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Abstract

Let 2 be a homogeneous function of degree zero, have vanishing moment of order
one on the unit sphere sd-1 (d = 2). In this paper, our object of investigation is the
following rough non-standard singular integral operator

Q —
Toaf ) =pov. [ (A0 - A0) - VAGIx = ) F0)d.
Rd |x — y[4F

where A is a function defined on R? with derivatives of order one in BMO(RY). We
show that T 4 enjoys the endpoint L log L type estimate and is L” bounded if 2 €
L(log L)*(S?~1). These results essentially improve the previous known results given
by Hofmann (Stud Math 109:105-131, 1994) for the L? boundedness of Tq, 4 under
the condition Q € L9(S?~1) (g > 1), Huand Yang (Bull Lond Math Soc 35:759-769,
2003) for the endpoint weak L log L type estimates when Q € Lip, (S4~1) for some
a € (0, 1].
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1 Introduction

This paper will be devoted to study the boundedness of certain non-standard Calderdn-
Zygmund operators with rough kernels. To begin with, let d > 2, RY be the d-
dimensional Euclidean space and S~ be the unit sphere in R¥. Let £2 be a function
of homogeneous of degree zero, @ € L' (S?~!) and satisfy the vanishing condition

/ Qx)x;jdx =0, j=1,...d. (1.1)
§d-1

Define the non-standard rough Calderén-Zygmund operator by

Q —
Ta. 4 f(x) = p.v. f SO (A - AG) — VAW — 1) F )y,
R X — yld+

(1.2)

where A is a function on R? such that VA € BMO(R?), that is, 3, A € BMO(R?) for
allnwith 1 < n < d.Thisclass of singular integrals is of interest in Harmonic analysis.
It was well-known that Tq_4 is closely related to the study of Calderén commutators
[1, 2]. Even for smooth kernel €2, since L (R%) G BMO(RY), the kernel of the
operator T 4 may fail to satisfy the classical standard kernel conditions. This is the
main reason why one calls them nonstandard singular integral operators.

Recall that if VA € L®(RY), then the L?(RY) boundedness of Tq, 4 follows by
using the methods of rotation in the nice work of Caldéron [2], Bainshansky and Coif-
man [1]. Since the method of rotations doesn’t work in the case of VA € BMO(R?),
Cohen [7] and Hu [24] obtained the L? (Rd) boundedness of T 4 with smooth kernels
by means of a good-A inequality. More precisely, if 2 € Lip, (SY~!) (0 < a < 1),
then Cohen [7] proved that Tq 4 is a bounded operator on L” (R for 1 < p < oo.
Later on, the result of Cohen [7] was improved by Hofmann [19]. It was shown that
Q e Uy LY (S?-1) is a sufficient condition for the L?(R?) boundedness of Tq . a.
If Q € L®(S¢~1), Hofmann [19] demonstrated that Tq. 4 is bounded on L” (R4, w)
forall p € (1, co)andw € A p(Rd ), where and in what follows, A p(Rd) denotes the
weight function class of Muckenhoupt, see [12, Chap. 9] for properties of A p(Rd ).

It is quite natural to ask if one can establish weak type inequalities for T, 4 or not.
Hu and Yang [23] considered the operator

a(x) —a(y) —a' (y)(x —
(x — y)?

T, () = p.v. fR Y £y,
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where a is a function on R such that @’ € BMO(R). Hu and Yang showed that, 7,
may fail to be of weak type (1, 1), which differs in this aspect from the property of the
classical singular integral operators, see Remark 3 in [23, p. 762]. As a replacement
of weak (1, 1) boundedness, it was shown in [23] that, when 2 € Lip, (Sd_l) with
a € (0, 1], Tq 4 still enjoys the endpoint L log L type estimates. This, tells us that,
when €2 satisfies suitable regularity condition, the endpoint estimates of T 4 parallels
to that of the commutator of Calderén-Zygmund operators with symbol in BMO(R?).
For the endpoint estimates of the commutator of Calderén-Zygmund operators, see
[22, 29] and the references therein.

Now, we recall some known results of classical singular integrals and make a
comparative analysis. It was first shown by Calder6n and Zygmund [3] that the singular
integrals Tg defined by

Q
Tof(x) = p.v. / ROMD (o yay
RS |yl

is bounded on L?(R%) (1 < p < 00) either when € is an odd function and € €
LY (S?—1), or © is an even function with de,l Qdo = 0and Q € Llog L(S4™1).
Later on, the condition 2 € L log L(S? 1)y was improvedto 2 € H Lsd-1y by Connett
[8], Ricci and Weiss [30], independently. Since then, great achievements have been
made in this field. Among them are the celebrated works of the weak type (1, 1) bounds
given by Christ [5], Christ and Rubio de Francia [6], Hofmann [17], Seeger [31], and
Tao [33]. It was shown that Q € L log L(S?~1Y is sufficient condition for the weak
type (1, 1) estimate of Tq. Recently, this result was generalized by Ding and Lai [9]
for the operator T defined by

TS f(x) =p.v. /Rd Q(x — YK (x, y) f(ndy,

where the kernel Q € Llog L(S?~!) and K needs to satisfy some size and regularity
conditions. For other related contributions, we refer the readers to references [10, 11,
15,22, 25-28, 32, 34, 35] and the references therein.

Consider now the L?(R?) boundedness and endpoint estimates for the operator
Tq, o when Q satisfies only size condition, things become more subtle. Hu [21]
considered the L2(R?) boundedness of To, Ao when Q € GSg (891, which means,

sup / |§2(9)|log‘6 <;)d9 < Q. (1.3)
sd-1 1< -0

{ES‘{*I

The main result in [21] can be summarized as follows:

Theorem A Let Q2 be homogeneous of degree zero which satisfies the vanishing con-
dition (1.1), A be a function on R? such that VA € BMO(R?). Suppose that
Qe GSﬁ(Sd_l)for some f > 3, then Tq 4 is bounded on L*(RY).

This size condition was introduced by Grafakos and Stefanov [14], to study the
L? (R%) boundedness of the homogeneous singular integral operator. As it was pointed
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out in [14], there exist integrable functions on S9=1 which are not in H'(S?~1) but
satisfy (1.3) for all B € (1, 00). Thus, GSg (S4~1) is also a minimum size condition
for functions on S?~!. It is easy to verify that

Ug=1L1(S9™1) € Np=1GSp(S?™h), Llog L)P(S77Y) € GSp(Si).

For the L”(Rd) (1 < p < oo) boundedness of Tq 4, the best known condition
Qe Uys LY (Sd_l) is given in [19]. There is no any endpoint estimate for 7 4 when
Q only satisfies some size condition, even if @ € L>(S?~!). Note that the following
inclusion relationship holds

Lip, (S (0 <a < 1) € LIS (g > 1) € Log L)*(S*™")
C Llog LS~ ¢ HY (s ). (1.4)

Therefore, it is quite natural to ask the following question:

Question: What is the minimal condition such that T 4 is bounded on LP(RY)
for all p € (1, 00)? Does the endpoint estimate of L log L type still holds true when
2 only satisfies size condition?

The main purpose of this paper is to show that Q € L(log L)*(S?~!) is a sufficient
condition for the L? (R?) boundedness and weak type L log L estimate for T 4. Our
first result can be stated as follows.

Theorem 1.1 Let Q be homogeneous of degree zero, satisfy the vanishing moment
(1.1), and A be a function on R? such that VA € BMO(RY). Suppose that Q €
L{log L)*(S?~1Y). Then Tq, A is bounded on L2(RY).

Let Tg 4 be the dual operator of Tq, 4, defined as

~ Q —
Toaf() = p.v. / =D (4 — A — VA x — ) Oy (1.5)

Rd |x — y|d+1

Theorem 1.2 Let Q be homogeneous of degree zero, satisfy the vanishing condi-
tion (1.1), and A be a function on R? such that VA € BMORY). Suppose that
Q € L(log L)>(S4~Y). Then for any » > 0 and ®(t) = tlog(e + t), the following
inequalities hold

{x eRY: | Toaf(0)| > A} S /Rd o <|fi—x)|) dx; (1.6)
lx e R (Toaf )] > 2| S A7 Fll ay- (1.7)

As far as we know, there is no previous study concerning the weak type endpoint
estimates for T 4, even if Q € Lip, (Sd ~1) for a € (0, 1]. We consider this operator
mainly to deduce the following precise L” (R?) bounds of Tq 4.
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Theorem 1.3 Let Q2 be homogeneous of degree zero, satisfy the vanishing condition
(1.1), and A be a function on R? such that VA € BMO(RY). Suppose that Q €
L(log L)*(S?~1). Then

” .
» 1, 2]
T i <{P I fllLp ey p € (1, 2];
1o 4@ S py £l gy, p e @, o).
Remark 1.4 Theorem 1.1, along with Theorem 1.3, shows that Q2 € L(log L)2(S4—h
is a sufficient condition such that T 4 is bounded on L? (R) forall p € (1, c0). This
improves essentially the result obtained in [19, Theorem 1.1], in which, it was shown
thatif Q € Uy~ L9 (S?=1), then Tq. 4 is bounded on LP(RY) forall p € (1, 00).

Remark 1.5 As it was pointed out, for 8 € [1, 00), L(log L)# (S~ 1) c GSﬁ(Sd_l).
However, it is unknown whether L (log LS4y ¢ GS,g/(Sd’l) when B/ > B.
We conjecture that there is no inclusion relationship between L(log L)#(S?~!) and
GSﬁ/(Sd_l) when 8’ > B, and believe Theorem A and Theorem 1.3 do not imply
each other in the case p = 2.

