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Abstract
In this paper we investigate the harmonic analysis of infinite convolutions generated
by admissible pairs on Euclidean space R

n . Our main results give several sufficient
conditions so that the infinite convolutionμ to be a spectral measure, that is, its Hilbert
space L2(μ) admits a family of orthonormal basis of exponentials. As a concrete
application, we give a complete characterization on the spectral property for certain
infinite convolution on the plane R

2 in terms of admissible pairs.
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1 Introduction

Letμ be a Borel probability measure on Euclidean space R
n , and let μ̂ be the Fourier-

Stieltjes transform of μ on R
n :

μ̂(ξ) =
∫

e−2π i〈ξ,x〉dμ(x) ( ξ ∈ R
n).

A fundamental problem in harmonic analysis for L2(μ) is whether there exists a
discrete set � ⊆ R

n such that the collection of exponential functions

E(�) := {eλ(x) := e2π i〈λ,x〉 : λ ∈ �}

forms an orthonormal basis for L2(μ). If this holds, μ is called a spectral measure
and � is a spectrum for μ, and (μ,�) is called a spectral pair. Thus, for a discrete
set �, there are two crucial ingredients for � being a spectrum of μ: one is that the
system E(�) forms an orthogonal set for L2(μ), that is,

μ̂(λ′ − λ) = 〈eλ, eλ′ 〉L2(μ) = 0 for λ′ �= λ ∈ �;

the other is that E(�) is total in L2(μ), that is, if 〈 f , eλ〉L2(μ) = 0 for all λ ∈ �, then
f = 0 holds μ-almost everywhere.
It is known that the study of spectral measures has a long history, and the wide

research of spectral measures dates back to the famous Fuglede conjecture in 1974,
which asserted that the normalized Lebesgue measure restricted on a Borel set � is a
spectral measure if and only if � is a translational tile in R

n , the interested readers are
referred to [16, 25, 36] and references therein. In the year 1998, Jorgensen andPedersen
[22] announced the first class of singular continuous spectral measures, in which they
proved that Bernoulli convolutions μR,2 is a spectral measure if R = 2k, and it is
not spectral if R = 2k + 1. Later on, after the pioneering works of Strichartz [34]
and Łaba-Wang [26], many significant progresses have been made in constructing
new spectral measures (e.g., see [1, 2, 5, 10]), classifying the structures of spectra
for some singular spectral measures (e.g., see [6, 8, 11, 17]) and investigating the
convergence or divergence of mock Fourier series (e.g., see [12, 20, 34, 35]). Among
them, a surprising and interesting phenomenon was that there are uncountably many
spectra such that the associated mock Fourier series of continuous functions converge
uniformly, and the mock Fourier series of L p-functions converge pointwise almost
everywhere [20, 35].

The present paper is devoted to investigating the question of spectrality of infinite
convolutions on R

n . More precisely, here and below, we use the symbol ∗ to denote
the convolution of two measures, and for a discrete set D in R

n , we define a discrete
probability measure δD as follows

δD = 1

#D

∑

d∈D
δd , (1.1)
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where δd is the Dirac point massmeasure at the point d, and #D denotes the cardinality
of D. The interest of this paper is concentrated on the following well-studied problem
in spectral theory of measures.

Question 1.1 Given a sequence of matrices Rk ∈ GL(n, R) and a sequence of digit
sets Dk in R

n , under what conditions is the infinite convolution

μ(Rk, Dk) := δR−1
1 D1

∗ δR−1
1 R−1

2 D2
∗ δR−1

1 R−1
2 R−1

3 D3
∗ · · · (1.2)

(if it exists in the weak-star topology) a spectral measure?

The investigation of measure μ(Rk, Dk) and similar measures dates back to the
1930s, and it was shown [23] that it is either absolutely continuous or singular continu-
ouswith respect toLebesguemeasure.Also, several sufficient andnecessary conditions
for the the existence ofμ(Rk, Dk)were given in [23] and [29]. In particular, if Rk = R
and Dk = D for all k ∈ N, they are self-affine measuresμR,D := μ(Rk, Dk) in fractal
geometry (cf., [14, 21]), and Bernoulli convolution μR,2 mentioned above is obtained
by taking Rk = R ∈ R and Dk = {−1, 1} for all k ∈ N.

In the published literatures, in order to settle down Question 1.1, one basic but most
important condition is the concept of admissible pairs (cf., [10, 22, 26, 34]):

Definition 1.2 Let R ∈ GL(n, Z) be an n × n integer matrix, and let D ⊆ Z
n be a

finite subset. The pair (R, D) is called an admissible pair if there is a set C ⊆ Z
n with

the same cardinality as D such that the matrix

HR−1D,C := 1√
#D

[

e2π i〈R−1d,c〉]

d∈D,c∈C

is unitary, i.e., H∗
R−1D,C

HR−1D,C = I . Following [10, 26, 34], the system (R−1D,C)

is called a compatible pair, and (R, D,C) is called a Hadamard triple.

Based on admissible pairs, a lot of one-dimensional spectral infinite convolutions
μ(Rk, Dk) as in (1.2) were obtained in [26, 34] and the references given there, espe-
cially see the recent works [19, 28–30, 32]. However, to the best of our knowledge,
there are only a few classes of higher dimensional spectral measuresμ(Rk, Dk) onR

n

are known. Let us describe some of the previous work on higher dimensional infinite
convolutions being spectral. Strichartz first showed [34, Theorem 2.8] the following
theorem:

Theorem A [34] If the measure μ(Rk, Dk) on R
n as in (1.2) satisfies that

(i) there are digit sets Ck with 0 ∈ Ck such that {(R−1
k Dk,Ck)}∞k=1 forms a sequence

of compatible pairs which are chosen from a finite set of compatible pairs, and
each matrix Rk is expanding1;

1 Here, the notation “expanding” denotes that, for the sequence {Rk } with finitely many distinct matrices,
there exists r > 1 such that ‖Rkx‖2 ≥ r‖x‖2 for all k, where ‖ · ‖2 denotes the Euclidean 2-norm on R

n ,
see [34, pp. 216, line 1–2]
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(ii) the zero set Zn of the Fourier transform of δR−1
n Dn

is uniformly disjoint from the

sets (R∗
1 · · · R∗

n)
−1C1+(R∗

2 · · · R∗
n)

−1C2 · · ·+R∗
n
−1Cn for all n ∈ N. That is, there

is a common positive number δ > 0 (independent on n) such that their distance
satisfies that

d(Zn, (R∗
1 · · · R∗

n)
−1C1 + (R∗

2 · · · R∗
n)

−1C2 · · · + R∗
n
−1Cn) > δ for all n ∈ N.

Then the measure μ(Rk, Dk) in (1.2) is a spectral measure with a spectrum

� =
∞
⋃

n=1

(

C1 + R∗
1C2 + · · · + R∗

1 · · · R∗
n−1Cn

)

.

Unfortunately, the condition in Theorem A(ii) is not a necessary condition, and it
might be very difficult to check, even for self-affine measures. Fortunately, Dutkay,
Haussermann and Lai [10] completely showed that one admissible pair automatically
yields a self-affine spectral measure on R

n , i.e., condition (ii) can be removed in this
case. Nevertheless, there are non-spectral measures of infinite convolutions generated
by more than one admissible pair, cf., [4, Example 5.2]. To some extent, this means
that it is a very challenging question to give a complete answer to Question 1.1 for
general convolutions. At last, we point out that Dutkay and Lai [13] (also see [18,
Section 3]) investigated the spectrality of a class of infinite convolutions on R

n , where
Rk = R for all k and there are only finitely many distinct Dk such that (R−1Dk,C)

forms a compatible pair for some common digit set C ⊆ Z
n , and some additional

conditions were given to guarantee infinite convolutions to be spectral (e.g., see [13,
Theorem 1.5]).

Continuing the line of the research above, the purpose of this paper is to further
investigate the spectrality of higher dimensional measures μ(Rk, Dk) as in (1.2) on
R
n under the condition of admissible pairs or compatible pairs, and we will settle

down Question 1.1 partially. More explicitly, given a sequence of admissible pairs
{(Rk, Dk) : k ∈ N} on R

n , we define

Rk = Rk Rk−1 . . . R1 (1.3)

and assume that the following infinite convolution as in (1.2)

μ := μ(Rk, Dk) = δR−1
1 D1

∗ δR−1
2 D2

∗ · · · ∗ δR−1
k Dk

∗ · · · (1.4)

converges to a Borel probability measureμ in the weak-star topology. For each k ∈ N,
the measure μ in (1.4) can be decomposed as

μ = μk ∗ (νk ◦ Rk),
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where νk ◦ Rk(E) = νk(Rk(E)) for all Borel set E ⊆ R
n , and the Borel measures

μk, νk are respectively represented as (sometimes, we also write ν0 = μ(Rk, Dk))

μk = δR−1
1 D1

∗ δR−1
2 D2

∗ · · · ∗ δR−1
k Dk

and

νk = δR−1
k+1Dk+1

∗ δR−1
k+1R

−1
k+2Dk+2

∗ δR−1
k+1R

−1
k+2R

−1
k+3Dk+3

∗ · · · . (1.5)

As in [2, 10, 13], we know that the sequence of measures νk plays a critical role in
determining the spectral property of μ(Rk, Dk). Here, based on [10, Lemma 4.7], it
is reasonable to define the concept of equi-positive family on some compact set.

Definition 1.3 Let M(Rn) be the convolutional algebra of Borel probability measures
on R

n and let X ⊆ R
n be a compact set. A subset 	 of M(Rn) is said to be an equi-

positive family on X if there are positive numbers ε, δ such that for all x ∈ X and for
all ν ∈ 	, there is an h(x, ν) ∈ Z

n such that

|̂ν(x + h(x, ν) + y)| > ε

for all y ∈ R
n with ‖y‖2 < δ, and h(x, ν) = 0 if x = 0.

Principal Assumption. Throughout this paper, by σ(Rk) we denote the set of all sin-
gular values of Rk ∈ GL(n, Z), i.e., the set of all nonnegative square roots of the
eigenvalues of the positive semidefinite matrix R∗

k Rk . We always assume that the
singular values of Rk , appeared in (1.2) or (1.4), satisfy that

κ := inf
k≥1

min σ(Rk) > 1, (1.6)

(this ensures that all matrices Rk are expanding in the sense of Strichartz [34]) and the
compact set X in Definition 1.3 is chosen to be X = B(κ), where

B(κ) :=
{

x ∈ R
n : ‖x‖2 ≤

√
nκ

2(κ − 1)

}

(1.7)

(this requirement will become clearer in the proof of (3.4)) is the 2-norm closed ball
in R

n , with the interpretation that

B(∞) := {

x ∈ R
n : ‖x‖2 ≤ √

n/2
}

.

Here, ‖x‖2 denotes the Euclidean 2-norm of a vector x ∈ R
n . Clearly,

[− 1
2 ,

1
2

]n ⊆
B(∞) ⊆ B(κ) for all κ > 1.

The following is our firstmain result, which gives a sufficient condition to guarantee
the spectrality of arbitrary infinite convolutions.
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Theorem 1.4 Suppose {(Rk, Dk) : k ∈ N} is a sequence of admissible pairs on R
n

such that the measure μ as in (1.4) exists and (1.6) holds (i.e., κ > 1). If there is a
strictly increasing sequence of positive integers {k j } such that the family {νk j } written
as in (1.5) is equi-positive on B(κ) as in (1.7), then the measureμ in (1.4) is a spectral
measure.

Remark 1.5 (1) The similar results for one-dimensional spectral measures have been
obtained in [2, Theorem 3.2], [32, Theorem 2.4] and [28, Theorem 1.4], in which
Rk ≥ 2, Dk ⊆ Z and the compact set B(κ) in Theorem 1.4 is chosen to be the
closed interval [0, 1]. After the submission of this paper to JFAA, we noted that an
analogous result of Theorem 1.4 was also obtained in [31, Theorem 1.1]. (2) If we
take n = 1 in Theorem 1.4, then Rk ∈ GL(n, Z) and Dk ⊆ Z

n are just respectively
reduced to that 0 �= Rk ∈ Z and Dk ⊆ Z, and κ > 1 furthermore implies that κ ≥ 2
or Rk ≥ 2 for all k ∈ N and hence the compact set B(κ) is always contained in
the closed interval [−1, 1]. Therefore, Theorem 1.4 gives an effective supplement to
the one-dimensional case compared with the previous research mentioned in (1) for
R. (3) The spectral measures given in Theorem 1.4 may have no compact support,
one can find more one-dimensional such examples in [29]. Also, it should be pointed
out that infinite convolutions appeared in other results in this paper all have compact
support. (4) By the definition of equi-positivity in Definition 1.3 and the fact that
[− 1

2 ,
1
2

]n ⊆ B(κ) for all κ > 1, it follows that a subset 	 of M(Rn) is equi-positive

on B(κ) if and only if 	 is equi-positive on
[− 1

2 ,
1
2

]n
. Therefore, the equi-positive

condition in Theorem 1.4 can be changed to that {νk j } in (1.5) is equi-positive on
[− 1

2 ,
1
2

]n
.

