (as a consequence of (13.4)), there is weak convergence of
{|gn|}n in L2(σ̄c) after the possible extraction of a subsequence, |gn|⇀g, for some
g ∈ L2(σ̄c) which satisfies g �= 0 by (13.6). Inequality (13.4) implies that

lim
a→0+ sup

n∈N
‖gn1{|y|�a}‖L2(μ̄sn ) = 0.

Because‖T sn (gn)‖L4 � ‖T sn (|gn|)‖L4 , it is then also the case that‖T sn (|gn|)‖L4 →
H4, so that we can use part (v) of Lemma 12.5 applied to {|gn|}n to conclude

‖T ‖ � ‖T c‖,

which is in contradiction with Proposition 4.3. Therefore, this case does not arise.
Case 2: α = 0. Let {γn}n ⊂ [0, π ] and {Rn}n ⊂ SO(3) be such that

R−1
n (Cn) = {(rω,

√
r2 − s2n ) : 1 � r � 2,

ω = (cosϕ, cos θ sin ϕ, sin θ sin ϕ), θ ∈ [0, 2π ], ϕ ∈ [0, γn]}.

Theconditionα = 0 impliesγn → 0 asn → ∞. Letβ = lim supn→∞ μ̄(2NnCn) =
lim supn→∞ 22Nn μ̄sn (Cn). Two subcases arise.

Subcase 2a: β < ∞. This implies that the sequence {μ̄(2NnCn)}n is bounded. We
may assume that the angles γn are less thatπ/2 as {γn}n tends to zero. FromLemma2.3
with s = 1, there exists {tn}n ⊂ [0, 1) such that the caps {L−tn R−1

n (2NnCn) : n ∈ N}
are contained in a fixed bounded ball of R4. It therefore follows from (13.5) and

the Cauchy–Schwarz inequality that {(RnLtn )∗ fn}n ⊂ L2(H3
) is an extremizing

sequence with L2 norm uniformly bounded below by a constant c > 0 in a fixed
ball. We can then conclude the precompactness modulo characters of the sequence
{(RnLtn )∗ fn}n using the argument in the proof of Proposition 5.2.

Subcase 2b: β = ∞. From (2.9) in Lemma 2.3 with s = 1, after passing to a
subsequence if necessary, limn→∞ 22Nn sin2(γn) = ∞. Set tn = cos γn , so that tn → 1

as n → ∞. From Lemma 2.4 with s = sn , the set C̃n := L−1
tn R−1

n (Cn) ⊂ H3
sn(1−t2n )−1/2

satisfies, for all n large enough for which 22Nn sin2(γn) � 8 and γn � π/3,

μ̄ sn√
1−t2n

(C̃n) � π

2
and C̃n ⊆ [ 7

16 ,
33
16 ] × S

2.
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Set an = sn(1− t2n )−1/2 = (2Nn sin γn)
−1 → 0, as n → ∞. Let f̃n = (RnLtn )∗ fn

so that { f̃n}n ⊂ L2(H3
) is also an L2-normalized extremizing sequence which satis-

fies, for some constant c > 0,

∫

a−1
n C̃n

| f̃n(y)| dμ̄(y) � cμ̄(a−1
n C̃n)1/2,

∫

a−1
n C̃n

| f̃n(y)|2 dμ̄(y) � c2,

and a−1
n C̃n ⊆ [ 7

16an
, 33
16an

] × S

2.

Define the rescale g̃n(·) := a−1
n f̃n(a−1

n ·), so that for each n we have g̃n ∈ L2(H3
an ),‖g̃n‖L2(H3

an )
= 1 and there is a constant c′ > 0 such that

∫

C̃n

|g̃n(y)| dμ̄an (y) � cμ̄an (C̃n)1/2 > c′ > 0.

We are almost in the same situation as in Case 1, but we need the analog of (13.4)
for the sequence {g̃n}n . After passing to a subsequence if necessary, { f̃n}n satisfies the
compactness alternative in Lemma 9.1. Denoting {�̃n}n the corresponding sequence
associated to { f̃n}n as in (13.1) we then necessarily have that {�̃n − log2(a

−1
n )}n is

bounded. This implies the desired analog of (13.4) for {g̃n}n . Therefore the argument
in Case 1 applies showing that this subcase does not arise.