We believe that the condition 2 € L(log L)2(S?~1Y is the weakest condition for
these weak type results to hold, in the following sense.

Conjecture 1.6 2 € L(log L)2(S471) is the minimal condition for the weak L log L
type estimate of T 4, and weak (1, 1) estimate of Tq 4, in the sense that the power
2 can’t be replaced by any real number smaller than 2.

The article is organized as follows. Section 2 will be devoted to demonstrate the L>
boundedness of Tq 4. In Sect. 3, we will prove Theorem 1.2 and Theorem 1.3. The
proof of Theorem 1.2 is not short and will be divided into several cases and steps.
Smoothness trunction method will play an important role and will be used several
times.

Let’s explain a little bit about the proofs of the main results. In Sect.2, we will
introduce a convolution operator Q with the property that

o0
d
/ 0t = 1.
0 S

This makes it possible to commutate with the paraproducts appeared in the proof and
thus obtains more freedom in dealing with the estimates of the L2 boundedness. More-
over, the method of dyadic analysis has been applied in the delicate decomposition
of L? norm of Tq_ 4. At some key points, we will use some properties of Carleson
measure.

The key ingredient in our proof of Theorem 1.2 is to estimate the bad part in the
Calderén-Zygmund decomposition of f. In the work of [31], Seeger showed that if
Q € Llog L(S?1), then Tq is bounded from L' (R?) to L *°(R¢). Ding and Lai [9]
proved that if 2 € L log L(Sd_l) and for some 6 € (0, 1], the function K satisfies

IK(x, I S (1.8)

lx — yl4
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lx1 — x2/°
IK(x1, y) — K(x2, I S Ty = ] |x1 — ¥ = 2|x1 — x2], (1.9)
|y1 —yzl‘s

|K(x, y1) — K(x, ) S el Ix —yil = 2ly1 — y2f,  (1.10)

and Tg is bounded on L*(R?), then T is bounded from L'(R?) to L' (RY).
However, when A has derivatives of order one in BMO(Rd), the function
[A(x) — A(y) — VA()(x — )]]x — y|~4~1 does not satisfy the conditions (1.8)—
(1.10). Let f be a bounded function with compact support, b = )", b; be the bad
part in the Calderon-Zygmund decomposition of f. In order to overcome this essential
difficulty, we write

Q
Ta, ab(x) = ZZ / R - |d+1¢>s<x — (AL&) = AL())bL(y)dy

+err0r terms,

where Ap (y) = A(y) — Zzzl(anA)Lyn. ¢s(x) = ¢(27%x). Here, (9, A) denotes
the mean value of 9, A on the cube L, ¢ is a smooth radial nonnegative function on
R4 such that suppp C {x : 7 < |x] < 1} and Do 9s(x) = 1forall x € R7\{0}.
Then, our key observation is that, for each s € Z and L with side length £(L) = 2/,
the kernel |x — y| =4 s (x — y) (AL (x)— AL (y))XL (y) instead satisfies (1.9) and
(1.10).

In what follows, C always denotes a positive constant which is independent of the
main parameters involved but whose value may differ from line to line. We use the
symbol A < B to denote that there exists a positive constant C such that A < CB.
Specially, weuse A <, , B to denote that there exists a positive constant C depending
only on n, p such that A < CB. Constant with subscript such as c1, does not change
in different occurrences. For any set E C RY, x e denotes its characteristic function.
For a cube Q C R4, £(Q) denotes the side length of Q, and for A € (0, c0), we use
A Q to denote the cube with the same center as Q and whose side length is A times that
of Q. For a suitable function f, fdenotes the Fourier transform of f. For p € [1, oo],
p’ denotes the dual exponent of p, namely, 1/p’ =1—1/p.

2 Proof of Theorem 1.1
This section will be devoted to prove Theorem 1.1, the L?(R?) boundedness of Tq. A
when Q € L(log L)*(S?~!). We will employ some ideas from [19], together with many

more refined estimates. We begin with some notions and lemmas. Let ¥ € C§° (R%)
be a radial function with integral zero, supp ¥ C B(0, 1), ¥s(x) = s 4y (s~ 'x) and

assume that
® ~ _,ds
[(Y()]'— =1
0 S
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Consider the convolution operator Qg f(x) = ¥, * f(x). It enjoys the property
that

o ,ds
/O 0l =1. 2.1)

Moreover, by the classical Littlewood-Paley theory, it follows that

I([) 10r7)™]

Let ¢ be a smooth radial nonnegative function on R¢ with supp ¢ C {x : ‘l‘ <|x| <1},
Y ps(x) = 1 with ¢ (x) = 27/9¢(27/x) for all x € R?\{0}. For each fixed j € Z,
define

vy S 1 2. 2.2)

Tou 1160 = [ Kase 0700y 3
where
Qx —y)
Ka j(x, y) = W(A(X) A() = VAW (x = ))¢;(x = ¥).

The following lemmas are needed in our analysis.

Lemma 2.1 ([19]) Let Q2 be homogeneous of degree zero, satisfies the vanishing con-
dition (1.1) and € LY(S9™1). Let A be a function on RY such that VA € BMO(R?).
Then for any k1, ky € Z with ki < ka, the following inequality holds

| 2 [ Kt ] S 19,

ki<j<ks

Lemma 2.2 ([19]) Let Q be homogeneous of degree zero, integrable on S*~' and sat-
isfy the vanishing moment (1.1). Let A be a function on R? such that VA € BMO(R?).
Then there exists a constant € € (0, 1), such that for s € (0, 00) and j € Z with
277 <1,

”QSTQ,A;jl”LOO(]Rd) S ||Q||L1(Sdfl)(2_js)e-

Lemma 2.3 ([19]) Let 2 be homogeneous of degree zero and 2 € L*®(S*~1). Let A be
a function on R¢ such that VA € BMO(Rd).' Then there exists a constant ¢ € (0, 1),
such that for s € (0, o0) and j € Z with27/s <1,

||QsTS2,A;jf||L2(]Rd) ~ ||Q||Loc(§d 1)(2 jS) ||f||L2(]Rd)

Birkhauser
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Lemma 2.4 ([20]) Let 2 be homogeneous of degree zero, have mean value zero on
S?1 and Q@ € L(log L)*(S?~1). Then for b € BMO(R?), [b, Tql, the commutator
of Tq with symbol b, defined by

b, Talf(x) = b(x)Taf (x) — Ta(bf)(x), f € CR?),

is bounded on L”(Rd)for all p € (1, 00).

Lemma 2.5 ([19]) Let Q2 be homogeneous of degree zero, and integrable on S~ and
satisfy the vanishing moment (1.1), A be a function in R? with derivatives of order one
in BMO(R?). Then foranyr € (0, 00), functions 1, 7> € Cy° (RY) whose supported
on balls of radius r,

(117, | Looay + IV oo (ra))-
1

2
J=

| [ T, a0 < 19205101~
R
The following lemma plays an important role in our analysis.
Lemma 2.6 ([4]) Let A be a function on R? with derivatives of order one in LY (RY)

for some q € (d, o). Then

1
4G) = A S I = I VA@)7dz)",

e, 1e—yn | 1 ey
where Iy |x—y|) is a cube which is centered at x with length 2|x — y|.

We need a lemma from the book of Grafakos.
Lemma 2.7 ([12, p. 140]) Let ® be a function on R? satisfying for some 0 < C, 8 <
00, |®(x)| < C( + |x)) "%, Fort > 0, set ®,(x) = t 4 ®(t~"x). Then a measure

uon R‘_fr] is a Carleson if and only if for every p with 1 < p < oo there is a constant
Cp.a,, such that for all f LP(RY) we have

[, 1@ o dnten = Cpa [ 17001ax.
RJr_H R4

Proof of Theorem 1.1 Invoking (2.1), to prove that Tq 4 is bounded on L2(RY), it
suffices to show the following inequalities hold for f, g € C(‘)’o (Rd ),

<t 4 4 ds dt
[ [, 04a a0t reogmdx S E S 1z ez @4
0 0 JRrd s t

oo [ ds dt
[ [, 0traaetrwewax S < 11w sl @9
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First, we will prove (2.4). To this aim, the kernel €2 will be decomposed into disjoint
forms. Let

Eo={0eS" . 1Q0)| <1}andE; ={0 €S : 271 < Q@) <2}, ieN.
Set
Qo0) = QO xE,(0), 2;0)=QO)xg; () (i € N).

Fori e NU {0}, let Tgi2 A j be the same as in (2.3) for Tq 4, ; with 2 replaced by ;.
Then

[e e} t ds d
/ f / 0!Ta, 40! f (g W)dx =T
0o Jo JRre st

<[ - ds d
= ZZ/ / / Q5T 4. /fo(X)g(x)dx—S—t. (2.6)
i 0 0 JRY ’ s t

Leta € (Z—ié, 1) be a constant. Fix j € Z, we decompose the set {(s, 1) : 0 <t <
00, 0 < s < t} into three regions:

E(jos,)={(s,): 0<1=2/,0<s =<1}
Ex(jos.)={(s.0:2 <1< @55, 0<s <t}

E(j,s,0) = {(s, ) max{2/, 215 )Te} <1 <00, 0 <5 <t}.

