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Abstract
We establish injectivity results for three different spherical means on an H -type group,
G. The first one is the standard sphericalmean operator, which is defined as the average
of a function over the spheres in the complement of the center, the second one is the
average over the product of spheres in the center and its complement, and the third
one is the average over the spheres defined by a homogeneous norm on G. If m is the
dimension of the center of G, injectivity of these spherical means is proved for the
range 1 ≤ p ≤ 2m

m−1 . Examples are provided to show the sharpness of our results in
the first two cases.

Keywords Spherical means · Injectivity · H-type groups · Spectral projections ·
Singular Integrals · Spherical functions

Mathematics Subject Classification Primary 43A80 · Secondary 22E25 · 43A90 ·
44A35 · 42C10

1 Introduction

One of the problems in Integral Geometry is to find out whether a function can be
determined from its averages on spheres of a fixed radius r > 0. This leads to the
question of injectivity of the so called spherical mean operator. Let μn

r be the normal-
ized surface measure on the sphere {x ∈ R

n : |x | = r} in R
n . Here (as elsewhere
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in this paper), normalized means the total mass is one. We use the superscript n to
denote the dimension of the ambient space. The spherical means of a function f are
then defined to be the convolution f ∗ μn

r :

f ∗ μn
r (x) =

∫
|y|=r

f (x − y)dμn
r (y).

The above is nothing but the average of the function f over the sphere of radius r
centered at the point x . The injectivity question is the following:

Suppose that, for a fixed r > 0, f ∗ μn
r (x) = 0 for all x ∈ R

n . Does it follow that
f is identically zero?
In general, the answer to this question is no. For λ > 0, let

ϕλ(x) = c
Jn
2−1(λ|x |)

(λ|x |) n
2−1

, x ∈ R
n, (1.1)

where Jα denotes the Bessel function of order α and c is a constant that makes ϕλ(0) =
1. Then it is well known that

ϕλ ∗ μn
r (x) = ϕλ(r)ϕλ(x), ∀r > 0, x ∈ R

n .

Hence, if r > 0 is a zero of the function s → Jn
2−1(λs) (which exists) then ϕλ ∗ μn

r is
identically zero. On the other hand, Zalcman [21] proved that, if we consider averages
over spheres of two different radii r , s > 0, then a two radius theorem is true, provided
r/s is not a quotient of the zeroes of the Bessel function Jn

2−1(t). That is if both the
convolutions f ∗ μn

r and f ∗ μn
s vanish identically, then f too vanishes identically

provided r/s is not a quotient of the zeroes of the Bessel function Jn
2−1(t) (see [21]

for the proof).
It is known that the function ϕλ (see 1.1) is in L p(Rn) if and only if p > 2n

n−1 . It

follows that injectivity question raised above fails for L p(Rn), 2n
n−1 < p ≤ ∞. In

[20], a one radius theorem is proved for L p(Rn), which establishes the injectivity for
the range 1 ≤ p ≤ 2n

n−1 . In other words, if f ∈ L p(Rn) and f ∗ μn
r is identically zero

for a fixed radius r > 0, then f vanishes identically, provided 1 ≤ p ≤ 2n
n−1 .

1.1 Spherical Means on the Heisenberg Group

Consider the Heisenberg group H
n = C

n × R with the group law

(z, t)(w, s) =
(
z + w, t + s + 1

2
�(z · w)

)
,

which makes H
n into a step two nilpotent Lie group. Consider μ2n

r , the normalized
surface measure on the sphere {z ∈ C

n : |z| = r} as a measure on H
n . The spherical
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means of a function f on H
n is then defined to be f ∗ μ2n

r (z, t):

f ∗ μ2n
r (z, t) =

∫
|w|=r

f

(
z − w, t − 1

2
�(z · w)

)
dμ2n

r (w).

In [20], Thangavelu investigated the injectivity question for the above spherical
means on H

n and established the following theorem:

Theorem 1.1 If f ∈ L p(Hn), 1 ≤ p < ∞ and for a fixed r > 0, f ∗ μ2n
r (z, t) = 0

for all (z, t) ∈ H
n, then f vanishes identically.

To prove the above result, Thangavelu used the spectral decomposition of the sub-
laplacian on H

n, and summability results proved by Strichartz in [18]. Below, we
briefly describe the method used to prove the above theorem.

Let L be the sublaplacian on the Heisenberg group. Let Ln−1
k (t) be the Laguerre

polynomial of type (n − 1). For λ 	= 0, let

ϕλ
k (z) = Ln−1

k

(
1

2
|λ||z|2

)
e− 1

4 |λ||z|2 , z ∈ C
n, (1.2)

and define

eλ
k (z, t) = e−iλtϕλ

k (z).

These functions are joint eigenfunctions of L and T = i ∂
∂t :

Leλ
k = (2k + n)|λ|eλ

k , T eλ
k = λeλ

k .

Given a function f on H
n, we can decompose f into the joint eigenfunctions of L

and T as

f (z, t) = (2π)−n−1
∞∑
k=0

∫
R

f ∗ eλ
k (z, t) |λ|n dλ. (1.3)

The abovewas studied in detail by Strichartz [18]. Among themany results established
by Strichartz, we mention the following Abel summability result, which played a
crucial role in the injectivity proof by Thangavelu [20].

Theorem 1.2 For any f ∈ L p(Hn), 1 < p < ∞, the modified Abel means

(2π)−n−1
N2∑
k=0

(
1 − 1

N

)k ∫ N

−N
f ∗ eλ

k (z, t) |λ|n dλ

converges to f in the L p norm as N → ∞.

Now, we highlight the key ingredients in the proof in [20] as we will be closely
following these in our proofs.
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(A) The functions eλ
k (z, t) are eigenfunctions for the spherical mean operator. Indeed,

eλ
k ∗ μ2n

r (z, t) = k!(n − 1)!
(k + n − 1)! ϕλ

k (r)eλ
k (z, t).

