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Abstract

We prove the existence of functions that extremize the endpoint L? to L* adjoint
Fourier restriction inequality on the one-sheeted hyperboloid in Euclidean space R*
and that, taking symmetries into consideration, any extremizing sequence has a sub-
sequence that converges to an extremizer.
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1 Introduction

In seminal paper [43] R. Strichartz addressed the adjoint restriction problem of the
Fourier transform to d — 1 dimensional quadric submanifolds of Euclidean space
R¢, establishing the necessary and sufficient conditions on p such that an L? — LP
estimate holds. Recently, there has been interest in studying the existence of extrem-
izers and the sharp L> — L7 estimates for adjoint Fourier restriction operators and
progress has been made in the case of quadric curves and surfaces: the paraboloid
and parabola [22, 28], the cone [5, 22, 40], the sphere and circle [6, 8, 13, 23, 26, 36,
42], the two-sheeted hyperboloid and hyperbola [9, 10, 39] and the saddle [7, 18, 19]
(see also [1, 15, 16, 25] for the case of power curves and surfaces). The study of such
sharp L? to L7 estimates is intimately related to the study of extremizers and sharp
constants for Strichartz estimates for classical partial differential equations, such as
the Schrodinger, hyperbolic Schrodinger, wave and Klein—Gordon equations. In this
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note we address the case of the one-sheeted (or hyperbolic) hyperboloid in R*, which
is related to the so called Klein—Gordon equation with imaginary mass.

1.1 Setting

Let > denote the upper half of the three dimensional one-sheeted hyperboloid in R*,

H = {(x,\/|x|2 —D:xeR? x| > 1},

equipped with the measure p with density

dr dx
(e, 1) = Ly @) (1 = /IxPP = 1)ﬁ, (L.1)
2 —
so that for all g € S(IR*) it holds that
2 dy
glx,n)du(x, 1) = gy, /Iyl _l)ﬁ' (1.2)
Y2 =

H3 {(veR3:|y|>1}

A function f : H> — R can be identified with a function from R? to IR, using
the orthogonal projection from! 3 to R3 x {0}, and in what follows we do so. We
denote the L” (3, i) norm of a function f on H> by || f I r13)> I1f | P () OF simply
I fllLe, Il £l if it is clear from context.

The Fourier extension operator on the hyperboloid 73, also known as the adjoint
Fourier restriction operator, is given by

Tf(x,1) = / eI p(y, fiyP — 12 = (1Y)

lyl?
{yeR3:|y|>1}

where (x,1) € R? x Rand f € S(R*). Note that Tf (x, 1) = fj(—x, —t), with the
Fourier transform in R* defined by g(x,1) = [ e @V 9g(y, 5)dyds.
R3xR
Strichartz proved in [43] that for all 1—30 < p < 4 there exists C, < oo such that
forall f € L?(H?>) the following estimate for 7'f holds

||Tf||Lp(1R4) < Hp||f||L2(H3)v (1.4)

1 Strictly speaking, it is identified with a function with domain {x € R*: |x| > 1} but we will ignore this
minor point and, whenever necessary, it will be understood that f is extended to be equal to zero inside the
unit ball. We could have chosen to write our operator as acting on a weighted L? space of Euclidean space,
but we will take this geometric point of view instead.
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where H), < oo denotes the best constant in (1.4),

T

oxrer2aey 1 l2ae)

The (full) one-sheeted hyperboloid is defined by
Ho={neR xR: 2= xP -1, x| > 1},

and we endow it with the Lorentz invariant measure it = (4 + (— where 4 = p as
in (1.1)=(1.2) is supported on {3, and p_ is given by

dr dx
dpu—(x, 1) = L1y 3<t +VIx|? — 1)—,
x> —1
so that ;_ equals the reflection of u via the reflection map (x, #) — (—x, —t) and is
supported on —H>. The adjoint Fourier restriction operator on 7" is

Tfx,0) = fii(—x, —1) = f YT £y, 5) dii(y, 5)

=3

H
= / er Vel v 1f+(y)—2 (1.6)
Viyle =1 '
[yeR3:|y|>1}

) . d
v f eI )
T

{yeR3:|y|>1}

where f = fi + f_, the function f is supported on the upper half of the one-sheeted
hyperboloid, H3, and the function f—, on the lower half, —H3, and we have identified
their domains with IR? via the orthogonal projection as stated before. We see that

Tfx,0)=Tfylx, 1)+ Tf-(x,—1).
The triangle inequality and (1.4) imply that for % < p < 4 the following estimate
holds

17 Flrsy < Hpll £l o, (17)
where ﬁp < 00 is the sharp constant

_ TFlr
Hp e sup ”‘f”ﬂ. (1.8)

ot rer2 iy Ml

The Lorentz group on R*, denoted L, preserves ﬁ3, /1, and acts on functions on
ﬁ3 by composition: L* f(x, 1) := f(L(x,t)), L € L (see Sect.?2 for more details). In
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particular, we have [ 1|, 3, = IL*f1, i, and 1T f oy = 1T (L")l o ey
for all p, g € [1, o<].

Definition 1.1 An extremizer (or maximizer) for (1.4) is a function 0 # f € L*>(H?)
that satisfies | 7f ] » ®y = Hpll 1l L2(H3)- An L%-normalized extremizing sequence

for (1.4) { fu}n C L?(H?) is such that I fullL2pzy = 1 and [T full pprey — Hp, as
n — 00. A corresponding definition holds for extremizers and extremizing sequences
for (1.7).

1.2 Main Results

This paper is devoted to the study of the sharp instances of (1.4) and (1.7) in the
endpoint case p = 4, that is, the inequalities

ITf1lL4we)

IT gl 4R

Hall fllL2(243) (1.9)
Hylgll (1.10)

NN

L2y

and our main results concern the existence of extremizers as well as the precompactness
of extremizing sequences. The statements of the main results of this paper are as
follows.

Theorem 1.2 There exists an extremizer in L>(H3) for inequality (1.9). Moreover,
for every L*-normalized complex valued extremizing sequence {f,}, for (1.9),
there exist a subsequence { f,, }x and a sequence {(xi, tx)}x C R3 x R such that

i y 7 2_ . .
{eXkY itk 13 lfnk}k is convergent in L*>(H?).

Theorem 1.3 There exists an extremizer in L2(ﬂ3) for inequality (1.10). Moreover,
for every L*>-normalized complex valued extremizing sequence { f,}, for (1.10), there
exist a subsequence { f,, }x and sequences (&} C R* and {Li}x C L such that

{"SKS LY fu, Ji is convergent in L2(ﬂ3).

In the statement of the theorems we are writing ¢ V!tV IYP=1 ¢ . for the function

y > el kY el |-V|2_1f,,k (y) and eifk'EL,’(‘fnk for the function & > e/tS f, (Li&).

Remark 1.4 Note the qualitative difference regarding existence of extremizers between
the one-sheeted hyperboloid and the two-sheeted hyperboloid (or their upper sheets)
equipped with its Lorentz invariant measure, which are defined respectively by

dr dx

ViRP+1

both of which can be considered as “perturbations” of the cone. It was shown in [39]
that for the L? to L*(IR*) adjoint Fourier restriction inequality on the two-sheeted
hyperboloid and on its upper sheet, extremizers do not exist and the best constant
was calculated explicitly. On the other hand, for the L? to L*(IR*) adjoint Fourier

(.0 e R xR 2 = e+ 1), (8(t = VieP+ 1)+ 8(r + /e +1))
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restriction inequality on the cone, extremizers exist, their exact form was obtained and
the best constant was calculated (see [5]).

We note that the results in [21] do not apply to the case of the hyperboloid due to the
lack of scale invariance, but information can be obtained from the arguments therein,
although we will not go that route. See the discussion in [39, Sect. 2] for some details
in the related context of the two-sheeted hyperboloid.

We take this opportunity to indicate a correction to [39, Thm. 1.2, Prop. 7.5], where
the value of the best constant for the L?> — L% adjoint Fourier restriction inequality
on the two-sheeted hyperboloid in R2, there denoted 1:12’6, is incorrect. Details can be
found in version 3 of [39] available at www.arxiv.org.

The convolution form of inequalities (1.9) and (1.10), obtained via Plancherel’s

theorem, tells us that in both cases, 7> and ﬁ3, there exist nonnegative real valued
extremizers, and the symmetrization method used in [23], or the one in [35], can be
adapted to show that if a function f is a nonnegative real valued extremizer for T on ﬁ3
then f is necessarily an even function: f(x,t) = f(—x, —t), for i-a.e. (x,t) € ﬁs.
We discuss the details in Sect. 2.

It would be of interest to treat the endpoint p = 1—? as well, and more generally
to study the existence of extremizers at the endpoint and non-endpoint cases for all®
d > 2, as was recently done for non-endpoint cases of the two-sheeted hyperboloid
in [9, 10]. Our analysis here extends the known results on sharp Fourier extension
inequalities for quadric manifolds as studied in Strichartz paper [43].

1.3 Organization of the Paper and Outline of the Proofs of the Main Theorems

From now on, references to the sharp inequalities (1.4) and (1.7) are understood with
p =4, unless it is explicitly said otherwise.

An important tool in our proofs is [20, Prop. 1.1] which we include next for the
convenience of the reader.

Proposition 1.5 Let H be a Hilbert space and S : H — LP(R?) be a continuous
linear operator, for some p € (2, 00). Let { f,}, C H be such that:

@ Ifulm =1,
(i) nlin;o ||an||]_p(Rd) = ”S”IH—>LP(]Rd))
(i) fp—f and [ #0,
(iv) Sf, — Sf a.e. in R%.
Then f, — f in H. In particular, || fllm = 1 and |Sf || ppray = ISIH- L2 (RY)-

To prove Theorem 1.2 we apply Proposition 1.5 with p = d = 4, I equals to
L*(H3) and § equals 7. We need to verify (iii) and (iv), as (i) and (ii) are immediate

2 Whend = 1 the one-sheeted hyperboloid coincides with the two-sheeted hyperboloid after a 90° rotation,
and the later has been studied in [9]. They consider only one of the two branches but it is not difficult to
see that the existence argument in the non-endpoint cases carries through to the two branches. On the other
hand, an argument is needed to settle the endpoint p = 6 for two branches (this is also the case whend = 2
and p = 6 as clarified in the correction to [39] alluded to before).
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for a normalized extremizing sequence. We handle (iv) as in [38, Prop. 8.3] and [21].
To prove (iii) we will see that the only way it can fail, the failure being that a weak
limiting function equals zero, is that the extremizing sequence concentrates at infinity,

which is defined as follows for 3, with an analogous definition for ﬁ3.

Definition 1.6 We say that the sequence {f,}, C L2(H3) concentrates at infinity if
inf || fullL2(33) > Oand forevery e, R > 0 there exists N € N such thatforalln > N
n

I fnLgyi<rylliL2 sy < &,

where, as mentioned before, we are identifying a function on H3 with a function on
(yeR |yl >1).

Finally, to discard the possibility of concentration at infinity we will use a compar-
ison argument with the cone.

In the case of the full one-sheeted hyperboloid ﬂ3 there is the addition of Lorentz
invariance, and our proof of Theorem 1.3 will require additional steps when compared
to the case of the upper half, 7>. Because of this, in addition to the use of Proposi-
tion 1.5 and a comparison to the double cone, we will use a concentration-compactness
argument to be able to discard concentration at infinity.

More in detail, the organization of the paper is as follows. In Sect.3 we explicitly
calculate the double convolution u %« which we use in Sect. 4 to prove the strict lower
bounds

— 3\ 1/4
H, > 204, Hy > (5) @r)3/4, (1.11)

which tell us that the best constant for the adjoint Fourier restriction operator on the
(resp. full) one-sheeted hyperboloid is strictly greater than that for the (resp. double)
cone.

In Sect.5 we prove Theorem 1.2 by collecting the necessary ingredients to use
Proposition 1.5. Here the first inequality in (1.11) is used to show that the L? mass
of an extremizing sequence can not tend to infinity (i.e. there is no concentration at
infinity).

From Sect.6 onward we focus on the full one-sheeted hyperboloid ﬁ3. As men-
tioned before, the existence of Lorentz invariance adds complexity to the proof of
Theorem 1.3, compared to the much simpler proof of Theorem 1.2. We will use a
concentration-compactness type argument that we discuss in Sect. 9. In short, given
an L? normalized extremizing sequence { f;,}, for T, three possibilities hold (possi-
bly after passing to a further subsequence): compactness, vanishing or dichotomy. In
Sect. 10 we prove bilinear estimates at (radial) dyadic scales and show that they imply
that dichotomy can not occur. In Sect. 11 we obtain a (radial) dyadic refinement of
(1.7) and use it to show that vanishing can not occur.

To treat the compactness case, it will be necessary to study so called “cap bounds”
or refinements of the L2 — L* estimate for the adjoint Fourier restriction operators 7
and T and this we achieve in Sect. 8 by “lifting” to the hyperboloid the results for the
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sphere in R3, as proved in [13], and recalled in Sect.7 (more precisely we study so
called §-quasi-extremals and their relationship with caps). By doing this lifting of the
cap refinements available for the sphere, we do not have to develop bilinear estimates
in the angular variable, but only in the radial variable.

In Sect. 12 we study some limiting relationships between the hyperboloid and the
cone. The results of this section together with the second strict inequality in (1.11)
are used to study the compactness alternative in the case of an extremizing sequence
concentrating at infinity, discarding some possible behaviors.

Finally, in Sect. 13 we put together all the preliminary results of previous sections
to show that if an extremizing sequence satisfies compactness then it is precompact in

Lz(ﬂ3), modulo multiplication by characters and composition with Lorentz transfor-
mations, completing the proof of Theorem 1.3.

Although our approach to the proof of Theorem 1.3 depends on the Lebesgue
exponent “4” being an even integer, which for other works in this field has meant to
restrict to nonnegative (and possibly symmetric) extremizing sequences, we point out
that we are able to handle the case of general complex valued extremizing sequences.
Besides the fact that some arguments are simpler if one works with an even integer
as we can multiply out some expressions, they could (in principle) be reworked for
general real Lebesgue exponents. In the view of the author, the crucial step where
evenness is used is in the inequality | 7'(f)Il24r4) < IIT (| /DIl 24(R#)> which may not
hold for non even exponents. This is used in the proof of Theorem 1.3, Case 1.

Having explained our methods, we now mention a different possible path to two
aspects of our proof. As stated earlier, in this work we obtain a relationship between
quasi-extremals and caps by lifting the known results for the sphere but we mention
that there is the alternative route through bilinear estimates to obtain cap refinements
of inequalities (1.9) and (1.10). The works [9, 10] treat the related two-sheeted hyper-
boloid in the non-endpoint cases and of particular interest is the development of bilinear
estimates in the angular and radial variables which offer a template to obtain similar
results for the one-sheeted hyperboloid (see also [2—4]).

A second aspect of our proof is the use of a concentration-compactness type argu-
ment. There is a different possible approach, the missing mass method® (MMM). This
is a general framework to address the problem of existence in optimization problems;
in this particular setting of maximizers for adjoint Fourier restriction inequalities it
was first introduced by Frank et al. [26] for the case of the sphere, and later also suc-
cessfully applied to power curves and (hyper-)surfaces [15, 25]. It has the advantage
of allowing complex valued functions in the setting of general Lebesgue exponents,
which could be useful when addressing the remaining cases (specially the endpoint
cases) of (1.4) and (1.7), that is, when 10/3 < p < 4 and the ambient space is R*, as
well as the remaining Strichartz estimates for the one-sheeted hyperboloid in R¢*!,
where 2(d +2)/d < p <2(d+1)/(d—1),d >22,and6 < p <0 ifd = 1.

3 1t is also possible to use profile decompositions but we will not discuss that alternative here. For the
MMM, see the introduction in [26] for some historical references and the main idea of the method.
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1.4 Notation and Some Definitions

The set of natural numbers is N = {0, 1,2,...}and N* ={1,2,3,...}.

For s > 0, we let 13 := {(x,1): x € R?, t = /|x|? — 52}, equipped with the
measure

dx dr

ity (6, 1) = Ljagzgg 8(1 = V/IxP? _TZ)JTiZ’ (1.12)
x|*—s

and adjoint Fourier restriction operator Ty,
— 2_¢2
T f (1) = Fris(—x, =) = f eV () /||2—
(yeR3:|y|>s) Y
(1.13)

There are corresponding definitions of ﬁ? ity and T in analogy with the case
s =1

The cone in R* is denoted I'> := {(y, |y|) : y € R3} which comes with its Lorentz
and scale invariant measure o,

d
/fdoc=/f(y, |y|)ﬁ
r3 R3 Y

The adjoint Fourier restriction operator on the cone, T, is given by the expression

T.f(x,1) = f ”'y‘f(y)— (1.14)
J Iy

which acts, a priori, on functions f € S (]R3). The adjoint Fourier restriction operator
on the double cone, ™ =r3u —I'3, denoted by T, is given by the expression

ch(x,r)=/ Tyl f(y, |y|)ﬁ+f ’”e‘”'y‘f(y,—lyl)ﬁ, (1.15)
R3

fes (IR4). We let C4, C4 < 0o denote the best constants in the inequalities

ITe fllzsmey < Call Fll2sys ITefllamey < C4||f||L2(r)

respectively. We sometimes use the alternative notation ||T|| = Hy, |T|| = Hy,
[I7c]l = C4 and | T || = Ca.
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The sphere of radius » > 0in R3 is S% ={yeR3:|y| =r}). The sphere of radius
1 is denoted simply S2. On S% we consider the measure o,

/fdarsz(rw)rdo(w), (1.16)
S2

8

where o is the surface measure on S2. With this choice, o, (SE) = ro(S?), for all
r > 0.Forr > 0and a function f : R} — Cweset f, : S> - Rby f,(-) = f(r-).