As a result, only Subcase 2a of Case 2 is possible, proving the theorem. ��

14 Scaling

Here we record scaling properties of the family of operators {Ts}s>0. Recall from
Sect. 3 that for s > 0, H3

s = {(y,√|y|2 − s2) : y ∈ R3}, equipped with the measure
μs with density dμs(y, t) = 1{|y|>s}δ(t −√|y|2 − s2) dy dt√

|y|2−s2
.

The operator Ts , defined on S(R3), is given by

Ts f (x, t) = ̂f μs(−x,−t) =
∫

{y∈R3,|y|�s}
eix ·yeit

√
|y|2−s2 f (y)

dy√|y|2 − s2
.

We want to study the scaling of the quantity Hp,s defined by

Hp,s := sup
0 �= f ∈L2(H3

s )

‖Ts f ‖L p(R4)

‖ f ‖L2(H3
s )

.
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Changing variables y � sy in the expression defining T f (x, t) = T1 f (x, t) we
obtain

T f (x, t) =
∫

{y∈R3,|y|�1}
eix ·yeit

√
|y|2−1 f (y)

dy√|y|2 − 1

= s−1
∫

{y∈R3,|y|�s}
eis

−1x ·yeis−1t
√

|y|2−s2s−1 f (s−1y)
dy√|y|2 − s2

,

from where sT f (sx, st) = Ts(s−1 f (s−1·))(x, t) and it follows that

s1−4/p‖T f ‖L p(R4) = ‖Tss−1 f (s−1·)‖L p(R4).

On the other hand

∫

{y∈R3, |y|�1}
| f (y)|q dy√|y|2 − 1

=
∫

{y∈R3, |y|�s}
|s−2/q f (s−1y)|q dy√|y|2 − s2

,

that is ‖ f ‖Lq (μ) = ‖s−2/q f (s−1·)‖Lq (μs ). Thus

s1−4/p‖T f ‖L p(R4)‖ f ‖−1
L2(μ)

= ‖Tss−1 f (s−1·)‖L p(R4)‖s−1 f (s−1·)‖−1
L2(μs )

,

and it follows that for all s > 0

Hp,s = s1−4/pHp.

In particular, if p = 4,

H4,s = H4,

for all s > 0.

Appendix A: Computation of a Limit

Let

I (a) = 16π3

∞∫
0

e−aτ
(
τ 2
√

τ 2 + 4 − 2

3
(τ 2 + 4)

√
τ 2 + 1 + 8

3

+ 2τ log(τ +
√

τ 2 + 1)
)
dτ,
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Fig. 1 Graph of the ratio I (a)/I I (a) and the constant 2π for 0 < a < 0.25, illustrating the content of
Lemma A.1

and

I I (a) = 16π2
( ∞∫
0

e−aτ
√

τ 2 + 1 dτ

)2

.

The ratio I (a)/I I (a) appeared in the proof of Proposition 4.1 while establishing
that the best constant for the hyperboloidH3 is strictly greater than the best constant for
the cone �3 in their respective L2 → L4(R4) adjoint Fourier restriction inequalities.
The purpose of this appendix is to prove the following lemma (Fig. 1).

Lemma A.1

lim
a→0+

I (a)

I I (a)
= 2π, lim

a→0+
d

da

I (a)

I I (a)
= 0, lim

a→0+
d2

da2
I (a)

I I (a)
= 0,

and

lim
a→0+

d3

da3
I (a)

I I (a)
= 8π.

Therefore there exists a0 > 0 such that

I (a)

I I (a)
> 2π,

for all 0 < a < a0.

Throughout this section we use the asymptotic notation oa( f (a)) and Oa( f (a))

as a → 0+ in the usual way, namely g(a) = oa( f (a)) if g(a)/ f (a) → 0 as a →
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0+, and g(a) = Oa( f (a)) if there exists a constant C , independent of a, such that
|g(a)| � C | f (a)| for all a > 0 small enough.