(B) L p-boundedness of the spectral projection operator: For each k, define the spectral
projection Pk by

Pk f =
∫
R

f ∗ eλ
k (z, t) |λ|n dλ.

Then f → Pk f is a bounded operator on L p(Hn), for 1 < p < ∞.

(C) Applying Theorem 1.2 to f ∗ μ2n
r and using (A) and (B) above, it can be shown

that the Fourier transform of Pk f in the t-variable is supported on a discrete subset of
R which implies that Pk f = 0 for every k, as p < ∞.

For p = ∞, one has a two radius theorem for H
n which is proved using a Wiener-

Tauberian theorem for the radial functions on the Heisenberg group (see [4]). We refer
the reader to [2, 3] for related results. See also [19] for a generalisation in the context
of Gelfand pairs associated to H

n .

Extending and generalising the result in [20], we establish injectivity results for
three different spherical means on an H -type group. In the remaining of this section
we define these spherical means and state the injectivity results obtained.

1.2 Spherical Means on H-Type Groups

Let G be an H -type group, identified with its Lie algebra g via the exponential map.
Then g admits an orthogonal decomposition g = v⊕ z, where z is the center and v its
orthogonal complement. It is known that dim v has to be even, say dim v = 2n, and
let m denote dim z. We will identify v with C

n and z with R
m . This requires fixing an

orthonormal basis on v and z. For most of our purposes, this can be an arbitrary chosen
orthonormal basis, however for certain computations wewill choose a basis with some
properties (see (2.1), (2.2), (2.3)). We will write (z, t) for points in G, where z ∈ C

n

(identified with v) and t ∈ R
m (identified with z). The group law then is given by

(z, t)(w, s) =
(
z + w, t + s + 1

2
[z, w]

)
,

where [ , ] denotes the Lie bracket. The Haar measure on G is given by the Lebesgue
measure on g and will be denoted by dzdt .Denote by Q = 2n+2m the homogeneous
dimension of G.

Next, we define three different spherical means and state the injectivity results.
Sincem = 1 corresponds to the Heisenberg group, we will always assume thatm ≥ 2
unless explicitly stated. As earlier, let μ2n

r denote the normalized surface measure on



Journal of Fourier Analysis and Applications (2024) 30 :33 Page 5 of 24 33

the sphere {z ∈ v : |z| = r} and consider the spherical means of a function f ,

f ∗ μ2n
r (z, t) =

∫
|w|=r

f

(
z − w, t − 1

2
[z, w]

)
dμ2n

r (w).

Theorem 1.3 Let f ∈ L p(G), 1 ≤ p ≤ 2m
m−1 . If for a fixed r > 0,

f ∗ μ2n
r (z, t) = 0 for all (z, t) ∈ G,

then f vanishes identically. Moreover, for any p > 2m
m−1 , the injectivity fails.

Next, letμm
s , s > 0 be the normalized surface measure on the sphere {y ∈ z : |y| =

s}. Consider the measure μr ,s = μ2n
r × μm

s . That is,

∫
G

f (z, t) dμr ,s(z, t) =
∫
G

f (z, t) dμ2n
r (z)dμm

s (t).

Then, we define the bi-spherical means of f by

f ∗ μr ,s(z, t) =
∫

|w|=r

∫
|u|=s

f

(
z − w, t − u − 1

2
[z, w]

)
dμ2n

r (w)dμm
s (u).

We have the following theorem.

Theorem 1.4 Let f ∈ L p(G), 1 ≤ p ≤ 2m
m−1 . If for a fixed r > 0,

f ∗ μr ,s(z, t) = 0 for all (z, t) ∈ G,

then f ≡ 0. Moreover, for any p > 2m
m−1 , the injectivity fails.

Finally, we define the homogeneous spherical means. Let |(z, t)| denote a homo-
geneous norm on G (see the next section for definition). There exists a unique Radon
measure σ on the unit sphere � = {(z, t) : |(z, t)| = 1} such that for all f ∈ L1(G)

∫
G

f (z, t) dz dt =
∫ ∞

0

∫
�

f (δr (z, t)) dσ(z, t) r Q−1dr

where δr denote the dilations that act as automorphisms of G (see the next section for
the definition). Dilating the measure σ using δr , for r > 0 we can define σr by

σr ( f ) = σ(δr f ) =
∫

�

f (δr (z, t)) dσ(z, t).

The homogeneous spherical mean of a function f is defined as the convolution f ∗σr ,

of f with σr . For the homogeneous spherical means we have the following theorem.
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Theorem 1.5 (1) Let m ≥ 2 and let r > 0. If f ∈ L p(G), 1 ≤ p ≤ 2m
m−1 and

f ∗ σr (z, t) = 0 for all (z, t) ∈ G then f vanishes identically.
(2) Let G = H

n, that is m = 1, then the above injectivity holds for the range 1 ≤ p <

∞.

The plan of the paper is as follows: In the next section we recall all the required
definitions and also state some known results that will be used later. In the third
section we study the spectral decomposition of the sublaplacian of G and prove the
Abel summability. Using this, we prove the injectivity results in the final section.

2 Preliminaries

In this section, we recall some definitions and properties of H -type groups introduced
by Kaplan [14]. Let g be a finite dimensional real inner product space endowed with a
Lie bracket that makes it into a two step nilpotent Lie algebra. Let z be its centre and
v be the orthogonal complement of z. For each v ∈ v, consider the map adv : v → z
defined by

adv(v
′) = [v, v′].

Let fv be the kernel of this map and bv its orthogonal complement so that

v = fv ⊕ bv.

We shall say that g is Heisenberg type or H -type if the map adv is a surjective isometry
for every unit vector v ∈ v. A connected and simply connected Lie group G is of
Heisenberg type if its Lie algebra is H -type. For each non-zero z ∈ z we can define
the linear operator Jz : v → v by

〈Jz(v), v′〉 = 〈z, [v, v′]〉 for all v, v′ ∈ v.

Then Jz is a skew-symmetric linear isomorphism. Then g is H -type if and only if

J 2z = −|z|2 I .