We let S denote the best constant in the convolution form of the Tomas—Stein
inequality for the sphere S?,

2 2
| fo* follpzmrsy <S ”f”LZ(SZ)'

We also use the following convention. For f : ﬁ3 — Rwewrite f = f + f_,
where £ is supported on > and f_ on the reflection of > with respect to the origin,
—H?, and we further identify their domains with R? via the orthogonal projection.

For A € R3 we define
/fdu = / fdu.
A {

(x,H)eH3: xeA)

f e L'(H?), while for 7.,

/fdﬂ:: f fdn:
A

{(x,t)eﬂS: x€eA}

felLl (ﬁ3), so that in both cases the integral over A C IR? equals to the integral

over the “lift” of A to H> or ﬁ3, as it corresponds.

An element R € SO(4) that preserves the z-axis, R(0,0,0,1) = (0,0,0, 1),
is canonically identified with an element of SO (3), and as such we will just write
R € S0@3).

We let Y (r) = /12 — Szll{r>s}, ¢s(t) = Iﬂs_l(t) =/t + sz]l{,>0}. The (closed)
ball of radius » > O centered at y € R3 is B(y,r). For a set A, 14 denotes the
characteristic function of A and AC, the complement of A with respect to a set con-

taining A that will be understood from context, usually R3, H3 or ﬂ3. We sometimes
slightly abuse notation and use |A| to denote the measure of a set A, where the measure
used must be understood from context, for instance, if A is an interval it refers to the
Lebesgue measure, if A C S?, it refers to the surface measure, etc. The support of a
function f is denoted supp(f).

We will use the usual asymptotic notation X < Y, Y = X if there exists a constant
C (independent of X, Y) such that | X| < CY;weuse X xYif X <YandY < X;
when such constants depend on parameters of the problem that we want to make
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explicit, such as a, . .. etc., we write So ., 2. and x4 . At times we will use the

s ~AUO L
common asymptotic notation o(-) and O (-). Thus, g, = o(f,) if gn/fn — Oasn —
oo, while g, = O(fy) if |gn| < C|fp| for all n. If there is more than one parameter,
sayn € Nand s > 0, then g,(s) = 0, (f,(s)) means the limit of g,/ f;,, — 0 is taken
with respect to n and is uniform in s, that is sup |g,(s)|/| fu(s)| = 0 as n — oo.
2 Lorentz Invariance, Symmetrization and Caps

2.1 Lorentz Invariance

Recall that the Lorentz group on IR*, denoted L, is defined as the group of invertible
linear transformations in R* that preserve the bilinear form

B(x,y) = X4y4 — X3y3 — X2y2 — X1 )1,

forx = (x1, x2, x3, x4) € R*and y = (y1, y2, y3, v4) € R*.If L € L then |det L| =
1. Given that we can write H- = {(x,7) € R3*': B((x,1), (x,1)) = —1} it is
direct that £ preserves the hyperboloid: L(ﬁ3) = ﬁ3, for every L € L. Moreover, L
preserves the measure i, in the sense that for every f € L (ﬁS) and L € £

/f(x,t)dﬁ(x,t)=/f(L(x,t))d[L(x,t)- 2.1
ﬁ3 WS

To see this, note that a simple calculation shows that we can write
di(x, 1) = §(¢% — x> + 1) dx dt

so that

/f(x,t)d/l(x,t):[f(x,t)S(t2—|x|2+l)dtdx.
R4 R4

Then, if L is a Lorentz transformation and f € L' (ﬁ3), (2.1) can be seen to hold
by the change of variable formula.
For t € (—1, 1) the Lorentz boost L’ € L is the linear map

Vet en = (T b6 ST, @2

while L; denotes the rescaling L; := (1 —¢>)!/2L! sothat (L;)™' = (1—¢*)"1/2L~",
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2.2 Convolution Form

With the Fourier transform in RY normalized as F x) = f e~ Y F(y)dy we have
R4
the identities

-

FxG=FG. |Flpms=@Qn0)"|Fl2ga).

so that using Tf(x,1) = fu(—x,—t) and Tg(x,1) = gi(—x, —t) we find the
equalities

1/2 = - - 1/2
ITF sy =27 N fres Full ooy T8N pacwey = 2 lgit gl 2
(2.3)

Using this convolution form of the L* norm and the triangle inequality we see
that | Tf llssy < IT1SIzsmey and [ Tgllpsmsy < IT1glllparay So that if f s
an extremizer for (1.4) (resp. g for (1.7)), then so is | f| (resp. |g|), showing that if
extremizers exist then there are nonnegative real valued extremizers.

2.3 Symmetrization

Let f € L? (ﬁ3) be a complex valued function. Denote the reflection of f by f (x,1) =
f(—x, —t) and the nonnegative L2-symmetrization of f by

1f G, D+ 1 f (—x, —t>|2>1/2

ft(xvt)z( B

Regarding the relationship between f and f; we have the following lemma.
Lemma 2.1 Let f € L2(ﬁ3) be a complex valued function. Then
Ifis fillp2rey < Ifeit* faitllr2re)- 2.4
Proof As in [23, Proof of Prop. 3.2] we write
fiix fiE ©) = / FGo9) f(=x, =0 8(¢E, 1) — (v,5) = (x,0)) da(y, s) di(x, 1)

1
= / (f s $) f (=, =1) + f (=, =$) f(x. 1))
x 8((€, 1) — (rs) — (x, D)) dia(y, ) dja(x, 1),

and apply the Cauchy—Schwarz inequality

Lf Oy ) f(=x, =) + f(=y, =) f(x, D] < 2f3(y, 5) fa(x, 1),
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to obtain that for all (£, 7) € R*

|fivs FAE D) < fofd % fofi(E, T).

Then

Ifis fillpmay = I1F* fillizmsy < el feitll2@ms)-

Since we also have

I f 2y = 1l 2

it follows that if extremizers exist for T, then there exist real valued extremizers for T
which are nonnegative even functions on ﬁS. Moreover, any nonnegative real valued
extremizer is necessarily even. This can be explained by studying the cases of equality
in (2.4) by following the proof of the inequality (see [8] for a detailed discussion in
the case of the sphere) or, alternatively, by using the same method as in the proof of
[35, Lemma 6.1] where a different approach to symmetrization is used and the cases
of equality were studied. Therefore, we have the following result.

Proposition2.2 If f € Lz(ﬁ3) is a nonnegative real valued extremizer for (1.7), then
Fx, 1) = f(=x, —1) for fi-a.e. (x,1) € H.

There are some interesting problems that we do not address in this article:

(1) the nonnegativity of all real valued extremizers,
(ii) the relationship between complex and real valued extremizers,
(iii) the smoothness of extremizers.

We provide the following comments in the context of the L>(S?~!) — LP(RY)
adjoint Fourier restriction inequality on the sphere. Christ and Shao [14] showed that
for the case of the the sphere S? in R? and p = 4 each complex valued extremizer is
of the form x > ce!*§ F (x), for some & € R3, some ¢ € C and some nonnegative
extremizer F, and that extremizers are of class C*; these results were later expanded
to all dimensions d > 2 and even integers p in [36, Lemma 2.2, Thm. 1.2] and [37].
Note that the answer obtained for (ii) resolves (i). By using the outline in [14, 36, 37],
the Euler—Lagrange equation, which can be obtained as in [12], and the results in [11]

we expect similar relationships for the case of H> and ﬁ3, but have not investigated
the extent to which the arguments would need to be changed.

A related question is that of the rate of decay at infinity of an extremizer for which
the argument in [27] gives a possible route; see also [35].

We remark that Theorems 1.2 and 1.3 are stated for general (possibly complex val-
ued) extremizing sequences, that is, we do not assume nonnegativity and/or symmetry.

Birkhauser



Journal of Fourier Analysis and Applications (2024) 30:44 Page 130f 76 44

2.4 Caps

A (closed) spherical cap € C S? is a set of the form € = {x € S: |x — x| < t} for
some xo € S? and t > 0. If we want to be explicit about the dependence on x¢ and ¢
we write C(xg, 1).

A cap C of H3 is a set of the form

= {(rw,\/rz—sz):re[a,b], wee}, (2.5)

wheres <a <b < ooandCC S?isa spherical cap. When a = s 2k and b = 5 2k 1
for some k € Z we say that C is a dyadic cap. We identify a cap C as before with its
orthogonal projection to R* x {0}, and moreover we use spherical coordinates and
write the cap in (2.5) as C = [a, b] x €, where the hyperboloid it belongs to will be

=3 . . . .
understood from context. A cap C of H, is such that either C C H} or its reflection
with respect to the origin (—C) € H3 is a cap on H3.

The us-measure of a cap is easily calculated

b

s (C)

_O(G),/\/Td —0(26)<s21n(r+\/r2—s2)+r\/r2—s2)

a

(2.6)

ForacapC = [a, b]xCin H? andt > O we define the rescaled cap 1C = [ta, tb] xC
as the cap in 1>, given by

1C = {(ra), Vr2 —(s)?):r e [ta,th], w e G},
and note that

15 (1C) = 12 115(C). (2.7)

We also note that for such a cap C C H_? there exist R € SO(3) and ¢ € [0, ]
such that

R7Y'C) = (rw, Vi? —s2):a <r <b,

w = (cos g, cos B sin ¢, sin b sin @), O € [0, 2], ¢ € [0, €]}.
(2.8)

Keeping this notation in mind for the rest of the section we study the use of Lorentz
transformations and scaling in the regimes where j1(C) is large and small. The fol-
lowing two lemmas will be useful in Sect. 13 when dealing with the full one-sheated

. 773 . . .
hyperboloid H™ . To motivate them, let us see how their need arises as we try to prove
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the precompactness of an extremizing sequence. Let {f,,}, C Lz(ﬂ3) be an extrem-
izing sequence for 7. Because of “cap refinements” of (1.10) (Lemma 8.1), for each

f» we can find a dyadic cap C, = [2V, 2MF1]1 x @, C ﬁ3, G, C S2, such that

f | ful di 2 (G2
Cy

If we could find Lorentz transformations L,, € £ suchthatforeachn € N, L, 1 Cn)
is contained in a fixed ball of R*, independent of n, then {L}; f,},, does not concentrate
atinfinity and then its precompactness modulo multiplication by characters & > e/
would easily follow (this is the content of Proposition 5.2 below). For this reason, it
is useful to study when such Lorentz transformations can be found. As noted in [9,
Lemma 4] for the two-sheeted hyperboloid, there are Lorentz transformations that
can map certain caps of bounded measure into a ball whose radius depends only
on the value of the measure of the cap. We record this property for the one-sheeted
hyperboloid in the next lemma.

Lemma23 Lets > 0, k € N and C;, C ﬁf be a dyadic cap of the form C; =
[s2K, s2K+1] x @, for some spherical cap C;, € S?. Let R and ¢ be associated to Cy
as in (2.8), then:

(1) The [is-measure of Cy satisfies

fis (Co) = 3ms2(1 4+ 0r(1))2% (1 — cos &)

= 2T (140 (1))2% sin2e.
14 cose

(ii) Suppose e € [0, T 1. Then, there exists t € [0, 1) such that the orthogonal projec-
tionof L' R™Y(Cy) C ﬁi 1o R3 is contained in a ball of R? of radius comparable
105+~ 1 (Ce) + s (€2

Proof Without loss of generality, we may assume that Cy, is contained in the upper half
H? . For part (i), (2.6) implies that the ji;-measure of C is given by the expression

ok+1 o /224D
2k 4 22k — ]

15 (Cr) = 752(1 — cos s)(ln( ) 4ok T ok /2K ).

The expression involving the logarithm converges to In(2) as k — oo, while

2RHL/22(4 1) — | — 2k /22k — 1 = 3. 22K (1 4 0 (1)).

For part (ii), let R € SO(3) and ¢ € [0, %] be such that (2.8) holds. The image of
R~'(Cy) under the Lorentz boost L™ is

rcosg — ta/r2 — s2 r2 — 52 — trcos<p>.

LRV C) = {( ,7cosfsing, rsinf sin g,
V1 — 12 V1 — 12
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r e [s2%, 525711, 6 € [0, 2], ¢ € [0, s]}. (2.10)

Lett = +/1 — 2=2(k+1) 50 that the first coordinate of a point in the set on the right
hand side of (2.10) is bounded as follows

rcos@ — ta/r? — 52 k1
=2""r|cosp — 1 —272(+D /1 — (5/r)2]
V1—12

< 220+ Dg(1 — cos ) + 22k +D g1 — (1 — 272K+Dy)
=22k+Dg(1 —cose) + s

S lls (Ck) +
S

)

where in the last line we used (2.9). The second and third coordinates are bounded as
follows

|r cos@sing]|, |rsinf sin¢| < 2+lssine < Vir(Cy).

Then L~'R~1(Cy) is contained in the set

{(x,t) e x| < c( G + PG +s)},

s
for some constant C independent of k and s. O

Continuing with the comment before Lemma 2.3, suppose now that the mea-
sure of the caps C, is such that lim,_, o j1(C,) = oo, and set s, = 27V — 0 as
n — oo, so that if R,, &, are related to C, as in (2.8), then, (2.9) implies (C,) =
sn_2 sin?(g,) — coasn — oo. Werescale anddeﬁneCNH =5,C, =[1,2]xC, C ﬁf,n
so that fug, (CN,,) = s,%ﬂ(Cn). We may also rescale the sequence {f,}, by setting
gn = sn_lfn (sn_l-) € Lz(ﬁ;), which then satisfies

/ \gnl ks, 2 fis, €)'/ @2.11)
C,

If the sequence {/is, (CN,,)}n (possesses a subsequence that) is bounded below away
from zero, then we will be able to use a comparison argument with the cone, as in

a sense the ﬂi ’s are approaching the cone F3, as n — oo. In this way, it will be
established that this possibility does not arise and here the strict inequality between
the best constants of this two manifolds comes into play. We are then lead to consider
the complementary case, thatis, when {ji5, (C,)}, converges to zero. In this scenario we
would like to use Lorentz transformations together with dilations in the following way.
We want to find a sequence {L,}, C £ such that f, := L fu can be appropriately

- = —3
rescaled so that g, = an_lfn (an_l-) € Lz(Han), for some sequence a, — 0 as
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n — oo, satisfies (2.11) with the corresponding sequence {i,, ((Zz)}n bounded below
away from zero. In this way we will also be able to rule out this scenario. The following
lemma will tell us how to find the L,,’s and the a,,’s.

Lemma24 Let s < % CCS%hea spherical cap and C = [1,2] x C be a cap
in the hyperboloid Hg. Let R and ¢ be as in (2.8) and suppose that & € [0, 5] and

s72sin? e > 8. Then there exist 0 < t < 1 such that L,_IR_I(C) CH? , satisfies
1—-12

uw

s (L;7'RY©C) = Zand L7'RTNC) S [, 21 x S% (2.12)

1

Moreover, if ¢ € [0, 51, we can take t = cose, while if ¢ € (5, 7] we can take
t=0.

2 2

We point out that the value “8” in the inequality s < sin“ ¢ > 8 is meant to mean
“large” and can be change to any other positive constant with the understanding that
the values in (2.12) will change accordingly. Note that in the comment before the
statement of the previous lemma we had s, 2 5in? (e,) — o0 asn — o0 so that in the
application that condition will surely be fulfilled. We will then take #, = cose, and

an = sp//1— 12 = (s, sing,)™! — 0,as n — o0.

Proofof Lemma 2.4 With R € SO(3) and ¢ € [0, 7] satisfying (2.8), note that
L7'RTYC) = 1= V2L'R7IC) € 3

Y(l_tz),l/z,foreveryt € (=1, 1). Accord-

ing to (2.6), the us-measure of C satisfies

2 2

115(C) = 27 (1 —coss)(%ln( 72 _ 52 +r) +% 2 —s2>‘1

> (1 —cose)(\/4—sz—\/l —52) > (1 —cose),

so that in what follows we can assume cos ¢ > 1/2, otherwise we are done by taking
t = 0. From (2.7), fort € (0, 1),

u#@;lR—I(C)) = (1 -7 w0,

1—12

so that choosing t = cose gives lis(1_tz)71/z(L,_1R_1(C)) > {rass = 5. On the

14-cose
other hand, we have
11 2 _1/2(TCOSQ — tVr2 — §2
L7 RO = {a -7 ,
V1 =12
/72— 2 _ ¢
rcos O sing, rsinf sin g, r \/sl—tzrcosgo) :rell,2],

0c [o,zn],<pe[0,s]},
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and since cos@ > cose and 1 < r < 2 we obtain that the fourth coordinate of any
point in ;' R~1(C) is bounded as follows

Vit —sr—trcosg (/1 —(s/r)* —tcosg) 21—00528

1—1¢2 n 1—1¢2 S 1 —cos?e ’
and
r(x/l—(s/r)2—tcos<p> ,
— = o (,/1—(s/r)2—cosscosgo>
> L 1 2
Z —— — (s/r)* —cose
sin” ¢
_ r (1 1 )
1 —(s/r)24cose r2s=2sin’ ¢
r 1 7
>(1- ) > —.
2 8r2 16
Therefore
OS9G,
Now, from the definition of # and the assumption that s~ 2sin% ¢ > 8 we obtain

2
s s<«/_

1—¢2 sing = 4~

so that the following inequalities hold

r<O_ () =Vr 42— < 418,

from where ¢_s (&) > & 3—6 and then we find L, 'R™1(C) C
1—t
733 2
[E’ E] x S°. O

3 Calculation of a Double Convolution

In previous studies of quadric surfaces and curves and their perturbations it has become
clear the importance of the double or triple, and more generally the n-th fold, convolu-
tion of the underlying measure. Its properties may determine existence or nonexistence
of extremizers and in some cases it can be used to find their explicit form and/or the
value of the best constant in the corresponding adjoint Fourier restriction inequality.
In the case of the one-sheeted hyperboloid and its upper half, the double convolution
will be used to prove that extremizing sequences do not concentrate at infinity.
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Let us * puy denote the double convolution of 1ty with itself, defined by duality

o £ = [ SO ) A ) ),
(R#)?
for all f € S(R*). It is not difficult to see that g * s is absolutely continuous

with respect to the Lebesgue measure in R?, indeed this follows from (1.4) since
e (s * Ug) € L*(RY), it being the (inverse) Fourier transform of the L*(R%)

function (e~ 1) (see also [34, Prop. 2.1]). In what follows we identify p * g with
its Radon—Nicodym derivative with respect to the Lebesgue measure in R*.