Changing variable u = aτ we obtain

I (a) = 16π3

a4

( ∞∫
0

e−u
(
u2
√
u2 + 4a2 − 2

3
(u2 + 4a2)

√
u2 + a2

+ 2a2u log(u +
√
u2 + a2)

)
dτ + 8a3

3
− 2a2 log(a)

)
,

and

I I (a) = 16π2

a4

( ∞∫
0

e−u
√
u2 + a2 du

)2

.

Using the Dominated Convergence Theorem it is direct to check that

lim
a→0+ a4 I (a) = 32π3 and lim

a→0+ a4 I I (a) = 16π2,

so that

lim
a→0+

I (a)

I I (a)
= 2π.

To address the limit of the derivatives of the ratio I (a)/I I (a) it will be convenient
to introduce a rescaling. Let

N (a) := a4/3 I (a1/3) = 16π3
( ∞∫
0

e−u
(
u2
√
u2 + 4a2/3 − 2

3
(u2 + 4a2/3)

√
u2 + a2/3

+ 2a2/3u log(u +
√
u2 + a2/3)

)
dτ + 8a

3
− 2

3
a2/3 log(a)

)
,

and

D(a) := a4/3 I I (a1/3) = 16π2
( ∞∫
0

e−u
√
u2 + a2/3 du

)2

.

As we already know, and can readily check, N (a) → 32π3, D(a) → 16π2

and N (a)/D(a) → 2π as a → 0+. The remaining properties of the derivatives
of I (a)/I I (a) in Lemma A.1 will follow if we show that d

da (N (a)/D(a)) → 4π
3 as

a → 0+.
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In what follows we write (·)′ as a short for the derivative with respect to a. Given
that both N ′(a) and D′(a) diverge to +∞ as a → 0+ it will be convenient to write
the derivative of N (a)/D(a) in the following way

d

da

N (a)

D(a)
= 16π2N ′(a) − 32π3D′(a)

D(a)2

+ (D(a) − 16π2) N ′(a) − (N (a) − 32π3) D′(a)

D(a)2
.

(A.1)

We have the following lemma.

Lemma A.2 (i) lim
a→0+

d

da

N (a)

D(a)
= 4π

3
.

(ii) As a → 0+,

N ′(a) = Oa

( log a
a1/3

)
and D′(a) = Oa

( log a
a1/3

)
.

(iii) lim
a→0+(N (a) − 32π3) D′(a) = 0 and lim

a→0+(D(a) − 16π2) N ′(a) = 0.

Proof In the course of the proof of this lemma we will make repeated use of the
asymptotic behavior of some integrals as contained in Lemma A.3 below. We start
with property (ii). For a > 0 the derivative of N is as follows,

N ′(a) = 16π3
( ∞∫
0

e−u
(
u2

4

3a1/3
√
u2 + 4a2/3

− 16

9a1/3

√
u2 + a2/3

− 2

9
(u2 + 4a2/3)

1

a1/3
√
u2 + a2/3

+ 4

3a1/3
u log(u +

√
u2 + a2/3)

+ 2

3
a1/3u

1

(u + √
u2 + a2/3)

√
u2 + a2/3

)
du + 8

3
− 4

9a1/3
log(a) − 2

3a1/3

)

= 16π3
(
8

3
− 4

3a1/3
− 4

9a1/3
log(a) + 4

3a1/3

∞∫
0

e−uu log(u +
√
u2 + a2/3) du

)

+ oa(1)

= Oa

( log a
a1/3

)
, (A.2)

where we used (A.5), (A.8), (A.7), (A.10) and (A.11). The derivative of the function
D is as follows

D′(a) = 32π2

3

∞∫
0

e−u
√
u2 + a2/3 du ·

∞∫
0

e−u 1

a1/3
√
u2 + a2/3

du,
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so that (A.4) and (A.5) imply

D′(a) = Oa

( 1

a1/3

)
Oa(log a) = Oa

( log a
a1/3

)
,

and more explicitly using (A.13), as we will need later,

D′(a) = 32π2

3a1/3

( ∞∫
0

e−u log(u +
√
u2 + a2/3) du − 1

3
log a

)
+ oa(1). (A.3)

We now turn to the proof of part (iii). Using that
∞∫
0
e−uu3 du = 6 we can write