This means that Jz defines a complex structure on v when |z| = 1 and therefore the
dimension of v is even. Hence, we identify v with C

n ≡ R
2n and z with R

m for
n,m ∈ N. As mentioned in the introduction this requires fixing an orthonormal basis
in v and z.

The exponentialmap from g toG is a diffeomorphism.We can therefore parametrise
the elements of G = exp g by (z, t), for z in v ≡ C

n and t in z ≡ R
m . By the

Baker–Campbell–Hausdorff formula, it follows that the group law in G is

(z, t)(z′, t ′) =
(
z + z′, t + t ′ + 1

2
[z, z′]

)
∀(z, t), (z′, t ′) ∈ G.
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Since [v, v] ⊂ z, the Lie bracket on v can be written as (see [6])

[z, z′] j = 〈z,U j z′〉

in terms of 2n × 2n skew-symmetric matrices U j , j = 1, 2, . . . ,m. Since J 2z =
−|z|2 I , U j are orthogonal and satisfy

UiU j +U jUi = 0, i 	= j .

The left invariant vector fields on G which agree respectively with ∂
∂x j

, ∂
∂ y j

at the
origin are given by

X j = ∂

∂x j
+ 1

2

m∑
k=1

(
2n∑
l=1

zlU
k
l, j

)
∂

∂tk
,

Y j = ∂

∂ y j
+ 1

2

m∑
k=1

(
2n∑
l=1

zlU
k
l, j+n

)
∂

∂tk
,

where zl = xl , zl+n = yl , l = 1, 2, . . . , n. ThevectorfieldsTk = ∂
∂tk

, k = 1, 2, . . . ,m

correspond to the centre of g. Then the sublaplacian LG = −∑
j (X

2
j + Y 2

j ) is given
by

LG = −
n∑
j=1

(X2
j + Y 2

j ) = −
z + 1

4
|z|2T −

m∑
k=1

〈z,Uk∇z〉Tk,

where


z =
2n∑
j=1

∂2

∂z j∂z j
, T = −

m∑
k=1

∂2

∂t2k
, ∇z =

(
∂

∂z1
,

∂

∂z2
, . . . ,

∂

∂z2n

)T

.

For a ∈ R
m (identified with z∗) let f a(z) stand for the inverse Fourier transform of

the function f (z, t) in the central variable. That is

f a(z) =
∫
Rm

f (z, t) ei〈a,t〉 dt .

For a 	= 0, let Ja be the linear mapping on z⊥ defined earlier by

〈Jau, w〉 = a([u, w]), for any u, w ∈ z⊥.

Choose an orthonormal basis

{
E1(a), E2(a), . . . , En(a), Ē1(a), Ē2(a), . . . , Ēn(a)

}
(2.1)
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of z⊥ such that

Ja Ei (a) = −|a|Ēi (a), Ja Ēi (a) = |a|Ei (a)

and an orthonormal basis
{ε1, ε2, . . . , εm} (2.2)

for z, such that 〈a, ε1〉 = |a| and 〈a, ε j 〉 = 0 for j = 2, 3, . . . ,m. If g is identified
with C

n × R
m via this orthonormal basis, the first coordinate of the Lie bracket takes

the form (see [17])

[z, z′]1 = 〈z,U 1z′〉 =
n∑

i=0

(x ′
i yi − y′

i xi ) = �(z · z̄′).

Hence the convolution with functions of the form g(z, t) = e−i〈a,t〉ϕ(z) can be written
as

f ∗ g(z, t) =
∫
Cn

∫
Rm

f

(
z − w, t − s − 1

2
[z, w]

)
ϕ(w)e−i〈a,s〉 dwds

=
∫
Cn

f a(z − w)ϕ(w)e−i〈a,t〉e
i
2 〈a,[z,w]〉 dw

= e−i〈a,t〉 f a ×|a| ϕ(z),

(2.3)

where the twisted convolution×|a| of two suitable functions f1 and f2 onC
n is defined

by

f1 ×|a| f2(z) =
∫
Cn

f1(z − w) f2(w) e
i
2 |a|� z·w dw.

Also, one obtains the following result regarding the action of the sublaplacian LG on
functions of the form e−i〈a,t〉ϕ(z).

Lemma 2.1 Let 0 	= a ∈ z∗. If f (z, t) = e−i〈a,t〉ϕ(z), then

LG f (z, t) = e−i(a,t〉L |a|ϕ(z)

where, for λ > 0

Lλ = −
z + λ2|z|2
4

− iλ
n∑
j=1

(
x j

∂

∂ y j
− y j

∂

∂x j

)

is the twisted Laplacian on C
n.

For a proof, see Lemma 1 in [17]. Define, for 0 	= a ∈ z,

eak (z, t) = e−i〈a,t〉ϕ|a|
k (z) (2.4)
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where ϕ
|a|
k is defined in (1.2). Then, from the above lemma it follows that

LGe
a
k = (2k + n)|a|eak . (2.5)

An H -type group admits a family of dilations which act as automorphisms of G
by

δr (z, t) = (r z, r2t), r > 0.

It is easy to see that G with this family of dilations is a homogeneous Lie group whose
homogeneous dimension is 2n + 2m which we denote by Q (see [13]). The Korányi
norm on G is defined as

|(z, t)| =
(
|z|4 + |t |2

)1/4
.

It is clear that |δr (z, t)| = r |(z, t)|.
A smooth kernel K on G \ {0} is said to be homogeneous of degree −Q if

K (δr (z, t)) = r−QK (z, t),∀(z, t) ∈ G \ {0}.

Smooth (away from identity) homogeneous kernels K which satisfy a cancellation
condition (see below) define singular integral operators on G via principal value inte-
grals.Wewill denote such an operator by f �→ P.V. f ∗K .The cancellation condition
is given by ∫

a<|(z,t)|<b
K (z, t) dzdt = 0,∀ 0 < a < b < ∞. (2.6)

Notice that, since {(z, t) : a < |(z, t)| < b} is relatively compact, the above integral
is well defined. For more details on such operators, we refer to [13]. Now we collect
some of the results about singular integral operators on G which will be used later.