In the following three subsections, we will discuss the contribution of each £ s ; on
the right ride of (2.6) to inequality (2.4). O

2.1 Contribution of E1(j, s, t)

Let ¢ be the same constant appeared in Lemma 2.3 and denote N = 2(le7 + D).
For each fixed i € N, we introduce the notion E i’l and £ 312 as follows

E{ (s, )={(j,s,):0=<1=<2/,0=<s<1 2/ <52}
El (s, D ={(,5,): 0<1<2/,0<s5s<1,2 >s2V)

Then, one gets obviously that E1(j, s, t) = Ei,l(j’ s, )y Ei)z(j, s, t) = Ei,l U
E’12 Therefore

> % . ds dt
‘ZZ/ / / XEl(j,s,t)Q?TSlz A;ijf(x)g(x)dx——
iz0 0 0 JRrd ’ s t
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et oo oo
< )
=59 3] A N
i=1 j
Sl 0o oo
s [,
i=1 j
o o
+Z/ / XE\(j,s.t)
; 0 0

We first consider term I. Let {/;}; be a sequence of cubes having disjoint interiors
and side lengths 2/, such that

. ds dt
4 i 4
fR QT 4,01 Fg(dx| =5

i ds dt
/R (OITh 401 F (g )dx| ==

ds dt
/ 05Ty A‘jQ?f(x)g(x)dx‘—— =: 1411+ IIL
R4 T st

R = LIJII. 2.7

For each fixed [, let {; € Cgo(Rd) such that supp ¢ C 48d1;, 0 < ¢ < 1 and
g1(x) = 1 when x € 32d1;. Let x; be a point on the boundary of 504 1; and

d
Ay =AQ) = D (OnA pym: An(y) = A5 (Ma(). y eRY,

m=1

with A7 () = AL (y) — Ap(x;). Note that for x € 30dl; and y € RY with
|x — y| <2/, we have

A(x) —A@Y) = VAW (x —y) = A;(x0) — Ap(y) = VAL()(x — ).

An application of Lemma 2.6 then implies that || Ay, || oo ey S 2/,

For each fixed j € Z, consider the operators Wéz, j and Usiz m:j defined by

, Qi(x —
Wo, jh(x) = /Rd %@u — Vh(y)dy

and

. Qi - m — Ym
Uézym;jh(x)zf =00 =3 ().

R lx — yld+t

The method of rotation of Caldeén-Zygmund states that for p € (1, 00), they enjoy
the following properties:

IWS, il rway S 27719l L gsa—1y 11 Lo ey

||U512, m,jh”Lp(Rd) 5 l1€2; ||L1(Sd*1) ||h||Lp(Rd),
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see [12, pp. 272-274]. For each fixed [, let hy ;(x) = Qs8(x)x1,(x) and I}* = 60d1;.
For x € supphy, ;, we have

Thoa, Qi f () = A ()W ;07 f(x) — Wiy (AL, OF f)(x)

d
" Uy s O AL OF ().

m=1

Hence, to show the estimate for I, we need to consider the following three terms.

ZLMLM
R—ZLMLM

dt ds
Z/ A Qhs (W) 0F F()ax| T

' dt ds
; A;d Qghs,[(x)Wé’j(AI, Q?f)(X)dx‘TT;

and

w

R

d
Z/ Qs (U A 02 1) x| 2 S

ey

ml/

—. 3
- Z Ri,m
m=1

For R}, note that

ZZ/ ||Q3sz||Lsz) lNZ/ Z||hs,z||iz(w)ds—s

) ds
S l / ”QYgHLZ(Rd)
0

Then, the well-known Littlewood-Paley theory for g-function leads to that

2 1,2
ds ds
3 2 . 2
h <
;XI:/NW ”Qs SJ”Lz(Rd) p ~ 1 (/0 |0s8()] >

For x € 48d1;, since sup{¢;} C [2/72,27] and note that ¢;(x — y)Q} f(y) =
x]*(y)d)j(x —-y) Q;‘f(y) then, W, ](Q4f) =Wy ](XI* Q4f) It then follows from
Holder’s inequality, Cauchy-Schwarz inequality and the boundedness of WQ that

2

<illgl? s pa-
~ L2 Rd
L2RY) (RY)

2]
ds dt\1/2
R!| < ZZ/} ,N/Q,»,,- 103512 gty =)
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2 W dt ds\1/2
ZZ o o 1AW Ot ©F Py )
2 dt ds\1/2
SRl L1 51y ZZ/, fz 19305 a2 ey S)
dt ds\1/2
ZZ o o 0 Q)

Si ”Qi”Ll(Sd*l)”f”Lz(le)”g”Lz(]Rd)’

where in the last inequality we have used the fact that the cubes {60d [;}; have bounded
overlaps.

The same reasoning applies to Rl.2 with small and straightforward modifications
yields that

4 ds\1/2
2 . 2 S
|Ri | S l”Qi ||L](Sd7|)<zv/2j—iN ”QYgHLZ(Rd)T>
J

2/ din1)2
x(ZZl: /2 a0 )
J

.2
5 l ||Qi||L1(sdfl)||f||L2(Rd)||g||L2(Rd)~

Now we are in a position to consider each term R?m. For x € 32d1;, it is easy to
check

AL ()07 f(x) = g (x)[3nA, Q] 0} F () + 4 (x) Qi ([amA, Q107 F)(x)
+4(x) Q2 (I AL 02 ) (x).

Therefore Rl.3 . can be controlled by the sum of the following terms:

d d
R?;,i,=2/2] /2 B / Oy Uy (A, 0110 P)wax|
RYZ =Zf / Z/ O3 i (U ;i (10, Q102 )0y |22
t,m 2j—Ni j—iN ] R4 s Qom, j >t mee ! d t s ’
R —Z Z Q3O 07 (Bn Ay OF) f (x)dx \‘” &
im hi-Ni Jpi-iN 5,1 Qm,j>t I
J
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Observe that [[0,,A, Q/1h(x)| < My, ah(x), where My, 4 is the commutator of the
Hardy-Littlewood maximal operator defined by

Mj,, ah(x) = sup l’_dfl | |0m A(x) — 0 AW [|R(y)|dy.
x—y|<r

r>0

Holder’s inequality, along with the L%(RY) boundedness of M, 4 and UL
that

Qum ],1t yields

R < ( Z/y N,/z, INHQ 0 A

LXR4) t s

dt ds\1/2
LW A, 0100 1) )

Si ||Qi||L1(sd—l)||f||L2(Rd)||g||L2(Rd)-

Exactly the same reasoning applies to R>2, we obtain

i, m’
R32 < 219
IR S 219l sa-1y | F 1l L2y 181 22 ray-

As for R> observing that for fixed/ € Z, s, t < 27, one gets

zm’

0101 07 /)(X) = Qi@ Apxs Q7 (),
Ugi2,m,st = QSUéZ,m,j and O;0; = Q0.

Henceforth we have
dt d
ny . /2] N ]Z/thQA s 10 Q5 Uy Q1o Ky 0F P00 L
dt ds\1/2
22/1 . /2, 10011 )
dt ds\1/2
ZZ/J Ni _/;J iN H Qs UQ’" /Ql(amAIIX’I Qi f))HLZ(IR")TT> ’

Let x € 48dI;, q € (1, 2) and s € /=127y, A straightforward computation
involving Holder’s inequality and the John-Nirenberg inequality gives us that

|Qs@nAph)(x)| < /Rd Vs (x = W0 AWY) = (OmA)1(x, 5|1 (Y)|dy
+(0m A — (O A)1(x, )] /ﬂ;d Vs (x — IR (y)Idy
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< Myh(x) + log(1 +27 /s)Mh(x)
< Mgh(x), (2.8)

where I (x, s) is the cube center at x and having side length s.
This inequality, together with the boundedness of Uy, ,, j and maximal function
Mh, implies that

dt ds\1/2
ZZ/J ) /2 10U 010 s 02 oy L)

ZZ/ |USZm]Qf(a AI[XI*Q f)HLsz)t>

5 l||Qi||L1(sdfl)||f||L2(Rd)~

On the other hand, by the L? boundedness of convolution operators and the Littlewood-
Paley theory for g-function again, we have that

n dt ds
ZZ e QO 2 oy~

ds
)
S.z l /0‘ ”ng”LZ Rd) < l ”g”LZ ]Rd)'
Therefore
RS < 2|2 |
im o~ i Ll(sdfl)||f||L2(Rd)||g||L2(Rd)~

Combining the estimates for R1 R2 and R3 C(withl <m <d,n=1,2,3)inall
yields that

o0
1S 219l sa-ny I ey gl ey S 1 N2y I8l 2ay,  (2.9)
i=1

since
o
%)
D i1l pigsi-1) S IR Laog 201y

It remains to discuss the contribution of terms II and III. For i € NU {0}, by Lemma
2.3, one gets

o ds dt
> xE, NOTG a5 Q1 Fll2e 1 Q38 2y — —
X 0 0
J
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ds di\3
<Nl i) f f ZXE, I 10381 ey =)

dsd
/ / ZXE’ (2 js)gllQ f”L2(Rd) a :) . (210)

Note that
El (s, ) C{(.s,):0=<1 <2/, 0<s <t 2/ >max{r, s2V}},
Thus

o o S 2
ZXE’iz(z ]S)s <2 lNS/Z(;)E/ X{(s,t):sft}(sv 1),
I :
which further implies that

o oo . ds dit\ 3}
. —J\E 3 02 i
(/O /0 ZXELZ@ 1038122 ey )
2dl ds N
<2 Vs / / P Qg ) S 2N gz

Similarly, we have that
dsdt\s _ __
/ / Z XE’ (2 lS) ”Qt f”LZ(Rd) P ) < 2 Nl£/4||f||L2(Rd)