Proposition 3.1 Let g be the measure on H? defined in (1.12). Then

(1) The support of the convolution measure [Lg * [Lg IS

supp(us * 1) = (6. 1) € R* 1 7 > 0, [§] < v/72 +52 + 5.

(ii) For every (£, 1) € R* with T > 0 we have the formula

o=

21 4s
ps ks, 1) = — [ E1+ 5755 ) Ljeavgr_g + 7L
|g( ( Tz,mz) (| <~/ T2 57 —s) { T — s <6l < T-k(zs)zi
4s 3
+ (- I&l1(1 + 1 . 3.1
( ( r2,‘§|2) ) { [ 2o << /712“.2_*_3})

1/2
Whené = Oand t > 0 weunderstand thatin (3.1) ps*us (0, T) =27 (l + 4%22)

We postpone the proof of Proposition 3.1 and study the behavior of g * g (€, T)
for large 7.

Lemma3.2 Forallt > 0,

4527\ 172 2s
27r<1+—2) < sup ;LS*;LS(S,I)QZJT(I—%—).
T £eRR3

In particular

lim sup s * us(€, v) = 2m.

r%oode&

Proof We start by noting that

Ms * s (sE, 5T) = p* u(&, 1),

hence it is enough to consider the case s = 1. We analyze the different cases in formula
(3.1).

Birkhauser



Journal of Fourier Analysis and Applications (2024) 30:44 Page 190f 76 44
Case I |€] < /1241 —1.Then
(1 4)1/2<<1+ 4 )1/2<<Vt2+1+1>1/2_ T
2 N £ VT4 1-1 ViZFi-1
Case2: V12 +1—1 < |€] < /12 + 4. Then
T T T
—— < < —.
N N N I |
Case 3: VT2 +4 < |€] < VT2 + 1+ 1. Then |£|> — t2 > 4 and
g1 = — (14 ! )]/2
H o GRS 9
€] T2 — &2
is a decreasing function of |&|. Then
T (1 n 4 )1/2 < T
&1 2 — g2 T U4
and
T 4 172 T 2 172
() (- =) =0
€] T — |§] VTZ+1+1 ViZ+1+1
As a conclusion, forall T > O and £é€ R3
1) < " 2((1+1)1/2+1)<2 (1+2)
*uE, 1) ———— =27 — -) <2n %),
ek Vii4+1-1 2 T T
and fort > 0
4\1/2
sup ux w(§, ) 2271(14——2) .
£elR3 T
O

We now turn to the proof of Proposition 3.1.

Proof of Proposition 3.1 Part (i) is a simple calculation and is left to the reader. For part

(ii) we start by discussing a change of coordinates that was used in the proof of [22,
Lemma 5.1] in the arxiv’s second version of [22]; see also Appendix 3 on the arxiv’s
version of [39] where an outline of the computation of the double convolution of the
Lorentz invariant measure on the two-sheeted hyperboloid was given using the same

technique.

For each fixed & # 0 we consider a spherical coordinate system with axis &,
that is, each n € R? is described as = (p cos 0 sin ¢, p sin 6 sin @, p cos ¢), where
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p =Inl =2 0, ¢ € [0, ] is the angle between & and n and 6 € [0, 2r] is a polar
coordinate angle on the plane orthogonal to £. Then dn = p® sin ¢ dp d6 de.

Define the new variable ¢ = |£ — 7|, which corresponds to the size of the side
opposite to the origin, 0, in the triangle whose vertices are located at 0, & and n. Then

¢? = &> + p? — 2I&|p cos .

Changing variables from ¢ to ¢, gives ¢ dg¢ = |£|p sin ¢ dg, so that in the variables
(p, ¢,0) we have dn = % dp dg df. The range of ¢ can be seen by using that ¢,
|£] and p are the sizes of the sides of a triangle, so |p — ¢| < |§] < p + ¢, which
translates into [|£] — p| < ¢ < [E] + p.

Using delta calculus (see for instance the survey article [24]) and the previous
change of variables we have

8(z —VIE— 1P — 57 — VinP? — %)

ws * ps(, ) = / dn
. VIE =02 = s2/Inl? = 52
nelR
Inl>s
lE—nl>s
2 3<f—\/52—s2—\/p2—s2)
= psdpdg
o |/<|s| /s? =it =
P—CIXx
p+c>El
p=s, 628
2
=— [ 8(r —u—v)dudv,
1§ J

where we changed variables u = /p2 — 52, v = \/c2 —s2 and Ry = Ry (£) is the
image of the region {(p, ¢): [p — | < |§],p+ ¢ = |§|,p = 5,6 = s} under the
transformation (p, ¢) — (u, v). Using the change of variablesa = u —v, b = u+v,
so that 2du dv = da db, we obtain

T ~ ~ T
IRy Nl = —~2|Ry Nty

T
Ky s 5 = 8 —bddbz =
e ¥ fha 5, 7) mj’“ ) dadb =10 €]
Ry

3.2)
where I?S = ﬁs(é’) is the image of R(§) under the map (u, v) — (a, b), Z, is the
horizontal line {(a, b) € R? : b = t}, £ is the line {(u, v) € R? : u + v = 7} and
| Ry N £, | denotes the measure of Ry N ¢, as a subset of £; with the induced Lebesgue

measure. In order to calculate |R; N £;| we divide the analysis into two cases.
Case I: |&] < 2s. The boundary of the region

{(p,g): Ip—§|<Iél,p+§>lé|,p>s,§>s},
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consists of two (bounded) line segments and two half lines. Its image in the (u, v)-
plane, R;, is bounded by two line segments and two curves and is symmetric with
respect to the diagonal # = v. The line segments have equations

{(u,v): u=0,0<v g\/(|E|+s)2—52},{(u,v):Ogu <V(E] +5)2 — 52, v:O},

and the curves have equations

1/2
{W): uz0,v= (</m+ £D)? —s2> }

172
V=

1/2
{(u,v>:u><(|s|+s>2—s2) : ((W—W—ﬁ) }

(3.3)

Then | Ry N €] is given by

|[Ry N Ly| = ﬁt ,if0 <t <V (g +5)2 =52
s = ﬁlu—v| ,if T > (|§|+s)2_sz’

where in the last expression # and v are related to (£, t) by the equations u +v =t
and v = ((VuZ + s+ |&])? — s2)1/2. Therefore

VRN Gl = 2L

+2(( u1<s,r>2+s2+|$|)2—s2>”2—u|(s,r)>11{r> JEl+s7 =52}

where u1 (€, t) and (&, t) are related by the expression

T =15, 1) + (Vur € 02 + 2 + [ED> —s7) 2, (3.4)

and 0 < uy(§,7) < 3.

Case 2: |€| > 2s. Now the boundary of the region {(p, ¢): |[p—¢| < |&l,p+¢ >
€], p = s, ¢ > s} consists of three (bounded) line segments and two half lines and the
region Ry is now bounded by two line segments and three curves. The line segments
have equations

() u =0, V(& =) =57 <v <Vl +9)2 = 57),
(@, 0): V(& —9)? — 52 <u < V(E[+95)? =52, v =0}
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The next two curves have equations as in (3.3). The last boundary curve is the image
of the segment {(p, ¢): p + ¢ = |&], s < p < |&] — s}. Its equation is

{(u, 0:0<u< (8- 9% =522 v=((&] = V2 + 52) —sz)”z},

and note that it is the graph of a strictly decreasing and concave function of u. It follows
that

V2t = luz —val) Lif V(& =92 —s2 < T < VIER — (29)%,
IRy N | = {21 L VIER — (292 < T < V(& +5)2 — 52,
V2\uy — v JFT = V(€] +5)2 — 52,

where (11, v1), (42, v2) are the solutions to the equations u1 + vy =7, up +v2 = 1,

2 1/2 2 1/2
v = ((,/u%—i—sz—i- |§|> —sz) and vy = <<|.§| —,/u%—i—sz) —s2)

Then

2 1/2
V2IR; N te| = 2(r - (((m — m) —s2>

~ 2@, ”)) L e <o« Vier—ar)
+271

(WIERP—(29)2 <t <A/ (1 ]45)2—s2)

2 12
w2 (Vi o ) ) e o)1

where u1 (€, t) is as in (3.4) and u> (&, 7) and (&, 7) are related by the expression

2 1/2
T =ur(€,7) + ((m— |s|> —sz) ,

and0 < up(é,7) < % Algebraic manipulation shows that for (&, t) in their respective
domains of definition

452 \1/2
r—2u,-(§,1:)=|§|(1+r2_—|5|2) L i=1,2. (3.5)

Collecting all in one expression we have

VIR el = 201 g Lt
T4 DL e T << =y HE>2s)

2L e <e< e LE=20)
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+2(7 — 2uy (&, t))l{r>¢m}'

Replacing u1 (&, 7) and u» (&, ) using (3.5) we obtain using (3.2)

s * s (T, §) = \él( (r< QT2 =57y LUEI<2s)

4s2 1/2
(.[ _ |§|<1 + |$|2) )]l(\/(lsl_s)z_SZSZ<J|g|2_(25)2]1(\E\>2s1 (36)
+71

J\s\2—<2s)2<r<J<\s|+x>2—s2]1“‘5'>2”
| 4s2 1/2
+ |§|( T |g|2> Lies (\s\+s>2—s2})‘

Rearranging (3.6) we find that u * wg can be written in the equivalent form (3.1).
O

More generally, the same method used in the proof of Proposition 3.1 allows us to
write an explicit formula for u; * s, forany s, t+ > 0. For instance, as it will be useful
in Sect. 12, we have

s % wo(E, 7) = a / §(t — b) dadb, 3.7
0s(6)
where O, (£) is the image of theset {(p, ¢): [o—¢| < €], p+¢ = [E, p =0, ¢ > s}

under the transformations (p, ¢) — (u, v) = (p, V<2 — 52) — (a,b) = (u —v,u+
v). Here 11 equals o, the Lorentz invariant measure on the cone. A calculation similar
to the one for p * g gives the following explicit formula

|§|(T — €17 +5%)
Ms *O'C(g 'L’) |§| ( — |§|2 l{t>3}]‘{|§|<r—s}
(T + |f‘§|)2 — 52
2w riep 0 iesi<ie <V (3.8)

2] — 1) 1“20}1”*“K'S'@“})'
Using (3.8) we see that for each 7 > 0

ﬁ 0<T <3R5 -1,

SUp s 4 0c(§,T) =27 - g |y =T 2 s(5- 1)< <s
£ecR3 1+

’

2'573 T2,

(3.9)
and ||us * o¢llpoo(ray = 47.

) Birkhduser



44 Page240f76 Journal of Fourier Analysis and Applications (2024) 30:44

The methods introduced in this section allow us to write explicit formulas for double
convolutions of the form fu; * fus, for f regular enough (continuous, for instance)
similar to those for the sphere [ 13, pp. 282]. Indeed, unwinding the changes of variables
leading to (3.2) in the proof of Proposition 3.1 (as well as the ones leading to (3.7)),
for & € R3\ {0} we let

&% 4+ ab 8 (@, b, 6) — €12 + ab — 52
S £ k) - )

61y (a + b)2 + 452 &[(a +b)
ws(a,b, ) = (\/1 —oag(a,b,0)2cos0,v/1 —as(a, b,0)2sinb, as(a, b, 9)),

95(a,b,0) = (/1 = Bs(a, b,0)>cos 6, /1 — By(a, b,0)?sin6, By (a, b, 0)),

as(avba 9) =

and
2

Fi(a, b) :/f(é — ()2 1+ 2 6 (a, b, 9))f(,/(#)2+s2ws(a,b,e)) a6,
0

2
Gy(a,b) = / f(E =2 0(a,b,0)) f(L2 0s(a, b,6))do,
0

2
Hy(a, b) =/f(.§ — 2 wo(a, b, 0)) f(L wola, b, 6)) do.
0

Recalling the sets Es (&) and és (&) from (3.2) and (3.7) we have

1 1
s fusE, 1) = ﬁ~f Fs(a,b)a(r —b) dadb = 2§]R/ Fs(a, T)]lﬁs(s)(a, 7)da,

R
(3.10)
1 1
fis *x foe(E, 1) = el / Gx(a,b)é(t —b) dadb = Tl / Gs(a, )1, ) (a, 1) da,
05 (6) R
(3.11)
and
foe* foo(&, 1) = ﬁ f Ho(a,b)8(t —b)dadb
{(a,b):lal<|§1<D}
= ﬁfHo(a, ) Li@a.by1a1<)61<0) (@, T) da. (3.12)
R

It is worth noting that ]lés@) — Ly(a,b):al<IE1<b) and ]lﬁs@) — Ly(a,b):al<IE1<b)
pointwise in R* ass — 07. Moreover, when f is continuous, F; — Hpand Gy — Hy
pointwise in the region {(a,b) :a +b > 0} C R?, as s — 07.
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4 Comparison with the Cone

Recall that o, denotes the scale and Lorentz invariant measure on the cone I'? and 7.
denotes its associated adjoint Fourier restriction operator. From [5] we know the value
of the sharp constant

I foe* focll?spa
sup 7 I®Y _ 2. “4.1)
0 feL?(or) 1172 60

We had defined the numerical constants

172
c I Te fll s e I foe* foell g
4 = sup — = =27 sup )
otrer2on 12w ogferzoy Nl
ITfllpawre Lfw s Full) s
Hy= sup M =2m  sup L&)
oxrerrqy I llz2gy 0% FeL2(1) If 120

The next proposition gives a comparison between C4 and Hy and its role is the
analog of the comparison of the best constant for the sphere and the paraboloid in R?
as used in [13] where a strict inequality was needed to rule out concentration at a pair
of antipodal points. In our present case, a strict inequality will rule out concentration
at infinity.

Proposition 4.1 Hy > C4.

Proof For s > 0 we consider the family of trial functions f,(y) = e IVl '2_32,
a > 0, and claim that

||Tsfa||L4(]R4) ||ch||L4(]R4)
_— > su ETEyr—
a>0 fallzgey ~ ogrerzon N i2en

Using spherical coordinates, the LZ(HE)-norm of f, is given by the expression

00
2
/ «/lx\z—sz =47T/ —a/r2—s? — dr

2
| fala) = | |2
X — S

=47 e +s2dt.

It is easier to estimate |75 fa [l 4(R4) if we use the convolution form (2.3),

1/2
T fall sy = 27 fatts # Fabts 5,
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As in [39, Appendix 2], using that f,, is the restriction to H? of the exponential of
the linear function in R?, (¢, 7) — e~ 77, we obtain

Jats * faps(§,7) = e_%r(,us * s (&, T))

It will be enough for our purpose to use

452 3
s * s (8, T) = €] (|§|( 2 — |5|2> ﬂ(\fkm—sl + ﬂl{m—sgmgm})’
as obtained from (3.1). In this way

Sars * faps(§, T)
. . 452 %1 L
Ee |‘§|( + m) lel<ve+?—s) T L e e/ aon )

so that using spherical coordinates we obtain

_ 452
I fabts % fatts 2o s, > @) / e”(|5|2(1+rz_—|§|2)1{5<m_3}

R3xR
+ 721 dé
(V2452 —s <[EI1</ T2 4(29)?} |$|2
oo
3 2 2 2 85
=167 fe‘“’(r VT2 +4s2 — §(T +4s7)V 12+ 52 + 5
0
/72 1 2
+ 2521 log(u>> d
s

Since by scaling it is enough to consider s = 1 (see Sect. 14) we let

I(a) = 1673 /e 2(7; +4)V12 + +3
0

+2tlog(t + V12 + 1)) dr,
® 2
I1(a) = 167r2< e 12 4+ 52 d‘L’) ,
0

then

[l fam * faulliz(w) . 1@
“ 1)’

”fa”LZ( )

) Birkhduser
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From Lemma A.1 in the Appendix, we conclude that for all @ > 0 small enough

I fart 5 fartl s g
> 2

(4.2)
4
” f(l “LZ(M)

This finishes the proof in view of (4.1). O
: 2 —4
Remark 4.2 The easy lower bound we can obtain for || fyu * foull 72 (]R4)” fall L2

using the analog of [34, Lemma 6.1] is not good enough in this case to obtain (4.2).

Let us now move to the full one-sheeted hyperboloid ﬁ3. Recall that T denotes

- . _ =3 .
the adjoint Fourier restriction operator on the double cone I"". An argument in [22]
can be used to show that

_ 3\4
Ci=(5)"ca, (4.3)
2

see for instance [39, Prop. 7.3]. We now compare the best constants for T and T,.

Proposition4.3  H; > Cj.

Proof Let f,(y) = e~ 2V IP=1 be as in the proof of Proposition 4.1 and set g, =
Jfa.++ fa.—, where f, + = cf, and f, — = cf, (here there are domain identifications
through projections to IR3), in other words, g, (&, 1) = ce 57! llﬁs (&, 1), where c is

such that g, is L? normalized. Expanding and using the positivity of f, . and f, _
(which for brevity we simply call f and f_, respectively) we see that

ITgalls = ITFellfaqmsy + 1T SN Fams) + 4T FTF-C =D
+ 4@ (frm s fopts frms fopo)
+4QTY N (frmox fop, [ fops)
> T fillfamay + 1T F-1Fagms, + AT FOT L =D7a
On the other hand Tf_(-, —) = T f,, the complex conjugate, since f_(y) =

fe(=y). Then [(Tf(Tf-Co=DI72 = ITfell}ags, = ITf-II}4gs, and we
obtain

ITgall7s > 61T fu 4174 g,

If @ > 0 1is small enough, then from (4.2) in the proof of Proposition 4.1 and using
Il fatlz2¢u) = +/2/2. we obtain

4 _ 3
H, > I Tgallzs > 61T fat 74 ms) > 6Cilfat 172, = 5Ci-
The conclusion follows using (4.3). ]
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5 The Upper Half of the One-Sheeted Hyperboloid

In this section we present the proof of Theorem 1.2. The proof of precompactness
of extremizing sequences, modulo multiplication by characters, is much simpler for

the upper half of the one-sheeted hyperboloid as the full Lorentz invariance of ﬂ3 is
absent for 7.