Our second main result Theorem 1.6 is concentrated on the spectrality of infinite con-
volution μ generated by finitely many admissible pairs firstly studied by Strichartz
[34]. Here we provide some easier verifiable sufficient criteria (compared with Theo-
rem A) so that μ is spectral. In the following, for a digit set F ⊆ R

n , we denote by
Z[F] the additive group generated by the elements of F , that is,

Z[F] := {k1 f1 + · · · + kn fn : ki ∈ Z, fi ∈ F for i = 1, 2, . . . , n},

and F ⊆ R
n is called uniformly discrete if there is a positive number δ > 0 such

that ‖ f1 − f2‖2 > δ for all distinct f1, f2 ∈ F , and ̂δF denotes the Fourier-Stieltjes
transform of the measure δF as in (1.1):

̂δF (ξ) =
∫

e−2π i〈ξ,x〉dδF (x) = 1

#F

∑

f ∈F
e−2π i〈ξ, f 〉 ( ξ ∈ R

n).

Moreover, we use the symbol Z( f ) to stand for the zero set of the function f on R
n .

Theorem 1.6 Given a sequence of admissible pairs {(Rk, Dk)} which are chosen from
a finite set of admissible pairs such that (1.6) (i.e., κ > 1) holds. Assume that, for each
k ∈ N, one has

(i) Z[Dk − dk] = Z
n for some dk ∈ Dk.
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(ii) the set Z(̂δDk ) ∩ [− 1
2 ,

1
2

]n
is a uniformly discrete set.

Then the associated measure μ in (1.4) exists and it is a spectral measure.

Our third main result Theorem 1.7 gives another sufficient condition for infinite
convolutions to be spectral, which can be used to deal with the case that the zero set
Z(̂δD) is the union of linear manifolds, see Example 1.10. An obvious difference to
Theorem 1.6 is that it allows the matrices Rk and digit set Dk to be chosen arbitrarily.

Theorem 1.7 Let {(Rk, Dk)}∞k=1 be a sequence of admissible pairs, where the matrices{Rk}∞k=1 ⊆ GL(n, Z) satisfies (1.6) (i.e., κ > 1) and the digit sets {Dk}∞k=1 is contained
in Z

n, and let

B

(

0,

√
n

2κ

)

:=
{

ξ ∈ R
n : ‖ξ‖2 ≤

√
n

2κ

}

(1.8)

be the 2-normed closed ball. Assume that supk∈N supdk∈Dk
{‖R−1

k dk‖2} < ∞, and

η := inf
k∈N inf

ξ∈B
(

0,
√
n

2κ

)

|̂δDk (ξ)| > 0. (1.9)

Then the associated measure μ in (1.4) exists, and it is a spectral measure.

The following Corollary is an immediate consequence of Theorem 1.7.

Corollary 1.8 Given a sequence of admissible pairs {(Rk, Dk)}∞k=1, where the matrices{Rk}∞k=1 ⊆ GL(n, Z) satisfies (1.6) (i.e., κ > 1) and {Dk}∞k=1 ⊆ Z
n is a sequence of

digit sets chosen from a finite set, say D(1), . . . , D(N ) for some N ∈ N. Assume that
the union of the zero set

⋃N
k=1Z(δ̂D(k)) is separated from the 2-normed closed ball

B(0,
√
n

2κ ) as in (1.8). Then the associated measure μ in (1.4) exists and it is a spectral
measure.

Based on the research mentioned above, we are very surprised to find that admis-
sible pairs might be a necessary and sufficient condition for some special infinite
convolutions to be spectral.

Theorem 1.9 Let {Rk}∞k=1 ⊆ GL(n, Z) be a sequence of matrices satisfies (1.6) (i.e.,
κ > 1), and let {Dk} be a sequence of digit sets chosen from {D(3), D(4)}, where

D(3) =
{(

0
0

)

,

(

1
0

)

,

(

0
1

)}

and D(4) =
{(

0
0

)

,

(

1
0

)

,

(

0
1

)

,

(−1
−1

)}

.

If the associated measure μ in (1.4) is a spectral measure, then (Rk, Dk) is an admis-
sible pair for each k ≥ 2. Furthermore, the converse of this statement hold in the
following two cases:

(i) If {Rk}∞k=1 is a finite sequence, then the associated measure μ in (1.4) is a spectral
measure if and only if (Rk, Dk) is an admissible pair for each k ≥ 2.
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(ii) If κ := infk≥1 min σ(Rk) > 3
2 , then the associated measureμ in (1.4) is a spectral

measure if and only if (Rk, Dk) is an admissible pair for each k ≥ 2.

It is remarked here that the part “admissible pairs ⇒ spectral” of Theorem 1.9 is a
direct result of Theorem 1.6 or Corollary 1.8. However, for the converse part “spectral
⇒ admissible pairs” of Theorem1.9, it needs us to domuch research on the structure of
spectra formeasures νk written as in (1.5) (see Theorem5.2 formore details). The ideas
adopted here are totally different from the previous studies, which is of independent
interest and might shed some new light on the characterization of necessary condition
for general infinite convolutions being spectral measures.

Finally, we provide a simple and concrete example of spectral infinite convolution
to illustrate Theorem 1.7 or Corollary 1.8.

Example 1.10 Suppose that {Rk}∞k=1 ⊆ GL(n, Z) is a sequence of matrices such that
κ := infk≥1 min σ(Rk) >

√
2 and (Rk, D) is an admissible pair for each k ∈ N,

where

D =
{(

0
0

)

,

(

1
0

)

,

(

0
1

)

,

(

1
1

)}

.

Then the associated measure

μ(Rk, D) := δR−1
1 D ∗ δR−1

1 R−1
2 D ∗ δR−1

1 R−1
2 R−1

3 D ∗ · · ·

exists, and it is a spectral measure. As a consequence, if

R(1) =
[

4 2
0 2

]

, R(2) =
[

4 0
2 2

]

, R(3) =
[

4 2
0 4

]

, R(4) =
[

4 0
2 4

]

,

then for any X : N → {1, 2, 3, 4}, the associated infinite convolution measure

μ(X , D) := δR−1
1 D ∗ δR−1

1 R−1
2 D ∗ δR−1

1 R−1
2 R−1

3 D ∗ · · · with Rk = R(X(k))

is a spectral measure.

The rest of the paper is organized as follows. In Sect. 2 we review some basic facts
about admissible pairs and spectral measures. In Sect. 3 we prove Theorem 1.4, in
Sect. 4 we prove Theorems 1.6, 1.7, Corollary 1.8 and Example 1.10, and in the last
Sect. 5 we prove Theorem 1.9.

2 Admissible Pairs and Spectral Measures

In this section we collect some basic properties of admissible pairs or compatible pairs
on R

n , and state the classical criterion for the completeness of exponential functions
due to Jorgensen and Pedersen [22].
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Lemma 2.1 [26]Let R ∈ GL(n, Z) be an n×n matrix, and let D,C ⊆ Z
n be two finite

subsets of Z
n with the same cardinality. Then the following statements are equivalent:

(i) (R−1D,C) is a compatible pair.
(ii) C is a spectrum of the measure δR−1D.
(iii) δ̂R−1D(c1 − c2) = 0 for any distinct c1, c2 ∈ C .

(iv)
∑

c∈C |δ̂R−1D(ξ + c)|2 = 1 (∀ξ ∈ R
n).

Lemma 2.2 [26, 34] Let R ∈ GL(n, Z) be an n×n matrix, and let D,C ⊆ Z
n be two

finite subsets of Z
n with the same cardinality such that (R−1D,C) forms a compatible

pair. Then the following statements hold.

(i) (R−1D + a,C + b) is a compatible pair for any a ∈ R
n and b ∈ R

n.
(ii) No two elements in D are congruent modulo R (i.e., di −d j /∈ RZ

n for distinct
elements di , d j ∈ D), and no two elements in C are congruent modulo R∗.

(iii) If ˜C ⊆ Z
n such that ˜C ≡ C (mod R∗), then (R−1D, ˜C) is a compatible pair;

(iv) If the matrices R j ∈ GL(n, Z) and the digit sets D j ,C j ⊆ Z
n satisfy that

(R−1
j D j ,C j ) is a compatible pair and 0 ∈ C j for each j ∈ N, then

(R−1
1 D1 + R−1

1 R−1
2 D2 + · · · + R−1

1 R−1
2 . . . Rk−1Dk,

C1 + R∗
1C2 + · · · + R∗

1 . . . R∗
k−1Ck)

is a compatible pair for each k ∈ N.

Associated to a Borel probability measure μ and a discrete set � ⊆ R
n , we set

Qμ,�(ξ) =
∑

λ∈�

|μ̂(ξ + λ)|2 (ξ ∈ R
n).

Lemma 2.3 [22] Let μ be a Borel probability measure on R
n, and let � be a discrete

set in R
n. Then the following three statements holds.

(i) � is an orthogonal set for μ if and only if Qμ,�(ξ) ≤ 1 for all ξ ∈ R
n .

(ii) � is a spectrum for μ if and only if Qμ,�(ξ) = 1 for all ξ ∈ R
n .

(iii) Qμ,� has an entire analytic extension to C
n if � is an orthogonal set for the

measure μ with compact support.

It is remarked here that Lemma 2.3(i) is an immediate result of Bessel’s inequality,
and Lemma 2.3(iii) follows from [22, Lemma 4.2], while Lemma 2.3(ii) was only
proved in [22, Lemma 3.3] for compactly supported Borel probability measure by
using Stone-Weierstrass theorem. Recently, Li et al. [28] proved that Lemma 2.3(ii)
actually holds for probability measures without compact support.

3 Proof of Theorem 1.4

In this section we give the proof of Theorem 1.4, and it is divided into two steps.



31 Page 10 of 43 Journal of Fourier Analysis and Applications (2024) 30 :31

• The first step is to construct an orthogonal set� (see (3.8)) for the infinite convolu-
tion measure μ := μ(Rk, Dk) in (1.4) by using the properties of admissible pairs
stated in Lemmas 2.1 and 2.2. It is worthy noting that this step involves adjusting
the method of [10, Section 4] for self-affine measures to the present context.

• The second step is to show that E(�) constructed in the first step is total in L2(μ)

by applying Jorgensen–Pedersen’s completeness criterion (Lemma 2.3(ii)). This
step depends on developingStrichartz’smethod in the proof of TheoremA (also see
[34, Theorem 2.8]) for infinite convolutions generated by finitely many admissible
pairs.

Proof of Theorem 1.4 First, since (Rk, Dk) is an admissible pair, by the statements (i)
and (iii) of Lemma 2.2, one might without loss of generality assume that

0 ∈ Ck ⊆ R∗
k

[

−1

2
,
1

2

]n

∩ Z
n (3.1)

such that (R−1
k Dk,Ck) forms a compatible pair for each k ∈ N. Then, it is not hard to

check (e.g., see [34, Theorem 2.7]) that the discrete set E(�) = {e2π i〈λ,·〉 : λ ∈ �},
where

� = C1 + R∗
1C2 + R∗

2C3 + · · · + R∗
kCk + · · · , (3.2)

forms an infinite orthogonal set for L2(μ), where Rk is defined as in (1.3).
For the convenience of discussions, we introduce the following notations: for any

two non-negative integers s > t ≥ 0, we define that

Rs,t = Rs Rs−1 . . . Rt+1 where Rs,s−1 = Rs, Rs,0 = Rs

Ds,t = Rs,t

(

R−1
t+1,t Dt+1 + (Rt+2,t )

−1Dt+2 + · · · + (Rs,t )
−1Ds

)

,

Cs,t = Ct+1 + R∗
t+1,tCt+2 + R∗

t+2,tCt+3 + · · · + R∗
s−1,tCs .

(3.3)

Obviously, from Lemma 2.2(iv), one concludes that, for each s > t ≥ 0, (Rs,t ,Ds,t )

is an admissible pair, or (R−1
s,t Ds,t ,Cs,t ) is a compatible pair, or (Rs,t ,Ds,t ,Cs,t ) is a

Hadamard triple.
With (3.3), for any strictly increasing sequence of positive integers {�k}∞k=0 with

�0 = 0 and �1 ≥ 1, the measure μ in (1.4) and its orthogonal set � in (3.2) are
respectively rewritten as

μ = μ�s ∗ ν�s ◦ R�s and � =
∞
⋃

s=1

��s ,

where

μ�s = δR−1
�1

D�1,�0
∗ δR−1

�1
R−1

�2,�1
D�2,�1

∗ δR−1
�2

R−1
�3,�2

D�3,�2
∗ · · · ∗ δR−1

�s−1
R−1

�s ,�s−1
D�s ,�s−1

,

ν�s = δR−1
�s+1D�s+1

∗ δR−1
�s+1R

−1
�s+2D�s+2

∗ δR−1
�s+1R

−1
�s+2R

−1
�s+3D�s+3

∗ · · · ,
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and

��s = C�1,�0 + R∗
�1
C�2,�1 + R∗

�2
C�3,�2 + · · · + R∗

�s−1
C�s ,�s−1 .

Step I. To construct a new orthogonal set � (see (3.8)) for μ, instead of � in (3.2).
To do this, we first claim that for each s > t ≥ 0, one has

(R∗
s,t )

−1Cs,t ⊆ B(κ),

where B(κ) is written as in (1.7). This is equivalent to that for any cs,t ∈ Cs,t , one
has

‖(R∗
s,t )

−1cs,t‖2 ≤
√
nκ

2(κ − 1)
. (3.4)

For the proof of (3.4), we first notice that each cs,t ∈ Cs,t can be written as

cs,t = ct+1 + R∗
t+1ct+2 + R∗

t+1R
∗
t+2ct+3 + · · · + R∗

t+1R
∗
t+2 . . . R∗

s−1cs,

where c j ∈ C j for each j = t + 1, t + 2, . . . , s. With an easy calculation, we get,
from (3.1), that

(R∗
s,t )

−1cs,t = (R∗
s,t+1)

−1(R∗
t+1)

−1ct+1 + (R∗
s,t+2)

−1(R∗
t+2)

−1ct+2 + · · · + (R∗
s,s−1)

−1cs

∈ (

(R∗
s,t+1)

−1 + (R∗
s,t+2)

−1 + · · · + In
)

[

−1

2
,
1

2

]n

.