Therefore, these inequalities, together with the fact that E (1)’1 = () may lead to

oo
M+ S Y 2272 fll oy I8l 2@y S 1 2@ llgl 2@y 211
i=0

Inequality (2.11), together with the estimate (2.9) for I, gives that

4 ds dt
‘ZZ/ / / XE G OF Ty . ;9 f(X)g(x)dx—_

Sz waylIgl L2 way- (2.12)
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2.2 Contribution of E5(j, s, t)

Leta € (4£L, 1),i € NU {0}, and write

a+2°
Qi Ya
ZZ/ / / Q4TS2A ,Q4f(x)g(x)dx’—_
i jez 2
Qi) Ta
. d d
: ZZ/ f f Q4TQA JQ4f(X)g(x)dx ras
i jez J=Ni J2J
2! Ni (2/S Dt)l a . d d
+ZZ/ / ’/ Q?TEIZ,A th f(x)gx)dx _t_s
i jeZ 2J R4 s
= IV+ V. (2.13)

(2fs /A= g¢ ds
T s
vanishes, we only need to consider the case i € N. Since s > 2/ '=Ni  then

(s~ T% < 2i2N 1%  Therefore

Firstly, we consider the term IV. Wheni = 0, the integral f2 i—Ni

@/ dr ds

1
) I
) / 0!Th 4,01 f (¥)g(x)dx|—

vV = ZZlefz

i JeZ

szzﬁmg
szzﬁmg

where h; ;1 (x) = Qsg(x)xy, (x), and {I;}; be the cubes in (2.7).
Observe that when x € 4dl;, Tg, (0 HX QM (x) =

T a ,(§IQ4f)(x)Q3h3 1(x), we rewrite

tds

| st

2i9'N dS

Z/ TQA,Q;f(x)Q3 sz(x)dx

Ty 4 GO @)

d
= (A,, W ;01 f(x) = Wh (A, 07 F)(x) = Y Ul (@ldmA, Q1107 £)(x)

m=1

d
— Ul j G il A, Q10 F)(x)

d
= 3 Ul 6101 Q1 0 A7, QF )(0)) 4 ().
m=1

Birkhduser



Journal of Fourier Analysis and Applications (2024) 30:32 Page 17 of 44 32

Similar to the estimate for Rl.1 and Rl.z, we know that

v 3y ds
/1 Nt/ }Z‘/‘ WQ ](AIIQtf)(x)Q A[(X)dx p

5 2121 L1 ey L f Nl 2 ey g N L2 ey (2.14)

and

212
: dt ds
Z / / Z) / Ay (0)OWh ;07 f(X) Q3 1 (x)dx| ——
2j—Ni Joj ; R4 t s
Sl 12 M 1 ey 1 f Nl 22 mey 11811 22 () - (2.15)

On the other hand, for each fixed 1 < m < d, the same reasoning as what we have
done for R and R ylelds that

212 . dt d
ZZ / / / UL @l A, 01102 ) Q3hs (0)dx| ==
j=Ni J2j R4 t s

5 P19l @y L f 2y 181 2R (2.16)

and

2i2"V dt ds
sz] M/2 )/ Uy 60110 A, QIQF 1)) Qs )| T

S 2190l L way I F 1l 2wy 181 22 ey (2.17)
Note that if x €  4d[(x), then Usiz,m,j(Qt Q,(amX;IQ%f))(x) —
Uéz’m’j(g or Qt(BmZ, Q?f))(x). Since the kernel of Q, is radial and it enjoys
the property that

< Ul j Q0 ) g >=< Ul :(Gf), Qi8> .
Hence, we have
/R Uty (@100 Q1O AL Q7 ) (1) Qs (x)dx
= ./Rd Uéz,m,st(amg;l Qthzf)(X)QtzQshs,z(x)dx

~ [, U 0:l0nA, 00} ()0 0uhs 51

Birkhauser



32 Page 180of44 Journal of Fourier Analysis and Applications (2024) 30:32

A trivial argument then yields that

219N dt ds
ZZ U, m,j QsldmA, Q5107 f (007 Qshy i (x)dx—==
J
2Ji—iN J2j R4 )
51 12 Ml L1 sa-1) L fll 2 ey 18 1l 22 Ry (2.18)
Now we write
fR Ul 050 A0, 0 ) 0 Qb ()
= fR Qs Q7D A, QUG ,, ;OF Qshs 1(x)dx
+ /R Q507 f(N)QslomA, Ug ;107 Qshs i (x)dx
+ /R Q07 f(N)QsUg  j10m A, QF1Qshs 1 (x)dx
+ [ 00 00Uk ;0o A Qulhes (i
/ Qthf(x)QSUQm]Q[ Qs (OmAphs ) (x)dx = Zsz ml
k=1
A standard argument involving Holder’s inequality leads to that
Z/ f2121N1a|Z idtds
Si-ni Joi lml
22" 5 ; s s dt ds
i by IIQSQ,fIILz(Rd) [0mA, OslUg 1 ;907 058 C@H T s
2]2N1 o
dt ds\1/2
< ||Q “Ll(Sd l) Z/] Nz/zv ”Q Qlf”L2(Rd) t ?)
212"
dt ds\1/2
2
Z/QJ Nr/; ”Q’Q L2RY) [ s )
(2.19)

f,l |Qi||Ll(sd—l)||f||L2(Rd)||g||L2(Rd)-

Similarly, one can verify that

22N s dids _
Z/y /2 |lesi,m‘,|7?§z 19200 2151 Lf 2y I8 2

(2.20)
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and
2021 dt ds
ZA _Ni / ’ Zst m l|__ Si ”Q ”Ll(sd 1)||f||L2(Rd)||g||L2(Rd)
j—Ni
(2.21)
On the other hand, the fact (see [20, Lemma 4 and Lemma 3])
[0 A, Uéz,m,j]h”LZ(Rd) 5 (2_i +i||Qi||L1(Sd71))||h||L2(Rd),
implies that
0J 2i0iN TS di ds
3 I I S AT
j
<@+ i2||szi||L1(Sd-1))||f||u<w)||g||Lz(Rd>- (2.22)

Applying Holder’s inequality and inequality (2.8) inthe case s € (2/~!, 27), we obtain

a
iNT=5

2727 T drd
// N’/Z |Zszml|__s

2/2
dt ds\1/2
SNl gsim, }j/ N/2 10,02 Mg =)
Jj—Ni

272" ~ 2 dtds\1/2
2
OmAnh ‘ )
Z/;J Nz/; ‘QtQS(Z mA sl LZ(R‘])I B
2 ds\1/2
St o (2 / hoi) [ )
. ds\1/2

< 202015 1 2 (3 /2 - ||Mqh||iz(w)7)

R J—

J
S 2Rl sa-1) L f I 2res 181 22 ray - (2.23)

Collecting the estimates from (2.14) to (2.23) in all, we deduce that

@5 ds

11
t 7Q,A,‘/ s8x)ax t s

v _ZZf] M/z

S (Zm + Ziznszi||L1(5d71))||f||Lz<Rd>||g||Lz(Rd>
i

i
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S I 2 @ayligl 2 ey - (2.24)

To show the estimate for V, note that for each fixed j, it holds that

{50 0=s <27V 2 <4 < Qs Ta)

Clis,0:2/ <t <o00,0<s<min{2/ N, 2/ Na)),

It then follows that

1

2j7Ni (zjxfot)lf
Z/ / 10 F 12 gy 22T 5y %
— Jo 2 RY) ¢ s
J
en [ @ehe | ds dr
<2 Niel2 / 3 / @) 0} f 12 )
0o . 0 N t
ji2i<t
S 27V f117 gay s

and

2Jj—Ni /s~ a)l—a
Z / /2 IIQ 2172, 2 fs)s
L
I

—Nig/2 (213 R ds
<27V f > f2 —(2 fs>z)||Q P

B 2/> oNi

S 27V gl o oy

Thus, by Lemma 2.3, we obtain

(zls—d)ﬁ

2/ —Ni
dt ds
V< ZZ[ / 10T 1,10} e 10381 2y

1

2/=Ni () gy T=
<Zz’ Zf / ot f||Lz(Rd) Lo )‘f)

l

2! Ni (2/5 1 i gd[ dS 1/2
2 __>
/ /; ”Q g”LZ Rd)( S) P

< Z2’2*N’€/2||f||Lz(Rd)||g||Lz(Rd>. (2.25)

i
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Combining estimates (2.24)—(2.25) yields

0o @ : ds dt

‘ ZZ/ / / Q?TéiA,ijf(x)g(x)dx——

T J2Jo R4 s 1
S 12wy lglL2way- (2.26)

Therefore, by (2.13), (2.24) and (2.26), it holds that

© rt A 4 ds dt

h»> KB Q2T 4 0F F g (00dx =2

- ; 0 0 JRrd s 1
STV +V S fll2we) gl ey,

which gives the contribution of E>(j, s, t).
To finish the proof of (2.4), it remains to show the contribution of the term
Ei(j,s,1).

