
Journal of Fourier Analysis and Applications (2024) 30:32
https://doi.org/10.1007/s00041-024-10086-y

On the Boundedness of Non-standard Rough Singular
Integral Operators

Guoen Hu1 · Xiangxing Tao1 · Zhidan Wang2,3 ·Qingying Xue2

Received: 24 October 2023 / Revised: 23 March 2024 / Accepted: 5 April 2024 /
Published online: 10 May 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Let � be a homogeneous function of degree zero, have vanishing moment of order
one on the unit sphere S

d−1(d ≥ 2). In this paper, our object of investigation is the
following rough non-standard singular integral operator

T�, A f (x) = p. v.
∫
Rd

�(x − y)

|x − y|d+1

(
A(x) − A(y) − ∇A(y)(x − y)

)
f (y)dy,

where A is a function defined on R
d with derivatives of order one in BMO(Rd). We

show that T�, A enjoys the endpoint L log L type estimate and is L p bounded if � ∈
L(log L)2(Sd−1). These results essentially improve the previous known results given
by Hofmann (Stud Math 109:105–131, 1994) for the L p boundedness of T�, A under
the condition� ∈ Lq(Sd−1) (q > 1), Hu and Yang (Bull LondMath Soc 35:759–769,
2003) for the endpoint weak L log L type estimates when � ∈ Lipα(Sd−1) for some
α ∈ (0, 1].
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1 Introduction

This paper will be devoted to study the boundedness of certain non-standard Calderón-
Zygmund operators with rough kernels. To begin with, let d ≥ 2, R

d be the d-
dimensional Euclidean space and S

d−1 be the unit sphere in R
d . Let � be a function

of homogeneous of degree zero, � ∈ L1(Sd−1) and satisfy the vanishing condition

∫
Sd−1

�(x)x j dx = 0, j = 1, ..., d. (1.1)

Define the non-standard rough Calderón-Zygmund operator by

T�, A f (x) = p.v.
∫
Rd

�(x − y)

|x − y|d+1

(
A(x) − A(y) − ∇A(y)(x − y)

)
f (y)dy,

(1.2)

where A is a function on R
d such that ∇A ∈ BMO(Rd), that is, ∂n A ∈ BMO(Rd) for

all nwith 1 ≤ n ≤ d. This class of singular integrals is of interest inHarmonic analysis.
It was well-known that T�, A is closely related to the study of Calderón commutators
[1, 2]. Even for smooth kernel �, since L∞(Rd) � BMO(Rd), the kernel of the
operator T�, A may fail to satisfy the classical standard kernel conditions. This is the
main reason why one calls them nonstandard singular integral operators.

Recall that if ∇A ∈ L∞(Rd), then the L p(Rd) boundedness of T�, A follows by
using the methods of rotation in the nice work of Caldéron [2], Bainshansky and Coif-
man [1]. Since the method of rotations doesn’t work in the case of ∇A ∈ BMO(Rd),
Cohen [7] andHu [24] obtained the L p(Rd) boundedness of T�, A with smooth kernels
by means of a good-λ inequality. More precisely, if � ∈ Lipα(Sd−1) (0 < α ≤ 1),
then Cohen [7] proved that T�,A is a bounded operator on L p(Rd) for 1 < p < ∞.
Later on, the result of Cohen [7] was improved by Hofmann [19]. It was shown that
� ∈ ∪q>1Lq(Sd−1) is a sufficient condition for the L p(Rd) boundedness of T�,A.
If � ∈ L∞(Sd−1), Hofmann [19] demonstrated that T�,A is bounded on L p(Rd , w)

for all p ∈ (1, ∞) and w ∈ Ap(R
d), where and in what follows, Ap(R

d) denotes the
weight function class of Muckenhoupt, see [12, Chap. 9] for properties of Ap(R

d).
It is quite natural to ask if one can establish weak type inequalities for T�, A or not.

Hu and Yang [23] considered the operator

Ta f (x) = p. v.
∫
R

a(x) − a(y) − a′(y)(x − y)

(x − y)2
f (y)dy,
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where a is a function on R such that a′ ∈ BMO(R). Hu and Yang showed that, Ta
may fail to be of weak type (1, 1), which differs in this aspect from the property of the
classical singular integral operators, see Remark 3 in [23, p. 762]. As a replacement
of weak (1, 1) boundedness, it was shown in [23] that, when � ∈ Lipα(Sd−1) with
α ∈ (0, 1], T�,A still enjoys the endpoint L log L type estimates. This, tells us that,
when� satisfies suitable regularity condition, the endpoint estimates of T�,A parallels
to that of the commutator of Calderón-Zygmund operators with symbol in BMO(Rd).
For the endpoint estimates of the commutator of Calderón-Zygmund operators, see
[22, 29] and the references therein.