(3.5)

Remembering that (e.g., see [33, pp. 414]) the usual Euclidean norm or matrix norm
of a nonsingular square matrix R−1 ∈ GL(n, R) satisfies that

‖R−1‖2 := sup
‖x‖2=1

‖R−1x‖2 = 1

min σ(R)
.

Thus, the assumption (1.6) implies that

sup
k≥1

‖(R∗
k )

−1‖2 = sup
k≥1

‖(R−1
k )∗‖2 = sup

k≥1
‖R−1

k ‖2 = κ−1 < 1, (3.6)

and hence it follows from (3.5) and (3.6), and ‖A ◦ B‖2 ≤ ‖A‖2‖B‖2 (A, B ∈
GL(n, Z)) that

‖(R∗
s,t )

−1cs,t‖2 ≤ (κ−(s−t−1) + κ−(s−t−2) + · · · + 1)

√
n

2
≤

√
nκ

2(κ − 1)
,

the desired result (3.4) holds.
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Next, we are going to construct a discrete set � (see (3.8) below) by using (3.4)
and the “equi-positivity” of the family {νk j }. More precisely, since the family {νk j }
is equi-positive on the 2-norm closed ball B(κ), there are positive numbers ε, δ such
that for each x ∈ B(κ) there is an h(x, νk j ) ∈ Z

n such that

|ν̂k j (x + h(x, νk j ) + y)| > ε (3.7)

for all y ∈ R
n with ‖y‖2 < δ, and h(x, νk j ) = 0 if x = 0.

By applying (3.4) and (3.7) recursively, we can choose a suitable special strictly

increasing subsequence {�s} of {k j } and construct a sequence of digit sets C̃�s ,�s−1 ,

where �0 = 0 and �1 ≥ 1, such that the discrete sets

��s = C̃�1,�0 + R∗
�1
C̃�2,�1 + R∗

�2
C̃�3,�2 + · · · + R∗

�s−1
C̃�s ,�s−1

� =
∞
⋃

s=1

��s , where 0 ∈ ��s ⊆ ��s+1 for all s ≥ 1
(3.8)

satisfying the following properties:

(i) The integer �1 is an arbitrary positive integer in the sequence {k j } such that

C̃�1,�0 = {

c�1,�0 + R∗
�1,�0

h(c�1,�0 , ν�1) : c�1,�0 ∈ C�1,�0 , h(c�1,�0 , ν�1) ∈ Z
n} ,

where the integer vector h(c�1,�0 , ν�1) ∈ Z
n is chosen such that

∣

∣

∣ν̂�1

(

(

R∗
�1,�0

)−1 c�1,�0 + h(c�1,�0 , ν�1)
)∣

∣

∣ > ε

for all c�1,�0 ∈ C�1,�0 . In particular, we choose h(c�1,�0 , ν�1) = 0 if c�1,�0 = 0 ∈
C�1,�0 . This is guaranteed by the “equi-positivity” of the family {νk j } and the fact
that

(

R∗
�1,�0

)−1
c�1,�0 ∈ B(κ) by (3.4).

(ii) For each s ≥ 1 and the constructed �s , one can choose �s+1 > �s and define

C̃�s+1,�s =
{

c�s+1,�s + R∗
�s+1,�s

h(c�s+1,�s ,

ν�s+1) : c�s+1,�s ∈ C�s+1,�s , h(c�s+1,�s , ν�s+1) ∈ Z
n} , (3.9)

where the integer vector h(c�s+1,�s , ν�s+1) ∈ Z
n is chosen so that

∣

∣

∣

∣

ν̂�s+1

(

(

R∗
�s+1

)−1
γs +

(

R∗
�s+1,�s

)−1
c�s+1,�s + h(c�s+1,�s , ν�s+1)

)∣

∣

∣

∣

> ε,

(3.10)

and
∥

∥

∥

∥

(

R∗
�s+1

)−1
γs

∥

∥

∥

∥

2
<

δ

2
, (3.11)
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for all γs ∈ ��s . In particular, we choose h(c�s+1,�s , ν�s+1) = 0 if c�s+1,�s = 0 ∈
C�s+1,�s .

The above constructions are reasonable because the finiteness of the cardinality of
the set ��s means that we can choose �s+1 > �s large enough such that (3.11) holds,
and then the claim

(

R∗
�s+1,�s

)−1
c�s+1,�s ∈ B(κ)

as in (3.4) and the equi-positivity of {νk j } guarantees (3.10) holds.
Finally, we show that the set � in (3.8) forms an orthogonal set of μ as in (1.4). In

fact, since (3.9) means thatCs,t ≡ C̃�s ,�s−1(mod R∗
�s ,�s−1

), it follows from Lemma 2.2

(iii), (iv) that all (R−1
�s ,�s−1

D�s ,�s−1 , C̃�s ,�s−1) are compatible pairs. By Lemma 2.2(iv),
(μ�s , ��s ) is a spectral pair, it follows from Lemma 2.1 that

∑

γ∈��s

|μ̂�s (ξ + γ�s )|2 = 1 for all ξ ∈ R
n . (3.12)

Thus, the orthogonality of exponential functions E(��s ) in the space L2(μ�s ) means
that

��s − ��s ⊆ Z(μ̂�s ) ∪ {0} for all s ≥ 1.

Notice that for each s ≥ 1, we get that μ = μ�s ∗ ν for some probability measure ν.
It follows that μ̂ = μ̂�s · ν̂, and hence Z(μ̂�s ) ⊆ Z(μ̂). Since ��s is an increasing set
as in s, it follows from (3.8) that

� − � ⊆ Z(μ̂) ∪ {0},

i.e., � is an orthogonal set of μ. By Bessel’s inequality,

Qμ,�(ξ) :=
∑

γ∈�

|μ̂(ξ + γ )|2 ≤ 1 for all ξ ∈ R
n . (3.13)

Step II. To show that � in (3.8) is a spectrum of μ as in (1.4).
By Lemma 2.3, it suffices to show that Qμ,�(ξ) = 1 for all ξ ∈ R

n . For this, we
fix ξ ∈ R

n and define

f�s (γ ) =
{

|μ̂�s (ξ + γ )|2, γ ∈ ��s ;
0, others,

and f (γ ) =
{

|μ̂(ξ + γ )|2, γ ∈ �;
0, others.

(3.14)

Since μ = μ�s ∗ (ν�s ◦ R�s ) for all s ≥ 1, it follows that

μ̂(·) = μ̂�s (·)ν̂�s

(

(R∗
�s

)−1·
)

, (3.15)
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which yields, from (3.14) and ν̂�s (0) = 1 (s ≥ 1), that

lim
s→∞ f�s (γ ) = f (γ ). (3.16)

On the other hand, by (3.8) and (3.9), each γs+1 ∈ ��s+1 is in the form

γs+1 = γs + R∗
�s

(

c�s+1,�s + R∗
�s+1,�s

h(c�s+1,�s , ν�s+1)
)

for some γs ∈ ��s , c�s+1,�s ∈ C�s+1,�s and h(c�s+1,�s , ν�s+1) ∈ Z
n , By (3.15), one has

that

μ̂(ξ + γs+1) = μ̂�s+1(ξ + γs+1)ν̂�s+1

(

(

R∗
�s+1

)−1
(ξ + γs+1)

)

= μ̂�s+1(ξ + γs+1)ν̂�s+1

(

(

R∗
�s+1

)−1
(ξ + γs) +

(

R∗
�s+1,�s

)−1
c�s+1,�s

+h(c�s+1,�s , ν�s+1)
)

.

(3.17)

By (1.6), one knows that there is an s0 ∈ N (depending on ξ ) such that s ≥ s0 implies
that

∥

∥

∥

∥

(

R∗
�s+1

)−1
(ξ)

∥

∥

∥

∥

2
<

δ

2
.

Combining this with (3.10) and (3.11) and
(

R∗
�s+1,�s

)−1
c�s+1,�s ∈ B(κ), the equi-

positivity of measures {νk} on the compact set B(κ) (see (3.10)) implies that the
equality (3.17) becomes

|μ̂(ξ + γs+1)| ≥ ε
∣

∣μ̂�s+1(ξ + γs+1)
∣

∣ for all s ≥ s0,

which, together with (3.14), yields that

f (γ ) ≥ ε2 fs(γ ) for all γ ∈ �.

Notice that
∑

γ∈� f (γ ) ≤ 1 by (3.13). Then
∑

γ∈� fs(γ ) ≤ ε−2. Now, applying
Lebesgue’s dominated convergence theorem, we get, from (3.12) and (3.16), that

Qμ,�(ξ) =
∑

γ∈�

|μ̂(ξ + γ )|2 = 1 for all ξ ∈ R
n .

By Lemma 2.3(ii), the measure μ in (1.4) is a spectral measure.
This finishes the proof of Theorem 1.4. ��
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4 Proof of Theorems 1.6 and 1.7

Recall that (see [10]) the integral periodic zero set of a Borel probability measure μ

on R
n is defined by

Z(μ) = {ξ ∈ R
n : μ̂(ξ + k) = 0 for all k ∈ Z

n}.

4.1 Proof of Theorem 1.6

The proof of Theorem 1.6 relies on Theorem 1.4 and Lemmas 4.1 and 4.2.
The following lemma does not require the finiteness of the choices of admissible

pairs (Rk, Dk).

Lemma 4.1 Suppose {(Rk, Dk) : k ∈ N} is a sequence of admissible pairs on R
n such

that the measure μ as in (1.4) exists, and the measures νk(k ≥ 1) as in (1.5) exist, and
(1.6) holds (i.e., κ > 1). Assume that, for each k ∈ N, one has

(i) Z[Dk − dk] = Z
n for some dk ∈ Dk.

(ii) the set Z(̂δDk ) ∩ [− 1
2 ,

1
2

]n
is a uniformly discrete set.

Then the associated measure μ = μ(Rk, Dk) in (1.4) satisfies Z(μ) = ∅. Moreover,
Z(νk) = ∅ for all k ∈ N.

Proof Suppose on the contrary that Z(μ) �= ∅. Thus, there is a ξ0 ∈ R
n \Z

n such that

μ̂(ξ0 + m) = 0 for allm ∈ Z
n . (4.1)

As we do in the proof of Theorem 1.4, in what follows, we still without loss of
generality assume that

0 ∈ Ck ⊆ R∗
k

[

−1

2
,
1

2

]n

∩ Z
n

such that (R−1
k Dk,Ck) forms a compatible pair for each k ≥ 1. By Lemma 2.1,

∑

ck∈Ck

∣

∣̂δDk (τk,ck (ξ))
∣

∣

2 ≡ 1 for all ξ ∈ R
n, (4.2)

where {τk,ck : ck ∈ Ck} denotes the functions system:

τk,ck (ξ) = (R∗
k )

−1(ξ + ck). (4.3)

Fix ξ0 ∈ R
n \ Z

n . We will yield contradictions by proving the following three
claims.
Claim 1. We show that Z(νk) �= ∅ for all k ≥ 1 if Z(μ) �= ∅.
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In fact, since the Fourier-Stieltjes transform μ̂ of the measure μ := μ(Rk, Dk) in
(1.4) is

μ̂(ξ) =
∫

e−2π i〈ξ,x〉dμ(x) =
∞
∏

k=1

̂δDk ((R
∗
k)

−1ξ) (ξ ∈ R
n),

where Rk is defined as in (1.3), it follows from (4.1) and the Z
n-periodicity of ̂δDj

that, for each k ∈ N,

0 = μ̂
(

ξ0 + c1 + R∗
1c2 + R∗

2c3 + · · · + R∗
k−1ck + R∗

km
)

= ̂δD1

(

(R∗
1)

−1(ξ0 + c1)
)

· ̂δD2

(

(R∗
2)

−1(ξ0 + c1 + R∗
2c2)

)

· · ·̂δDk

(

(R∗
k)

−1(ξ0 + c1 + R∗
1c2 + · · · + R∗

k−1ck) + m
)

ν̂k

(

(R∗
k)

−1(ξ0 + c1 + R∗
1c2 + · · · + R∗

k−1ck) + m
)

= ̂δD1

(

τ1,c1(ξ0)
) · ̂δD2

(

τ2,c2 ◦ τ1,c1(ξ0)
) · · ·̂δDk

(

τk,ck ◦ · · · ◦ τ2,c2 ◦ τ1,c1(ξ0)
)

· ν̂k
(

τk,ck ◦ · · · ◦ τ2,c2 ◦ τ1,c1(ξ0) + m
)

(by (4.3))
(4.4)

for each c j ∈ C j ⊆ Z
n , where j = 1, 2, . . . , k.

Note that, by applying (4.2) several times, we get that, for each j = 1, . . . , k, there
is at least one c j ∈ C j such that

̂δD1

(

τ1,c1(ξ0)
) �= 0, ̂δD2

(

τ2,c2 ◦ τ1,c1(ξ0)
)

�= 0, . . . , ̂δDk

(

τk,ck ◦ · · · ◦ τ2,c2 ◦ τ1,c1(ξ0)
) �= 0,

which means, together with (4.4), that

ν̂k
(

τk,ck ◦ · · · ◦ τ2,c2 ◦ τ1,c1(ξ0) + m
) = 0 for all m ∈ Z

n,

i.e., τk,ck ◦ · · · ◦ τ2,c2 ◦ τ1,c1(ξ0) ∈ Z(νk) for each k ∈ N, and hence the Claim 1 is
proved.