Theorem 2.1 Let G be an H-type group and let K ∈ C∞(G \ {0}) be a kernel which
is homogeneous of degree −Q. Assume that K satisfies the cancellation condition

∫
a<|(z,t)|<b

K (z, t) dzdt = 0,∀ 0 < a < b < ∞.

Then the singular integral operator, defined by

f �→ P.V. f ∗ K

is bounded on L2(G).

Proof This is a special case of Theorem 1 in [15, p. 494]. ��
The next theorem says that for the above operators, the L2-boundedness imply the

L p-boundedness.
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Theorem 2.2 Let G be an H-type group and K ∈ C∞(G \{0}) be a kernel that satisfy
the cancellation condition and is homogeneous of degree −Q. If the operator

f �→ P.V. f ∗ K

is bounded on L2(G), then it is bounded on L p(G) for 1 < p < ∞.

Proof Follows from Theorem 5.1 of [16]. ��
We end this section by restating the cancellation condition.

Lemma 2.2 Let K ∈ C∞(G \ {0}) be homogeneous of degree −Q. Then the
cancellation condition in (2.6) is equivalent to the condition

∫
Cn

∫
Sm−1

K (z, u) dzdμm
1 (u) = 0

where μm
1 is the normalised surface measure on the unit sphere in z. In particular, if

K is radial in the t-variable, the cancellation condition is equivalent to

∫
Cn

K (z, 1) dz = 0.

Proof Since K is homogeneous of degree −Q, one has

∫
a<|(z,t)|<b

K (z, t) dzdt =
∫
Cn

∫
Sm−1

∫
a4<|z|4+s2<b4

K (z, su)sm−1dsdμm
1 (u)dz

=
∫
Cn

∫
Sm−1

∫
a4<|z|4+s2<b4

K

(
z√
s
, u

)
s−n−1dsdμm

1 (u)dz

=
∫
Cn

∫
Sm−1

∫
a4<s2(1+|w|4)<b4

ds

s
K (w, u)dμm

1 (u)dz.

Now the result follows from the fact that

∫
a4<s2(1+|w|4)<b4

ds

s
=

∫ b2√
1+|w|4
a2√
1+|w|4

ds

s
= log

(
b2

a2

)

is independent of w. ��
We need the following result which is a special case of a result due to Christ (see

[7, p. 575]).

Theorem 2.3 Let G be an H-type group, with dilations {δt : t > 0}. Let γ : R → G
be an odd homogeneous curve, that is γ (t) = exp(δt (Y+)) for t > 0 and γ (t) =
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exp(δ−t (Y−)) where Y+ = −Y− ∈ g, so that γ (t) = −γ (−t) = γ (t−1). Then, the
operator

Hγ f (x) = P.V.

∫
R

f (x · γ (t)−1)
dt

t
,

is bounded on L p(G) for 1 < p < ∞ with norm independent of the curve γ.

We shall also need the following result connecting the L p membership of a function
on R

m with the dimension of the support of the Fourier transform of the function.

Theorem 2.4 Let f ∈ L p(Rm) and support of f̂ (distributional Fourier transform of
f ) is contained in aC1-manifold of dimension0 < d < m.Then f vanishes identically
provided 1 ≤ p ≤ 2m

d . If d = 0, f vanishes identically provided 1 ≤ p < ∞.

Proof When the support is a sphere, this follows from [20] (see Lemma 2.2 and
Theorem 2.2 there). For the general case see [1] (Theorem 1). ��

3 Spectral Projections and Abel Summability

In this section, we prove a summability result for the spectral decomposition of the
sublaplacian on L p for 2 ≤ p < ∞. We follow the methods in [18]. For a ∈ R

m and
(z, t) ∈ G ≡ C

n × R
m , recall that (see 2.4)

eak (z, t) = e−i〈a,t〉ϕ|a|
k (z),

where the scaled Laguerre functions ϕλ
k for λ > 0, defined by

ϕλ
k (z) = Ln−1

k

(
λ|z|2
2

)
e− 1

4λ|z|2 , k = 0, 1, 2, . . .

in terms of the Laguerre polynomials Ln−1
k , are the eigenfunctions of the twisted

Laplacian Lλ with eigenvalue (2k + n)|λ|. Hence,

LGe
a
k (z, t) = e−i〈a,t〉L |a| ϕ

|a|
k (z) = (2k + n)|a|eak (z, t).

Next, we explain the L2 spectral decomposition. Applying the Fourier inversion
formula in the central variable and using the special Hermite expansion of a function
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on C
n, we obtain

f (z, t) = 1

(2π)m

∫
Rm

f a(z)e−i〈a,t〉 da

= 1

(2π)m

∫
Rm

|a|n
(2π)n

∞∑
k=0

( f a ×|a| ϕ
|a|
k (z))e−i〈a,t〉 da.

= 1

(2π)n+m

∫
Rm

∞∑
k=0

f ∗ eak (z, t)) |a|n da

= 1

(2π)n+m

∞∑
k=0

∫
Rm

f ∗ eak (z, t) |a|n da.

Since LG is left invariant, LG( f ∗ g) = f ∗LGg. Hence f ∗ eak are eigenfunctions
of the sub-Laplacian LG with eigenvalues (2k+n)|a|. Therefore the above expansion
is in fact the L2 spectral decomposition of f . We also have, by the Plancherel formula
(see [17, p. 2717]),

‖ f ‖L2(G) = 1

(2π)n+m

∞∑
k=0

∫
Rm

|a|2n
∫
Cn

| f ∗ eak (z, 0)|2 dz da.