2.3 Contribution of E3(j, s, t)

Our aim is to prove

ZOO E: o i 4pi 4 ds dt
‘ / [ f XE3(]’S’I)QSTQ,A;thf(X)g(x)d)C—_
0 0 IR st

i=0 j
Sz ey ligllp2ways (2.27)
where
Q;(x —y)
TSZi,A;jf(X) = ./Rd m

X (A(x) = A(Y) = VAW (x — »)¢;(Ix — y) f(»)dy, (2.28)

Since the sum of i and the sum of j are independent and the sum of j depends only on
the functions ¢; and xg,(j, s, ), one may put ¢; - x5 (J, s, t) together in the place
of ¢; in (2.28), and temporary moves the summation over j before ¢; - xg,(j, s, 1),
which indicates that it is possible to move the summation over i inside the integral
again before €2; to obtain €2. After that, one may move the sum of j outside the integral.
Therefore, to prove (2.27), it suffices to show that

e} t
;/zj /(z_jta—l)l/zx

S F 2 way I8l L2 @ay- (2.29)

T p 10 ds di
O5Tq.4,; 0/ f(x)g(x)dx
R4 s t
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To this purpose, we set

WD (x, y) =//ws(x—z> D Ka i@ [ —y) — ¥ (x — y)ldudz.

ji2i <sotl-e

Let HV be the integral operator corresponding to kernel 41 It then follows that

© ! 4 4 ds dt
!Z s 03Ta.4,; 0} f(W)g0dx = |
; 2J (2]t0t—1)1/(¥ R4 s t

) ds dt
||H 0} f||L2(Rd)||Q g||L2(Rf1)

. 4 3 ds dt
+Z / A d(QsTQ,A;,1>(x>Q,f(x)ng<x)dx 2030

Applying Lemma 2.5 and reasoning as the same argument as in [18, p. 1282] give us
that

N _
1hVx, I S (;)Vr e ) x—yl<Cr) (X, ¥),

where y = (d + 2)a — d — 1. This in turn indicates that |[H(VQ, f(x)| <
(£)” M(Q; f)(x). Therefore

o ds dt
||H Q[f”LZ(]Rd)”Q g||L2(Rd)

ds dt

/0/0( MM} I 2y~ t)
© dtds\ 1z
x(/o “ng“iZ(Rd)/; (;)VT?S)Z

S I f 2wy g1 L2 Ra)- (2.31)
It remains to show the corresponding estimate for the second term on the rightside of

(2.30).
Let F{ (s, t) = (QsTq,; j1(x)QF f(x) Q3g(x). Then

et j dsdt
Fi (s, 1)
2 J@ite-1yl/a st
ot . dsdt ¥ (1 dsdt
= FX(svt) - Fx(s»t)
0 0 st 0 0 st

o p@IETHY L dsdr
- / / Fl(s, 1) (2.32)
27 Jo st
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Therefore, it is sufficient to consider the contributions of each terms in Eq. (2.32) to
the second term in (2.30).

Consider the first termin (2.32). Let Py = f Q4 4t Hanand Sawyer [16] observed
that the kernel @ of the convolution operator Py is a radial bounded function with
bound ¢s ™, supported on a ball of radius Cs and has integral zero. Therefore, it is
easy to see that ® is a Schwartz function. Since Pyg = P, * g, it then follows from
the Littlewood-Paley theory that

ds
/ ”Ps‘g”LZ(Rd) ”g||L2(Rd)
0

On the other hand, whenever Q € L'(R?), it was shownin [19,p.121, Lemma4.1] that
Ta.al = b € BMO(RY). Therefore, by [19, p.114, 3.D)], [~ 03 (Q,bP;)% defines
an operator which is bounded on Lz(Rd). However, we can’t use this boundedness
directly in our case, since once using Holder’s inequality, we have to put the absolute
value inside the integral and the L? (R?) boundedness may fail in this case. To overcome
this obstacle, we apply the property of Carleson measure.

Note that |QsTq, Al(x)|2dxsﬁ is a Carleson measure since T 41 € BMO(RY).
By Holder’s inequality, Lemma 2.7, it yields that

oot 4 3 ds dt
]/ / / Y 0 To 4 ;1) Q] f(x) Qg (x)dx——
0 0 JRd ; s t

1 1
o0 ds\?2 d
< (/ / |Q§g<x>|2dx—s) (/ Py F (1210 T 10 P2 s)
0o Jrd s R+

S 2 way gl L2 ray (2.33)

On the other hand, by Lemma 2.2, one gets
105 Ta, a; j U oy S IR0 L1 a1y 277 9)E.

Denote by DJ o =1G.s. ) s <1 <27, D/ or =10 s, D o s <1540 <
2 < t}. It then follows that

7o dsd
S ] ecta et rmoism|a S
7 0 0 JRrd s t

oo (i hle ds dt
[ [, loTa xs100} r0dseo|ax

2
ds dt\1/2
SZ{ / Z(z I X G DN 1 2y~ t’)

i=1

€ ds dt\1/2
X(/O f Z@ T Ky G5 D158l gay — t) }
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N 12 ey 18Nl L2 (Rays (2.34)

where in the last inequality, we used the property (2.2).
Combining (2.32)—(2.34), we have

= ds dt
)Z/ / . / (05T, D(X)Q} F(x) Q3 g(x)dx——
; 2J (2thl—|)1/Dl R4 t

S Il 2y llg L2 ray s

which, together with (2.31), leads to (2.27). This finishes the proof of E3(j, s, t), and
also completes the proof of inequality (2.4).

2.4 Proof of (2.5)

To finish the proof of Theorem 1.1, it remains to show the estimate (2.5). Observe that

e 4 s dt
/ / / QSTQ'AQt f(x)g(x)dx__
0 Jt R p

e} K d d
_/ / / 0iTg 405 8(x)f(x)dx_t_s
0 0 JRA P

where ﬁ(x) = Q(—x) and sz 4 1s the operator defined by (1.5), with €2 replaced by
Q. Let T, ,, be the operator defined by

3 Qx = ¥) Com — ym)
T ) = p.v. [ ZEDCR Iy,

It then follows that

d
T sh(x) = Ty 4h(x) — D _[9mA. Ts_,, 10 (x).

m=1

Inequality (2.4) tells us that

ot 4 4 ds dt
[ ] 0415 a0tes a5 S U lagaliel o 239)
0 0 JRrd s t

For each fixed m with 1 < m < d, by duality, involving Lemma 2.4 and Holder’s
inequality may lead to

sd
[T [ otima. 1 aoteesmantet

/ Q4 dt

ds
LZ(Rd) s

< /O oA, Ta, 0 10% £l 12
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o0 ds\1/2 > ds\1/2
< 4 £02 _) ( 2 _)
S 008 ) ([ 1Pl

S Il 2wy gl 2 ray-

This estimate, together with (2.35), leads to (2.5) and then completes the proof of
Theorem 1.1.

3 Proof of Theorems 1.2 and 1.3

This section is devoted to prove Theorem 1.2, the weak type endpoint estimates for
Tq, 4 and Tq 4. To this end, we first introduce the definition of standard dyadic grid.
Recall that the standard dyadic grid in R?, denoted by D, consists of all cubes of the
form

27510, V4 + j), kez, jezi.

For each fixed j € Z,set Dj ={Q € D: £(Q) = 2/}.

3.1 Proof of (1.6) in Theorem 1.2

The key ingredient of our proof lies in the step of dealing with the bad part of the
Calder6n-Zygmund decomposition of f. By homogeneity, it suffices to prove (1.6)
for the case A = 1. Applying the Calderén-Zygmund decomposition to | f|log(e+| f])
atlevel 1, we can obtain a collection of non-overlapping closed dyadic cubes S = {L},
such that

@ If oo marupesry S 1

(i) Jp [f()llogle + | f(x)Ddx < ILI;

(i) > pes Ll S fra |f ()] log(e + [ f(x)Ddx.

Let g be the good part and b be the bad part of the decomposition of f, which are
defined by

8(x) = fO)Xpa\uy s () + D (flLxL(x) and

LeS
b(x) =Y (f = (HlLawx) = D bL(x).
LeS LeS

It is easy to see that [|g|| ;oo (gra) < 1, and for E = Up¢s100dL, it holds that

FAPS /]Rd |/ (x)[log(e + [ f(x)Ddx.

The LZ(]Rd ) boundedness of Tq, 4 then yields that
[x € RY: |To, ag(@)] = 1/2)] S I1Te, 48172 ga,
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S 8l agay S N F Ny 3.1)

Therefore, it is sufficient to show that
|(x e RY: T ab()] 2 1/2}] S /Rd |f(Ollogle+ I f(x)Ddx.  (3.2)

To prove (3.2), let ¢ be a smooth radial nonnegative function on R with supp ¢ C
{x:7=<Ix| <1}and > 0s(x) =1 with ¢s(x) = 92 %x) forall x € R?\{0}. Set
S {L € S: ¢(L) = 27}. Then, we have

Q
[, A = A )by

d |x

Qx —y)
Z/Rdmm( )—A(y))me—y)Z 3 bL(ydy

J Le&s_;

Qx—y)
=/Rdm(/4( )—A(y))ZZd)s(x—y) Y bL(ndy

LeSs—;
=Y > Y Toas b,
j 5 H—dessfj
where
T b _ Qx—y)
Q, A5, jbL(x) = Rdcbs(x— )W(A(X) A(YNbL(ydy.  (3.3)

Let AL (y) = A(y) — ZZ: 10, A)Lyn. A trivial computation leads to the fact that
AL(x) — AL(Y) = VAL(Y) - (x — y) = A(x) — A(y) = VA(Y) - (x — ).
Now write Tq ab as
Ta,ab(x) = ZZ 3 o, avsbL(x) - ZTQ(ZbLa AL)@),
s LeSs—; LeS

where

n Qx—y)
Toh(x) = p.v. - w(xn yh(y)dy, forl=<n=d.

Fixed 1 < n < d, since the kernel Q()c)xn|x|’1 is still in L log L(S4D, homogenous
of degree zero and satisfies the vanishing condition on the unit sphere, by the weak
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endpoint estimate of the operators T (see [31] or [9]), it follows that

Hx € Rd\E :

i Ztnae) | > gl £ | S o],
LeS LeS

<D ILlbLl L 1og L. L
LeS

S /Rd | f () log(e + | f(x)Ddx, (3.4)

where in the last inequality, we have used the fact that ||bL || L 10g L, L < 1 for each cube
LeS.