In what follows we collect the necessary results to invoke Proposition 1.5 and the
first such step is to show that, with enumeration as in Proposition 1.5, (i) and (iii)
imply (iv), possibly after passing to a subsequence.

Proposition 5.1 Let {f,}, be a sequence in L2(H?3) satisfying sup, | full 233y < 00.
Suppose that there exists f € L>(H>) such that f,— f as n — o0o. Then, there exists
a subsequence { f, }i suchthat Tf,, — Tf a.e.in R*.

The previous result implies an analogous one for the full two-sheeted hyperboloid
ﬁ3. Recall the Fourier multiplier notation

‘/ VI gy dy, (S

{yeR3: |y|>s}

itv/—A—s2 _
e ux) = FISE

and the homogeneous HY 2(RR3) Sobolev norm and inner product

nwgmwy=fmewm»<mwmmwy=fmwMMﬂw.6m
R3 R3

Proof of Proposition 5.1 The proof follows similar lines to the proofs of [21, Thm. 1.1]
and [38, Prop. 8.3]. We start by splitting f, = f,1p(0,2) + ntLB(O’Q)g = fu1+ fu2,
respectively, and f = flp@2) + f]lB(O,2)C =: f1 4+ f2. The conclusion of the
proposition will follow if we show that there exists a subsequence { f;;, }x such that
Tfu1—~>TfiandTf,, »— Tfrae. in R*.

Since f, 1— f1in L2(H3) and the support of f; 1 is contained on the compact set
B(0, 2), it follows that T f, 1(x,t) — T fi(x,t) forall (x,1) € R* provided that the
function (y, s) > e/*Ve!'* 1 3(0.2)(y) belongs to L?(H?), which is the case.

To study the pointwise convergence of T'f, > define g, and g by their Fourier
transforms as follows

a(y) = In2(y) 30y) = 12(y)
n - 9 —_— .
Viyir =1 VIvPE =1
Because
2 » dy 2 <
1 fa2l220, = HOF s <P il 20 S 1
y|2 —

{yeR3:|y|>2}
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we see that the norms of the g,’s in the homogeneous Sobolev space H'/2(R3) are
uniformly bounded

d
/ ()P <1
[yl

2_ 1~

N

lgnl31/2 3, =/|§n<y)|2|y|dy<
R? {yeR¥:1y>2}

The weak convergence of { f 2}, to f2 in L*(H?) easily implies g,—g asn — 00
in H'/2(IR3). On the other hand

I 1 dy
<2n>3||gn||iz(ﬁg)=||gn||iz(R3)<ﬁ / | o2 ———= <1

VyE-17

{yeR3:|y|>2}

50 {gn}n is uniformly bounded in L(IR3).

The operator T applied to f, 2 equals (2m)3etv=2=1lg where the operator
¢/"V=A=1 is understood in the Fourier multiplier sense as in (5.1). Let € R be
fixed. By the continuity of e//V=2~1 in H'2(R3) we obtain

eit«/fAfl it\/fAflg

8n—€

weakly in HY/ 2(IR3), as n — oo. Then, by the Rellich—-Kondrashov Theorem ([17,
Thm. 7.1]), for any R > 0

eit«/—A V—=A—1

_lgn — el 8
strongly in L>(B(0, R)), as n — o0o. Denote by

2

Fa) = | |V gn — g)| du = [l TAT!

[x|<R

(gn —8) ||i2(B(0,R))'

By Holder’s inequality and Sobolev embedding, [17, Thm. 6.5], we obtain

Fn(t) — ”el‘l\/—A—l V—A—-1

(& = 72505y < CRIE" (& = 7350

< CRIE™Y ™2 gn = D)) S R

then, by the Fubini and Dominated Convergence Theorems we have that

R R
/Fn(t)dtzf /

—R —R |x|<R

2
PUR _A_l(gn —g)| dxdr — 0,
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as n — oo. This implies that, up to a subsequence,
VAT e (x) — '™V TAlg(x) > 0 ae. (x,1) € B(O,R) x (—R, R).

Repeating the argument on a discrete sequence of radii R, such that R, — oo, as
n — oo we conclude, by a diagonal argument, that there exists a subsequence {g, }«
of {g,}, such that

VAT (x) — ™V TA T g(x) = 0 ae. for (x,1) € RY,
or equivalently, in terms of the sequence { f;;.2}, and the operator 7',
Tfun2(x, 1) = THix,1) ae. (x,1) € R*.

]

We now show that the only obstruction to precompactness of extremizing sequences
is the possibility of concentration at infinity, as in Definition 1.6.

Proposition 5.2 Let { f,}, C L*(H3) be an L? normalized extremizing sequence for
T. Suppose that { f,}, does not concentrate at infinity. Then there exist a subsequence

{ fu, ke and a sequence {(x, tr) }r C R* such that {eixk'ye”" VivPE- e }k is convergent
in L>(H?).

Proof If {f,}, does not concentrate at infinity, then there exist &, R > 0 with the
property that for all N € IN there exists n > N such that

I fnlpo.R)ll 203y 2 €

We can generate a subsequence, { fy }k, such that || f,, 1p(o.r)ll12(13) = € for all
k € IN. Rename the subsequence as {f,,},, if necessary. Writing f, = f,1po,r) +
fnllB(O R = fn.1 + fu2, respectively, we have

||Tfn,1 ||L4(]R4) =T(fn — fn,2)||L4(]R4) > ||Tfn||L4(IR4) - ||Tfn,2||L4(R4)
Z T fullparsy — Hall fu2ll 233

1/2
= ITfull sy - H4(1 - ||fn,1||iz(H3))
> T full sy — Hav/1 = &2, (53)

As the right hand side in (5.3) converges to ¢ := Hy — Hys/1 — 82 > Qasn — oo
we see that

>0

(5.4)

[\ N}

||Tfn,l||L4(1R4) >
for all large n.
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We may use the argument in the proof of [20, Thm. 1.1] to construct the sequence
{(xn, t)}n. In brief, the argument goes as follows. Taking any p € [%, 4), inter-
polating the L* norm of Tfn.1 between L? and L™ and using (5.4) together
with the boundedness of T in L? imply that || T fy 1]l R4y 2 1, so that there
exists a sequence {(x,f;)}n C R* such that ITfu1(xn, ty)] = C > 0, that
is, |(T(e™nyelnvVIP=17 1))0,0)) > C > 0. The compact support of fp|
implies that 7'f;, 1 belongs to C*®(R* and 17 fn 1l oo R4 S Nfaallpn S
IViiTfuillpomsy S Nfuallpr S 1. By the Arzeld-Ascoli Theorem, it follows
that {T (/Y el V1Y -1 fn.1)}n is precompact in the space of continuous functions
on the unit ball of R*. On the other hand, passing to a subsequence, we may assume
Fyp = e neitnV/DP=1 ¢+ £ weakly in L2(H?), for some f € L2(H3), and then
T(Fy)(x,t) = Tfi(x,t) forall (x,1) € R*. Moreover, T(F,) — T f1 uniformly in
the unit ball, so that |7 f1(0, 0)| > C > 0, which implies that f; # 0.

Compactness of the unit ball in L>(?) in the weak topology implies that, after
passing to a further subsequence, ¢/*»Y i’V ‘«V'z_lfn—\f, for some f € L>(H3).
Since f1 = f1p,r) a.e.in R? we conclude that f # 0. Therefore condition (iii) of
Proposition 1.5 is satisfied. Proposition 5.1 implies that condition (iv) is also satisfied.
As (i) and (i) are immediate, we conclude that e/ VeinVIYP=1 £ 5 fin L2(H3),
and we are done. O

To conclude the precompactness of extremizing sequences we need to discard the
possibility of concentration at infinity. For this we use a comparison argument with

the cone where the upper bound for p * s as found in Lemma 3.2 will be useful.

Lemma5.3 Leta > 1 and f € L>(H>) be supported in the region where |y| > a.
Then

11k il < 2 (1+

1 4
T )0
Proof If f is supported where |y| > a, then the support of fu * fu is contained in

the region {(£, 7) € R*: t > 2+/a? — 1}. The Cauchy—Schwarz inequality provides
the a.e. pointwise bound

|fros fulP@E 1) < (1P [ FP)E o) (o ), 1),

which together with the upper bound in Lemma 3.2 imply

s ful@ o <27 (1+ FPx [ FPi) 6 D),

=)
a?—1 (
forae. (£,7) € R*. Integrating over (&, 7) € R* yields the result. O

It is now direct to prove our first main theorem.
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Proof of Theorem 1.2 We start by noting that if an L?-normalized sequence { f,,}, con-
centrates at infinity, then for any a > 1, || f, 1 (0,q) ”LZ(M) — 0 as n — oo, therefore,
for such a sequence we obtain, using Lemma 5.3, that

I futt 5 futtl3 2 s
lim sup 7 L@ <o
n—0oo ”fﬂ”LZ(’u)

Using Proposition 4.1 we conclude that an extremizing sequence for 7" does not
concentrate at infinity. We apply Proposition 5.2 to conclude. O

6 The Full One-Sheeted Hyperboloid

Our task in the sections to come is to prove Theorem 1.3, the existence of extremals

for the adjoint Fourier restriction inequality on the one-sheeted hyperboloid H . In
the L* case, there is an argument available for the cone '3 that allows to relate the

best constant and extremizers for I'> with that for the double cone FS. It relies on the
observation that the algebraic sums I'3 +I'3 and I'3 4+ (—I"?) intersect on a null set of
R3, namely, (I'* 4+ I'3) N (I3 4+ (=I'%)) = '3, so that for any f., g4, hy € L>(T?)
and f_ € L?(—I'3) one has

(f+06 * 8+0¢, h+0’c * f—EC>L2(]R4) = O,

where &, denotes the reflection of o, supported on —I'3. An analogous property in
the L* case applies to the two-sheeted hyperboloid in R* and allows one to obtain its
best constant from that of the upper sheet only (see [39, Prop. 7.3, Cor. 7.4]). This

approach is not applicable to ﬁ3 because here H> + H3 and H> + (—H?) intersect
on a set of infinite Lebesgue measure.

The argument we use to prove precompactness of extremizing sequences (modulo
multiplication by characters and Lorentz transformations) is close to that of Brocchi,
Oliveira e Silva and the author [1] and of [38] by the author using a concentration-
compactness argument, a refined cap estimate, comparison to the cone and the use of
Lorentz invariance. It borrows from the Christ—Shao argument [13] the cap refinement
of the Tomas—Stein inequality for S to obtain a similar refinement for the hyperboloid,
as well as the understanding that it will be necessary to compare to a “limiting”
manifold, in our case, the cone.

In the next section we review the aforementioned cap refinement for the Tomas—
Stein inequality for S* that will be used in the subsequent section to obtain a
corresponding cap refinement for the adjoint Fourier restriction inequality on the
hyperboloid via a lifting method. In later sections we consider the concentration-
compactness argument.
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7 The Tomas-Stein Inequality for S2 and Refinements

The sharp convolution form of the Tomas—Stein inequality for S* states that for all
f € L*(S*) we have

Ifo * fol2ms) < SPISI7 s (7.1

where S = (271)1/ 4 is the sharp constant, as obtained in [22].

In this section we review some refinements of (7.1) that will be useful in the next
section. The exposition here follows that of [13, Sect. 6]. We start by setting things
up to define the X, spaces, p € [1, 00), and the first step is to generate increasingly
finer “grids” for the sphere S?. With this in mind, for each integer k > 0 choose a

maximal subset {y,{ }j C S? satisfying | y,{ — y,lc| > 27k forall j # [. Then, for each
k > 0, the spherical caps € := €(y/, 27**!) have finite overlap and cover S?, that
is, U; G'li = S2, and there exists a constant C, independent of k, such that any point in

S? belongs to no more than C caps in {C‘Ei}j, for every k > 0. For p € [1, c0), the X,
norm of f is defined by the expression

~ 1 4/p
1%, =D 2 4"<@[|f|”da) : (7.2)
¢

k>0

Moyua et al. showed in [31] that there is a continuous inclusion L3S c X p for
all p € (1, 2) and that forany p > % there exists C < oo such thatforall f € L*(S?)

1ol s < Cllfllx,- (7.3)
Let us define
Ji—1 Ji—1 2 —1/2
My (h = (167" [1r1d0) (il [ 1P ae) "
e} s

which by Holder’s inequality satisfies Ay, ;(f) < 1. It was shown in [13, Lemma 6.1]
that for any p € [1, 2), there exists C < oo and y > 0 such that for any f € L?(S?),

Ifllx, < ClfliL2s2y Skup(Ak,j(f))”- (1.4)
)]

Combining the two results, (7.3) and (7.4), by choosing any p € [17—2, 2), we obtain
the following “cap refinement” of (7.1): there exists C < oo and y > 0 such that for
all f e L*S?)

7ol @y < Cllf e sup(Ai, (/) (7.5)
5
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A §-quasi-extremal for the sphere is a function f # 0 that satisfies
I fo* follpams) = <3282||f||L2 R With the aid of the previous inequality, Christ
and Shao proved the following result regarding §-quasi-extremals.

Lemma 7.1 ([13, Lemma 2.9]) For any § > 0 there exists Cs > 0 and ns > 0 with
the following property. If f € L*(S?) satisfies || fo * folly > 82S2||f||§ then there
exist a decomposition f = g + h and a spherical cap C C S? satisfying

< gl 1nl < 11, (7.6)
g, h have disjoint supports, 7.7
lg(0)| < Csllfllal€I ™ 1e(x) forall x, (7.8)
ligllz = nsll £ 2 (7.9)

Moreover (7.8) and (7.9) hold with constants that satisfy Cs =< 8§~ '/¥ andns < §'/7,
where y > 0 is a universal constant®.

It will be our task in the next section to obtain an analogous result for the hyperboloid
and for this it will be convenient to briefly discuss the construction of the function g and
the cap € in the conclusion of the previous lemma. Letting f € L(S?) be a §-quasi-
extremal, inequality (7.5) implies that there is a constant co € (0, 00), independent of
f, such that

supAkj(f) > 2¢081/7.

It follows that there exist k and j such that Ay ;(f) > codV/* Let @ := G,{. Then,

/ Fldo > cos 7161 £l 2. (7.10)

Let R = (3c08"7[CI"Y2) 7 [ fll 22y, A = {x € C: |f| < R}, g = fl4 and
h=f—-Ff IL 4. It is now a simple exercise to prove that g, & and C satisfy the
conditions stated in the lemma.

Remark 7.2 Let us consider the following scenario: a measurable set £ C R
and a measurable function F : E x S? — C that satisfies F € L2(E x S?),
| Fro * Frollp2Rsy = 82S2||F, ”LZ(SZ > 0 for all » € E, where F,(x) = F(r, x),

(r,x) € E x S*. Applying Lemma 7.1 to F, for each r € E generates caps C, C S?
and functions G, and H,, and in this way functions G, H : E x S? — C, which a
priori may not be measurable in the product space E x S?. This can be overcome if we
are careful with the choice of the caps as we now proceed to explain. For a collection
of spherical caps {C,},cE satisfying (7.10) with € = C, and f = F,, forallr € E,

4 The power dependence of Cs and 75 on § can be found in the proof of the lemma in [13, pp. 277-278]
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denote

gOZ{(rax):r GE, X Eer}a
G = {0, € Go: 1K, < (5eos"71€1"2) T 1Pyl |

Then, as explained following (7.10), we cantake G = Flg, and H = F — Flg,.
We need to argue that we can have Gy and G| measurable, by choosing the collection
{C,}rcE appropriately. Whenr € E, then supy ; Ay, j(Fy) = 2¢(8), for some universal

constant ¢(8). The cap C, = Gi is to be chosen so that Ay ;(F,) > c(§), that is,

|erl_1/2/ |Frldo > c(O)IFrll2s2)-
e,

The set of caps {G,{ . k, j}in S? is parametrized by indices k and j where k € N
and j € {1,2,..., Ji}, forsome Jy < oco.Let Z ={(k, j): ke N, jef{l,..., Jr}}
and define the function ®: E x Z — R by

O(r.k, j) = |e£|—1/2||Fr||;2‘(S2)/|Fr|da.

¢

By Fubini’s theorem, for each fixed (k, j) € E x Z, ©(-, k, j) is a measurable
function. By assumption, for each r € E, supy O(r,k, j) = 2c(5). We want to find
a measurable function 7 : E — Z such that

O, 7(r)) ZsupO(r, k, j) —c(8) = c(d),
k.j

a so called c(8)-maximizer. That this is possible is a consequence of measurable
selection theorems, see for instance [41, Thm. 4.1].

For such a measurable selection function t write t(r) = (k(r), j(r)) € Z, then
the function £ — S, r — y,i((:)) , 1s measurable and we can write Gy = {(x,r) :

rekE,|x— y,i((:))l < 2_1‘(’)“}. We can therefore assume that the sets Gy and G| are

measurable sets in E x S2, so that G and H are measurable functions. In this way, we
have the following lemma.

Lemma 7.3 Let E C R be a measurable set and F : E x S* — C be a measurable
function satisfying F € L>(E x S?), | Fro Frolemsy 2 8252||Fr||iz(52) > 0 for
all r € E, where F.(x) = F(r,x), (r,x) € E x S%. Then, there are spherical caps
{C,}reg and measurable functions G, H satisfying: F = G + H, G and H have

disjoint supports, 0 < |G|, |H| < |F|, and forallr € E:

|G, (x)| < Csl|Frll21Cr 17?1, (x), x € S* and |G, 12 = ns|| Frll2-
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We now prove a slight improvement of Lemma 7.1 that adds one more restriction
to the function g. It tells us that we can replace a §-quasi-extremal for the sphere for
a better controlled one at the expense of powers of §.