From the arguments in Claim 1, it makes sense to put Y0 = {ξ0}, and for each k ∈ N

we put

Yk =
{

τk,ck ◦ · · · ◦ τ2,c2 ◦ τ1,c1(ξ0) ∈ Z(νk) : δ̂Dj

(

τ j,c j ◦ · · · ◦ τ1,c1(ξ0)
)

�= 0, j ≥ 1
}

.

(4.5)

Claim 2. We show that #Yk ≤ #Yk+1 for each k ∈ N.
In fact, this can be proved by showing that all the elements of Yk are distinct.

Precisely, if there are two distinct sequences (c1, c2, . . . , ck) and (c′
1, c

′
2, . . . , c

′
k) in
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∏k
j=1 C j such that

τk,ck ◦ τk−1,ck−1 ◦ · · · ◦ τ1,c1(ξ0) = τk,c′
k
◦ τk−1,c′

k−1
◦ · · · ◦ τ1,c′

1
(ξ0),

it follows from (4.3) that

c1 + R∗
1c2 + · · · + R∗

1 · · · R∗
k−1ck = c′

1 + R∗
1c

′
2 + · · · + R∗

1 · · · R∗
k−1c

′
k .

Setting i0 = min{i : ci �= c′
i }, we get that ci0 ≡ c′

i0
(mod R∗

i0
), where ci0 , c

′
i0

∈ Ci0 ,

which is a contradiction to Lemma 2.2(ii) since (R−1
i0

Di0 ,Ci0) is a compatible pair.
Therefore, the Claim 2 is proved.
Claim 3. We finally show that #Yk = #Yk+1 for k large enough.

In fact, each element τk,ck ◦ · · · ◦ τ2,c2 ◦ τ1,c1(ξ0) of Yk in (4.5) satisfies that

‖τk,ck ◦ · · · ◦ τ2,c2 ◦ τ1,c1(ξ0)‖2
=
∥

∥

∥(R∗
k)

−1(ξ0 + c1 + R∗
1c2 + · · · + R∗

k−1ck)
∥

∥

∥

2

≤
∥

∥

∥(R∗
k)

−1ξ0

∥

∥

∥

2
+
∥

∥

∥(R∗
k)

−1(c1 + R∗
1c2 + · · · + R∗

k−1ck)
∥

∥

∥

2

≤
∥

∥

∥(R∗
k)

−1
∥

∥

∥ · ‖ξ0‖2 +
√
nκ

2(κ − 1)
(by (3.4))

≤ κ−k ‖ξ0‖2 +
√
nκ

2(κ − 1)
(by (3.6)).

As κ > 1 in (1.6), there is a large k0 ∈ N such that k ≥ k0 implies that κ−k ‖ξ0‖2 < 1,
therefore

Yk ⊆ B1
0 (κ) :=

{

x ∈ R
n : ‖x‖2 ≤

√
nκ

2(κ − 1)
+ 1

}

for all k ≥ k0. (4.6)

Let

N := max #
{

Z(̂δDk ) ∩ B1
0 (κ) : k ≥ 1

}

(4.7)

and

δ0 = min
{

‖x‖2 : x ∈ Z(̂δDk ) ∩ B1
0 (κ), k ≥ 1

}

. (4.8)

Notice that each function Z(̂δDk ) is Z
n-periodic and ̂δDk (0) = 1, and

[

−1

2
,
1

2

]n

⊆ B(κ) ⊆ B1
0 (κ).

Thus the assumption (ii) implies that N is a finite positive integer and δ0 > 0.



31 Page 18 of 43 Journal of Fourier Analysis and Applications (2024) 30 :31

As δ0 > 0, there is a smallest positive integer j0 ∈ N such that j > j0 implies that

κ jδ0 >

√
nκ

2(κ − 1)
+ 1

and hence the requirement κ > 1 in (1.6) and (4.6), (4.8) yield that, for all j > j0,

Z
(

̂δR−1
k+ j,k Dk+ j

)

∩ B1
0 (κ) = R∗

k+ j,kZ(̂δDk+ j ) ∩ B1
0 (κ) = ∅ (∀k ≥ 1).

Consequently,

Z(ν̂k) ∩ B1
0 (κ) ⊆

j0
⋃

j=1

(

R∗
k+ j,kZ(̂δDk+ j ) ∩ B1

0 (κ)
)

,

and whence, for each k ∈ N, one has that

#
(

Z(ν̂k) ∩ B1
0 (κ)

)

≤
j0
∑

j=1

#
(

R∗
k+ j,kZ(̂δDk+ j ) ∩ B1

0 (κ)
)

≤
j0
∑

j=1

#
(

Z(̂δDk+ j ) ∩ B1
0 (κ)

)

≤ N j0,

where the last inequality follows from (4.7). Furthermore, since Yk ⊆ Z(νk) ⊆ Z(ν̂k)

for all k ∈ N, it follows from (4.6) that

#Yk = # (Z(νk) ∩ Yk) ≤ #
(

Z(ν̂k) ∩ B1
0 (κ)

)

≤ N j0 for all k ≥ k0.

Combining this with Claim 2, we get the desired result of Claim 3.
By Claim 3, we might assume that there is a k0 ∈ N large enough such that

#Yk = #Yk0 for k ≥ k0.

Fixing k ≥ k0. By the definition of Yk in (4.5), each ξ ∈ Yk corresponds to a unique
ck+1 ∈ Ck+1 such that

̂δDk+1(τk+1,ck+1(ξ)) �= 0,

where τk+1,ck+1(ξ) ∈ Yk+1 ⊆ Z(νk+1), and therefore it follows from (4.2) that
|̂δDk+1(τk+1,ck+1(ξ))| = 1, i.e.,

1 =
∣

∣

∣

∣

∣

∣

1

#Dk+1

∑

d∈Dk+1

e2π i〈d,τk+1,ck+1 (ξ)〉
∣

∣

∣

∣

∣

∣

= 1

#Dk+1

∣

∣

∣

∣

∣

∣

∑

d∈Dk+1

e2π i〈d−dk+1,τk+1,ck+1 (ξ)〉
∣

∣

∣

∣

∣

∣

,

(4.9)
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where dk+1 ∈ Dk+1 is chosen so thatZ[Dk+1−dk+1] = Z
n satisfying the assumption

(i). Since 0 = (0, . . . , 0)∗ ∈ Dk+1 − dk+1, by using the triangle inequality, we get
that all terms in the sum of (4.9) must be equal to 1. Thus it follows from (4.9) that

〈d − dk+1, τk+1,ck+1(ξ)〉 ∈ Z for all d ∈ Dk+1. (4.10)

Let ei = (0, . . . , 0, 1, 0, . . . , 0)∗ be the standard basis of R
n , where i = 1, 2, . . . , n.

Whence, it follows from the assumption Z[Dk+1 − dk+1] = Z
n and (4.10) that

〈ei , τk+1,ck+1(ξ)〉 ∈ Z for all i = 1, 2, . . . , n.

This implies that

τk+1,ck+1(ξ) ∈ Z
n,

and therefore

ν̂k+1(τk+1,ck+1(ξ) − τk+1,ck+1(ξ)) = ν̂k+1(0) = 1.

This yields that τk+1,ck+1(ξ) /∈ Z(νk+1). It is a contradiction. Thus, we get thatZ(μ) =
∅.

Next, by repeating the arguments above to each measure νk , we similarly get that
Z(νk) = ∅. This completes the proof of Lemma 4.1. ��
Lemma 4.2 Given a sequence of admissible pairs {(Rk, Dk) : k ∈ N} which are
chosen from a finite set of admissible pairs on R

n such that (1.6) and the assumptions
(i) and (ii) of Lemma 4.1 hold. Let νk (k ≥ 1) be as in (1.5). Then there is a subsequence
{νk j }∞j=1 of {νk}∞k=1 such that the measures {νk j } converges to an infinite convolution
measure

μ(˜Rk, ˜Dk) = δ
˜R−1
1

˜D1
∗ δ(˜R2˜R1)−1˜D2

∗ · · · ∗ δ(˜Rk ...˜R1)−1˜Dk
∗ · · ·

in the weak-star topology, where {(˜Rk, ˜Dk)}∞k=1 is a subsequence of {(Rk, Dk)}∞k=1.
As a consequence, one has Z(μ(˜Rk, ˜Dk)) = ∅ by Lemma 4.1.

Proof For each j ∈ N, we write νk = νk, j ∗ ωk, j , where

νk, j = δR−1
k+1Dk+1

∗ δR−1
k+1R

−1
k+2Dk+2

· · · ∗ δR−1
k+1···R−1

k+ j Dk+ j
,

and

ωk, j = δR−1
k+1···∗R−1

k+ j+1Dk+ j+1
∗ δR−1

k+1···∗R−1
k+ j+2Dk+ j+2

∗ · · · . (4.11)

By setting

M := sup
k∈N

max{‖dk‖2 : dk ∈ Dk},
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it follows from (1.6), (3.6) and (4.11) that the support of ωk, j is contained in the
2-normed closed ball

Bj (κ) :=
{

ξ ∈ R
n : ‖ξ‖2 ≤ κM

κ j (κ − 1)

}

. (4.12)

Since the sequence {(Rk, Dk)}∞k=1 contains onlyfinitelymanydistinct admissible pairs,
we can apply Bolzano-Weierstrass theorem to each level of infinite convolutions νk .
By the famous Cantor’s diagonal process arguments, we can choose a subsequence
{νk j }∞j=1 of the measures {νk} such that

νk j , j = νk j+1, j = νk j+2, j = · · · for all j ∈ N.

Let (˜R j , ˜Dj ) = (Rk j+ j , Dk j+ j ) ( j ∈ N) and define the measure

μ(˜Rk, ˜Dk) := δ
˜R−1
1

˜D1
∗ δ

˜R−1
1

˜R−1
2

˜D2
∗ · · · ∗ δ

˜R−1
1 ...˜R−1

j
˜Dj

∗ · · · .

Notice that, for each k j ∈ N, the measure μ(˜Rk, ˜Dk) can be decomposed as

μ(˜Rk, ˜Dk) = νk j , j ∗ ω̃k j , j (4.13)

for some infinite convolution measure ω̃k j , j , whose support is also contained in the
2-norm closed ball Bj (κ) as in (4.12).

Therefore, for any ξ ∈ R
n and j ≥ 1, we have

ν̂k j (ξ) = ν̂k j , j (ξ)ω̂k j , j (ξ) = ν̂k j , j (ξ)

∫

Rn
e−2π i〈ξ,x〉dωk j , j (x)

= ν̂k j , j (ξ)

(

∫

Bj (κ)
cos(2π〈ξ, x〉)dωk j , j (x) − i

∫

Bj (κ)
sin(2π〈ξ, x〉)dωk j , j (x)

)

= ν̂k j , j (ξ)(cos 2π〈ξ, x1〉 − i sin 2π〈ξ, x2〉)
(4.14)

for some x1, x2 ∈ Bj (κ). Here, the last equality follows from the intermediate value
property of continuous functions cos(2π〈ξ, x〉) and sin(2π〈ξ, x2〉) on the compact set
Bj (κ).

Likewise (4.14), one can obtain from (4.13) that

μ̂(˜Rk, ˜Dk) = ν̂k j , j (ξ)(cos 2π〈ξ, x3〉 − i sin 2π〈ξ, x4〉) (4.15)
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for some x3, x4 ∈ Bj (κ). Whence, we get from (4.14) and (4.15) that

|̂νk j (ξ) − μ̂(˜Rk, ˜Dk)|
≤ | cos 2π〈ξ, x1〉 − cos 2π〈ξ, x3〉| + | sin 2π〈ξ, x2〉 − sin 2π〈ξ, x4〉|
≤ |e2π〈ξ,x1〉 − e2π〈ξ,x2〉| + |e2π〈ξ,x3〉 − e2π〈ξ,x4〉|
≤ 2 sup

x,y∈Bj (κ)

|1 − e2π〈ξ,y−x〉| → 0 as j → ∞.

Because μ̂(˜Rk, ˜Dk) is a continuous function, by [24, Chapter VI, Lemma 2.3], we get
that the measures νk j converge to μ(˜Rk, ˜Dk) in the weak-star topology. Furthermore,
in the proof of Lemma 4.1, if we replace μ by μ(˜Rk, ˜Dk), one similarly yield that
Z(μ(˜Rk, ˜Dk)) = ∅. This finishes the proof of Lemma 4.2. ��

In fact, combining the the arguments of Lemmas 4.2 and 4.1, we actually get the
following fact: “Under the assumptions of Lemma 4.2, any subsequence {νk j }∞j=1 of
{νk}∞k=1 contains a subsequence converging to an infinite convolution

μ(˜˜Rk,
˜
˜Dk) := δ

˜
˜R

−1
1

˜
˜D1

∗ δ
(˜˜R2

˜
˜R1)−1˜˜D2

∗ · · · ∗ δ
(˜˜Rk ...

˜
˜R1)−1˜˜Dk

∗ · · ·

in the weak-star topology, where {(˜˜Rk,
˜
˜Dk)}∞k=1 is a subsequence of {(Rk, Dk)}∞k=1.

Moreover, Z(μ(˜˜Rk,
˜
˜Dk)) = ∅.

Now we have all ingredients for the proof of Theorem 1.6.