Let Ak denote the spectral projection operator on L2 defined by

Ak f (z, t) =
∫
Rm

f ∗ eak (z, t) |a|n da. (3.1)

Our aim is to extend this spectral projection operator Ak to L p(G) and prove
its L p boundedness. We will achieve this by showing that each Ak is a singular
integral operator whose kernel satisfies the requirements of Theorem 2.2. Notice that
if f (z, t) is a Schwartz class function on G, whose Fourier transform in the t-variable
is compactly supported, then following the proof given in [20] (see pp. 269–270) we
can show that ∫

Rm
f ∗ eak (z, t) |a|n da = f ∗ Ak(z, t), (3.2)

where Ak is given by

Ak(z, t) =
∫
Rm

eak (z, t) |a|n da

=
∫
Rm

e−i〈a,t〉 ϕ
|a|
k (z)|a|n da.

Due to the presence of the Gaussian in the integral defining Ak, it is easy to show that

Ak is smooth away from identity. Since ϕ
|a|
k (z) = Ln−1

k

( |a||z|2
2

)
e− |a|

4 |z|2 , the kernel
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Ak(z, t) is a linear combination of functions of the form

A j
k (z, t) = |z|2 j

∫
Rm

e−i〈a,t〉 e− |a|
4 |z|2 |a|n+ j da, j = 0, 1, . . . , k,

which too are smooth away from the identity. A simple change of variables shows that

A j
k (sz, s

2t) = s−Q A j
k (z, t),

which is the required homogeneity for singular integral operators on G.

Using polar coordinates, we obtain

A j
k (z, t) = cm |z|2 j

∫ ∞

0

Jm
2 −1(λ|t |)

(λ|t |)m
2 −1

e− λ
4 |z|2λn+m+ j−1 dλ,

where cm is a constant that depends only on m. We prove that Ak(z, t) is a Calderón–
Zygmund kernel by showing that each A j

k (z, t) is. Since A j
k (z, t) is homogeneous of

degree −Q and belongs to C∞(G \ {0}), we need to show that these kernels satisfy
the cancellation condition as in Lemma 2.2. Since A j

k (z, t) is radial in t , it suffices to
show the following:

Lemma 3.1
∫
Cn

A j
k (z, 1) dz = 0, j = 0, 1, 2, . . . , k.

Proof We start with the integral

Im(τ ) =
∫ ∞

0

Jm
2 −1(λ)

λ
m
2 −1

e−τλ λm−1 dλ, τ > 0. (3.3)

Then for any t ∈ R
m such that |t | = 1, it is easy to see that the above (up to a constant)

equals

∫
Rm

e−i〈x,t〉 e−τ |x | dx,

which equals the Poisson kernel,

cm
τ

(1 + τ 2)
m+1
2

for some constant cm . Now,

∫ ∞

0

Jm
2 −1(λ)

λ
m
2 −1

e−τλ λn+m+ j−1 dλ = dn+ j

dτ n+ j (Im(τ ))
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= I (n+ j)
m (τ ).

Hence, to prove the lemma, we need to show that

∫
Cn

|z|2 j I (n+ j)
m

( |z|2
4

)
dz = 0, j = 0, 1, 2, . . . , k.

Since the integrand is radial, this reduces to showing that

∫ ∞

0
I (n+ j)
m

(
r2

4

)
r2n+2 j−1 dr = 22n+2 j−1

∫ ∞

0
I (n+ j)
m (b) bn+ j−1 db = 0.

Now, writing

�(b) = 1

(1 + b2)
m+1
2

,

we get,

I (n+ j)
m (b) = b�(n+ j)(b) + (n + j)�(n+ j−1)(b).

Hence

∫ ∞

0
I (n+ j)
m (b) bn+ j−1 db =

∫ ∞

0
�(n+ j)(b) bn+ j db

+ (n + j)
∫ ∞

0
�(n+ j−1)(b) bn+ j−1 db

= lim
b→∞ bn+ j�(n+ j−1)(b)

which is easily verified to be zero as m ≥ 2. This proves the lemma. ��

From Theorem 2.1, it follows that the operator

f �→ P.V. f ∗ Ak

is a bounded operator on L2(G) and therefore (by Theorem 2.2) bounded on
L p(G), 1 < p < ∞ as well.

Hence, we have proved the following theorem.

Theorem 3.1 The spectral projection operator Ak is the convolution operator f �→
P.V. f ∗ Ak and is bounded on L p(G), 1 < p < ∞.

Next we show the Abel summability of the spectral decomposition for f ∈ L p(G).
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Theorem 3.2 Let 2 ≤ p < ∞ and f ∈ L p(G). Then

lim
r→1

∞∑
k=0

rk
∫
Rm

f ∗ eak (z, t) |a|n da = f (z, t)

in the L p norm.

As in [18] (see Theorem 3.3 and Corollary 3.4 there, also the first paragraph in p.
375), it is enough to show that the operators

Tr f (z, t) =
∞∑
k=0

rk
∫
Rm

f ∗ eak (z, t) |a|n da, (3.4)

are uniformly bounded on L p(G), 2 ≤ p < ∞. To prove this, we need the following
lemma.

Lemma 3.2 Let K (z, t) be an odd kernel that is smooth away from the identity and
homogeneous of degree −Q. Then the operator norm of f �→ P.V. f ∗ K on
L p(G), 1 < p < ∞ is bounded by

Cp

∫
Cn

∫
Sm−1

|K (w, u)| dwdu

for some constant Cp depending only on p.

Proof Using the homogeneity of the kernel K , we can write f ∗ K as,

f ∗ K (z, t) =
∫
Cn

∫
Rm

f

(
z − w, t − s − 1

2
[z, w]

)
K (w, s) dwds

=
∫
Cn

∫ ∞
0

∫
Sm−1

f

(
z − w, t − ru − 1

2
[z, w]

)
r−n−mK

(
w√
r
, u

)

rm−1 drdudw

=
∫ ∞
0

∫
Sm−1

∫
Cn

f

(
z − √

rw, t − ru −
√
r

2
[z, w]

)
K (w, u)r−1 dwdrdu

= 2
∫
Cn

∫
Sm−1

∫ ∞
0

f
(
z − rw, t − r2u − r

2
[z, w]

)
K (w, u)

dr

r
dudw.