Therefore, to prove inequality (1.6), by (3.1), (3.2) and (3.4), it is sufficient to show
that

“x e RN\E : ’ZZ 3 TQ,AL;S,ij(x)’ > 1/4” S f i@y B3

J s ]LGSS,]‘

In order to prove inequality (3.5), we first give some estimate for
DD Le S,—; T, Ap:s.jbL. For this purpose, we need to introduce some notations.

ForL € S_j, 5, j € Z with j > log,(100d/2) =: jo. Let Lj = 2/+2dL,
Lj,=2/TdL, L;3=2/7%dL, and y{ be a point on the boundary of L; 3. Set

Ap () = L (ALY) — ALGL))

where ¢, € Ccoo(Rd),suppgaL CLji,oL= 1on3-2/dL, and VoLl oomay S 277
Let yo be the center point of L. Observe that for x € R\ E, j < jo, y € L, we have
[x —y| = |x — yol — |y — yol > 2°. The support condition of ¢ then implies that
To ap:s, jbL(x) =0if j < jo.Fory e L € & j,s, j € Z with j > jo, we have
¢L(y) = 1. By the support condition of ¢, it follows that |x — yg| < |x—y|+]y—yo| <
1.5d2°. Hence x € 3 -2/dLL and ¢ (x) = 1. Collecting these facts in all, it follows
that

¢s(x — Y)(AL(x) — AL(Y) = ¢s(x — ¥)(Agy (x) — Agy (V).
The kernel 2 will be decomposed into disjoint forms as in Section 2 as follows:
Q00) = Q(O)xEy(0), Q(0) =Q(O)xE (0) (k €N),
where Eg = {6 € S~ 1 : |Q(0)] < 1} and Ex = {6 € S~ 1 : 21 < 1Q(0)] < 2k}
for k € N. ‘
Let the operator Tslz, AL: S’ij be defined in the same form as Tq 4, ., jbL, With

replaced by €2;. Then we can divide the summation of Tq 4, . by, into two terms as
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follows
o
220 2 Taausib® =3 3 37 D T a s be()
J>jo S LeSs-; i=0 j>jo § L&

=2 2 2 2 Tamu

i=0 jo<j<Ni s LeS,_;

+Z Z Z Z TSiZ,AL;S,ijL(x)

i=0 j>Ni 5 LeS,_;
=D (x) +Da(x),

where N is some constant which will be chosen later. If we can verify that

ID1ll 1wy S WL Laog £y2 -1 | f L1 ey (3.6)
and

e € RY: [D2(0)] > 1/8)] S 11 f 1|t ey 3.7

the inequality (1.6) then follows directly. The proofs of these two estimate will be
given in the next two subsections respectively.

3.2 Proof of Inequality (3.6)

We first claim that if L. € S;_;, then

» . 1€2; ()]
TG ap. s L0 51/ — b, (x — y)|dy.

s-2<py<s+zy  yI9

This claim is a consequence of the following lemma, which will also be used several
times later.

Lemma 3.1 Let A be a function in R? with derivatives of order one in BMO(R?). Let
s, j€ZandlL € Ss_; with j > jo and let Ry 1. j(x, y) be the function on RY x R4
defined by

» A (x) — Ay ()

RS,L;j(x’y):(bS(-x_ |.X—y|d+l

Then, R; 1 enjoys the properties that
(i) Foranyx, y € RY,

J
|Rs.L:j(x, )| S WX{%*ZSIX—,VIS%“}(X, »);
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(ii) Forany x, x' € R and y € L with |x — y| > 2|x — x|,

lx —x'| /. _ -
|Ry.L:j(x,y) — Ry j (', »)| S m(] + ‘log (2 x — x| 1)D;

(iii) Foranyx, y € R and y € L with |x — y| > 2|y — /|,

ly =Y (. _j -
|RsL:j(x, ») = RoLj(x, Y| S m(l + ’10g @y =yl I)D

Proof We first prove (i). It is obvious that supp R 1..; C Lj2 x L;»>.Fixedx € L; 1,
we know that 27/ < |x — y{| and

VA)L — (VA VA)L — (VA); VA — (VA -
(VAL = (VA W)I < (VAL = (VA [+ (VA oy = ¢ >’(x,\x-y{u>|
Note that if x € 4L, then [, 55—y C 8L and it holds that

(VAL = (VA)1_ o | < (VAL = (VA)sL| + [(VA)sL — (VA); ., | S 1.

If x € Lj 1\4L, then the center of L and the center of /, 55—y are at a distance of
a2’~J witha > 1. Hence, the results in [13, Proposition 3.1.5, p. 158 and 3.1.5-3.1.6,
p. 166.] gives that

(VAL = (VA o [ ST and (VAN o = (VAN TS
since 2° < |x — yl{,l < 55+,
Therefore, for x € IL; 1, it holds that
(VAL —(VA) S 3.8)

(xylxﬁv]']/_\) ~

Lemma 2.6, together with John-Nirenberg inequality then gives that

1/q ins
VA@) — (VAwLIdz) " S )2,

1
|1 inl

4. 01 S 1x =] I(
(X»|X—)’]L|) I(x,ufy]{;\)

(3.9)

which finishes the proof of (i).
Now we give the proof of (ii). Forany x, x’ € R?and y € Lwith |x—y| > 2|x—x/],
it is easy to see that

(1) ifx ¢ L; 1 and x' ¢ Lji, t_hen Ry j(x,y) = RS’L;J'(X/, y) =0;
(2) ifx ¢ Lj,thenx’ ¢3- Z{dL, hence Ry 1..;(x,y) = Ry1.j(x’, y) =0;
(3) ifx" ¢ L;j1,thenx ¢ 3-2/dIL, hence Ry 1.;(x,y) = Ry1.j(x’, y) =0.
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If z € I(x |x—y|)» another application of Lemma 2.6 and John-Nirenberg inequality
indicates

VA ()] S 27°|ALG) — AL + IVAGR) — (VA)L|
< J+IVAQR — (VAL (3.10)

and the similar method as what was used in the proof of (3.8) further implies that

VAL = (VA1 ol = (VAL = (VA); |+ (VA) (VA); |

<log2/ + ’10g (25 |x —x/|—1)). 3.11)

(x,25=J) I(x.\xfx’\) (x,25=J)

By Lemma 2.6, (3.10) and (3.11), we have

1
|A¢L(X) _ A¢L(x/)| 5 |x _xl|( 7 B |VA(p]L(Z)|qu)q
W x, [x—x'p T =)

Sh=x1(j+ o—— VA@) — (VAL)Idz)’
e o=l 1y
(3.12)
Similarly, we obtain
|Ag (x) — Agy DI S lx = x'|(j + {VA)L — (VA ) )
< |x—x’|[j+ (1og (25~ x — x| 71) ] (3.13)

In a similar way, we have
A () = A O £ b= [+ [ tog (1 — v
Ay () = A )] £ 1 = yI[j + [tog (1w’ = 17|
Therefore,

|Rs,L:j(x, ¥) — Ry 1. j (X, »)]

A@L(X) - A(pm()’) Atp]L(x/) - AW]L(y)
=< |¢s(x_y)|) |x—y|d+1 - |x/_y|d+1
|Ag (x") — Ay (V)] /
(pL|x'—y|def |¢s(x_y)_¢s(x _.Y)|

lx —x'| /. _j _
)

This completes the proof of (ii) in Lemma 3.1. (iii) can be proved in the same way as
(ii). O
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Let us turn back to the contribution of D;. It follows from the method of rotation
of Calderén-Zygmund that

o0
Dl =Y D 2 D MTha. Ll

i=0 jo<j<Ni s LeS;_;

o]

S22 2 )

i=0 jo<j<Ni s LeS&;;
25+2

Q' /
// / 5 OD0 o iy dy dr dx
Rd Jas—2 Jsa-1 |r|
o0

Y Qg Y Y. Y bl g
i=0

Jo<Jj=<Ni s ILESS,j

SR L aog y2se-H I f Il L1 (ray-
This verifies (3.6).

3.3 Proof of the Inequality (3.7)
The estimate of D, is long and complicated. We split the proof into three steps.
Step 1. A reduction for the estimate of D;.

Let/;(j) = tvj+3, where 0 < t < 1 will be chosen later. Let w be a nonnegative,
radial CZ° (R%) function which is supported in {x € R? : |x| < 1} and has integral 1.

Set w; (x) = 27"w»(27"x). For s € N and a cube L, we define st L as

i 1
R} (x,y) = /Rd Ws—1,(j)(x — Z)m%(z — M (Ag, () — Ay ())dz.

|
(3.14)

It is obvious that suppst]L(x, y) C {(x, y): 2573 < |x — y| < 2°13}. Moreover, if
y € L with . € S,_j, then (i) of Lemma 3.1 implies that

IR, ] S 527 Xpes<pay <oy (X, ). (3.15)

We define the operator Tsiz’/i, , by

TSl'Z’,jI.L;sh(X) = w/Rd Qi(-x - y)R!,L(X’ y)h(y)dy’
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and let D be the operator as follows

HOEDIDIDBIDDE SR

i=0 j>Ni s LeS,_;

The following lemma indicates the intrinsically close relationship in each subtract
terms between Dy and D3. Thus, the corresponding proof is transferred to verify it for
each term of D3.