Proof of Theorem 1.6 Let νk be as in (1.5). By Theorem 1.4, it suffices to show that
the sequence of measures {νk} is equi-positive on the 2-norm closed ball B(κ), that
is, there exist constants ε > 0, δ > 0 such that for each x ∈ B(κ), there exists an
h(x, νk) ∈ Z

n such that

inf
k≥1

inf‖y‖2<δ
|ν̂k(y + x + h(x, νk))| > ε. (4.16)

In order to prove (4.16), we need to show the following two claims.
Claim 1. For any ε > 0 there exists a δ > 0 such that

sup
k≥0

sup
‖x−y‖2<δ

|ν̂k(x) − ν̂k(y)| < ε.

Indeed, recall that M := supk∈Nmax{‖dk‖2 : dk ∈ Dk} by (4.7), it follows from
(1.5) and (1.6) that

⋃

k≥1

supp (νk) ⊂
{

ξ ∈ R
n : ‖ξ‖2 ≤ M

κ − 1

}

=: B.
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Therefore, for any x, y ∈ R
n , we have

|ν̂k(x) − ν̂k(y)| ≤
∫

B
|e−2π i〈x,t〉 − e−2π i〈y,t〉|dνk(t)

≤ sup
t∈B

|1 − e−2π i〈y−x,t〉| ≤ 2π‖y − x‖2 · sup
t∈B

‖t‖2
(4.17)

Thus, for any ε > 0, it suffice to choose δ := ε
2π supt∈B ‖t‖2 . This completes the proof

of claim 1.
Claim 2. For each x ∈ B(κ), there exists a εx > 0 and an integral vector h(x, νk) ∈ Z

n

such that

inf
k≥1

|ν̂k(x + h(x, νk))| > εx .

Indeed, suppose on the contrary that there is a x0 ∈ B(κ) and a strictly increasing
sequence k j such that

|ν̂k j (x0 + m)| ≤ 1

j
for all m ∈ Z

n .

By the remark following Lemma 4.2, the sequence of measures {νk j }∞j=1 contains a
subsequence converging to an infinite convolution

μ(˜˜Rk,
˜
˜Dk) := δ

˜
˜R

−1
1

˜
˜D1

∗ δ
(˜˜R2

˜
˜R1)−1˜˜D2

∗ · · · ∗ δ
(˜˜Rk ...

˜
˜R1)−1˜˜Dk

∗ · · ·

in the weak-star topology, where {(˜˜Rk,
˜
˜Dk)}∞k=1 is a subsequence of {(Rk, Dk)}∞k=1.

Therefore,

μ̂(˜˜Rk,
˜
˜Dk)(x0 + m) = lim

j→∞ ν̂k j (x0 + m) = 0

holds for all m ∈ Z
n , that is, x0 ∈ Z(μ(˜˜Rk,

˜
˜Dk)). However, the arguments of

Lemma 4.1 implies that Z(μ(˜˜Rk,
˜
˜Dk)) = ∅. This contradiction yields claim 2.

By Claim 1 and Claim 2, for each x ∈ B(κ), we choose a positive numbers εx >

0, an integral vector h(x, νk) ∈ Z
n and a δx small enough such that the following

inequalities

sup
k≥1

sup
‖x−y‖2<δx

|ν̂k(x) − ν̂k(y)| < εx
3 (4.18)

and

inf
k≥1

|ν̂k(ξ + h(x, νk))| > 2εx
3 for all ξ ∈ B(x, δx ) (4.19)
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hold at the same time, where B(x, δx ) denotes the 2-normed closed ball with center x
and radius δx .

As B(κ) is compact, we can find x1, x2, . . . , xm ∈ B(κ) so that

B(κ) ⊂
m
⋃

i=1

B(xi , δxi ).

Letting

ε := min
i

{εxi

3

}

and δ < min{δx1, . . . , δxm }.

Thus, by (4.19), for any x ∈ B(κ) there is a i0 ∈ {1, 2, · · · ,m} and an integral vector
h(x, νk) := h(xi0 , νk) such that x ∈ B(xi0 , δxi0 ) and

|ν̂k(x + h(x, νk))| ≥ 2εxi0
3

.

Consequently, from trigonometric inequality and (4.18), we get that, for any ||y|| < δ,

inf
k≥1

|̂νk(y + x + h(x, νk))| ≥ inf
k≥1

|̂νk(x + h(x, νk))|
− sup

k≥1
|̂νk(y + x + h(x, νk)) − ν̂k(x + h(x, νk))|

>
εxi0

3
≥ ε.

We obtain the desired result (4.16) and the proof of Theorem 1.6 is complete. ��
Remark 4.3 In the proof of Theorem 1.6, we actually establish a fact that if {νk}
converges to ν in the weak-star topology with Z(ν) = ∅, then {νk} is equi-positive.
As the referee mentioned to us, this fact in one-dimensional case was obtained in [30,
Theorem 1.1], and was also generalized to higher dimensional case in [31, Theorem
1.2].

4.2 Proof of Theorem 1.7 and Corollary 1.8

The proof of Theorem 1.7 needs the following lemma.

Lemma 4.4 Under the assumptions of Theorem 1.7, we get that

inf
k≥1

inf
ξ∈

[

− 1
2 , 12

]n
|̂νk(ξ)| ≥ c (4.20)

for some positive constant c, independent of k, where νk is written as in (1.5).
Consequently, Z(νk) = ∅ for all k ∈ N. Moreover, if ν is a limit point (in weak-star

topology) of the sequence {νk}, one also has that Z(ν) = ∅.
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Proof Fixing ξ ∈ [− 1
2 ,

1
2

]n
. By the hypothesis, we set

M1 := sup
k∈N

sup
dk∈Dk

{‖R−1
k dk‖2} < ∞. (4.21)

Notice that, for each j > k and all d j ∈ Dj , one has

‖R−1
j,kd j‖2 = ‖R−1

k+1R
−1
k+2 . . . R−1

j−1R
−1
j d j‖2 ≤ ‖R−1

k+1R
−1
k+2 . . . R−1

j−1‖
·‖R−1

j d j‖2 ≤ κ−( j−k−1)M1.

Thus, if we choose the smallest positive integer j0(k) > k such that

κ−( j0(k)−k−1)M1 <
1

4
√
n
,

then j > j0(k) implies that

2π |〈R−1
j,kd j , ξ 〉| ≤ 2π‖R−1

j,kd j‖2 · ‖ξ‖2 ≤ π

4κ j− j0(k)
. (4.22)

Moreover, it follows from (1.6) that for all j > k ≥ 1, one has

‖R∗−1
j,k ξ‖2 = ‖R∗−1

j R∗−1
j−1 . . . R∗−1

k+1ξ‖2 ≤ κ−( j−k)√n/2 ≤
√
n

2κ
,

that is,R∗−1
j,k ξ ∈ B(0,

√
n

2κ ) for all j > k. Note that j0(k)−k is a constant for all k ∈ N.
Whence,

|ν̂k(ξ)| =
j0(k)
∏

j=k+1

|̂δDj (R
∗−1
j,k ξ)|

∞
∏

j= j0(k)+1

|̂δDj (R
∗−1
j,k ξ)|

≥ η j0(k)−k
∞
∏

j= j0(k)+1

∣

∣

∣

∣

∣

∣

1

#Dj

∑

d∈Dj

cos 2π〈R−1
j,kd, ξ 〉

∣

∣

∣

∣

∣

∣

(by (1.9))

≥ η j0(k)−k
∞
∏

j=1

cos
π

4κ j
(by (4.22))

= η j0(k)−k
∞
∏

j=1

(

1 − sin2
π

4κ j

) 1
2

≥ η j0(k)−k
∞
∏

j=1

(

1 − π2

16κ2 j

)
1
2

=: c > 0.

This completes the proof of (4.20), and therefore the first statement is proved.
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Next, suppose that (4.20) holds, but there is a k0 ≥ 1 such that Z(νk0) �= ∅. Then
there is an ξ0 ∈ R

n such that

ν̂k0(ξ0 + m) = 0 for allm ∈ Z
n .

This clearly yields that there is an ξ1 ∈ [− 1
2 ,

1
2

]n
such that ν̂k0(ξ1) = 0, contradicting

to (4.20). Thus, we get that Z(νk) = ∅ for all k ∈ N.
Moreover, if there is a subsequence {νk j }∞j=1 of {νk} such that νk j converges to a

measure ν in the weak-star topology, we get, from (4.20), that

|̂ν(ξ)| = lim
j→∞ |ν̂k j (ξ)| ≥ c

for all ξ ∈ [− 1
2 ,

1
2

]n
, which yields that Z(ν) = ∅.

The proof of Lemma 4.4 is finished. ��
The idea of the proof of Theorem 1.7 is essentially identical to that of Theorem 1.6.

Proof of Theorem 1.7 Let νk be as in (1.5). By Theorem 1.4, it suffices to show that the
sequence of measures {νk} is equi-positive on the 2-norm closed ball B(κ) as in (1.7).

As in the proof of Theorem 1.6, it also requires the following two claims.
Claim 1. for any ε > 0 there exists a δ > 0 such that

sup
k≥0

sup
‖x−y‖2<δ

|ν̂k(x) − ν̂k(y)| < ε.

Claim 2. For each x ∈ B(κ), there exists a εx > 0 and an integral vector h(x, νk) ∈ Z
n

such that

inf
k≥1

|ν̂k(x + h(x, νk))| > εx .

For the claim 1, it follows from (4.21), (1.5) and (1.6) that

⋃

k≥1

supp (νk) ⊂
{

ξ ∈ R
n : ‖ξ‖2 ≤ κM1

κ − 1

}

.

Then, a similar argument as in (4.17) will give the desired result of Claim 1.
For the claim 2, we assume on the contrary that there is a x0 ∈ B(κ) and a strictly

increasing sequence k j such that

|ν̂k j (x0 + m)| ≤ 1

j
for all m ∈ Z

n .

By applying Banach-Alaoglu’s theorem (cf. [15, Theorem 5.18]), we can extract from
the sequence {νk j } a subsequence tending to a measure ν in the weak-star topology.
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Here, in order to avoid complicating the notations, we assume that this subsequence
is {νk j }. Whence,

ν̂(x0 + m) = lim
j→∞ ν̂k j (x0 + m) = 0

holds for all m ∈ Z
n , that is, x0 ∈ Z(ν), or Z(ν) �= ∅. However, Z(ν) = ∅ by

Lemma 4.4. This contradiction yields claim 2.
The proof left is the same to that of Theorem 1.6, so we omit the details of the

proof. This completes the proof of Theorem 1.7. ��
Proof of Corollary 1.8 Since κ > 1 and the assumptions of Corollary 1.8 mean that
(1.9) holds. Thus, we get Corollary 1.8 by Theorem 1.7. ��

4.3 Proof of Example 1.10

We end this section by giving the proof of Example 1.10.

Proof of Example 1.10 For the first statement, by Theorem 1.7 or Corollary 1.8, it suf-
fices to show that the zero set Z(̂δD) has a positive distance to the 2-normed closed
ball

B(0, (
√
2κ)−1) := {ξ ∈ R

n : ‖ξ‖2 ≤ (
√
2κ)−1}.

In fact, this is clearly true since κ >
√
2 implies that (

√
2κ)−1 < 1/2, and the zero

set of the function

̂δD(ξ1, ξ2) = 1

4

(

1 + e2π iξ1
) (

1 + e2π iξ2
)

is the union of two family of parallel lines

Z(̂δD) :=
{( 1

2 + n
y

)

: n ∈ Z, y ∈ R

}

⋃

{(

x
1
2 + n

)

: x ∈ R, n ∈ Z

}

,

which means that inf{‖ξ‖2 : ξ ∈ Z(̂δD)} ≥ 1
2 .

For the second statement, with easy computations, one gets that

min σ(R(1)) = min σ(R(2)) = 2

√

3 − √
5 ≈ 1.748 >

√
2,

min σ(R(3)) = min σ(R(4)) =
√

2(9 − √
17) ≈ 3.123 >

√
2.

By setting

C(1) =
{(

0
0

)

,

(

2
1

)

,

(

0
1

)

,

(

2
2

)}

, C(2) =
{(

0
0

)

,

(

2
0

)

,

(

1
1

)

,

(

3
1

)}

,
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C(3) =
{(

0
0

)

,

(

2
1

)

,

(

0
2

)

,

(

2
3

)}

, C(4) =
{(

0
0

)

,

(

2
0

)

,

(

1
2

)

,

(

3
2

)}

,

one check that, for each k = 1, 2, 3, 4, the matrix

HR(k)−1D,C :=
[

e2π i〈R(k)−1d,c〉]

d∈D,c∈C =

⎛

⎜

⎜

⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞

⎟

⎟

⎠

is unitary, i.e., all (R(k), D) are admissible pairs for all k = 1, 2, 3, 4. Therefore, the
second statement follows from the first. This completes the proof of Example 1.10. ��

5 Proof of Theorem 1.9

The proof of the sufficient part of Theorem 1.9(i), (ii) depends on Lemma 5.1, whose
one-dimensional version has been obtained by Deng and Li in [9, Lemma 3.1].

Lemma 5.1 Let A ∈ GL(n, Z). For for each k ≥ 0, we let Rk ∈ GL(n, Z) be n × n
matrices and Dk ⊆ Z

n be finite digit set, and set

νk := δR−1
k+1Dk+1

∗ δR−1
k+1R

−1
k+2Dk+2

∗ · · · ,

ν
(A)
k := δA−1Dk+1

∗ δA−1R−1
k+2Dk+2

∗ δA−1R−1
k+2R

−1
k+3Dk+3

∗ · · · .