Since K is odd, the above integral becomes

2
∫
Cn

∫
Sm−1

(∫ ∞

0
f (z − rw, t − r2u − r

2
[z, w]) dr

r

−
∫ ∞

0
f (z + rw, t + r2u + r

2
[z, w]) dr

r

)
K (w, u) dudw



33 Page 16 of 24 Journal of Fourier Analysis and Applications (2024) 30 :33

Now, the inner integral,

∫ ∞

0
f
(
z − rw, t − r2u − r

2
[z, w]

) dr

r
−

∫ ∞

0
f
(
z + rw, t + r2u + r

2
[z, w]

) dr

r

equals ∫ ∞

0
f ((z, t)(δr (w, u))−1)

dr

r
−

∫ ∞

0
f ((z, t)(δr (w, u)))

dr

r
(3.5)

since

∫ 0

−∞
f ((z, t)(δ−r (−w,−s))−1)

dr

r
=

∫ 0

−∞
f ((z, t)δ−r (w, s))

dr

r

= −
∫ ∞

0
f ((z, t)δr (w, s))

dr

r
.

The expression (3.5) is the Hilbert transform Hγ(w,s) f of f along the curve γ(w,s)

in G, given by,

γ(w,s)(r) =
{

δr (w, s) for r > 0
δ−r (−w,−s) for r ≤ 0

Hence

f ∗ K (z, t) =
∫
Cn

∫
Sm−1

Hγ(w,s) f (z, t)K (w, s) dwds.

Therefore,

‖ f ∗ K‖p ≤
∫
Cn

∫
sm−1

‖Hγ(w,s) f ‖p|K (w, s)| dwds

≤ Cp‖ f ‖p

∫
Cn

∫
sm−1

|K (w, s)| dwds

where Cp is a constant that depends only on p (by Theorem 2.3). ��

Now we are in a position to prove the uniform boundedness of ‖Tr‖p using the
previous lemma. We note that Tr is a convolution operator with kernel

∞∑
k=0

rk
∫
Rm

eak (z, t)|a|n da,

which we compute using the following generating function identity of Laguerre
polynomials:

∞∑
k=0

rk Lα
k (x) = (1 − r)−α−1e− r x

1−r , |r | < 1.
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It then follows that

∞∑
k=0

rk
∫
Rm

eak (z, t)|a|n da = (1 − r)−n
∫
Rm

e−i〈a,t〉e− 1
4
1+r
1−r |a||z|2 |a|n da.

Since this is not an odd kernel, we bring in the Riesz transform in the t- variable.
Define the operator R j by

(R j f )
a(z) = a j

|a| f a(z),

which is just the j-th Riesz transform in the central variable. Clearly, R j is bounded
on L p(G) for 1 < p < ∞. Now, define the operator

R jAk f (z, t) =
∫
Rm

f ∗ eak (z, t)
a j

|a| |a|n da.

Since
∑m

j=1R2
j = I , it suffices to prove that the operator norm of

∑∞
k=0 r

kR jAk is
indepedent of r . Now the kernel of the above operator is

∞∑
k=0

rk
∫
Rm

eak (z, t)
a j

|a| |a|n da = (1 − r)−n
∫
Rm

e−i〈a,t〉 e− 1
4
1+r
1−r |a||z|2 a j

|a| |a|n da.

Writing in terms of the polar coordinates and using the Hecke-Bochner identity, we
obtain that the above integral is a constant multiple of

(1 − r)−n t j

∫ ∞

0

Jm
2
(λ|t |)

(λ|t |)m
2

e− 1
4
1+r
1−r λ|z|2 λn+m−1 dλ.

When t ∈ Sm−1, we can write the above expression using the function Im (see (3.3))
as

(1 − r)−nt j I
(n−2)
m+2

(
−1

4

1 + r

1 − r
|z|2

)
.

Since

∫
Cn

∫
Sm−1

∣∣∣∣(1 − r)−nt j I
(n−2)
m+2

(
−1

4

1 + r

1 − r
|z|2

)∣∣∣∣ dzdt

≤ C
1

(1 + r)n

∫ ∞

0
|I (n−2)
m+2 (a)|an−1 da,

the proof is complete as it can easily be verified that∫ ∞

0
|I (n−2)
m+2 (a)|an−1 da ≤ C .
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Remark 3.1 We comment on the difference in the proofs in the case of Heisenberg
group and Heisenberg type groups. In [18], Strichartz obtains explicit expressions for
the kernels of the spectral projections (see pp. 361–362 in [18]). From the expressions,
the necessary properties of the kernel can be deduced.However, in the present case, due
to the higher dimension of the center, this does not seem to be possible. Nevertheless,
we obtain an integral expression for the kernel from which we are able to deduce the
properties of the kernel. Notice that, using the generating function for the Laguerre
polynomials, it is possible to obtain an expression (not explicit) for the kernel of the
spectral projections Ak . Indeed,

∞∑
k=0

rk
∫
Rm

eak (z, t) |a|n da = (1 − r)−n
∫
Rm

e−i〈a,t〉 e− 1
4
1+r
1−r |a||z|2 |a|n da.

Using polar coordinates in the above leads to the expression (up to a constant)

(1 − r)−n
∫ ∞

0

Jm
2 −1(λ|t |)

(λ|t |)m
2 −1

e− 1
4
1+r
1−r λ|z|2 λn+m−1 dλ.

Substituting the well known integral formula for the Bessel function in the above, we
get (again up to a constant)

∫ 1

−1
(1 − s2)

m−3
2

(
(1 − r)−n

∫ ∞

0
eisλ|t | e− 1

4
1+r
1−r λ|z|2 λn+m−1 dλ

)
ds.

Now, the kernel Ak is the kth-derivative of the above with respect to r , evaluated at
r = 0. However, the inner integral can be computed as in [18, p. 362]. We obtain that
the expression

(1 − r)−n
∫ ∞

0
eisλ|t | e− 1

4
1+r
1−r λ|z|2 λn+m−1 dλ

equals (ignoring some constants that depend only on n and m)

(1 − r)m
[
(|z|2 − 4is|t |) + r(|z|2 + 4is|t |)

]−n−m
.