Lemma 7.4 For any 6 > O there exists Cs > 0, ng > 0 and Ls > 0 with the fol-
lowing property. If f € L*(S?) satisfies || fo * fo | > 82S2||f||% then there exist a
decomposition f = g 4+ h and a spherical cap C satisfying (7.6), (7.7), (7.8), 7.9 and

lgo * galla = AsS%|| f1I3. (7.11)

Moreover (7.8), (7.9) and (7.11) hold with constants that satisfy Cs < 8V, ns =<
S1HVY and s < 8947 where y > 0 is a universal constant.

Remark 7.5 1t is not difficult to see (e.g. [38, Lemma 6.2]) that for a function g satis-
fying (7.8) and (7.9) there is a lower bound for the L! norm of the form

2
n

/|g|da > C—5||f||2|e|”2. (7.12)
o b

Note that the sharp estimate (7.1) for S? implies that for g satisfying (7.11) we have
1/2 1/2
Sliglz > llgo * goll,”* > 25’8 £z,
so that

1/2
lgll 2@y = A5 I f - (7.13)

Proof of Lemma 7.4 Take Cs and s as in the conclusion of Lemma 7.1. We claim that
the lemma at hand holds with respective constants Cs, §1s/ /2 and Ay = (8377(% / 8)2.
To see this we employ a decomposition algorithm, reminiscent of that in [13, Sect. 8,
step 6A], defined in the following inductive way.

Let Go = f and fy = 0 and suppose that for N > 0 we have defined G and f,
for 0 < k < N, satisfying:

f=Gn+fot+- -+ fn. (7.14)

supp(G n), supp(fo), - - . , supp(fn) are pairwise disjoint, (7.15)
1

IGno *Grolla > S8°S%If115. (7.16)

The previous conditions are satisfied if N = 0. We now define the inductive step
of the algorithm. If (7.14), (7.15) and (7.16) hold for N we define G y+1 and fy41 in
the following way.

Given that [|Gyo * Gyolla > 2828?|fII3 > 162S%|Gn|3 we can apply
Lemma 7.1 to G y to obtain a decomposition Gy = gy + hy and a cap Cy. Define
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Gn+1 = hy and fyy1 = gn. The functions Gy and fy therefore have disjoint
supports and satisfy

| fv1(0)] < CslGllalCh| ™2 1e, (x) < Csllfll2lCn| ™ ? 1, (x) forall x,
(7.17)

1
I fv+1lle Z nsliGnllz = —=nsdll fl2, (7.18)
SN+ n ﬁ” b

where the second inequality in (7.18) follows as in (7.13).

The algorithm terminates at N > 1 when either || fyo * fyo|a > )»(sSZHfH% or
IGyo * Gyolla < %SZS2||f||%. In the former case we say the algorithm stops in a
winandsetg = fy,h =Gy + fo+ -+ fyv—1, C = Cy and the Lemma is proved.

Let Ns := (2n§28 ~27. We claim that the algorithm stops in a win for some N < Nj.
We first show that the algorithm can not run for more than N steps, otherwise, using
(7.18) we have

Ns+1 1/2
Ifll2 > (Z ||fk||%) 7(1\75 + 20581 fll2 > 11£ 112,
k=1

which is impossible.

Second, we show that if the algorithm has not stopped in a win during the first N
steps for some N < 2Ns, then we can perform the step N + 1. More precisely,
if ||fro * frolla < k582||f||% forall 1 < k < N, for some N < 2Njs, then
IGyo * Gno|2 > %8282||f||%. Indeed, using Plancherel’s theorem and then the
triangle inequality we obtain

N
1/2 1/2 1/2 1/2
IGNo * Gyally> = I fo* folly> =l feo * fiolly” = 8SI£lla — Nag/*SI £l
k=1

(8 —2N52/ D8I £ 112

> 78S .
08I S 12

It follows that the algorithm stops in a win for some N < Njs. This finishes the
proof. O

The next topic we review is that of “weak interaction between distant caps”. For
spherical caps G, € C S? there is a notion of distance. Let (y, a), (¥, a’) € $? x
(0, 00) denote the centers and radii of the spherical caps €, €/,

={xeS* |x—y/<a}), @ ={xeS|x—y|<d).
The distance between € and € is defined by the expression

0(C, €) = min(d(€, €'), d(C, —C)), (7.19)
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where, as in [33], we can take d to be the hyperbolic distance between (y, a) and
(y', @) in the upper half space model, that is’

/

. \2 2
d(G,G/):arccosh<1+(a a) +ly—yl )

2aa

The following lemma quantifies the notion of weak interaction between distant
caps.

Lemma 7.6 ([13, Lemma 7.6]) For any ¢ > O there exists p < oo such that

[leo x Lero |l 2R3y < elCI'21€) 2, whenever o(@,€) > p.
An inspection of the proof of the previous statement in [13, Lemma 7.6] shows that
an analog result holds if we have caps C C S% and €' C Slz, with r, t € [1, 2], that is,

denoting %G the rescale of € to S?,
%G:{x eR’: rx e @),

we have the following lemma.

Lemma?7.7 Letr,t € [1,2], C C Sg and €' C Stz. Then for any ¢ > 0 there exists
p < oo such that || 1oy * Leor|l 2R3y < |CI1/2|€'11/2, whenever Q(%G’, %G’) > p.

8 Lifting to the Hyperboloid the Inequality for the Sphere

The aim of this section is to use the Tomas—Stein inequality for the sphere S? to obtain
qualitative properties of §-quasi-extremals for the hyperboloid. The connection here
between the hyperboloid and the sphere is that the latter corresponds to horizontal
traces of the former. This connection between the adjoint Fourier restriction operator
on a hypersurface and on its traces appears, for instance, in the work of Nicola [32].
An alternative approach to the methods in this section can be developed using refined
bilinear estimates, but we choose to give a different and new argument. The main
result of this section is the following lemma.

Lemma8.1 Let0 <5 < % Forany§ > Qthere exists Cs > 0, ns > 0and vs > Owith
the following property. If f(x,t) € LZ(HE) supported where 1 < |x| < 2 satisfies

5 We point out that for the two lemmas that follow we don’t need d to be a distance. It would be perfectly
fine to consider instead the expression

@—a)? ly=yP*  ly—yP?
aa’ a? (a')?

so that caps are far apart if either a/a’ or a’/a is large or the distance from y to y’ is much larger than either
/
aora’.
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I fes * freslizrey 2 82H421||f||i2 then there exist a decomposition f = g+ h, a
spherical cap € € S* and a cap C =[1,2] x € C Hf satisfying

< Igl 1kl < I£1, 8.1)
g, h have disjoint supports, (8.2)
supp(g) € C, (8.3)
1g(x, )] < Csll fll 2 (€)1 (x, 1) forall (x, 1), (8.4)
lglzz = nsll fll L2, (8.5)
gl = vsis @2 £1l 2 (8.6)

The constants Cs, ns and vs are uniformin s < %

Remark 8.2 The previous lemma is equivalent to the analog result for ﬁf. Indeed, that
the result for ﬁ? implies a similar one for 743 is immediate. On the other direction, if
f € L2(F) is a -quasi-extremal for (1.10), that is

ITs F i sqey = QO Fiis * Flis 2 gy > @S HILIE, s Ly

then, writing f = fy + f_sothat T, f = Ty fy + Ty f_(-, —) and ||f||2

L2(H, )
||f+||L2(H; + | f- ”L2(H* we obtain that
—4axgh
| fetts * fereslTacmey = 27 8 Hyll fell J2 03
fore = 4 orfore = —, so thatif both ”f+”L2(H*) > 2||f||2 73) and || f_ ||L2(7—(3) >

82| f ||2 (ﬂg), then we obtain the conclusions in Lemma 8.1 for f from the ones for
f4 or f_, as it corresponds. On the other hand, if say || f— ”LZ(H* < 82 fI?

LZ(H )
2 2
then [1f+122 g, > (1= 8DISI7, o and

ITfillgs 2 1T fllps = NTf=llp+ = 2m8(Hs — H4)|If|IL2(ﬁ3) 2 cSHall fllL2 (3
so that Lemma 8.1 applied to f yields the result for f.

The support condition 1 < |x| < 2 can be changed to a < |x| < b for any
a > s and b < oo, understanding that the implicit constants may depend on a, b.
We can alternatively state the previous lemma for f € L?(H>) supported where
2N lx] < 2N+L N > 1, the implicit constants independent of N, as can be easily
checked by the use of scaling.

Recall that we write ¥5(r) = ~r2—s2l;>g and ¢s(t) = ¥, (1) =
V12 +521;>0) and for f € S(R?) and r > 0 we denote by fo, the measure
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supported on S? := {y € R3 : |y| = r} given by

(for. @) = / Frery)r do ().
Sz

We denote f; the function x — f(rx), which we consider as a function from S?
to C.

In the next lemma we show that we can write the double convolution of functions
on the hyperboloid Hg as an integral of convolutions of sliced spheres.

Lemma8.3 Lets > 0. For f, g € LZ(HE) we have the representation formula

t

(fres * gus)(x, 1) = /‘(f%x(w * 804, (1—r)) (x) dt’, (8.7
0

forae. (x,1) € R® x Ry.
Proof Let ¢ € C>°(IR*). Using spherical coordinates we have

dx dy

Ve =2y — 52

(Fits * gits @) = / 00+ 3, Us (¥) + U O F ()8 ()
[x],[y[=s
212 dw do’ dr dr’

:////¢(Vﬂ)+r/w,,Ws(")+Ws(”/))f(rw)g("/w/)W~

s 5 §2 82

We change variables (7, ') = (u, u') = (Y5 (r), ¥s (') = (Vr? — s2, /12 — 52)
and obtain

(fus * gus, @) =////¢(¢s(u)w+¢s(u’)w/,u+u/)

0 0 2§82

X f(ps (W) g (s ) )ps (1) s (') dew dew’ du du”.

We change variables (u, u’) — (t,1") = (u + u’, u) and obtain

oot
(f s * gls, @) :////‘(P(‘bs(t/)w‘k(bs(t_t/)w/»t)

0 0 g2 s2
X f(ps (1) g(Ps(t — 1) ) (1) (t — 1) dw do’ di” dt

0ot
- //(/ PLx, t)(fa%(,/) * g0¢5(t—t’))(X)dx> dr’ dr

0 0 R3
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t

= </(f%s(t’) % 80, (1—ry) () <p>,

0

where we used Fubini’s Theorem and that for any r, r’ > 0,

(for xgop, (1) = f(p(x,t)(fffr * goyr) (x) dx

R3
= / p(x +x', 1) f(x)g(x") doy(x) doyr (x)
SExS?
= / pro+r'e, ) fro)gr'o)rr’ do(w)do (o).
S2x§?
[}

Next, we record a formula for the L? (Hf) norm in terms of the L” norm of the
slices.

Lemma8.4 Let f € LP(H?). Then

o0
112 ) = / | fou 15 oy s (D) . (8.8)
0

Proof Using spherical coordinates we have

T / [ 1o = dodr = / / £ @007 (1) dood

s §2
= / I )17 2, s (1) it
0

m}

We now analyze the dependence of || fo, * go,|| L2(R?) in (r, r"). We start with the

scaling property of 75 as a function of r. We have

(Fon(x) = / e £(y) doy () = / eI fry)rdo () = r(fr0) (rx).

S? S?

Thus
Iforllamsy) = r' I frollamey < @OY4rS) il 2y
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Then, the Cauchy—Schwarz inequality implies that for any r, r’ > 0

Ifor 8ol 2msy < I forll aligorlips < Qr) 282 A frll 2oy gl 22y
so that

I for % gowll 2wsy <SP I fll @) I8 22 (8.9)

and in particular, when r = r’ we obtain

I for * gorll 2wy = r'/2 1 fro % groll 2wy < S 21 frll 22y lgr 22
(8.10)

Definition 8.5 A quasi-cap of 'H? is a measurable set G C H? for which there exist
E C R and spherical caps C; C S?, fort € E, such that

G={(x,)eR*: t € E, x € ¢s(1)C,}. (8.11)

We note that a cap is also a quasi-cap; the difference in a generic quasi-cap is that
the spherical caps may not be the same as in the case of a cap, and the set £ may not
be an interval.

In our main result of the section, Lemma 8.1, we want to obtain an analog of
Lemma 7.1 for a compact subset of the hyperboloid. The idea is to use the cap
Lemma 7.1 for the sphere on horizontal slices of the hyperboloid via (8.7) in a mea-
surable way (recall Remark 7.2), and show that there are enough aligned sliced caps
of similar size to obtain a cap for the hyperboloid. We do it for the upper sheet as
the full one-sheeted hyperboloid follows from this as already noted in Remark 8.2.
The proof of Lemma 8.1 is accomplished in the following way. First, we show that
on a large subset of #’s in [¥ (1), ¥(2)] we can apply Lemma 7.4 to the function
xeS?— f(¢s(t)x) in a measurable way. This will allow us to prove a version of
Lemma 8.1 where instead of a cap we have a quasi-cap. Next, we show that a subset
of the quasi-cap of large relative measure is comparable to a cap and satisfies the
requirements of Lemma 8.1, which then are shown to be satisfied by the cap itself. To
prove this last point, we will make use of the quantitative version of the statement that
“distant spherical caps interact weakly” as stated in Lemmas 7.6 and 7.7.

Proof of Lemma 8.1 In what follows, c¢(§) denotes a constant that depends only on §
and is allowed to change from line to line.® Recall from Remark 7.5 that (8.6) can be
obtained from (8.4) and (8.5) with vs = ng/Cg.

We first argue that we can assume that the support of f(-,#) does not contain
antipodal points for each ¢ € [5(1), ¥5(2)]. We can cover S? as the union of finitely
many spherical caps {Ci}r=1...., each of radius }‘, whose centers form a maximally

%-separated set on S?, and induce a decomposition of H? as the union of the caps

6 Reviewing the argument one can see that such constants can be taken to depend only on powers, positive
and negative, of §.
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{[s, 00) x Cr}k=1...«. By the triangle inequality we can therefore assume that f is
supported on the cap [s, 0c0) x C, for some k, at the expense of changing § by §/«.
The reason for doing this is to ensure that there are no nearly antipodal spherical caps
later on.

Let us start by noting that for (x, ) in the support of f and s € [0, %] we have
Ix| € [1,2] and 1 = ¢ (x) € [Ys(1), ¥5(2)] = [V1 =52, /4 —57] C [‘/75,2], and

that from Lemma 8.4

Vs (2) Vs (2)
[ Woolagey & <1 <2 [ Moo lags o
Y5 (1) Y5 (D)

On the other hand (fus * fus)(x, t) is supported where 2v; (1) < 1 < 295(2).
From Lemma 8.3 for a.e. (x, 1) € R* we have

¥s(2)

fus* fuus(x, 1) = / (fog,an * fog—m)(x)dt’, (8.12)
¥s (1)

(recall that ¢s(t) = 0 for T < 0). Let

I fop, @) * fopmllL2@r3) V252H42152||f¢5(1)||%,}

Ey, =1 €[y (1), ¥s(2)]:
y { vs (v ySH, £

VoWV

Il fo,0) 12

and

I fog,@) * fos,oll2ms) = v 8" HES | fo, ) ||§,}

=
Eyo=1€ys(D), )]
v { ASH4| fll2 2 1 fgoyll2 = v 8Hall £ 12

Here, || fo,ill2 = I1f (@5(0) -, Dl 2(s2)> While [|fll2 = [1f ]l L2(3)- We claim that
|Ey| > c(8)and |Ey 5| > c(8) if y and A are chosen small and large enough depending
on §, respectively. Let us first analyze | E,, |. From (8.12), using Fubini’s theorem and
Minkowski’s integral inequality we have

¥s(2)
PEISB< | [ o Sopi-mirar
¥s (1)
¥s(2)
<| [ 15000+ Fona izt gg@rar
¥s(1)
¥s(2)
] [ Fonex fopemme, @rar
¥s (1)

L?

X

Ly

2,

Xt
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Plancherel’s theorem and the Cauchy—Schwarz inequality give
1/2 1/2
1fog,an * fopa-n iz < Nfop,an * fop,anllpy 1fopa—n * fop,a-mllz

so that using the sharp estimate for || fog, ;—s) * fOp (-1 ||L§ as in (8.10), recalling
that ¢ (t), ¢s(t —t') € [1, 2], we obtain
¥s(2)

H / £ 09,y * Fop a2l pe () d’
W)

L

Vs (2)

<23t [ Wpolallfo oo oo
Ys (1)

L

Vs (2)
+200HS | [ 1o laor
vs (1)

12
< 8ySH4S?| f113.

Therefore, choosing y = §Ha/ (16S?) we obtain

Vs (2)
(Four * fopam@Ig, @hdd| | > Ls2m2) 713
s (') s (t—1") EV Lgt = 2 4 2-
Vs (1)
For this choice of y we then obtain
Vs (2)
1 2§32 2 1 /
SPHIFE<| [ Fonin * fope-m@is ¢hdr| |
yall)
Vs (2)
<| [ 15900 % onitizie, @
yal) '
Vs (2)
<28 [ Wtz foi-oliaie o,
t
Ys (1)
Vs (2)
<28%|Ey |V / | fouo 172 dt < 282 fI31E, 112,
¥s (1)

and therefore |E, | > H;8*/(168%).
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To analyze |E, ;| we use

Eyp=Ey N0 {t € [Ys(1), U5 D] = | fp,00 12 < A6H4 ]| £ 12}
Chebyshev’s and Holder’s inequalities imply

vs(2)

r € [Ys (D), YD1 2 | fg, 0y ll2 > AH4 | fll2}] < I fos ) ll2 dt

ASH4 fl2
s (1)

2
ASHy

<

Therefore, choosing A = 64S* / (HZ(SS) we obtain

4

H
|Eya] = 1Ey| — [t € [¥s (1), s )] 2 | fpg Iz > ASHall fll2}] > ﬁa“.