Then (νk,�) is a spectral pair if and only if (ν(A)
k , A∗(R∗

k+1)
−1�) is a spectral pair.

Proof Since 〈x, y〉 = 〈Rk+1x, (R∗
k+1)

−1y〉 and 〈B−1x, y〉 = 〈x, (B∗)−1y〉 hold for
all B ∈ GL(n, R) and for all x, y ∈ R

n , it follows that, for any ξ ∈ R
n ,

ν̂k(ξ) =
∞
∏

j=1

̂δR−1
k+1···R−1

k+ j Dk+ j
(ξ)

= δ̂Dk+1((A
∗)−1A∗(R∗

k+1)
−1ξ) ·

∞
∏

j=2

̂δR−1
k+2···R−1

k+ j Dk+ j
((A∗)−1A∗(R∗

k+1)
−1ξ)

= ̂δA−1Dk+1
(A∗(R∗

k+1)
−1ξ)

∞
∏

j=2

̂δA−1R−1
k+2···R−1

k+ j Dk+ j
(A∗(R∗

k+1)
−1ξ)

= ̂
ν

(A)
k (A∗(R∗

k+1)
−1ξ).

Thus, if we define � = A∗(R∗
k+1)

−1�, we get that

∑

λ∈�

|ν̂k(ξ + λ)|2 =
∑

λ∈�

|̂ν(A)
k (A∗(R∗

k+1)
−1(ξ + λ))|2
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=
∑

γ∈�

|̂ν(A)
k (A∗(R∗

k+1)
−1ξ + γ )|2.

This yields the desired result by Lemma 2.3. ��
Wefirst give the proof of the sufficient part of the statements (i), (ii) of Theorem 1.9.

Proof of Theorem 1.9 (admissible pairs⇒ spectralmeasure)Assume that (Rk , Dk)

is an admissible pair for each k ≥ 2. By Lemma 5.1, it suffices to show that the
following infinite convolution

μ̃ := δA−1D1
∗ δA−1R−1

2 D2
∗ δA−1R−1

2 R−1
2 D3

∗ · · · , (5.1)

is a spectral measure, where A = diag[3, 3] if D1 = D(3); and A = diag[2, 2] if
D1 = D(4).

We will prove the sufficient part of Theorem 1.9(i) (resp. Theorem 1.9(ii)) by
checking that all assumptions of Theorem 1.6 (resp. Corollary 1.8) are satisfied by the
measure μ̃. Obviously, Z[D(3)] = Z[D(4)] = Z

2, i.e., assumption (i) of Theorem 1.6
is satisfied. And (ii) of Theorem 1.6 also holds, because it follows from the fact that

Z(δ̂D(3) ) = ±1

3

(

1
−1

)

+ Z
2 (5.2)

and

Z(δ̂D(4) ) =
{(

1/2
0

)

,

(

0
1/2

)

,

(

1/2
1/2

)}

+ Z
2 (5.3)

are both uniformly discrete set in R
2. In particular, if κ > 3

2 , then (
√
2κ)−1 <

√
2
3 ,

and (5.2) and (5.3) yield that

inf
{

‖ξ‖2 : ξ ∈ Z(δ̂D(3) )
}

≥
√
2

3
, inf

{

‖ξ‖2 : ξ ∈ Z(δ̂D(4) )
}

≥ 1

2
.

This means the condition of Corollary 1.8 is satisfied.
It remains to show that (A, D1) is an admissible pair. For this, by setting

C (3) =
{(

0
0

)

,

(

1
−1

)

,

(−1
1

)}

, C (4) =
{(

0
0

)

,

(

1
0

)

,

(

0
1

)

,

(

1
1

)}

,

we obtain, from Definition 1.2, that (diag[3, 3], D(3),C (3)) and (diag[2, 2],
D(4),C (4)) are Hadamard triples, i.e., (A, D1) is an admissible pair.

Overall, the measure μ̃ in (5.1) satisfies all assumptions of Theorem 1.6 (resp.
Corollary 1.8). This finishes the proof of Theorem 1.9 for which admissible pairs
imply spectral measures. ��

In additional to Lemma 5.1, the following Theorem 5.2 plays a crucial role in
establishing the proof of “spectral measure ⇒ admissible pairs” for Theorem 1.9,
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which of course includes the proof of the necessary part of the statements (i), (ii) for
Theorem 1.9.

Theorem 5.2 Let {Rk}∞k=1 ⊆ GL(n, Z) be a sequence of matrices satisfies (1.6) (i.e.,
κ > 1), and let {Dk} be a sequence of digit sets chosen from {D(3), D(4)}, where

D(3) =
{(

0
0

)

,

(

1
0

)

,

(

0
1

)}

and D(4) =
{(

0
0

)

,

(

1
0

)

,

(

0
1

)

,

(−1
−1

)}

.

If the associated measure μ(Rk, Dk) in (1.4) is a spectral measure, then all measures
νk written as in (1.5) are spectral measures.

It is remarked here that Theorem 5.2 will be proved by induction. More precisely,
we set ν0 := μ(Rk, Dk) and prove Theorem 5.2 by the following two cases: for each
k ≥ 0,

• if νk with Dk+1 = D(3) is spectral, then νk+1 is also spectral (Theorem 5.5(ii)).
• if νk with Dk+1 = D(4) is spectral, then νk+1 is also spectral (Theorem 5.7(ii)).

Here and after, for each nonnegative integer k ≥ 0, the measure νk is written as in
(1.5), i.e,

νk = δR−1
k+1Dk+1

∗ δR−1
k+1R

−1
k+2Dk+2

∗ δR−1
k+1R

−1
k+2R

−1
k+3Dk+3

∗ · · · ,

where Dk+1 = D(3) or Dk+1 = D(4).
Standard Hypothesis in the Rest of this Section We always assume that

A = diag[6, 6] = 6I2 and S = {0, 1, . . . , 5} × {0, 1, . . . , 5}, (5.4)

where I2 is the 2 × 2 identity matrix; and for each νk we define a new probability
measure

ν
(6)
k := ν

(A)
k := δ6−1Dk+1

∗ δ6−1R−1
k+2Dk+2

∗ δ6−1R−1
k+2R

−1
k+3Dk+3

∗ · · · , (5.5)

where Dk+1 = D(3) or Dk+1 = D(4).
Lemma 5.3 below gives a simple characterization on the spectra of νk or ν

(6)
k , which

makes sense to make assumptions as in Theorems 5.5 and 5.7.

Lemma 5.3 With notations above, the measure νk admits a spectrum �k with 0 ∈ �k

if and only if the discrete set

�k := A∗(R∗
k+1)

−1�k = 6(R∗
k+1)

−1�k with 0 ∈ �k

is a spectrum for the measure ν
(6)
k . Moreover, �k ⊆ Z

2, and hence �k can be uniquely
decomposed into the following disjoint union

�k =
⋃

s∈S
(s + 6�(k)

s ), (5.6)
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where �
(k)
s satisfies that

�(k)
s =

{

ω ∈ Z
2 : s + 6ω ∈ �k

}

,

with the interpretation that s + 6�(k)
s = ∅ if �(k)

s = ∅. In particular, since 0 ∈ �k , it
follows from (5.6) that 0 ∈ �

(k)
0 , therefore,

�
(k)
0 �= ∅. (5.7)

Proof The first statement clearly follows from Lemma 5.1. By the orthogonality of
E(�k) in L2(ν

(6)
k ), we obtain, from (5.2) and (5.3), that

�k − �k ⊆ 6Z(δ̂Dk+1) ∪
∞
⋃

j=2

6R∗
k+2 · · · R∗

k+ jZ(δ̂Dk+ j ) ⊆ Z
2.

Since 0 ∈ �k , we get that �k ⊆ Z
2 and hence (5.7) holds. The representation (5.6) is

also clear because | det A| = 36 and S is a standard digit set associated with A, that is,
S is a complete set of coset representatives for Z

2/AZ
2, it follows that each γ ∈ �k

corresponds to a unique s ∈ S and ω ∈ Z
2 such that γ = s + Aω = s + 6ω. This

completes the proof of Lemma 5.3. ��
The arguments below will be divided into two cases: Dk+1 = D(3) and Dk+1 =

D(4).

5.1 The Case that Dk+1 = D(3).

For the measure νk with Dk+1 = D(3), we divide the set S in (5.4) into the following
12 sets.

S(3)
1 = {(0, 0)∗, (2, 4)∗, (4, 2)∗}, S(3)

2 = {(1, 0)∗, (3, 4)∗, (5, 2)∗},
S(3)
3 = {(2, 0)∗, (4, 4)∗, (0, 2)∗},

S(3)
4 = {(3, 0)∗, (5, 4)∗, (1, 2)∗}, S(3)

5 = {(4, 0)∗, (0, 4)∗, (2, 2)∗},
S(3)
6 = {(5, 0)∗, (1, 4)∗, (3, 2)∗},

S(3)
7 = {(0, 1)∗, (2, 5)∗, (4, 3)∗}, S(3)

8 = {(1, 1)∗, (3, 5)∗, (5, 3)∗},
S(3)
9 = {(2, 1)∗, (4, 5)∗, (0, 3)∗},

S(3)
10 = {(3, 1)∗, (5, 5)∗, (1, 3)∗}, S(3)

11 = {(4, 1)∗, (0, 5)∗, (2, 3)∗},
S(3)
12 = {(5, 1)∗, (1, 5)∗, (3, 3)∗}.

The basic properties of the sets {S(3)
j }12j=1 are stated as follows, which will be used

to prove Theorem 5.5.
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Lemma 5.4 Let A and S be as in (5.4). With notations above, the following statements
hold.

(i) S = ⋃12
j=1 S(3)

j , where the unions are pairwise disjoint.
(ii) For each j = 1, . . . , 12, there is a unique ( j1, j2) ∈ {0, 1, . . . , 5} × {0, 1} such

that

S(3)
j ≡ S(3)

1 + ( j1, j2)
∗ (mod A).

(iii) If a ∈ S(3)
j and a′ ∈ S(3)

j ′ for distinct j, j ′, then a − a′ /∈ Z(̂δ6−1D(3) ).

(iv) For each j = 1, 2, . . . , 12, one has (A−1D(3),S(3)
j ) is a compatible pair.

Proof The statements (i) and (ii) are obvious, and (iv) is easily checkedby the definition
of compatible pairs in Definition 1.2.

To prove (iii), if a ∈ S(3)
j and a′ ∈ S(3)

j ′ with j �= j ′, it follows from (ii) that there

exist a1, a2 ∈ S(3)
1 and distinct ( j1, j2), ( j ′1, j ′2) ∈ {0, 1, . . . , 5} × {0, 1} such that

a = a1 + ( j1, j2)
∗ + 6t1 and a′ = a2 + ( j ′1, j ′2)∗ + 6t2

for some t1, t2 ∈ Z
2. Thus,

(a − a′)∗ = (a1 − a2)
∗ + ( j1 − j ′1, j2 − j ′2) + 6(t1 − t2)

∗, (5.8)

where

( j1 − j ′1, j2 − j ′2) ⊆ ±{0, 1, . . . , 5} × {0,±1} \ {(0, 0)}. (5.9)

There are two possible cases:

• If a1 = a2, it follows from (5.8) and (5.9) that

(a − a′)∗ ∈ ±{0, 1, . . . , 5} × {0,±1} \ {(0, 0)} + 6Z
2. (5.10)

• If a1 �= a2, then it is easy to see fromS(3)
1 that (a1−a2)∗ ∈ {(4, 2)∗, (2, 4)∗}+6Z

2.

This, together with (5.8) and (5.9), yields that

(a − a′)∗ /∈ {(2, 4)∗, (4, 2)∗} + 6Z
2. (5.11)

Notice that (5.2) implies that Z( ̂δ6−1D(3) ) = {(2, 4)∗, (4, 2)∗} + 6Z
2. Therefore, by

(5.10) and (5.11), we get that (a − a′)∗ /∈ Z( ̂δ6−1D(3) ), this proves (iii). ��
In terms of Lemma 5.3, we assume that 0 ∈ �k is a spectrum of ν

(6)
k with

Dk+1 = D(3). By Lemma 5.4(i) and (5.6) in Lemma 5.3, the set�k can be furthermore
decomposed into the following pairwise disjoint union

�k =
12
⋃

j=1

⋃

s j∈S(3)
j

(s j + 6�(k)
s j ), (5.12)
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where �
(k)
s j = {

ω ∈ Z
2 : s j + 6ω ∈ �k

}

. Also, �
(k)
0 �= ∅ since 0 = (0, 0)∗ ∈ �k .

Associated to each sequence (s j ) := (s1, s2, . . . , s12) ∈ ∏12
j=1 S(3)

j , we define a new
discrete set

�k((s j )) :=
12
⋃

j=1

(

1

6
s j + �(k)

s j

)

. (5.13)

Theorem 5.5 Let 0 ∈ �k be a spectrum for ν
(6)
k with Dk+1 = D(3), and write �k as

in (5.12). Then the following statements hold.

(i) For any s1 ∈ S(3)
1 , �(k)

s1 �= ∅;
(ii) For any sequence (s j ) ∈ ∏12

j=1 S(3)
j , the set �k((s j )) forms a spectrum for νk+1.

Proof Fix ξ ∈ (R \ Q)2. Applying Lemma 2.3(ii) to the spectral pair (ν
(6)
k , �k), we

get that

1 = Q
ν

(6)
k ,�k

(ξ) =
12
∑

j=1

∑

s j∈S(3)
j

∑

ω∈�
(k)
s j

∣

∣

∣

̂

ν
(6)
k (ξ + s j + 6ω)

∣

∣

∣

2
.