Lemma3.2 Let Q be homogeneous of degree zero, A be a function on R? with
derivatives of order one in BMO(RY). For j > jo andi > 0, it holds that

1T a5, 0L — Tglz',jL;SbLHLl(Rd) S 727Nl ey DL L1 ey

Proof For each y € LL and z € supp w;_;,(j, notice that R, . (x, ¥) — Ry L. (x —
z,¥) = 0if x € Lj1\3-2/dL. In fact, since |z| < 2°7%/73, then we have 2°*! <
x —y|<3-2%and 2® < |x —y — 7| < 25F2.

By Lemma 3.1, we have

2l . 2
[Rosj s ) = Rosj 8 =2 | S 55575 | 7+ log o) [resensen ),

Observing that the function ®(¢) = tlog(e + %) is bounded at r € (0, 1], and then
forO <t <r,

tlog<e+ ;) <r,
we deduce that

[ oo @ (R 5, 3) = Resiste = 2, )|

< p(-stTi)d L I 25— dz < jp-sd—ci

{lz|l<25-7J

Therefore

. i
”TSlZ,A]L; s,jb]L - TQ,J]L; stJ”Ll(Rd)

= ,/l;d ,/]‘Qd |QI(X—)’)|‘/W ws_lr(j)(z)<Rs,]L;j(x, y)
— Ry = 2, ) )delbu(v)ldydx

< jarsdor / f 120 ()| xgas-2<1 <243 DIBL(x — y)|dydx
R4 JR4

Sj2Y ”Qi“LI(S‘I*I)”b]LHLl(R")'
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This leads to the desired conclusion of Lemma 3.2. O

With Lemma 3.2 in hand, we only need to estimate D;. This is the content of the
second step.

Step 2. Estimate for each term of D3.

Define P; f(x) = w; * f(x). Now we split

Lj Y _ . i,J
TSZ,]L;S - PS—./"TQ,]L;S + (1 PS—/K)TQ,]L;S’

where k € (0, 1) will be chosen later. In the following, we will estimate this two terms
one by one. We have the following norm inequality for Ps—j T . ;-

Lemma 3.3 Let Q be homogeneous of degree zero, A be a function in R? with deriva-
tives of order one in BMO(R?), by, satisfies the vanishing moment with £(IL) = 257/,
For each j € Nwith j > jo, we have
i,
H Py jiTq L, oL HL'(Rd)
S 27N Q| e a1y 6L 1 ey

Before proving Lemma 3.3, we need the following lemma for st.]L'

Lemma3.4 Let R be defined as (3.14), 6 € S, y, y' € L with £(L) = 2°~7.
Then

fL /L IR (v +76. y) = R (3 +r0, Y)lbL(y)dydy

< j2mdaminTi L /L b (y)|dy.

Proof By the triangle inequality, the mean value theorem and the support condition of
¢, we get

IR LY/ 470, y) = R (V) +7r0, y)

A () = A O
/ / L PL
s/w (0nm1, 6+ 10 = Dz = DLl

/ [Ag (z) — Ay (V)] /
+/Rd|ws—zf<./>(y +7r6 —2)| “’L'Z_yldff b5 (z = ¥) = bs(z — ¥)ldz

A0, () = Ay )l — V|
+ A; 51,1 7 = Dl o =y R

=: 14114 1III.

If r ¢ [2°4,2°4], by the support of R/ ; . it gives that [R! | (v +76, y) = R/ ; (V' +
ro, y)| = 0.
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For y, ¥’ € L, (3.13) gives us that

257

(5 =)
ly =¥l

For I, since |z — y'| = 2°72, y, y’ € L, then (3.13) gives us that

log ( 2 )HZ_W“).
ly — 'l

Consider now the other two terms. If y, y’ € L and |z — y’| < 2%, (i) of Lemma 3.1
gives us that

|Ap, () = Ap DI S 1y — y’l[j +

ISIy—y’I[jJr

|[Ap, DI S 72, 1Ag ()] S j2°.
On the other hand, for j > jo, when y, ¥ € L and |z — y’| > 272, it holds that
lz—y|>|z— y/| —ly— y/| > 952 _ «/Ezsfj > 2572 _ «/gzsflogz(lOOd/Z) - 2s73'

Therefore,
II< j2 NGy Fro — —y) — —y)|d
S eyart Rdlws—z,m(y ro — Dllgs(z —y) — ds(z — y)ldz
S J2 Dy =y /R o (O 8 = D)ldz  j27 )y =),

where the second inequality follows from the fact that

ly — 'l
2S

ly — 'l

|¢S(Z_}’)_¢s(z_y/)| S s

IVl oo ray S
Similarly, we have

g j27 @y — ).
Estimates for I, II and III above lead to that

257
o (5) |
ly = 'l

(3.16)

- - Jly =l
|R§’L(y/ +r0,y) — RiL(y/ +r6, Y)I < Ss@r 1+

Similar to (3.16), we also have
IR, (v +76, y) = R, (v +76, y)

< [ vty +18 = 2 = 0y 07+ 76 = DIz = )
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|Ag (2) — Ay (V)
|z — y|d+1

dz

< s Dy =y [ Wa o @ld:
S jly = y/ )27t igmsd, (3.17)
Notice that
2s—j
[ [y =11+ o (=) v tbuconiay < 271 [ tnotay.

Combining (3.16) with (3.17), it gives that

fL/ IR’]L(y+r9 y) - sj,L(y’+r9, YObL(y)Idydy’

< j2msdthpkl) /L /L ly — ¥'1dY'|bL(»)|dy

§—

+j2x<d+1>/L/L|y_y’|[1+‘1og<|y2_ ;,|)de’lbm(y)ldy

szfsdzlz(j)zfjﬂu/L|b]L(y)|dy'

This finishes the proof of Lemma 3.4. O
With Lemma 3.4, we are ready to prove Lemma 3.3 now.

Proof of Lemma 3.3 Write
Pt = [ ([ ot = 99 = )R Gz 0)d.
R R

Let z — y = rf. By Fubini’s theorem, P;_ j, T;z”jL; ,br(x) can be written as

(.¢] .
Lo L[ @i —y = ro0R! o4 10,900 b v)draydon.
sd-1 JRrd Jo '
Let y’ € L. By the vanishing moment of br,, we have
|Peejie T 1 bL@)]
= J
< inf /S 2@ / / (@n-selr =y =rORI L +716.7)

= e x = ¥ = rO)R] L + 70,3 ) drby (v)dy|doy

5/5 'Q’(e)'|L|/IL‘/Rd/O (@l =y =rORI 0 +70.7)
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— Wy j(x —y — r@)RSj,L(y/ + 6, y/)>rd_1drbL(y)dy‘dy/dag
<T410

where

1 o ,
= ) |s2,-<e>|/L(/Rd/0 (@0 x =y =r0) — oy x =y = 10))

X RiL(y +r0, y)"d_ldrbm(y)dy‘dy/dog,

and

_.1 , = Cx— v — J
=z [ 12 [ [ [ o=y =& 0400

- Rz’L(y’ +r0, y’))rdﬁldrb]L(y)dy‘dy’ doy.

Note that |y — y'| < 257/, when y, y’ € L. By (3.15) and the mean value formula, it
follows that

11l 21 (way ,SJ/ 1€2; (0)]
§d—1
2s+3

/4@/2;3 2_s+jk||VCU”LI(Rd)ZS_jZ_Sdrd_]drIb]L(y)ldydo(Q)

< 727N oo a1y 1L L1 ey -

By Lemma 3.4 and the Fubini’s theorem one can get
2543 1
it < [ [ 1@ [ o=y = ol
x (R (y +r0.)
— R Ly + 0, ) IbL(p)ldydy r~ drdoy

S 72 TNQe s gy I1BL ) ey
This finishes the proof of Lemma 3.3. O

To estimate the term (I — P,_ j,()T;Z’jL, ,» we introduce a partition of unity on the

unit surface SY~!. For j > jo, let ¢/ = {eﬂ} be a collection of unit vectors on S9!
such that

(a) forv £ v/, |el — ei,| >27Jr—4,
(b) for each & € S?~!, there exists an ¢} satisfying that |e), — 6] < 2777 =%, where
y € (0, 1) is a constant.

Birkhduser



Journal of Fourier Analysis and Applications (2024) 30:32 Page37of44 32

The set &/ can be constructed as in [31]. Observe that card(¢/) < 2/7(@=D,

Below, we will construct an associated partition of unity on the unit surface S¢~!.
Let ¢ be a smooth, nonnegative, radial function with ¢ () = 1 when |u| < 1/2 and
supp ¢ C {|x| < 1}. Set

-1
&) =;(2”(% —ei)), and T'J(§) ='r“‘5<s>( > Fi(&)) .
eﬂe@j

Itis easy to verify that Fﬂ is homogeneous of degree zero, and for all j and & € S?~1,
>, Th(E) = 1. Let S C2(R) such that 0 < ¥ < 1,suppy¥ C [—4, 4] and
{E(t) = 1 when ¢ € [—2, 2]. Define the multiplier operator G/ by

Glf &) =T (217 (/5L el) FL&).

Denote the operator T;ZJL 5.0 DY
i) = [ Q=0T = DRI (b)Y, G19
R

It is obvious that T;zi; Jx) = > Tgiz’i; ”h(x). For each fixed i, s, j, L and v,

- Ps_ j,()Tgiz’i; 5.» can be decomposed in the following way
(I = PTGy, = GIU = Pooji) T, + (1= GDU = P )T

Estimate for the term G/ (I — P;_ ;)T

Q,L;s,v°
For the term G, (I — P,_ jK)Tglz’]]L, +.v» We have the following lemma.