Differentiating the above k times and evaluating at r = 0, we obtain that

Ak(z, t) = (−1)kcn,m

∫ 1

−1
(1 − s2)

m−3
2 Pk(z, s|t |) ds (3.6)
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where cn,m is a constant depending only on n and m and

Pk(z, t) =
⎡
⎣min(k,m)∑

j=0

(
k

j

)
m!

(m − j)!
(n + m + k − j − 1)!

k!(n + m − 1)!
(|z|2 − 4i t) j

(|z|2 + 4i t) j

⎤
⎦

(|z|2 + 4i t)k

(|z|2 − 4i t)n+m+k
.

When m is odd, p = m−3
2 is a non-negative integer and one can expand the term

(1−s2)p in (3.6) and prove the cancellation condition for the kernel Ak by a somewhat
long induction argument. However, this does not seem to work when m is even.

4 Injectivity of Spherical Means

In this section we prove the theorems stated in the introduction. We follow the
proofs given in [20] closely. The important point is that the functions eak (z, t) are
eigenfunctions for the three spherical mean operators we have considered.

4.1 Proof of Theorem 1.3

First we look at the spherical means with respect to the normalized surface measure
μ2n
r on the sphere {z ∈ v : |z| = r}. As in (2.3), we can see that

eak ∗ μ2n
r (z, t) = e−i〈a,t〉ϕ|a|

k ×|a| μ2n
r (z).

Since (see [20])

ϕ
|a|
k ×|a| μ2n

r (z) = k!(n − 1)!
(k + n − 1)!ϕ

|a|
k (r)ϕ|a|

k (z)

we obtain,
eak ∗ μ2n

r (z, t) = ck,n ϕ
|a|
k (r) eak (z, t), ∀ (z, t) ∈ G, (4.1)

where ck,n = k!(n−1)!
(k+n−1)! . Now, let f ∈ L p(G), 1 ≤ p ≤ 2m

m−1 and assume that f ∗
μ2n
r vanishes identically. Convolving f with a smooth approximate identity, we may

assume that f ∈ L p for 2 ≤ p ≤ 2m
m−1 . From the above identity (4.1), the spectral

decomposition of f ∗ μ2n
r is given by

f ∗ μ2n
r (z, t) =

∞∑
k=0

∫
Rm

ck,n ϕ
|a|
k (r) f ∗ eak (z, t) |a|n da.
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If f ∗ μ2n
r (z, t) = 0 for all (z, t), by Theorem 3.2,

lim
s→1

∞∑
k=0

ck,n s
k

∫
Rm

ϕ
|a|
k (r) f ∗ eak (z, t) |a|n da = 0

where the convergence is in L p(G). Applying the kth spectral projection operator Ak

and using Theorem 3.1 we obtain that

∫
Rm

ϕ
|a|
k (r)

(
f a ×|a| ϕ

|a|
k

)
(z) e−i〈a,t〉|a|n da = 0, ∀(z, t),∀k = 0, 1, 2, . . .

Arguing as in [20, p.276] (also see [19, pp. 257–258]), we obtain that, for almost
all z ∈ C

n, the support of f a ×|a| ϕ
|a|
k (z), the distributional Fourier transform of

Ak f (z, ·), is contained in the zero set of Ln−1
k ( 12 |a|r2), which is a finite union of

spheres in R
m . But this implies, by Theorem 2.4, thatAk f (z, t) is zero asAk f ∈ L p

for 1 < p ≤ 2m
m−1 . This finishes the proof of Theorem 1.3.

Next, we show that the above range is optimal by an example. For a fixed k ≥ 1
and s > 0, let

F(z, t) = Jm
2 −1(s|t |)

(s|t |)m
2 −1

ϕs
k(z)

=
∫

|a|=s
e−i〈a,t〉 ϕ

|a|
k (z) dμm

s (a)

=
∫

|a|=s
eak (z, t) dσs(a),

whereμm
s as earlier, is the normalized surface measure on the sphere {a ∈ R

m : |a| =
s}. An easy computation using (4.1) shows that,

F ∗ μ2n
r (z, t) = ck,n ϕs

k(r) F(z, t),

for all (z, t) ∈ G. Choosing s suitably, we can make sure that ϕs
k(r) = 0. From the

asymptotics of the Bessel function it is clear that F ∈ L p(G) if and only if p > 2m
m−1 ,

which proves our claim.

4.2 Proof of Theorem 1.4

Now we look at the bi-spherical means defined using the measures μr ,s = μ2n
r × μm

s .
Recall that the measure μr ,s for r > 0, s > 0 was defined by

μr ,s( f ) =
∫

|z|=r

∫
|t |=s

f (z, t) dμ2n
r (z) dμm

s (t),
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where dμ2n
r and dμm

s are the normalized surfacemeasures on the spheres {z : |z| = r}
and {t : |t | = s} respectively. Assume that f ∈ L p(G) for 2 ≤ p ≤ 2m

m−1 and f ∗μr ,s

vanishes identically. Proceeding as in the earlier proof, using the identity (4.1), we get

eak ∗ μr ,s(z, t) = ck,n e
−i〈a,t〉 Jm

2 −1(s|a|)
(s|a|)m

2 −1
ϕ

|a|
k (r) ϕ

|a|
k (z)

= ck,n
Jm

2 −1(s|a|)
(s|a|)m

2 −1
ϕ

|a|
k (r) eak (z, t).

Continuing exactly as above we get that the distributional Fourier transform of
Ak f (z, t) in the t variable is supported in the zero set of (as a function of a)

Jm
2 −1(s|a|)

(s|a|)m
2 −1

ϕ
|a|
k (r),

which is a union of infinitely many spheres in R
m . It then follows thatAk f = 0 from

Theorem 2.4, if 1 ≤ p ≤ 2m
m−1 . This completes the proof of Theorem 1.4.