From now on, let us fix such values of y and A and let £ := E, ;. From the
definition of E and (8.10), we have that forr € E

1 fos00 * fo,00o 23y = cbs )28 fo, 01722,

so that Lemma 7.1 imply that for ¢ € E there are caps C; € S? and a decomposition
Jos@) = Goy(r) + Hgp, (1) In this way we obtain a decomposition f = g + h, where
gs()x, 1) = Gy, n(X)LE(1), x € St e [V (1), ¥s(2)]. As argued in Remark 7.2
and recorded in Lemma 7.3, by using a measurable selection theorem we can perform
this decomposition in such a way that g and & are measurable functions and Gy :=
{(x,1) e R*: t € E, x € ¢s(t)C,} is a measurable subset of ’Hf,’, so that Gy is a quasi-
cap. According to Lemma 7.1, g and # satisfy the following conditions: f = g + A,
0 < |gl, |h| < |f|, g and h have disjoint supports, g(x,t) =0ifr ¢ E,

18(8s ()x. D] < Csll £, 1) 121C| 7L, (x), forallt € E, x € §2,

2
n
lgps 2 = nsll for 125 118pscry 1 = C—i|ef|l/2||f¢s<z)||z, forallz € E.
(8.13)

Note that Lemma 8.4 and (8.13) imply

ligllz = nsll fll2-

Given that for t € E we have 8”Hal| fll2 < | fpo(ll2 < 87*Ha| £ 1|2 we conclude,
possibly by changing the constants that depend on &, that the function g satisfies

lg (s (D), )] < Csll fl121C |72 1e, (x)1£ (1), forall z € [Y(1), Y5 (2)], x € S?,
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(8.14)

and

2
n
Igg, ) 22y = msll £ 112 and lIggy o ll g2y = C—i|et|1/2||f||2, foreach s € E.
(8.15)

Summing up, we can restate what has been done so far in the following way: If
f € L2(H3) satisfies || f 15 f s ll2 = 8H3|| £ |13 and is supported where 1 < x| < 2
then there exist a decomposition f = g + h, aset E C [{(1), ¥(2)] satisfying
|E| 2 8% and a quasi-cap Gy (associated to E as in (8.11)) such that g and & have
disjoint supports,

lg(x, O] < Csll fll21€ 1?1 g, (x, 1), forall (x,1) € M,

and (8.15) holds. This is the analog of Lemma 8.1 with a quasi-cap instead of a cap.

Using the quasi-cap analog of Lemma 8.1, as described in the previous paragraph,
we can argue exactly as in Lemma 7.4 for the sphere to ensure, possibly after changing
the constants that depend on §, that there exist a quasi-cap, which we continue to denote
Go, associated to a set E C [y (1), ¥s(2)] with |E| 2 8*, and functions g and & with
the properties of the previous paragraph and additionally

lighes * guesll 2y = csll f1I3- (8.16)

The next and final step is to show that the caps C;, t € E, which define Gy are
aligned for a large fraction of the #’s, and by this we mean that they have close radii
and centers, up to powers of §.

Recall that for caps C, ¢ C S? there is a distance function 0(C, @), defined in
(7.19), that is relevant in Lemmas 7.6 and 7.7. For p > 0 define

A,O = {(tat/) €EEXE: Q(el"ef/) < p}

Then, starting from (8.16) we have the estimate

Vs (2)
1718 < g gl = | [ o+ g0 ar]
Al
¥s(2)
<| [ goir om0 lizia, @o 0
¥l '
Vs (2)
] [ teonen <son et gt - e
¥s (1)
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Vs (2) Vs (2)
< 1 't —ydt C2 2 e —1/2
< 80, ) * 80, - llL2la, (st =) dr'|l L+ C5I £l 1€y
t
Yy (1) Yy (1)
—-1/2 ’ / /
X Cr—r 7 g e, Tgoar) * Loy —1)€,_ Os =) |12 L (g pynaC (' 1 — 1) d 2
Vs (2)
cs
<| [ eonr*s0imlizta, @ = rar| , + SriB.
t

W5 (1)

where in the second to last line we used (8.14) and the last line holds if p is large
enough as a function of’ 8, by the use of Lemma 7.7. For such choice of p we can
therefore ensure that
Vs (2)
H / g,y * 80p, - ll L2 1a, 't — 1) dt’
s(1)

Cs 2
zZ — . 8.17
22 R B D)

Note that (8.14) implies ||gg, ) ll2 < Csl| fll2 for all t € E. This and (8.17) imply
that

¥s(2)
)
DB <28 [ Neo.olalenorlaLe, 0o — ) ar g
Ys (1)
¥s(2)
<SSR [ 1L, (=Dl 30
¥s (1)

<ASCEIFI3 14,12,

where p = p(d) is the already fixed function of § and |A,| denotes the Lebesgue
measure of A, C R2. As |Ap] < 2 we conclude that |[A,| =< ¢(§). By Fubini’s
theorem, the fibers A, (1) := {t' € E : (t,t') € Ay} ={t' € E : 0(C;,Cy) < p}
are a.e. measurable, the functionr € E +— |A,(t)| = |{t' € E : 0(C;, Cp) < p}l is
measurable and |A,| < 2esssup,g |A,(1)]. We then obtain the following estimate

c(8) < esssup|{r' € E:0(C;, Cr) < p}I < sup ' € E:0(C(y, a), &) < p}l,

teE (v,a)€S? x(0,00)
from where we conclude the existence of a spherical cap C(yo, ag) such that
I{t € E : 0(C(y0. a0), C;) < p}| < c(6).

Denote €y = C(yp,ap) and B, = {t € E : 0(Cy,C;) < p}. Fort € By, the
radii and the distance between the centers of the caps Cp and C; are of the same order

7 From the proof of Lemma 7.6 in [13] one can see that cosh p can be taken to be a power of 51

Birkhauser



44 Page480f76 Journal of Fourier Analysis and Applications (2024) 30:44

modulo powers of §. More precisely, if we let (y, a) denote the center and radius of a
cap C;, t € By, then the definition of the distance function o ensures that

c(®ag < a < ' (8)ag, and |yo — y| < " (8)a. (8.18)

This is the only place where we used the assumption that f is supported on a cap
[1, 2] x €, were the radius of C is %, because this implies that the centers of the caps
associated to g4, (1), t € E, can be chosen to be at distance at most % from each other
and therefore any two caps C;, Cy for f, ¢’ € E are not nearly antipodal.

From (8.18) we conclude that for ¢+ € B, we have |[C;| <5 |Cp| and there exists
c(8) = 1 such that the c(8)-enlargement of €y, denoted Gg and defined by

Ch = {x € S?: |x — yol < c(8)ao},

contains C; for all t € B,, and hence the cap C := [1, 2] x @‘S c H3 contains the
quasi-cap G1 1= {(x, 1) € Go: t € B,}. Note also that |C;| = |€5| forallt € By.

Now, foreacht € E, gg, (1) is supportedon Crand [ g, 1yl do = c(8)|C;] ]/2||f||2,
¢
as stated in (8.15). If in addition ¢ € B, then

f|g¢s(z)|d0 = / lgg, ] do = c®IC AN flla = G fla,
@g C;

and so integrating in ¢ € B, and using that ¢ () > 1if r > (1) gives

//|g¢m|¢s(r)dadt > c®)CYB, I fll2 = ¢ )2 £l

B, Gg
Given that 11, (C) = s ([1,2] x €)) < |€)| we obtain
/ g1, | dus = / / 12010l () dor di > ¢(8)as (€)1 f 1.
By 65

Thenglg,, f—glg, andC satisfy all of our requirements, given that supp(glg,) <
G1 C€C,G1 € Go, €] =5 us(C) forall t € B, and thus

lglg, (x,1)| < C((S)||f||L2(H3)/¢S(C)1/ZILC(x, t), for all (x, 1),
lelg, ||L2(H3 = 0(5)||f||L2(H‘)7
>

g, L1z = c@us @21 fll 20243
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9 A Concentration-Compactness Lemma

. .o =3 .
The result of this section is stated for 7 but a similar statement and proof also hold
for H.

—3
Lemma9.1 Let {p,}, be a sequence in L2(’HS) satisfying
/|pn|2dﬁs =1,
&

where A > 0 is fixed. Then there exists a subsequence {p,, }x such that {| ,o,,k|2}k
satisfies one of the following three possibilities:

(1) (compactness) there exists £y € N such that

Ve > 0, IR < o0, / |pnk|2dﬂS>A—s;
{2 Ry I <2 Ry
(ii) (vanishing) lim sup / |pnk|2d/,_LS =0, forall R < oo;
k=00 pcN

{s26-RyI<s20+R)
(iii) (dichotomy) There exists a € (0, A) such that for all ¢ > 0, there exist R € N,

. . —3 P
ko = 1 and nonnegative functions py. 1, pk2 € LQ(HX) satisfying for k > ko:

| ony — (or,1 + pk,z)lle(ﬁz) < e, 9.1
‘/ ok |? djts — | <, / ok 2? djis — (A — a)| < e, (9.2)
H, H,

supp(pr,1) C {y € RY: s2% R < |y| < 524 Ry, (9.3)

supp(p2) € {y € RY: |y < s2% Ry ufy e R3: |y| > 20T Rey,
(9.4)

for certain sequences {{y}; and { Ry}, where R — o0 as k — oo.

Proof The proofis identical to the proof of Lemma .1 in [30], by defining the sequence
of functions

0On:[0,00) > Ry, Qn(t) = sup / |:0n(}’)|2dﬁs(y)~
elN
© {2671y <264}

We omit the details. O
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In the forthcoming sections, we will be working with an L? normalized extremizing
sequence { f;, }, and will apply the preceding lemma with A = 1. We will slightly abuse
notation and say that { f;, },, satisfies either concentration, vanishing or dichotomy, when
the sequence {| f,|>}, satisfies the respective alternative.

10 Bilinear Estimates and Discarding Dichotomy
In this section we show that an extremizing sequence for 7' can not satisfy the

dichotomy condition (iii) of Lemma 9.1. This will be a consequence of bilinear esti-
mates at dyadic scales.

Proposition 10.1 There exists a constant C < oo with the following property. Let
s >0, k,k e Nand f,g € LZ(H?) supported where 2*s < |y| < 2¥1s and
K < ly| < 2K+l respectively. Then

_ Ly
175 f - Togllzzarey < €27 N fll 2 g 2e)-

Proof Without loss of generality we can assume k&’ > k. Using Lemma 8.3 we write

t
fus *gus(x,t) = /(fgqu(z/) * 80g, (1—1)) (x) dt’,
0

so that by Minkowski’s integral inequality

t
1fhes * guasll 2 < H/ I fog,ar) * 8Tg,—mll 2 di’ (10.1)
B O Ltz
Recalling (8.9), the right hand side of (10.1) satisfies
t
Hf I fop,u) * 80—l L2 df/’ L4
0 t
t
< [ 6@ 1 fieredett =0 Mg iladr |,
0
o0
<€ [ 2 i o] Lz @006 = O P gl o
t
0
Wv(szrlS)
< o gl / Bo Y fp oyl d
t Vs (2ks)
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where in the last line we used the support condition for f. Recalling the support
condition for g

Yy (2K )

2
o= / &5 (0?1180, 0|1 22, A
t
s (2Ks)

o) ggy )22

< (W@ )2 / B0 (1) 18,0 2 d
0

= @)™ 2lgl 243,

where in the last line we used Lemma 8.4. Similarly

vy 2k ) Yy (25 ls)
01 iy 1201 < / B2 i Bar)
25y Y (2ks)
1/,5(2’(‘*"3)
x ( / 1dﬂ)1/2
¥y (255)
< @) AW @) — v @) Pl fll 2 o)
= (2"s)‘1/4(2kS)1/2||f||L2(H§)
= (ZkS)l/4||f||L2(H§)-

We conclude that

t
i % gislz, < | / 1 fop * 80pa-nllzdr'| S 221 202 gl 2o
0

=273 N g gl 2o

O

Proposition 10.2 Let f, g € L>(H>) and suppose that their supports are separated
in the sense that there exist k, k' € N, k < k’, such that supp(f) € {|y| < 2%} and
supp(g) € {Iy| = 2°}. Then

Y
ITf - Tgll2mey < C27 4 M £l 2 gl 20

) Birkhduser
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Similarly, if there existk, R, R' € N, R < R, such that supp(f) C {25 R < |y| <
25FRY and supp(g) € {ly| < 28Ky U {ly| = 2+, then

_Lip_R
ITf - Telaams < C27HE M 200 18l 200

Proof We decompose f = ) . fm and g = >, .\ &m Where f,, gn are sup-
ported where 2" < |y| < 2"+ m > 0. Then

ITF - Telos = | 2 Thn - Tew |, < DTS- Tew o

m,m'’ m,m'’

P —
< Y273 fll o g 2

m,m’

— LK —k41 —glm—m'
L I S e T[T ST 1Y P
mgo,m/Zo

— LKk
<24l |||f||L2(H3)||g||L2(H3)~

The second part of the proposition follows from the first and the triangle inequality.
O

Decomposing a function f € Lz(ﬁS) as the sum of a function f, € L?(H?) and

foeL>(—H), f = fi+ f_,usingthat T f(-,-) = Tf(-,-) + Tf_(-, —) and the
triangle inequality we can obtain a statement analogous to the previous proposition

for functions on the full one-sheeted hyperboloid ﬁ3: if f, g belong to L2(ﬂ3) and
satisfy for some k, R, R € N, R < R':

supp(f) < {287 < Iyl < 24F), supp(e) < (vl < 27Ky u{lyl > 24,
then
IT7 - Telliamey < 271 gl g (102)
LXRY S a8l ap, .

Proposition 10.3 An extremizing sequence for the adjoint Fourier restriction inequal-
=3
ity (1.10) on 'K~ does not satisfy dichotomy.

Proof Let us argue by contradiction. Let { f;,}, be an extremizing sequence such that
{| fn|*}n satisfies condition (iii), dichotomy, in Lemma 9.1. Let ¢ > 0 be given and
Jfa.1, fn.2, no be as in the conclusion of the dichotomy condition. Then, for n > ng

T fo =T fur — T fuollpe <Hallfo — (for + fa)ll2 < Hae,

therefore
IT fullpe <Hae + 1T (fu1 + fu2)llza. (10.3)
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Expanding, using Proposition 10.2 (or the comment thereafter) and the support
condition for f, 1 and f, 2 as in (9.1)—(9.4), there exists C < oo independent of &
such that for all n large enough

IT St + o) l7s = 1T fut + 222172 = 1T fu)* + 2T fu1 - T faz + (T f2.2)* 113
=T fualljs + 1T fa2llfe + 20T fu)*. (T fu2)?)
FHT L) T fod - T fo2) + 4T f1.20> T fur - T f2)
ST furlds + 1T fanllds +e
S fur 14+ Hl fual +

<H, @+ (1 - a)?) + Ce,
so that using (10.3) and taking n — oo we find that for any ¢ > 0
H, <H,(?+ (1 - o))+ Ce,

for some constant C < oo independent of ¢.
We conclude 1 < o2 4 (1 — «)2. We reach a contradiction since & € (0, 1) and the
numerical inequality o + (1 — &) < 1 holds. |

The proof we just gave to discard dichotomy can be seen in the context of the
strict superaditivity condition as proposed by Lions [30, Sect. 1.2]; see for instance
the comment at the end of Appendix A in [35].

11 Dyadic Refinements and Discarding Vanishing
In this section we prove a dyadic improvement of the L? — L*inequality (1.4) that
will imply that extremizing sequences for 7' do not satisfy the vanishing condition (ii)

of Lemma 9.1. We start with the following proposition.

Proposition 11.1 There exists a constant C < oo with the following property. Let
f e L>(H?) and for k € N let fi(y) = F O Lk y)<ok+1y. Then

1/3
||Tf||L4(R4)<C<Z||fk||3 ) . (11.1)

L2
k>0 (H)

Proof We follow [38, Proof of Prop. 3.4]. We have

L4/3

IS W aggsy = TS - TF - Tf s = | 3 The- Thi - T
k.lm

<O NT i Tfi Thllpass.

k,l,m
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Fix a triplet (k, [, m). We can assume without loss of generality that |k — /| =
max{|k—I|, |k—m|, |l —m]|} so that the use of Holder’s inequality and Proposition 10.1
give

ITfi- Tfi-Tfmllpsn < NTfie- TAl2NT finllps

— k=1
AN Fell 2 Al 2 1 fon 2

<
<2
< 2 kR =lk=ml /X2 =E=ml/X2 ) £l o fill g2l fonll 2

We conclude that

NTF I aqmey S D 272 o 2= t=m 2y o fill 2 ol 2
k,l,m

Applying Holder’s inequality to the last estimate we obtain

UTF I amay S D 271K am ki mlimmli iz 3, SZufkan
k,l,m

As an application we have the following corollary.

Corollary 11.2 There exists a constant C < oo with the following property. Let f €
L*(H?) and for k € N let fi(y) = f(¥)Ljpk<y|<at+1). Then

1/3 2/3
TS sqwey < € Sup Nl gy L s (11.2)

Proof From Proposition 11.1 we obtain

3 1/3 5 1/3
1T sy < €30 Weliages) = €00 Millgey - 120

= k>0
U R 1/3
< C sup IIkaILz(H3)<Z ||fk||L2(H3>)
keN k>0
1/3 2/3

= Csup || fill 53 1 172020
kelN L) L0

The same previous argument and (10.2) give

= 1/3 2/3
T , 11.3
ITFlsceey S sup IAell s 1F10 s (11.3)

and thus it is immediate that for an extremizing sequence for T the vanishing alternative
does not hold.
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Proposition 11.3 Extremizing sequences for the adjoint Fourier restriction inequality
(1.10) on ﬁ3 do not satisfy vanishing.