By (5.5), we compute that
̂

ν
(6)
k (ξ) = δ̂D(3) (

ξ
6 )ν̂k+1(

ξ
6 ) holds for all ξ ∈ R

2. This,

together with the integral-periodicity of δ̂D(3) , yields that

1 =
12
∑

j=1

∑

s j∈S(3)
j

∣

∣

∣

∣

δ̂D(3)

(

1

6
ξ + 1

6
s j

)∣

∣

∣

∣

2
∑

ω∈�
(k)
s j

∣

∣

∣

∣

ν̂k+1

(

1

6
ξ + 1

6
s j + ω

)∣

∣

∣

∣

2

≤
12
∑

j=1

∑

s j∈S(3)
j

∣

∣

∣

∣

δ̂D(3)

(

1

6
ξ + 1

6
s j

)∣

∣

∣

∣

2
· max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

ω∈�
(k)
s j

∣

∣

∣

∣

ν̂k+1

(

1

6
ξ + 1

6
s j + ω

)∣

∣

∣

∣

2
: s j ∈ S(3)

j

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=
12
∑

j=1

max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

ω∈�
(k)
s j

∣

∣

∣

∣

ν̂k+1

(

1

6
ξ + 1

6
s j + ω

)∣

∣

∣

∣

2
: s j ∈ S(3)

j

⎫

⎪

⎪

⎬

⎪

⎪

⎭

≤ 1,

(5.14)

where the last equality uses the fact that (A−1D(3),S(3)
j ) is a compatible pair for each

j = 1, . . . , 12 by Lemma 5.4(iv), which yields, from Lemma 2.1(iv), that

∑

s j∈S(3)
j

∣

∣

∣

∣

δ̂D(3)

(

1

6
ξ + 1

6
s j

)∣

∣

∣

∣

2

= 1 (ξ ∈ R
2),
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and the last inequality follows from the following claim:

Claim Under the assumption of Theorem 5.5, for each sequence (s j ) ∈ ∏12
j=1 S(3)

j ,
the non-empty set�k((s j )) as in (5.13) forms an orthogonal set of νk+1. Consequently,
by Lemma 2.3(i),

Qνk+1,�k ((s j ))(ξ) := ∑

γ∈�k ((s j ))

∣

∣ν̂k+1
( 1
6 ξ + γ

)∣

∣

2 = ∑12
j=1

∑

ω∈�
(k)
s j

∣

∣ν̂k+1
(

ξ + 1
6 s j + ω

)∣

∣

2

≤ 1 (ξ ∈ R
2).

Proof of Claim. Fix a non-empty set �k((s j )), it suffices to show that

ν̂k+1(γ − γ ′) = 0 for two distinct γ, γ ′ ∈ �k((s j )). (5.15)

First, by (5.12) and (5.13), we get that 6γ, 6γ ′ ∈ �k , therefore, the orthogonality of
E(�k) in L2(ν

(6)
k ) yields that

̂

ν
(6)
k (6γ − 6γ ′) = 0.

Next, we show (5.15) in the following two cases.

• If γ, γ ′ ∈ 1
6 s j +�

(k)
s j for some 1 ≤ j ≤ 12, it is clear that γ − γ ′ ∈ Z

2, and hence

the integral-periodicity of δ̂D(3) and δ̂D(3) (0) = 1 imply that

0 = ̂

ν
(6)
k (6γ − 6γ ′) = δ̂D(3) (γ − γ ′)ν̂k+1(γ − γ ′) = ν̂k+1(γ − γ ′).

(5.16)

• If γ ∈ 1
6 s j + �

(k)
s j and γ ′ ∈ 1

6 s j ′ + �
(k)
s j ′ for two distinct j �= j ′, by the integral-

periodicity of δ̂D(3) , we get that

0 = ̂

ν
(6)
k (6γ − 6γ ′) = ̂δ6−1D(3) (6γ − 6γ ′)ν̂k+1(γ − γ ′) = ̂δ6−1D(3) (s j − s j ′ )ν̂k+1(γ − γ ′).

Since ̂δ6−1D(3) (s j − s j ′) �= 0 by Lemma 5.4(iii), we get that ν̂k+1(γ − γ ′) = 0.

This finished the proof of the claim.
Moreover, by (5.2), we obtain, for all j = 1, 2, . . . , 12 and for all s j ∈ S(3)

j and

for all ξ ∈ (R \ Q)2, that

∣

∣

∣

∣

δ̂D(3)

(

1

6
ξ + 1

6
s j

)∣

∣

∣

∣

2

�= 0,

which yields from (5.14) that
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∑

ω∈�
(k)
s j

∣

∣

∣

∣

ν̂k+1

(

1

6
ξ + 1

6
s j + ω

)∣

∣

∣

∣

2
= max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

ω∈�
(k)
s j

∣

∣

∣

∣

ν̂k+1

(

1

6
ξ + 1

6
s j + ω

)∣

∣

∣

∣

2
: s j ∈ S(3)

j

⎫

⎪

⎪

⎬

⎪

⎪

⎭

.

(5.17)

Notice that 0 = (0, 0)∗ ∈ �k implies that �
(k)
0 �= ∅ by Lemma 5.3. Thus, the right

hand of (5.17) must be positive, which clearly yields that �(k)
s1 �= ∅ for any s1 ∈ S(3)

1 ,
i.e., (i) is proved.

Combining (5.14) with (5.17), we obtain, for each sequence (s j ) ∈ ∏12
j=1 S(3)

j and

for all ξ ∈ (R \ Q)2, that

Qνk+1,�k ((s j ))(ξ)

=
∑

γ∈�k ((s j ))

∣

∣

∣

∣

ν̂k+1

(

1

6
ξ + γ

)∣

∣

∣

∣

2

=
12
∑

j=1

∑

ω∈�
(k)
s j

∣

∣

∣

∣

ν̂k+1

(

1

6
ξ + 1

6
s j + ω

)∣

∣

∣

∣

2

= 1.

Furthermore, because (R\Q)2 is dense inR
2 and Qνk+1,�k ((s j )) is a continuous function

on R
2 by Lemma 2.3(iii), it follows that Qνk+1,�k ((s j ))(ξ) = 1 for all ξ ∈ R

2. By
Lemma 2.3(ii), each set�k((s j )) forms a spectrum for νk+1. The proof of Theorem 5.5
is complete. ��

5.2 The Case that Dk+1 = D(4).

In this case, we divide the set S into the following 9 subsets:

S(4)
1 = {(0, 0)∗, (3, 0)∗, (0, 3)∗, (3, 3)∗}, S(4)

2 = {(1, 0)∗, (4, 0)∗, (1, 3)∗, (4, 3)∗},
S(4)
3 = {(2, 0)∗, (5, 0)∗, (2, 3)∗, (5, 3)∗}, S(4)

4 = {(0, 1)∗, (3, 1)∗, (0, 4)∗, (3, 4)∗},
S(4)
5 = {(0, 2)∗, (3, 2)∗, (0, 5)∗, (3, 5)∗}, S(4)

6 = {(1, 1)∗, (4, 1)∗, (1, 4)∗, (4, 4)∗},
S(4)
7 = {(2, 1)∗, (5, 1)∗, (2, 4)∗, (5, 4)∗}, S(4)

8 = {(1, 2)∗, (4, 2)∗, (1, 5)∗, (4, 5)∗},
S(4)
9 = {(2, 2)∗, (5, 2)∗, (2, 5)∗, (5, 5)∗}.

The basic properties of the sets {S(4)
j }9j=1 are stated as follows, which will be used

to prove Theorem 5.7.

Lemma 5.6 Let A and S be as in (5.4). With notations above, one has

(i) S = ⋃9
j=1 S(4)

j and the union is disjoint.

(ii) For each S(4)
j , there exists a unique ( j1, j2) ∈ {0, 1, 2} × {0, 1, 2} such that

S(4)
j = S(4)

1 + ( j1, j2)∗.
(iii) For any a ∈ S(4)

j , a′ ∈ S(4)
j ′ with S(4)

j �= S(4)
j ′ , we have a − a′ /∈ Z( ̂δ6−1D(4) ).
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(iv) For each j = 1, 2, . . . , 9, one has (A−1D(4),S(4)
j ) is a compatible pair.

Proof The statements (i), (ii) and (iv) can be easily checked.
To prove (iii), it is first noted that (5.3) implies that

Z( ̂δ6−1D(4) ) = {(0, 3)∗, (3, 0)∗, (3, 3)∗} + 6Z
2. (5.18)

Thus, if a ∈ S(4)
j , a′ ∈ S(4)

j ′ with j �= j ′, by (ii), there exist a1, a2 ∈ S(4)
1 and two

distinct elements ( j1, j2), ( j ′1, j ′2) ∈ {0, 1, 2} × {0, 1, 2} such that

a = a1 + ( j1, j2)
∗ a′ = a2 + ( j ′1, j ′2)∗. (5.19)

It is clear that

( j1 − j ′1, j2 − j ′2) ⊆ {0,±1,±2} × {0,±1,±2} \ {(0, 0)}. (5.20)

Thus,

• If a1 = a2, it follows from (5.18) that

(a − a′)∗ = ( j1 − j ′1, j2 − j ′2) /∈ Z( ̂δ6−1D(4) ).

• If a1 �= a2, then a1 − a2 ∈ ±{(0, 3)∗, (3, 0)∗, (3, 3)∗}, and hence one gets, from
(5.18), (5.19) and (5.20), that

(a − a′)∗ /∈ Z( ̂δ6−1D(4) ).

This completes the proof of Lemma 5.6. ��
In terms of Lemma 5.3, in what follows, we assume 0 ∈ �k is a spectrum of ν

(6)
k

with Dk+1 = D(4). By Lemma 5.6(i) and (5.6) in Lemma 5.3, we now write the set
�k as a pairwise disjoint union

�k =
9
⋃

j=1

⋃

s j∈S(4)
j

(s j + 6�(k)
s j ), (5.21)

where �
(k)
s j = {

ω ∈ Z
2 : s j + 6ω ∈ �k

}

. Associated to each sequence (s j ) :=
(s1, s2, . . . , s9) ∈ ∏9

j=1 S(4)
j , we define a new discrete set

�k((s j )) :=
9
⋃

j=1

(

1

6
s j + �(k)

s j

)

. (5.22)

It is remarked here that �(k)
0 �= ∅ since 0 = (0, 0)∗ ∈ �k .

The following Theorem 5.7 below is essentially parallel to that of Theorem 5.5. We
will give its details of proof for the sake of completeness.
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Theorem 5.7 Suppose 0 ∈ �k is a spectrum of ν
(6)
k with Dk+1 = D(4), and we write

�k as in (5.21). Then the following statements hold.

(i) For any s1 ∈ S(4)
1 , �s1 �= ∅;

(ii) For any sequence (s j ) ∈ ∏9
j=1 S(4)

j , the set �k((s j )) forms a spectrum for
νk+1.

Proof Fix ξ ∈ (R\Q)2. As we do in the proof of Theorem 5.5, one can similarly yield
that

1 = Q
ν

(6)
k ,�k

(ξ) =
9
∑

j=1

∑

s j∈S(4)
j

∑

ω∈�
(k)
s j

|̂ν(6)
k (ξ + s j + 6ω)|2

=
9
∑

j=1

∑

s j∈S(4)
j

∣

∣

∣

∣

δ̂D(4)

(

1

6
ξ + 1

6
s j

)∣

∣

∣

∣

2
∑

ω∈�
(k)
s j

∣

∣

∣

∣

ν̂k+1

(

1

6
ξ + 1

6
s j + ω

)∣

∣

∣

∣

2

≤
9
∑

j=1

∑

s j∈S(4)
j

∣

∣

∣

∣

δ̂D(4)

(

1

6
ξ + 1

6
s j

)∣

∣

∣

∣

2
max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

ω∈�
(k)
s j

∣

∣

∣

∣

ν̂k+1

(

1

6
ξ + 1

6
s j + ω

)∣

∣

∣

∣

2
: s j ∈ S(4)

j

⎫

⎪

⎪

⎬

⎪

⎪

⎭

=
9
∑

j=1

max

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∑

ω∈�
(k)
s j

∣

∣

∣

∣

ν̂k+1

(

1

6
ξ + 1

6
s j + ω

)∣

∣

∣

∣

2
: s j ∈ S(4)

j

⎫

⎪

⎪

⎬

⎪

⎪

⎭

≤ 1.

(5.23)

Here, the last equality follows from Lemma 5.6(iv) that (A−1D(4),S(4)
j ) is a

compatible pair for each j = 1, . . . , 9,which is equivalent to that (by Lemma 2.1(iv))

∑

s j∈S(4)
j

∣

∣

∣

∣

δ̂D(4)

(

1

6
ξ + 1

6
s j

)∣

∣

∣

∣

2

= 1 (∀ξ ∈ R
2),

and the last inequality follows from the following claim:

Claim Under the assumptions of Theorem 5.7, for each sequence (s j ) ∈ ∏9
j=1 S(3)

j ,
the non-empty set�k((s j )) as in (5.22) forms an orthogonal set of νk+1. Consequently,
by Lemma 2.3(i),

Qνk+1,�k ((s j ))(ξ) :=
∑

γ∈�k ((s j ))

∣

∣

∣

∣

ν̂k+1

(

1

6
ξ + γ

)∣

∣

∣

∣

2
=

9
∑

j=1

∑

ω∈�
(k)
s j

∣

∣

∣

∣

ν̂k+1

(

ξ + 1

6
s j + ω

)∣

∣

∣

∣

2

≤ 1 (∀ξ ∈ R
2).
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Proof of Claim. Fixing a non-empty set �k((s j )). It is enough for us to show, for any
two distinct elements γ, γ ′ ∈ �k((s j )), that

ν̂k+1(γ − γ ′) = 0.