Lemma 3.5 Let  be homogeneous of degree zero, A be a function in R with
derivatives of order one in BMO(R?). For each j € N with j > jo, we have that,

‘ L. 2
L]
D) BRITEY AT .
voos LeS_;

22— 2
S22 segaery D D, MBI gay-
s ]LESS,J'

Proof The proof is similar to the proof of Lemma 2.3 in [9]. For the sake of self-
contained, we present the proof here. Observe that

sup 31T @7 (e, £/l S 2772,
££0%5
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This, together with Plancherel’s theorem and Cauchy-Schwartz inequality, leads to
that

H Z Z Z GIJ)‘(I - Rv—jK)Té’i; s,ubL’ ?

L2(Rd)
v s LESS,]‘

=[SVl enen)F (X X a - PooTHL, L)@

s ]LESs_./

5 2.jy(d—2) Z H Z Z - Psij)TSiz‘{i;s,ubL 2

LZ(R‘I).
v s ]LESS_I'

2

L2(Rd)

Applying (3.15), we see that for each fixed s, L, and x € R4,

(I = Py j) TG L 5, L)

< A; €2 (x = YIITY (6 = MIIRLL (e IBLG) I

+f / 1 (2 — Pls— i (x — DITE = MR (2. )ldzlbL(y)ldy
Re JRd ’

S IRl oo ga-1y Hiy # 1bLI(Y), (3.19)

where H{,(x) = 27y, (1), and R, = {x € RY : [(x,e])] = 2%, |x —

(x, ei)eﬂl < 25+3=J7}. This means that Rg,, is contained in a box having one long
side of length < 2% and (d — 1) short sides of length < 2°7/7. Therefore, we have

HZ 3 (1—RY_,~K>TJ;,’;L;S,VbL\

s ]LESA-fj

SR gy Y D D /R (Hiy % HYy % |bg1) () bL(x)ldx

s ]LGSS,J' IESAv,j

27201 oy D D D D /d (Hiy* H, % 1b1])(0)|bL(x)dx.

s LeS_ji<s IeSi_;

2

L2(R4)

Let ﬁﬁu = R;’v + Rfu. As in the proof of Lemma 2.3 in [9], for each fixed L € S,_;,
x € L, v and s, we obtain

Z Z Hiyx HY | |by|(x) S 27/vd=Domsd Z Z / _ 1br()idy
i<s IGSI‘,]‘ i<s IGSI‘,J* x-’rRsu

< 02y,

where we have used the fact that fRd |br(y)|dy < |I]andthe cubes I € S are pairwise
disjoint.
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This, in turn, implies further that

2
2jy(d-1)
[ X 0Pt b e S 190 2
§ ILESS,j
Y IbLl L1 gay-
s ]LGSJ,J‘
which finishes the proof of Lemma 3.5. O

Estimate for the term (I — G{)(I — P,_ ,,()TSZZJ]L s
We need to present a lemma for (I — G)(I — S_],()T;ZJ]L oo

Lemma 3.6 Let Q be homogeneous of degree zero, A be a function in R? with deriva-
tives of order one in BMO(RY). For each j € N with j > jo, £(L) = 257/, some
so > 0, we have that

Zn(!—cf)(z Poj )T bl iy S 52707 194 Lo a1y IBLI L1 -

Next we give the estimate of D3 and postpone the proof of Lemma 3.6 later.
Let ¢ = min{(l — «), (1 — 1), S0, y}. With Lemma 3.3, Lemma 3.5 and Lemma
3.6, we have

s mi- 1] <35 21000 | S X 0,

i=0 j>Ni s LeSs—;
S fllp gay- (3.20)

The proof of Lemma 3.6 is similar to the proof of Lemma 2.4 in [9]. For the complete—
ness of this paper, we give the proof for the remaining term (1 — G’ Y[ —Ps_ JK) Q. ]L s
here. Let’s introduce the Littlewood-Paley decomposition first. Let o be a radial C*
function such that ®(¢§) = 1 for |§] < 1, a(§) =0 for |£§] > 2and 0 < «(§) < 1 for
all £ € R?. Define (&) = a(2kg) — a(2k+1§) Choose B be a radial C* function
such that ,5(5) 1for1/2 < |&] < 2, supp,B € [1/4,4] and 0 < /3 < 1 for all
& e R4, Set ﬂk(é) ﬂ(2k.§) then it is easy to see By = ﬂk,Bk Define the convolution
operators Ay and A with Fourier multipliers 8 and fy, respectively.

MTE) = B FE).  AfE) = h®F .
It is easy to have Ay = ]\kAk.

Proof of Lemma 3.6 We first write (I — G)) T4, = Y(I = G) AT’ | . Then
k

I = G — P—j ) Ak T, LeswPLI L1 ey
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< U = P ji) A — G AT bl re)
< I = Po—j) Akl iy 11 ey | (T — GDARTG L bLl 11 ety
We can write

(I — GHATYY, | bL(x) = /L (I = G Ak (x — )T (x — »R] | (x, y)br(y)dy

= /ILMk(x, »bL(y)dy,
where Mj is the kernel of the operator (I — G{)Ak Tsl.z’,Jﬁ,; v Then

I = GDATSS bl gy < / 1My Gy W)l ety 1B (D) Ly
L
Applying the method of Lemma 4.2 in [9], there exists M > 0 such that
1My o)t ay S j27 @D AR Qi o gaty.

Hence, note that [|(/ = P j)Allpigerieay = IF 1B = @5 je *
F BN L ray S 1, we have

I = G)U = P j ) AT bl i re)
< @A A2 O | oo g IBLI| 1 ey (3.21)

On the other hand, we can write

I = GDU = Py j ) A TG o Ll ra

<N = P j) Mill g gy 11 ey | — G Akl pr ey 11 ety 1 TG BLI 1 Ry
By (3.18), it is easy to show that
i,j .y—jy(d—1
1T L swbrllniay S 72777 VNl oo ity IBLI 1 ety -

Let Wj

sk be the kernel of (1 — Py K)]\ k» then by the mean value formula, we obtain

/ W s DIy < / / [F 1 Be) = F 7 By = )| ws—je(2)dzdy
Rd e R4 JRA
< 25Kk, (3.22)

By the proof of [26, Lemma 3.2], it holds that |[(/ — Gi)Ak||L1(Rd)_)L1(Rd) < L
Hence

I = GDU = P ji) TG bl ray
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S J2IEDE TN Q4| e a1y I1BL I 1 - (3.23)

Letm = s — [jeg], with 0 < &9 < 1. Since card(¢/) < 2/¥@=D_Then (3.21) and
(3.23) lead to

DI = GHU = P ji)Tg . o, (bL) i ray
v

= (XXX 2N = Pl = GDATEL bl s,

vV k<m V. k>m

< @ 42 11l oo ga-1y IBLI 1 ety

where s; = (1 — g9 + ¥ (1 + 2M)) and s, = —k + &p.
We can now choose 0 < T K ¥y K g9 < k < 1 such that max{sy, s} < 0. Let
so = — max{si, 52}, then the proof of Lemma 3.6 is finished now. O

With Lemma 3.2 and (3.20) in hand, we can deduce (3.7) by

[{x e RN\E : [Dy > 1/8}] < 16| D2 — D3|l 11 (gey + |{x € RY : |D}| > 1/16}]
Sl way-

3.4 Proof of (1.7) in Theorem 1.2

It suffices to prove (1.7) for A = 1. For a bounded function f with compact support, we
employ the Calderén-Zygmund decomposition to | f| at level 1 then obtain a collection
of non-overlapping dyadic cubes S = {Q}, such that

D101 /Rd |f @)ldx.

1l @upes ) S 1 / 1fldx S 10l and
0 QeS

Let E = Upcs100d Q. With the same notations as in the proof of (1.6), for x € Rd\E,
we write

d
Ta.ab() =Y > Ta ag.jbo) = Y Y 8,Ap(x)Tabo ().
Jj Q&S QeS n=1

By estimate (3.5), the proof of (1.7) can be reduced to show that for each n with
1<n<d,

r eRNE: | 3 01400 Thbo)]| > 1/4d]| 5/ | £ ()l
QeS R

But this inequality has already been proved in [22, inequality (3.3)]. Then the proof
of (1.7) is finished. O
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3.5 Proof of Theorem 1.3

The proof of Theorem 1.3 is now standard. We present the proof here mainly to make
the constant of the norm inequality clearly. Consider the case p € (1, 2]. Let

(), )] > A
S = {0, |f )| < A

and

(0 )] > A
7@ =1 ool <

By (1.6), we have

o0
pf M x e RY [ Tq A fi(x)] > A/2}|dA
0

<p/°°kp_1f moc>|10g <e+ 'fl(x)')dm
0 R4 A

p

L2(R?) boundedness of Tq, 4 implies that

o0
p/ A € R 1T a f2(x)] > A/2}1dA
0

o0
S [ AW ey I < ||f||Lp(Rd)
[f )l

Since p € (1, 2), we have

o0 1/p
1Te, 4/l r@e) = (p / Wik e RY: | To a f ()] > A} dx)
0
< (O’ f Lo ey
When p € (2, 00), by (1.7), we know TQ A f(x) is of weak type (1, 1). Combining

the L2(R4) boundedness of TQ A f(x) and the Marcinkiewicz interpolation theorem,
we have

”TQ,Af”Lp’(Rd) = P/”f”Lp’(Rd)-
By duality, it holds that
1T, afllLrwey < PUS N Lrwray-
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This completes the proof of Theorem 1.3. O
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