N (a) − 32π3 = 16π3
( ∞∫
0

e−u
(
u2(
√
u2 + 4a2/3 − u) − 2

3
u2(
√
u2 + a2/3 − u)

− 8

3
a2/3

√
u2 + a2/3 + 2a2/3u log(u +

√
u2 + a2/3)

)
du

+ 8a

3
− 2

3
a2/3 log(a)

)

= 16π3a1/3
( ∞∫
0

e−u
(
u2

4a1/3√
u2 + 4a2/3 + u

− 2

3
u2

a1/3√
u2 + a2/3 + u

− 8

3
a1/3

√
u2 + a2/3 + 2a2/3u log(u +

√
u2 + a2/3)

)
du

+ 8a2/3

3
− 2

3
a1/3 log(a)

)

= Oa(a
2/3 log a).

Then

(N (a) − 32π3) · D′(a) = Oa(a
2/3 log a) Oa

( log a
a1/3

)
= Oa(a

1/3 log2 a) = oa(1).

On the other hand

D(a) − 16π2 = 16π2
( ∞∫
0

e−u
√
u2 + a2/3 du + 1

)( ∞∫
0

e−u
√
u2 + a2/3 du − 1

)

= Oa(1)

( ∞∫
0

e−u(
√
u2 + a2/3 − u) du

)
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= Oa(1)

( ∞∫
0

e−u a2/3√
u2 + a2/3 + u

du

)

= Oa(a
2/3 log a),

where in the last line we used (A.9). Then

(D(a) − 16π2) · N ′(a) = Oa(a
2/3 log a) Oa

( log a
a1/3

)
= Oa(a

1/3 log2 a) = oa(1).

Wenow turn to the proof of (i). By (iii), the limit as a → 0+ of the second summand
on the right hand side of (A.1) equals zero. We proceed to calculate the limit of the
first summand. Combining (A.2) and (A.3) we obtain

16π2N ′(a) − 32π3D′(a)

= 8(16)2π5

3
− 4(16)2π5

3a1/3

+ (32)2π5

3a1/3

∞∫
0

e−u(u − 1) log(u +
√
u2 + a2/3) du + oa(1)

= 2(32)2π5

3
+ (32)2π5

3a1/3

∞∫
0

e−u
(
(u − 1) log(u +

√
u2 + a2/3) − 1

)
du

+ oa(1).

Using (A.12) to treat the integral in the previous expression we obtain

lim
a→0+(16π2N ′(a) − 32π3D′(a)) = (32)2π5

3
,

therefore

lim
a→0+

d

da

N (a)

D(a)
= (32)2π5

3(16π2)2
= 4π

3
.

��
Finally, we state the asymptotic behavior of the many integrals used during the

proof of the previous lemma.

Lemma A.3 We have the following identities as a → 0+

∞∫
0

e−u 1√
u2 + a2/3

du = Oa(log a), (A.4)
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∞∫
0

e−u

√
u2 + a2/3

a1/3
du = 1

a1/3
+ Oa(a

1/3 log a), (A.5)

∞∫
0

e−u u
√
u2 + a2/3

a1/3
du = 2

a1/3
+ Oa(a

1/3), (A.6)

∞∫
0

e−u u2

a1/3
√
u2 + 4a2/3

du = 1

a1/3
+ Oa(a

1/3 log a), (A.7)

∞∫
0

e−u u2 + 4a2/3

a1/3
√
u2 + a2/3

du = 1

a1/3
+ Oa(a

1/3 log a), (A.8)

∞∫
0

e−u a2/3

u + √
u2 + a2/3

du = Oa(a
2/3 log a), (A.9)

∞∫
0

e−u a1/3u

(u + √
u2 + 4a2/3)

√
u2 + 4a2/3

du = Oa(a
1/3 log a), (A.10)

∞∫
0

e−u u

a1/3
log(u +

√
u2 + a2/3) du = Oa

( 1

a1/3

)
, (A.11)

∫ ∞

0

e−u

a1/3
(
(u − 1) log(u +

√
u2 + a2/3) − 1

)
du = −1 + oa(1). (A.12)

Proof The identities are elementary but we choose to give details for the sake of
completeness.