Because 6γ, 6γ ′ ∈ �k by (5.21) and (5.22), we prove this claim by the following two
cases:

• If γ, γ ′ ∈ 1
6 s j + �

(k)
s j for some 1 ≤ j ≤ 9, one has that γ − γ ′ ∈ Z

2. Now it

follows from δ̂D(4) (0) = 1 and the integral-periodicity of δ̂D(4) that

0 = ̂

ν
(6)
k (6γ − 6γ ′) = δ̂D(4) (γ − γ ′)ν̂k+1(γ − γ ′) = ν̂k+1(γ − γ ′).

• If γ ∈ 1
6 s j + �

(k)
s j and γ ′ ∈ 1

6 s j ′ + �s j ′ for some distinct j and j ′, it follows from
the integral-periodicity of δ̂D(4) that

0 = ̂

ν
(6)
k (6γ − 6γ ′) = ̂δ6−1D(4) (6γ − 6γ ′)ν̂k+1(γ − γ ′) = ̂δ6−1D(4) (s j − s j ′ )ν̂k+1(γ − γ ′).

Because ̂δ6−1D(4) (s j − s j ′) �= 0 by Lemma 5.6 (iii), we conclude that ν̂k+1(γ −
γ ′) = 0.

We complete the proof of the claim.
In this case, it follows from (5.3) that, for all j = 1, 2, . . . , 9 and for all s j ∈ S(4)

j

and for all ξ ∈ (R \ Q)2,

∣

∣

∣

∣

δ̂D(3)

(

1

6
ξ + 1

6
s j

)∣

∣

∣

∣

2

�= 0,

and hence this yields, together with (5.23), that

∑

ω∈�
(k)
s j

|ν̂k+1

(

1

6
ξ + 1

6
s j + ω

)

|2 = max

⎧

⎪

⎨

⎪

⎩

∑

ω∈�
(k)
s j

|ν̂k+1

(

1

6
ξ + 1

6
s j + ω

)

|2 : s j ∈ S(4)
j

⎫

⎪

⎬

⎪

⎭

.

(5.24)

Since 0 = (0, 0)∗ ∈ �k implies that �(k)
0 �= ∅, it follows that the right hand of (5.24)

is positive. Thus (5.24) implies that �(k)
s1 �= ∅ for any s1 ∈ S(3)

1 , i.e., (i) is proved.

Whence, by (5.23) and (5.24), we get, for each sequence (s j ) ∈ ∏12
j=1 S(3)

j , that

Qνk+1,�k ((s j ))(ξ) =
∑

γ∈�k ((s j ))

∣

∣

∣

∣

ν̂k+1

(

1

6
ξ + γ

)∣

∣

∣

∣

2
=

9
∑

j=1

∑

ω∈�
(k)
s j

∣

∣

∣

∣

ν̂k+1

(

1

6
ξ + 1

6
s j + ω

)∣

∣

∣

∣

2
= 1
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holds for all ξ ∈ (R\Q)2. Since Qνk+1,�k ((s j )) is continuous onR
2 by Lemma 2.3(iii),

it follows that Qνk+1,�k ((s j ))(ξ) = 1 for all ξ ∈ R
2. Therefore, each set �k((s j )) forms

a spectrum for νk+1 by Lemma 2.3(ii). This completes the proof of Theorem 5.7. ��
Proof of Theorem 5.2 Since ν0 := μ(Rk, Dk) is a spectral measure, the proof of
Theorem 5.2 follows from Theorem 5.5 and 5.7 by induction. ��

The proof of Theorem 1.9 also needs the following Corollary 5.8, which is a direct
result of Theorems 5.5(i) and 5.7(i).

Corollary 5.8 For each nonnegative integer k ≥ 0, assume that �k is a spectrum of νk
such that 0 ∈ �k . Then the following two statements hold.

(i) If Dk+1 = D(3), there are integer vectors t (k)1 , t (k)2 ∈ Z
2 such that

1

6
R∗
k+1(2, 4)

∗ + RT
k+1t

(k)
1 ∈ �k,

1

6
R∗
k+1(4, 2)

∗ + RT
k+1t

(k)
2 ∈ �k . (5.25)

(ii) If Dk+1 = D(4), there are integer vectors t (k)1 , t (k)2 , t (k)3 ∈ Z
2 such that

1

6
R∗
k+1(3, 0)

∗ + RT
k+1t

(k)
1 ,

1

6
R∗
k+1(0, 3)

∗ + RT
k+1t

(k)
2 ,

1

6
R∗
k+1(3, 3)

∗

+RT
k+1t

(k)
3 ∈ �k . (5.26)

Proof By Lemma 5.3, the set

�k := A∗(R∗
k+1)

−1�k = 6(R∗
k+1)

−1�k

is a spectrum for ν
(6)
k .

(i) If Dk+1 = D(3), it follows from Theorem 5.5(i) that �(k)
s1 �= ∅ for all s1 ∈ S(3)

1 =
{(0, 0)∗, (2, 4)∗, (4, 2)∗}, and hence (5.12) implies that

1

6
R∗
k+1

⋃

s1∈S(3)
1

(s1 + 6�(k)
s1 ) ⊆ �k .

This yields (5.25) holds.
(ii) If Dk+1 = D(4), by Theorem 5.7(i), �

(k)
s1 �= ∅ for all s1 ∈ S(4)

1 =
{(0, 0)∗, (3, 0)∗, (0, 3)∗, (3, 3)∗}, and hence (5.21) implies that

1

6
R∗
k+1

⋃

s1∈S(4)
1

(s1 + 6�(k)
s1 ) ⊆ �k .

This yields (5.26) holds.

��
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Now we have all ingredients for the proof of the rest of Theorem 1.9.
Proof of Theorem 1.9 (spectral measure ⇒ admissible pairs)

Suppose ν0 := μ(Rk, Dk) is a spectral measure. By Theorem 5.2, for each
nonnegative integer k ≥ 0, the νk written as in (1.5) is a spectral measure.

Fix k ≥ 0. We next give the proof of Theorem 1.9 by proving the following two
cases.
Case I. In the case that Dk+1 = D(3), we define

A(3) :=
{

(0, s2, . . . , s12) : s j ∈ S(3)
j , 2 ≤ j ≤ 12

}

.

By Theorem 5.5(ii), for any sequence (0, s2, . . . , s12) ∈ A(3), the pairwise disjoint
union set

�(0s2 . . . s12) := �0

⋃

⎛

⎝

12
⋃

j=2

(

1

6
s j + �(k)

s j

)

⎞

⎠

as in (5.13) forms a spectrum of νk+1. By Lemma 5.3, it is easy to see that

�(0s2 . . . s12) ⊆ Z
2
⋃

⎛

⎝

12
⋃

j=2

(

1

6
s j + Z

2
)

⎞

⎠ . (5.27)

We next show that (Rk+2, Dk+2) is an admissible pair for all k ≥ 0.

(i) If Dk+2 = D(3) in νk+1, it follows from Corollary 5.8(i) that, for any
(0, s2, . . . , s12) ∈ A(3), there are two integers t (k+1)

1 , t (k+1)
2 ∈ Z

2 depending on
(0, s2, . . . , s12) such that

{

1

6
R∗
k+2(2, 4)

∗ + R∗
k+2t

(k+1)
1 ,

1

6
R∗
k+2(4, 2)

∗ + R∗
k+2t

(k+1)
2

}

⊆ �(0s2 . . . s12).

Therefore, we conclude from (5.27) and Lemma 5.4(ii) that

{

R∗
k+2(2, 4)

∗, R∗
k+2(4, 2)

∗} ⊆
⋂

(0,s2,...,s12)∈A(3)

⎛

⎝6Z
2
⋃

12
⋃

j=2

(

s j + 6Z
2
)

⎞

⎠ ⊆ 6Z
2,

that is,
{

R∗
k+2(1, 2)

∗, R∗
k+2(2, 1)

∗} ⊆ 3Z
2. It follows that

R∗
k+2(1,−1)∗ ∈ 3Z

2 and R∗
k+2(−1, 1)∗ ∈ 3Z

2. (5.28)

Write the matrix Rk+2 as

Rk+2 =
[

a b
d c

]

= 3

[

a1 b1
d1 c1

]

+
[

a2 b2
d2 c2

]

=: 3R1 + R2, (5.29)
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where a1, b1, c1, d1 ∈ Z and a2, b2, c2, d2 ∈ {0, 1,−1}. Thus, by the residue
system of modulo matrix diag[3, 3], it follows from (5.28) that the matrix R2 in
(5.29) must belong to one of the following matrices

[

0 0
0 0

]

, ±
[

0 1
0 1

]

, ±
[

1 0
1 0

]

, ±
[

1 1
1 1

]

, ±
[

1 −1
1 −1

]

.

By [3, Proposition 2.5] or [19, Theorem 1.8], (Rk+2, D(3)) is an admissible pair
for each k ≥ 0.

(ii) If Dk+2 = D(4), by Corollary 5.8(ii), we get that, for any (0, s2, . . . , s12) ∈ A(3),
there are two integer vectors t (k+1)

1 , t (k+1)
2 ∈ Z

2 depending on (0, s2, . . . , s12),
such that
{

1

6
R∗
k+2(3, 0)

∗ + R∗
k+2t

(k+1)
1 ,

1

6
R∗
k+2(0, 3)

∗ + R∗
k+2t

(k+1)
2

}

⊆ �(0s2 . . . s12).

Similar to (i) above, we can get, from (5.27) and Lemma 5.4(ii), that

{

R∗
k+2(3, 0)

∗, R∗
k+2(0, 3)

∗} ⊆ 6Z
2 ⇔ {

R∗
k+2(1, 0)

∗, R∗
k+2(0, 1)

∗} ⊆ 2Z
2.(5.30)

This clearly yields that each element of R∗
k+2 belongs to 2Z, we denote it by

R∗
k+2 ∈ M2(2Z); in other words, if we write Rk+2 =

[

a b
d c

]

, then a, b, c, d ∈ 2Z.

By setting

C =
{(

0
0

)

,

(

a/2
b/2

)

,

(

d/2
c/2

)

,

(

(a + d)/2
(b + c)/2

)}

⊆ Z
2,

one can check that the the matrix

HR−1D(4),C := [e2π i〈R−1d,c〉]d∈D(4),c∈C =

⎡

⎢

⎢

⎣

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎤

⎥

⎥

⎦

is unitary, that is, (Rk+2, D(4)) is an admissible pair for each k ≥ 0.

Case II. In the case that Dk+1 = D(4), we define

A(4) := {(0, s2, . . . , s9) : s j ∈ S(4)
j , 2 ≤ j ≤ 9}.

It follows from Theorem 5.7(ii) that, for any sequence (s2, . . . , s9) ∈ A(4), the set

�(0s2 . . . s9) := �0

⋃

⎛

⎝

9
⋃

j=2

(

1

6
s j + �(k)

s j

)

⎞

⎠ (5.31)
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is a spectrum of νk+1.

(i) If Dk+2 = D(3), by Corollary 5.8(i), we obtain that, for any (0, s2, . . . , s9) ∈ A(4),
there are integer vectors t (k+1)

1 , t (k+1)
2 ∈ Z

2 depending on (0, s2, . . . , s9) such that

{

1

6
R∗
k+2(2, 4)

∗ + RT
k+2t1,

1

6
R∗
k+2(2, 4)

∗ + RT
k+2t2

}

∈ �(0s2 . . . s9).

By (5.31) and Lemma 5.6(ii), we get that

{

R∗
k+2(2, 4)

∗, R∗
k+2(4, 2)

∗} ⊆
⋂

(0,s2,...,s9)∈A(4)

⎛

⎝6Z
2
⋃

⎛

⎝

9
⋃

j=2

(s j + 6Z
2)

⎞

⎠

⎞

⎠ ⊆ 6Z
2.

By repeating the arguments after (5.28) and (5.29) in Case I (i), we will get that
(Rk+2, D(3)) is an admissible pair for each k ≥ 0.

(ii) If Dk+2 = D(4), by Corollary 5.8(ii), we get that, for any (0, s2, . . . , s9) ∈ A(4),
there are two integer vectors t (k+1)

1 , t (k+1)
2 ∈ Z

2 depending on (0, s2, . . . , s9),
such that

{

1

6
R∗
k+2(3, 0)

∗ + R∗
k+2t

(k+1)
1 ,

1

6
R∗
k+2(0, 3)

∗ + R∗
k+2t

(k+1)
2

}

⊆ �(0s2 . . . s9).

By (5.31) and Lemma 5.6(ii),

{

R∗
k+2(3, 0)

∗, R∗
k+2(0, 3)

∗} ⊆
⋂

(0,s2,...,s9)∈A(4)

⎛

⎝6Z
2
⋃

⎛

⎝

9
⋃

j=2

(s j + 6Z
2)

⎞

⎠

⎞

⎠ ⊆ 6Z
2.

By repeating the arguments after (5.30) in Case I (ii), we will get that (Rk+2, D(4))

is an admissible pair for each k ≥ 0. This completes the proof of Theorem 1.9 for
the case that spectral measure implies that admissible pairs.
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