12 Convergence to the Cone

The content of this section is important in the study of the compactness alternative of
Lemma 9.1, in the case in which, in addition, the extremizing sequences concentrate
at infinity.

Formally, we can write = Hg, 0. = po and T, = Tp. It is natural then to study
relationships between the adjoint Fourier restriction operator on the cone (I'?, ¢,.) and
on each member of the family {(Hg, ts)}s=0, in the limit s — 0T, and this is the
content of this section (see also [29, Lemma 2.9] for related results for the case of the
two-sheeted hyperboloid).

Note that if 0 < 7 < s and |y| > s, then the inequality \/|y|2 — 52 < /|y|? — 12
implies that for f € Lz(,u,s)

1 Lyizsilizy < W Lgyizsillzge) < WF1L2gu)s
and for f € L?(uy), extended to be zero in the region where |y| < s,
IEI(T)I+ ||f||L2(#,) = ”f”Lz(aC)'

Throughout this section we will commonly encounter the situation of having f €
L? (H_‘:’ ) and regard it as a function in LZ(H?), 0 <t < s, viathe orthogonal projection
to R? x {0}. In this case, it will be understood that f is extended by zero in the region
where® |y| <.

Let us consider the following situation. Leta > 0, {s,}, C R satisfying s, — 0 as
n — oo. Let{ f,}, be afamily of functions with f, € L2(H§’n), supported where |y| >

a and satisfying sup,, ”f””LZ(Msn) < 00. As already noted, || f;, ”Lz(ﬂxn) Z 1 full 26,

therefore {f;1{y|>s,}}n is @ bounded sequence in L?(c,). We can assume, possibly
after passing to a subsequence, that f,— f in L?%(o,). The aim of this section is to
compare || fo. * foc|2 and the limiting behavior of || f, is, * fults, |2, as n — oo, in
the case when f # 0. We have some preliminary results.

Lemma12.1 Leta > O and f € Lz(Hg) for all small s > 0 and supported where
|yl = a, then

”TYf - ch||L4(]R4) —Qass — 0+.
Proof From the uniform in s bound || 75 || = ||T'|| and density arguments, it suffices to

consider the case when f € C° (IR3). Let b € (a, oo) be such that the support of f
is contained in the region where a < |y| < b.

8 Alternatively, we can think of f as a function living in L2(R3, w dx), for different weights w.
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By Plancherel’s theorem, to show Ty f — Tf in L4(1R4), as s — 0T, it suffices
to show that g * fus — foe* foeand fus % fo. — foe* foein L2(RY), as
s — 0T,

First, we claim that there is pointwise convergence fug * fus(§,t) — fo. *
foeE, 1) and fus * foo(E, 1) — foex foo(E, 1), ae. (£,7) € R, ass — 0F.
Indeed, as in the proof of the explicit formula for u * g in Sect.3, we can write
integral formulas for f s f s, fiis* foc and focx foc forany s > Oasin (3.10)-
(3.12). Given that Rg(§) and Qg(&) are explicit, we can spell out (3.10) and (3.11)
from where it becomes clear that there is a.e. pointwise convergence to fo. * fo,
as s — 0. Note that for each fixed £ # 0, ﬂ.]}’s(s)(u, v) = Lyugiei<oy (@, v) and
15, @, v) = Liui<ie|<o) (, v) ae. pointwise as s — 07

By the Dominated Convergence Theorem, to finish it suffices to show that there
exists F € L?(IR*) such that | fus % fuus (€, T)| < F(E,7) and | fug * foc(§, T)] <
F(&, 1), forae. (§,7) € R*. We use the inequalities

1 o (s 125)° €, D),
1 oo (15 % 00) (€, 7).

| fis * fusE D
|fis * foc(E, 7))

VAS/AN

On the supports of fus* f s and fus * foc, the functions ug * s and pg * o, are
uniformly bounded in s € (0, 1), as can be seen from Lemma 3.2 and formula (3.9).
It follows that we can take

Fé&,r)= 47T||f||%oo(1 +ail)1{a<r<2b}£{|§|<2b}(§» 7).
u]

Remark 12.2 Another possible way to prove Lemma 12.1, which does not rely on the
exponent being an even integer, can be to follow the outline in the proof of [29, Lemma
2.9 (d)] which makes use of the analysis of oscillatory integrals through the method of
stationary phase. More in detail, we could proceed as follows. As in the proof above,
we can restrict attention to the case when f € C° (R?), supported in the region where
a < |y| < b, forsome b < o0.

We first consider the pointwise convergence T f (x, 1) — T. f(x,t),as s — 0 for
a.e. (x,1) € R3 x R. Recall the definitions of Ty f (x, t) and T, f (x, ¢) in (1.13) and
(1.14) and note that there is pointwise convergence of their integrands, that is

zx yelt«/lylz—szf( ) {|y|>s} e ix-y ltly\f( ) {|W>O}’ ass — 0,
VIv|? =52 [yl

forall (x, ) € R*, y € R3. On the other hand, as the support of f is contained in the
region where |y| > a, for all s € (0, a/2) we have

VIV IP = gy l”y'” <If )

O,
N Y

/—f
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so that as | f| € L2(IR?), we can use the dominated convergence theorem to conclude
that T f — T, f pointwise in R*.
Let us take M € [1, 0o) and s < a/2. We have the identity

e”mf(y)) ;

x| Ty f(x, 1) = —/efX'»"Ay(
Viyl? —s?
]R3

as can be seen by integration by parts, so that if |#| < M, we obtain

1+ M? P
T f (x, )| Sab mllfllm(w) € L"(R” x [-M, M)),
where H?(IR?) denotes the inhomogeneous Sobolev space with norm || f ”%-12 R3) =

f | f (x)]?(1 + |x|*)? dx. By the dominated convergence theorem we conclude that
]R3
Ty f — T.f in L*(R?® x [-M, M]), as s — 07, for each M < oo.

To treat the region where |f| > M, recall the dispersive estimates

1 1
1758 Ol Loo(r3) Sab t37”g”1‘1(R3) and [[Teg(, )l 2(w3) Sab ;||g||Ll(]R3),

valid for any ¢ € L'(R3) supported where a < |y| < b. They can be proved
using the method of stationary phase or by studying the fundamental solutions of the
respective underlying classical partial differential equation as mentioned in the Intro-
duction. Since we also have the LZ-norm conservation || ;g || L2(R3) = T2 L2(R3) =
gl L2(r3) We obtain the interpolated estimates

1 1
1758l L8R3y Sab mllgllwz(}m) and ||Tegll4®3) Sab m”g”L4/3(1}‘{3)~

In this way

1
I1Ts f — ch”Li.r(V\?M) < “Tsf”Lﬁ,,(M}M) + ”TCf”Lﬁ,,(M}M) Sa,b W||f||L4/3(R3).

The previous estimate in the region {(x,7) € R® x R : |f| > M} and the L*
convergence in the region R3 x [—M, M], valid for any M € [1, cc), imply the
desired result.

Recall the Fourier multiplier notation and the HY/ 2(R3) homogeneous Sobolev
norm and inner product from (5.1) and (5.2). We have the following lemma.

Lemma 12.3 Let a > 0, then for each fixedt € R

. -

. ”ezt A—s u — et AM||H1/2(R3)

lim sup =

=0 el 2@ lull 172 (w3
supp(i) C{€ €R™:|€|>a)
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; 2
Proof For any s > 0 we have [le""Y =275 ul| y1/2r3) = lull 1/2. Now

N N
AV _ itlyl — / A /Py, _it/en\/w_rz; dr.
dr Viyl2—r?

0 0

Then,

r

—u dr
el P

Tt/ — A —p2
el[ A—r

N

it —A—s2 TN
1@ =27 — Bl gy < ] f
0

N
— r d
=1l || —_ rzuHW(R}) .
0
If 0 < s < aand supp(ut) C {|&| > a}, then

<

r r
H —— rzuHH”2(R3> o el 12 g3y s

so that
A P
(™A= — eIV i sy < ltl@ — Va2 = s2)lull gy

and the conclusion follows. ]
We now address the pointwise convergence of Ty, f;, to ¢ f.

Lemma12.4 Let a > 0 and {s,}, be a sequence of positive real numbers converg-
ing to zero. Let f € L*('®) and {f,}, be a sequence satisfying f, € Lz(Hf,n ),
sup,, ”fn”LZ(/L;n) < oo and supported where |y| > a, for all n. Suppose that f,— f

in L2(1"3), asn — o0. Then, asn — o0
Ty, fu(x, 1) = T.f(x, 1) forae. (x,1) € R*.

Proof Following the argument in the proof of Proposition 5.1, we start by defining v,
and v by their Fourier transforms

b = — 2 gy = L0
" ,/|y|2—s,21’ Iyl

Since sup,, || full 23y < supy, [ fullz2¢,, ) < 0o and the functions are supported
where |y| > a > 0 we see that

2 A 2 a 2
sup [lvn |17 =Sup/ [V, (W7 Iyldy < sup ———=Ifull < 00,
n " Hl/Z(RS) n R3 " = n a2 —S% " Lz(/"'sn)

) Birkhduser
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and
sup |va [ g3, = 27) 2 sup/ 15, (1> dy < (27) 73 sup L WA <00
2R3y — n X 2, .
n (R3) s n Jar—s2 (1)

Ifo e [_'11/2(33)’ then ¢(-)| - | € L?(I'3), from where we can deduce that v,—v
in H'/2(R3), as n — oo. The operator Ty, applied to f,, equals (27)3e!'v ~A=siy,.
Fix t € R. From Lemma 12.3 we know || (¢/'V —A=si _ ity _A)Il{m>a}|| — O as

n — 00, the norm being as operators on H'/2(IR3). This, added to the continuity of
¢"™V=2 in H'/2(R3) implies

it /—A—s2 itn/—
elt A S”U”—\elt AU

)

weakly in H/?2 (1R3), as n — oo. Then, by the Rellich—-Kondrashov Theorem, for any
R>0

i —A—¢2 i _
6”“/ A “"vn—>e”" Av

3

strongly in L2(B(0, R)), as n — 00. Denote by

2
O o O o
Fo(t) := elh/ A—sp vy — PaY Av dx = ”elh/ A—sp vy — PaY A

|x|<R

2
vl250,R))

Since we have [|0, [ 12(Rr3) Sa Il fall2,,) and 100 2m3) Sa £ 11 L2(6,)» We Obtain

—A—g2 it/ —
Fu(1) < [l 740, — ™20 75 sy < (lvall 2oy + 0l 2w3)’
<

LZ(]RS
2 2
”fn“Lz(,LLS) + ”f”Lz(Uc)'

We can now finish exactly as in the proof of Proposition 5.1 and conclude that there
exists a subsequence {ny }; such that

Ts,,k fnk - ch — 0 ae.in ]R4.

m}

Finally, we prove that the existence of an extremizing sequence that concentrates
at infinity with a nonzero weak limit, after appropriate rescaling, implies that the
operator norm of 7" is upper bounded by that of 7, (which in the end we will pair with
Proposition 4.1 to rule out this scenario).

Lemma 12.5 Let {s,}, be a sequence of positive real numbers converging to zero. Let
f € L>(I'3) be a nonzero function and { f,}, be a sequence satisfying f, € Lz(Hf,n ),
for all n. Suppose that:
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@ 1l 2, = 1.
A1) T, fallgs = NT I (= IT11D,
(i) fo—f # 0in L3I,

If there exists a > 0 such that

(iv) supp(f), supp(fy) € {y € R3: |y| > a}, for all n,
then

ITN < IITell.

If condition (iv) is relaxed to

(V) sup,cN ”f"]l{\yl@}”Lz(us,,) < ¢, for some ¢ > 0,

then
TN F Lyizallag, S ITIP1f Liyzalliaq,, + Ce,

for some universal constant C. In particular, ifwe have sup, o\ Il fn 1{jyi<a) ll 2
Oasa — OF, then | T|| < || T.|l.

()

An analog statement applies if we change T and 7, by T and T ., respectively, the
proof being identical.

Proof We argue as in [20]. By the weak convergence condition (iii),

1w = Fl 32 = 1 fall2,) = 1£1172,, + 0D (12.1)
Now consider that (iv) holds. By (i) and (iv), [| f, 17, oy~ IS 12, (4. = O-Indeed,
0< I fular  —hulPa = [ 1O e — |
X n LZ(M.V,,) n L2(Uc) - n y 72 | | y
yl#—s; 1Y
ly|>a
) Iyl = V/IyI* —s2 (12.2)
< N fullg2 — Y Lliyza
L= (sy) [v] L00(R3
PR
= (1 — /1 —s,%a_2) — 0,
as n — oo. Then, (12.1) implies
1o = F W2y = Wfal22, ) = 11720, + 0D (12.3)

Because of conditions (iii) and (iv) and Lemma 12.4, T, f, — T f a.e. pointwise in
R* asn — 00, and we can apply the Brézis-Lieb lemma to the sequence {75, f,}, C
L*(R*) to obtain

1T, fo = Te flamey = 1 Tsu fullfa sy = 1T f s gsy + 0.
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Because by scaling the norm of the operator Ty, is independent of n (see Sect. 14)
and by (i) |75, fall 244y — IIT || as n — oo, we obtain

” TSn fn ||%4(]R4)

I, 1> = ITI1* = o(1)

2
”fﬂ “Lz(ﬂxn)
T, fo = Te s + 1T f 1170+ 0(1)! 2

o(1)
1fa = 2 1172, +o0(D)
_ oo = Tef7e + 1 Te flI74 + o(1) o)
= 2 2
”fl’l - f||L2(O'c) + ”f”Lz(O'c) + 0(1)
Ty, fo — Ty, F120 + 1T f1124 + o(1)
. ITs, fo = To, F74 + T 117 4 o), (124

1 = 1320 + 1 12, +0(D)

where in the last inequality we used the triangle inequality and that || T, f —T¢ f || ;4 —
0asn — oo, from Lemma 12.1. Then

||Tsn||2||fn - f”iz(mn) + ||ch||i4 +o(1)

| 2
1o = £y + 117 + 01

Sn 5

+ o(1),

and hence

15 120 = FIT2 5 + 1072 + 0 S UTs, P0fn = fUZ2q,, )+ 1Tef 174 +o0(D),
which is equivalent to

1T, 121 1725y < NTef W7a + 1T, 1AL = S 720, = 1n = £, +o(D).

. . . 2 2
Arguing as in (12.2) we obtain || f, — f||L2(us,,) — N fu — f||L2(GC) — 0, and
therefore,
T [l
1T = 11T, || < 5= < Tl
”f”Lz(o'c)

Finally, if we relax the support condition (iv) to the ¢-small norm condition (v), it
will be enough if in (12.4) we use

1T, full ITs, (faLgyizapll
S n L4(R4) < S, n yiza L4(R4) Cg’

2 ~

2
||f"||L2(Msn) ||fn1{|y|>a}I|L2(Nsn)
where C < oo is independent of n and a, together with f,1{y>a)— f1{y|>q) In

L2(T3) and Ty, (ful{yza) — Te(fl{y>ap) ae. in R asn — oo, the latter
property being a consequence of the former and Lemma 12.4. O
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13 Proof of Theorem 1.3

In previous Sects. 10 and 11, we proved that if { f,,},, is an extremizing sequence for T,
then subsequences of {| f,,|?}, can not satisfy vanishing nor dichotomy of Lemma 9.1,
which as we saw, were a consequence of bilinear estimates for T. In this section we
prove that, as a consequence of the compactness alternative and Lemma 12.5 of the
previous section, extremizing sequences posses convergent subsequences and, as a
result, extremizers exist.

Proof of Theorem 1.3 Let {f,}, C L2(ﬁ3) be an L% normalized complex valued
extremizing sequence for 7. After passing to a subsequence if necessary we can assume
that alternative (i) in Lemma 9.1 holds for {| ,,|?},, that is, there exists {¢,}, C N
with the property that for all ¢ > 0 there exists R; < oo such that for all R > R, and
nelN

DAy =1 —e. (13.1)
(2t =R |y|L2tn+R)

If there exists a subsequence {ny}x C IN such that {£,, }, is bounded above, then we
can apply the same method provided in the proof of Proposition 5.2 for the upper half
of the hyperboloid, H3, to conclude that there exists a subsequence { f;, }x that satisfies
the conclusion of the theorem with all L,,’s equal to the identity matrix. Therefore,
in what follows we will assume that £,, — 00 as n — o0.

Passing to a subsequence if necessary we can assume then that { f,}, satisfies the
following: || full,2 = 1, |IT full .« — Hy and there exists a sequence {£,},en C N
such that ¢, — oo asn — oo and for any ¢ > 0 there exists R, < oo such that for all
R > R, and all n € N equation (13.1) holds. Therefore, with R, as before, we have

that for all R > R, there exists N, € [{, — R, ¢,, + R] N N such that foralln € N

2 - I—¢
[ fnODIFdi(y) 2 —

(2Nn Jy|<2Nt

Denote Py the dyadic cut off at scale 2N that is, Py f(y) = f(y)]l{zzv<|y‘<21v+1}.
Using the continuity of 7 and the triangle inequality we obtain

_ — — _ — 1—en\1/2
TPy, fidle > 1T fallis = Fallfu = P ol 2oy > 1Tl = B (1 = =)

_ 1—en1/2
:H4—H4(1— 2R) T on(D).

Choosing ¢ = gg close to 0 and R = R, + 1, we obtain a sequence {N,}, C N,
with [N, — £,| < Rg, + 1, so that N, — oo as n — 00, and a constant ¢ > 0 such
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that for all n large enough’
”PannHLZ(ﬁ) > ¢, ||T(PN,,fn)||L4 > C.