Verification of (A.4) and (A.5) Integration by parts shows that

∞∫
0

e−u 1√
u2 + a2/3

du =
∞∫
0

e−u log(u +
√
u2 + a2/3) du − 1

3
log a

= Oa(1) + Oa(log a), (A.13)

and

1

a1/3

∞∫
0

e−u
√
u2 + a2/3 du = 1

2a1/3

∞∫
0

e−u(a2/3 log(u +
√
u2 + a2/3)

+ u
√
u2 + a2/3 − 1

3
a2/3 log a) du

= Oa(a
1/3) + Oa(a

1/3 log a) + 1

a1/3
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+ 1

2

∞∫
0

e−u u

a1/3
(
√
u2 + a2/3 − u) du

= 1

a1/3
+ Oa(a

1/3 log a) + a1/3

2

∞∫
0

e−u u√
u2 + a2/3 + u

du

= 1

a1/3
+ Oa(a

1/3 log a) + Oa(a
1/3).

Verification of (A.6) Using that
∫∞
0 e−uu2 du = 2 we have

∞∫
0

e−u u
√
u2 + a2/3

a1/3
du = 2

a1/3
+ 1

a1/3

∞∫
0

e−uu(
√
u2 + a2/3 − u) du

= 2

a1/3
+ a1/3

∞∫
0

e−u u√
u2 + a2/3 + u

du

= 2

a1/3
+ Oa(a

1/3).

Verification of (A.7)

∞∫
0

e−u u2

a1/3
√
u2 + 4a2/3

du =
∞∫
0

e−u

√
u2 + 4a2/3

a1/3
du − 4a1/3

∞∫
0

e−u 1√
u2 + 4a2/3

du

= 1

a1/3
+ Oa(a

1/3 log a) + a1/3Oa(log a),

where we used (A.4) and (A.5).
Verification of (A.8)

∞∫
0

e−u u2 + 4a2/3

a1/3
√
u2 + a2/3

du = 1

a1/3

∞∫
0

e−u
√
u2 + a2/3 du + 3a1/3

∞∫
0

e−u 1√
u2 + a2/3

du

= 1

a1/3
+ Oa(a

1/3 log a) + Oa(a
1/3),

where in the last line we used (A.4) and (A.5).
Verification of (A.9)

∞∫
0

e−u a2/3

u + √
u2 + a2/3

du =
∞∫
0

e−u(
√
u2 + a2/3 − u) du

= 1 + a1/3Oa(a
1/3 log a) − 1

= Oa(a
2/3 log a),
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where we used (A.5).
Verification of (A.10)

∞∫
0

e−u a1/3u

(u + √
u2 + 4a2/3)

√
u2 + 4a2/3

du =
∞∫
0

e−u a1/3√
u2 + 4a2/3

du

−
∞∫
0

e−u a1/3

u + √
u2 + 4a2/3

du

= Oa(a
1/3 log a),

where we used (A.4) and (A.9).
Verification of (A.11) The identity is immediate since e−uu log(u) ∈ L p([0,∞))

for all p ∈ [1,∞].
Verification of (A.12) For a > 0, integration by parts shows

∞∫
0

e−u(u − 1) log(u +
√
u2 + a2/3) du =

∞∫
0

e−u u√
u2 + a2/3

du,

so that to prove the last identity we need to show

lim
a→0+

1

a

∞∫
0

e−u
(
1 − u√

u2 + a2

)
du = 1.

Changing variable u � au gives

1

a

∞∫
0

e−u
(
1 − u√

u2 + a2

)
du =

∞∫
0

e−au
(
1 − u√

u2 + 1

)
du

=
∞∫
0

e−au 1

(u + √
u2 + 1)

√
u2 + 1

du,

hence

lim
a→0+

1

a

∞∫
0

e−u
(
1 − u√

u2 + a2

)
du =

∞∫
0

1

(u + √
u2 + 1)

√
u2 + 1

du.

Changing variable u = sinh t we obtain
∞∫
0

1

(u + √
u2 + 1)

√
u2 + 1

du =
∞∫
0

1

sinh t + cosh t
dt =

∞∫
0

e−t dt = 1.

��
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