Next we show that the above range is the best possible. To this end, we need to
recall some results on bi-radial functions on an H -type group G. Define the averaging
operator (see [5, p. 221]) � on integrable functions on G by

�( f )(z, t) =
∫
Sm−1

∫
S2n−1

f (|z|u, |t |v) dμ2n
1 (u) dμm

1 (v),

where dμ2n
1 and dμm

1 are the normalized surface measures on the unit spheres
{z : |z| = 1} and {t : |t | = 1} respectively. The operator � is then an averaging
projector satisfying several properties (see [5, p. 220]).

A bi-radial function on G is a function f that satisfies �( f ) = f . Clearly, f is
bi-radial if and only if f is radial in both the z and t variables. For k = 0, 1, 2, . . . and
λ > 0, define the functions �λ

k (z, t) by

�λ
k (z, t) = C(k, n,m) ϕλ

k (z)
Jm

2 −1(s|t |)
(s|t |)m

2 −1
,

where C(k, n,m) is a constant so that �λ
k (0, 0) = 1. We have the following result

about the class of integrable bi-radial functions, denoted by L1(G)#.

Theorem 4.1 (1) The space L1(G)# is a commutative Banach algebra under convo-
lution.

(2) The space of multiplicative linear functionals on L1(G)# coincides with the
collection {�λ

k : λ > 0, k = 0, 1, 2, . . .}.
For the proof of above see [5, Proposition 5.3]. We also need the product formula

satisfied by the functions �λ
k .
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Proposition 4.1 Let � = �λ
k for some k and λ. Let (z,t)� denote the left translate of

the function � by the point (z, t). Then,

�((z,t)�)(w, s) = �(z, t) �(w, s).

For a proof, see Proposition 2.3 in [9]. Now, a simple computation shows that the
identity in Proposition 4.1 reduces to

�λ
k ∗ μr ,s(z, t) = �λ

k (r , s) �λ
k (z, t).

Choosing λ and k > 0 such that �λ
k (r , s) = 0, we get

�λ
k ∗ μr ,s(z, t) = 0 ∀ (z, t) ∈ G,

which proves our claim as �λ
k (z, t) ∈ L p if and only if p > 2m

m−1 .

4.3 Proof of Theorem 1.5

Finally, we look at the homogeneous spherical means defined using the measure σr .
First we deal with the case m ≥ 2. Recall the homogeneous norm on G, given by

|(z, t)| = (|z|4 + |t |2) 1
4 .

Also, recall that there exists a unique Radonmeasure σ on the unit sphere� = {(z, t) :
|(z, t)| = 1} such that for all f ∈ L1(G)

∫
G

f (g) dg =
∫ ∞

0

∫
�

f (δr (z, t)) dσ(z, t) r Q−1dr

where δr denote the dilations that act as automorphisms of G. The measures σr , for
r > 0 are defined by

σr ( f ) = σ(δr f ) =
∫

�

f (δr (z, t)) dσ(z, t).

The homogeneous spherical means of a function f is then defined as the convolution
f ∗ σr , of f with σr .
We have the formula for the measure σs, s > 0 given by

σs ( f ) =
∫

f (z, t) dσs (z, t)

= 2
∫ 1

0

∫
|z|=1

∫
|t |=1

f
(
sr z, s2

√
1 − r4t

)
dμ2n

1 (z)dμm
1 (t) r2n−1 (1 − r4)

m−2
2 dr .

See [12, Proposition 2.7] or [11, p. 102] for the proof of this formula.
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It follows that

f ∗ σs = 2
∫ 1

0
f ∗ μ

sr ,s2
√

1−r4
r2n−1 (1 − r4)

m−2
2 dr

where f ∗ μsr ,s2
√
1−r4 are the bi-spherical means defined earlier.

As above we compute

eak ∗ σs (z, t) = 2
∫ 1

0
eak ∗ μ

sr ,s2
√
1−r4

(z, t) r2n−1 (1 − r4)
m−2
2 dr

= ck,n

⎛
⎝2

∫ 1

0

Jm
2 −1(s

2
√
1 − r4|a|)

(s2
√
1 − r4|a|)m2 −1

ϕ
|a|
k (r) r2n−1 (1 − r4)

m−2
2 dr

⎞
⎠ eak (z, t).

Write |a| = λ, and notice that the function

λ �→
∫ 1

0

Jm
2 −1(s

2
√
1 − r4λ)

(s2
√
1 − r4λ)

m
2 −1

ϕλ
k (r) r2n−1 (1 − r4)

m−2
2 dr (4.2)

is holomorphic for�λ > 0 and so the above function has atmost countablymany zeros
λ ∈ (0,∞). Now the proof can be completed as above for the range 1 ≤ p ≤ 2m

m−1 , if
m ≥ 2. We believe that the range obtained is optimal. This will be true if the function
in (4.2) has a zero in (0,∞).

When m = 1, G = H
n, the Heisenberg group. The formula for the measure σs

takes the following form (see [10, p. 95]):

σs = cn

∫ π
2

− π
2

μs
√
cos θ, 12 s

2 sin θ (cos θ)n−1 dθ,

where the measure μr ,s is the normalized surface measure on the sphere {(z, s) ∈
H

n : |z| = r}. Now the proof can be completed as earlier. We omit the details. This
completes the proof of Theorem 1.5.

Remark 4.1 The Abel summability result for the spectral decomposition will be true
for all 1 < p < ∞, if we can estimate the operator norm ofAk . It is a natural question
whether a two radius theorem is true for functions in L p(G) for 2m

m−1 < p ≤ ∞ and
whether our results can be proved for averages over K -orbits where (G � K , K ) is
a Gelfand pair as in the case of the Heisenberg group. We hope to return to these
questions and some others in the near future.

Remark 4.2 When 1 ≤ p ≤ 2, it is possible to take the Fourier transform in the
central variable and prove the injectivity results for the spherical means with weaker
conditions of growth on the function. See [8].
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