We rescale f;, defining g, by g,(y) = 2V f(2Ny). Letting s, = 2~V we have
5 =3
spn — 0asn — oo, gy € L*(Hy ),

lgnllz2ea,,) = I fullL2@ =1,

ITs,8nllzs = IT full s — Hyas n — oo,
1P1gnllr2a,,) = IPN, full 12z > ¢ and (13.2)
ITs, (Pign)ll s = IT (P, f)ll s > c, (13.3)

as obtained by simple scaling (see Sect. 14). Moreover, from (13.1) for any small
eg>0,R>2R.,andn € N

f e P dits, () > 1, (13.4)
2Ryl <28}

so that the g,,’s are “localized at scale 1”°. Using Lemma 8.1 applied to Ts,, and P g,,
which is possible given (13.2) and (13.3), we obtain that for all » € N there exist caps

Cn C ﬁi,, , which we may consider all to be contained in the upper half, an , possibly
after passing to a subsequence,'? C, = [1,2] x C, C ’H?n, for some spherical caps
@, C S?, such that

f lgn (M dis, () = f |PLgn (0] dits, () > eits, €)' I Pl 2z, ) 2 ks, €)',

Cn Cn
as a consequence of (8.6). Equivalently
f [faIAR) Z A C)'2. (13.5)
20Nn C,

Let o = lim sup,,_, o, fs, (Cy). Two cases arise.
Case 1: « > 0. Passing to a subsequence if necessary, we can assume that there
exists a constant ¢ > 0 such that for all n

/ lgn (M dps, (y) = ¢ > 0.
Cu

4 By redefining the sequence { f; }, if necessary, we will assume that the property holds for all n > 1.

10 Otherwise we reflect the fn’s and gy’s with respect to the origin, as necessary, by considering the
sequences {L* f,}, and {L*g,}, where L € L is the reflection map L(x, ) = (—x, —t)
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We can view g, as a function on the double cone via the usual identification using
the orthogonal projection onto R3, where we extend it to be zero in the region where
191 < 5. Since llgull 25,y < 1gallz2(z,,) = 1 and

0<c< / lgn W dfig, () S / 18n ()] doc(y), (13.6)
Cu Cn

for all n large enough (as a consequence of (13.4)), there is weak convergence of
{|gnl}n in L?(6.) after the possible extraction of a subsequence, |g,|— g, for some
g € L?(6,) which satisfies g # 0 by (13.6). Inequality (13.4) implies that

lim su Ly - y=0
CHOane]IlzI lgnLiyi<ayllLzay,)

__ Because T, (gn)ll ;s < T, (Ign])|l 4, itis thenalso the case that || Ty, (|gn )l 1+ —
H4, so that we can use part (v) of Lemma 12.5 applied to {|g,|}, to conclude

ITI < Tl

which is in contradiction with Proposition 4.3. Therefore, this case does not arise.
Case 2: o = 0. Let {y,}, C [0, 7] and {R,}, C SO(3) be such that

RN(Cy) = {(rew, (/12 —s2): 1 <r <2,

w = (cos g, cosfsing, sinfsing), 0 € [0,2r], ¢ € [0, y,1}.

The conditiona = Oimpliesy, — Oasn — oco.Letf = limsup,_, o, @(2V"C,) =
lim sup,, _, o, 22V fis, (Cp). Two subcases arise.

Subcase 2a: B < oo. This implies that the sequence {jz(2""C,)}, is bounded. We
may assume that the angles y,, are less that 7 /2 as {y;, },, tends to zero. From Lemma 2.3
with s = 1, there exists {,}, C [0, 1) such that the caps {L " R;1(2N"Cn) :n e N}
are contained in a fixed bounded ball of R*. It therefore follows from (13.5) and
the Cauchy—Schwarz inequality that {(R,L™)* f,}, C L2(ﬁ3) is an extremizing
sequence with L2 norm uniformly bounded below by a constant ¢ > 0 in a fixed
ball. We can then conclude the precompactness modulo characters of the sequence
{(RyL™)* f,},, using the argument in the proof of Proposition 5.2.

Subcase 2b: B = oo. From (2.9) in Lemma 2.3 with s = 1, after passing to a
subsequence if necessary, lim,—, oo 22Nn sinz(y,,) = 00.Sett,, = cos y,,sothatt, — 1

. ~ _ —3
asn — oo. From Lemma 2.4 with s = s,,, the setC,, := Llann’l Cn) C Hsn(l_[’%)—l/Z
satisfies, for all n large enough for which 22Nn sin2(y,,) > 8andy, < /3,

f_m_(Cy) > 1 x S,

1-12

~ 7 33
and Cn g [E’ 16

o)
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Seta, = sy(1 —ﬂ) 12 = 2Nnsiny,)~! — 0,asn — oo. Let f, = (R, L™)* f,,

so that { fn}n C L2(H ) is also an L%-normalized extremizing sequence which satis-
fies, for some constant ¢ > 0,

/|fn(y)|dﬁ(y)>c;1(a,:‘5n>1/2, /|fn<y)|2dﬁ(y)>c2

a;'C, a;'C,

and a,; 1C - [l6a , 123 ] x SZ.
Define the rescale g, (-) := an_lfn (an_1 -), so that for each n we have g,, € L2(ﬁ2n),

lgn ||L2(H ) = 1 and there is a constant ¢/ > 0 such that

an

/ 120 () dfia, () = cfia, (C)? > ¢ > 0.

We are almost in the same situation as in Case 1, but we need the analog of (13.4)
for the sequence {g,},. After passing to a subsequence if necessary, { ﬂ, }n satisfies the
compactness alternative in Lemma 9.1. Denoting {€,}n the corresponding sequence
associated to {f,,}n as in (13.1) we then necessarily have that 0, — logz(an_l)}n is
bounded. This implies the desired analog of (13.4) for {g,},. Therefore the argument
in Case | applies showing that this subcase does not arise.

As aresult, only Subcase 2a of Case 2 is possible, proving the theorem. O

14 Scaling

Here we record scaling properties of the family of operators {7s}s~0. Recall from
Sect. 3 that for s > 0, ’H3 = {(y, VIy|? = s2) : y € R?}, equipped with the measure

dyd
ws with density dig(y, 1) = L{jy=58¢ — V/Iy[> — )J\ylz—t
The operator Ty, defined on S(IR%), is given by

T, f (1) = Fas(—x, —1) = / N I T W

{yeR3,|y|>s}

\/Iyl2

We want to study the scaling of the quantity H,, ; defined by

175 £l 4
Hy, = sup Sy
oxre2nd) Iz
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Changing variables y ~» sy in the expression defining Tf (x,t) = T1 f(x,t) we
obtain

Tfx.1) = / VI f () e T
{yeR3,|y|>1) o

:Sfl / eisflx-yeisflt\/lyp—fszsflf(sfly) dy

P2 —s2
{yeR3,|y|>s)
from where sTf (sx, st) = Ty(s' f(s™'))(x, ) and it follows that
STIPNTf o rey = ITes™ £ )1 (mo)-
On the other hand
f O —2 = / 5720 p syt ——
{yeR3, [y|>1} v =1 {yeR3, |y|>s} Iyl =2

that is [| £1|2a () = s 729 £ (s7") |l a (uy)- Thus
STYPIT L Loy 1 g = 1Tss ™ F T o ls™ ™,
and it follows that for all s > 0
H,,=s'""%7H,.
In particular, if p = 4,
Hy = Hy,

forall s > 0.

Appendix A: Computation of a Limit

Let

e ¢]

8
I(a) = 1673 /e_‘” 4——(1 +4) +§
0
+ 2t log(t + V72 + 1)) dr,
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Fig. 1 Graph of the ratio /(a)/I1(a) and the constant 27 for 0 < a < 0.25, illustrating the content of
Lemma A.1

and
e 2
I1(a) = 16712(/ e 12 4+ 1 dr) .
0

The ratio I(a)/I11(a) appeared in the proof of Proposition 4.1 while establishing
that the best constant for the hyperboloid 7 is strictly greater than the best constant for
the cone I3 in their respective L> — L*(IR*) adjoint Fourier restriction inequalities.
The purpose of this appendix is to prove the following lemma (Fig. 1).

LemmaA.1

I(a) . d Ia) . d? I
im =2, lim — =0, lim — =
a—0+ I1(a) a—0t da I1(a) a—0+ da? 11(a)

’

and

d I
m —-; =
a0+ da3 I'1(a)

Therefore there exists ap > 0 such that

I(a)
11(a)

> 2,

forall0 < a < ay.

Throughout this section we use the asymptotic notation o, (f(a)) and O,(f (a))
as a — 07 in the usual way, namely g(a) = o0,(f(a)) if g(a)/f(a) — O asa —
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07, and g(a) = O4(f(a)) if there exists a constant C, independent of a, such that
lg(a)| < C|f(a)] for all @ > O small enough.
Changing variable u = at we obtain

I(a) = 167 (/e —|—4a ——(u + 4a®)Vu? + a2
0

8 3
+ 2a%u log(u + v u? + a2)> dr + % —24? 10g(a)>,

and

o
16 2 2
1) = — (/e”\/u2+a2du> .
a
0

Using the Dominated Convergence Theorem it is direct to check that

lim a*I(a) = 327> and hm a*ll(a) = 1672,
—0t

a—0t
so that

I(a)
a—>0Jr II(a)

To address the limit of the derivatives of the ratio I (a)/I I (a) it will be convenient
to introduce a rescaling. Let

oo

N(a) :=a*P1(a'?) =167 </ e” Vu? +4a23 — —(u2 +4a**Vu? + a2/3
0
2
+ 2a*3u log(u + Vu? + a2/3)> dr + ? - §a2/3 log(a)>,

and
® 2
D(a) :=a**11a'?) = 16n2< e "Vu? +a?3 du) .
0

As we already know, and can readily check, N(a) — 3273, D(a) — 1672
and N(a)/D(a) — 2m as a — 0T. The remaining properties of the derivatives
of I(a)/I1(a) in Lemma A.1 will follow if we show that — (N(a)/D(a)) — 3 as
a— 0T,
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In what follows we write (-)’ as a short for the derivative with respect to a. Given
that both N'(a) and D’(a) diverge to +00 as a — 0T it will be convenient to write
the derivative of N(a)/D(a) in the following way

d N(@) 167%N'(a) —3273D/(a)
da D(@) D(a)?
N (D(a) — 167%) N'(a) — (N(a) — 327%) D’ (a)
D(a)?

(A.1)

We have the following lemma.

d N 4
LemmaA.2 (i) lim — (a) 71.
as0+ da D(a) 3

(ii) Asa — 0T,

loga loga
N'(a) = Oa(a%) and D'(a) = oa(al%).

(iii) lir8+(N(a) —3273)D'(a) =0 and lir8+(D(a) —167%) N'(a) = 0.

Proof In the course of the proof of this lemma we will make repeated use of the
asymptotic behavior of some integrals as contained in Lemma A.3 below. We start
with property (ii). For @ > 0 the derivative of N is as follows,

[o¢]
4 16
/ — 3 —uf 2 2/3
N'(a) = 167 (/e (u YN arwrm T 901/3\/14 +a
0

2 2 2/3 1 /u 2/3
T ) T s ~7 1 3a 1/3” log(u +vu? +a?/%)

EWTE ! )d L S (a) — 2
—a’"u w4+ -
3 u+ i + @22 + a2l 3 9q1/3 08 T 3

o0
8 4 4 4
= 16713(7 ~ 3418 9418 log(a) + 34173 fe_“ulog(u+VMZ+a2/3)du>
0

3 3als3
+0q(1)
loga
= 0425 ): (A2)

where we used (A.5), (A.8), (A.7), (A.10) and (A.11). The derivative of the function
D is as follows

o0 o
327 1
D/ — —u 2 2/3d / —u d
(a) 3 /e vu?+a u e —a1/3«/m u
0 0
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so that (A.4) and (A.5) imply

and more explicitly using (A.13), as we will need later,

o0
3272 1
D'(a) = Sa%(/ e "log(u + vu?+a?3)du — 3 loga) +04(1). (A3)

0

o
We now turn to the proof of part (iii). Using that | e "“u3 du = 6 we can write
0

o0
2
N(a) — 3273 = 16713(/ e (uz(\/u2 +4a?3 —u) — guz(\/ u* +a?B3 —u)
0
8
- §a2/3\/ u? + a3 + 2a*3u log(u + vu® + a2/3)) du

8 2
?a — §a2/3 log(a)>
o
_ 167303 (/ o (MZL 2p @l
J Vur+4a?B+u 3 Vul+a?P +u

- 201/3\/m + 2a*3u log(u + m)) du

8a%3 2
VA log(a))
3
= 04(a*?loga).
Then
3 D) — 2/3 logay _ 131002 1) —
(N(a) —32m°) - D'(a) = Oq(a”" loga) O, —5) = Oq(a " log”a) = o4(1).
a

On the other hand

oo o0
D(a) — 1672 = 16n2</ e "Vu?+a?3du+ 1) (/ e "Vu?+a?3du — 1)
0 0

]

= Oa(1)</ e "Wu+a?3 —u) du>
0
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® a2/3
=0 (1)< e”—du>
¢ J Ju? +a?Bk +u
= 04(a**loga),

where in the last line we used (A.9). Then
o
(D(a) — 167%) - N'(a) = Oq(a*3loga) O, ( ﬁ?) — 041022 a) = 0g(1).

We now turn to the proof of (i). By (iii), the limitas @ — 0 of the second summand
on the right hand side of (A.1) equals zero. We proceed to calculate the limit of the
first summand. Combining (A.2) and (A.3) we obtain

1672N'(a) — 3273 D’ (a)
_8(16)21°  4(16)°1°

3 3al/3
o0
32)%7°
" (3;—1/7: / ™" (u = ) log(u + vu? + a*3?) du + 04 (1)
0
o0
2(32)°7  (32)%7° [, 73
== e ((u—l)log(u+\/u +a/)—1)du
0
+ 04(1).

Using (A.12) to treat the integral in the previous expression we obtain

(32)27°
3

)

lim (1672N'(a) — 3273 D'(a)) =
a—0t

therefore

d N@ _ (32)°7°  4nm

lim = = .
a—0+ da D(a)  3(16m2)2 3

O

Finally, we state the asymptotic behavior of the many integrals used during the
proof of the previous lemma.

LemmaA.3 We have the following identities as a — 0"

———du = O,(loga), (A4)

[ee)
0

—
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JNur+a?3 1

o
/e* Tdu 5t 0q(a'loga), (A.5)
0
o
/1,2 2/3 2
/ﬂ%du + 04", (A.6)
al/3 al/3

0
o0

PR S WO S 0u(a'Ploga), (A7)

a3 u2 ¥ 44273 all3 g '

0
o0

_ u? + 44?3 1
fe RVEN e RV + 04(a'P loga), (A8)
0
i —u a*? 2/3
fe w du = Oa (a log a), (Ag)
0

1/3
et @ v du = Oy(aloga), (A.10)
(u + Vu? + 4a23)u? + 4a?/3

0

v 1

/e e log(u + vu? + a?/3)du = (—) (A.1D)
/3 al/3

0

/ %((u—1>10g(u+\/m)—l)du=—1+oa(1). (A.12)
0o a

Proof The identities are elementary but we choose to give details for the sake of
completeness.
Verification of (A.4) and (A.5) Integration by parts shows that

o

1
/e Wdu: efulog(u+\/u2+a2/3)du—gloga
0 0

= 04(1) + Oy(loga), (A.13)
and
LT ra
1—/3/(3_”\/u2 +a?3du = 13 e " (d* log(u + vVu? + a2/3)
a a
0 0

1

+uvu? 4 a2 = Za*P loga) du

1

= 0a(@'?) + 0q(a'Ploga) + —
a
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o
1
+ 5/67”%(\/142—}—%/3 —u)du
a
0

A3 T

1 1/3 _ u
+ 0g4(al/ loga)—i—— e
]/3 ¢ 2 u? +a2/3 4y
1
5+ 0a(a'Ploga) + 0q4(a'’?).
Verification of (A.6) Using that [;~ e “u* du = 2 we have
[e¢) o
Nl 21
e~ Geaie s a du = — + — e_”u(\/m—u)du
/3 PRVERRESVE
0 0
2 o
_ 1/3 —u u
= —x+ —d
T N T
2
= —i75 + 0@’
Verification of (A.7)
o0 ,7 o
/67” w du= [ e u? + 4273 du — 4a'/3 ef"; du
all3y/u? + 442/3 o TV 0 Vu? + 4423

1

5t 04" loga) +a'304(loga),

where we used (A.4) and (A.5).
Verification of (A.8)

0 + 423 | 0 00 |
a
e_ui du = —+ +a2/ du—i—3al/3 e du
o/ al/3 +a2/3 al/3 0/ /uz +a2/3
1
=175 + 0alaPloga) + 0u(@'’),
where in the last line we used (A.4) and (A.5).
Verification of (A.9)
o0 o0
/ u a’? we /2 o 273
e '"————du= | e "Vu*+a*’° —u)du
J u~+ Vu? + a?/3 ,

=1+a0,a"" loga) — 1
= 04(a*loga),
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where we used (A.5).
Verification of (A.10)

e~ ———du
, (u + Ju? + 4(12/3)«/142 + 4a2/3 J /u2 + 44273
o
1/3
_/\efu a—du
J u + ~u?+4a?3
= 04(a'loga),

where we used (A.4) and (A.9).

Verification of (A.11) The identity is immediate since e “u log(u) € L? ([0, c0))
for all p € [1, o0].

Verification of (A.12) For a > 0, integration by parts shows

o0 o0
/e_“(u — 1) log(u + vu? +a?/3) du = e_uﬁ du,
0 0

so that to prove the last identity we need to show

1 u
lim — | e"|]l- —— |du=1.
a—0t a / ( «/u2+az>
0
Changing variable u ~~ au gives

l o o

—/e_”<l— )du—/ _a”( “ >du
a Vur +1

0 0

—a 1

= e u dM,
O/ (u~+vVu?+Hvur+1

hence

o0 o
li 1/ —“<1 " )d f ! d
im — [ e - )du = u
a—0t a J Ju? + a? J (u+vu?+DHv/u? +1

Changing variable u = sinh # we obtain

oo oo
/ ! —d / e tdr=1.
w4+ Vu? + DHVu? sinh# + cosh ¢
0
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