Now, we recall some known results of classical singular integrals and make a
comparative analysis. It was first shown byCalderón andZygmund [3] that the singular
integrals T� defined by

T� f (x) = p.v.
∫
Rd

�(y/|y|)
|y|d f (x − y)dy

is bounded on L p(Rd) (1 < p < ∞) either when � is an odd function and � ∈
L1(Sd−1), or � is an even function with

∫
Sd−1 � dσ = 0 and � ∈ L log L(Sd−1).

Later on, the condition� ∈ L log L(Sd−1)was improved to� ∈ H1(Sd−1)byConnett
[8], Ricci and Weiss [30], independently. Since then, great achievements have been
made in this field. Among them are the celebratedworks of theweak type (1, 1) bounds
given by Christ [5], Christ and Rubio de Francia [6], Hofmann [17], Seeger [31], and
Tao [33]. It was shown that � ∈ L log L(Sd−1) is sufficient condition for the weak
type (1, 1) estimate of T�. Recently, this result was generalized by Ding and Lai [9]
for the operator T ∗

� defined by

T ∗
� f (x) = p. v.

∫
Rd

�(x − y)K (x, y) f (y)dy,

where the kernel � ∈ L log L(Sd−1) and K needs to satisfy some size and regularity
conditions. For other related contributions, we refer the readers to references [10, 11,
15, 22, 25–28, 32, 34, 35] and the references therein.

Consider now the L p(Rd) boundedness and endpoint estimates for the operator
T�, A when � satisfies only size condition, things become more subtle. Hu [21]
considered the L2(Rd) boundedness of T�,A when � ∈ GSβ(Sd−1), which means,

sup
ζ∈Sd−1

∫
Sd−1

|�(θ)| logβ

(
1

|ζ · θ |
)
dθ < ∞. (1.3)

The main result in [21] can be summarized as follows:

Theorem A Let � be homogeneous of degree zero which satisfies the vanishing con-
dition (1.1), A be a function on R

d such that ∇A ∈ BMO(Rd). Suppose that
� ∈ GSβ(Sd−1) for some β > 3, then T�, A is bounded on L2(Rd).

This size condition was introduced by Grafakos and Stefanov [14], to study the
L p(Rd) boundedness of the homogeneous singular integral operator. As it was pointed
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out in [14], there exist integrable functions on S
d−1 which are not in H1(Sd−1) but

satisfy (1.3) for all β ∈ (1, ∞). Thus, GSβ(Sd−1) is also a minimum size condition
for functions on S

d−1. It is easy to verify that

∪q>1L
q(Sd−1) ⊂ ∩β>1GSβ(Sd−1), L(log L)β(Sd−1) ⊂ GSβ(Sd−1).

For the L p(Rd) (1 < p < ∞) boundedness of T�,A, the best known condition
� ∈ ∪q>1Lq(Sd−1) is given in [19]. There is no any endpoint estimate for T�,A when
� only satisfies some size condition, even if � ∈ L∞(Sd−1). Note that the following
inclusion relationship holds

Lipα(Sd−1)(0 < α ≤ 1) � Lq(Sd−1)(q > 1) � L(log L)2(Sd−1)

� L log L(Sd−1) � H1(Sd−1). (1.4)

Therefore, it is quite natural to ask the following question:
Question: What is the minimal condition such that T�, A is bounded on L p(Rd)

for all p ∈ (1, ∞)? Does the endpoint estimate of L log L type still holds true when
� only satisfies size condition?

The main purpose of this paper is to show that � ∈ L(log L)2(Sd−1) is a sufficient
condition for the L p(Rd) boundedness and weak type L log L estimate for T�,A. Our
first result can be stated as follows.

Theorem 1.1 Let � be homogeneous of degree zero, satisfy the vanishing moment
(1.1), and A be a function on R

d such that ∇A ∈ BMO(Rd). Suppose that � ∈
L(log L)2(Sd−1). Then T�, A is bounded on L2(Rd).

Let T̃�, A be the dual operator of T�, A, defined as

T̃�,A f (x) = p. v.
∫
Rd

�(x − y)

|x − y|d+1

(
A(x) − A(y) − ∇A(x)(x − y)

)
f (y)dy. (1.5)

Theorem 1.2 Let � be homogeneous of degree zero, satisfy the vanishing condi-
tion (1.1), and A be a function on R

d such that ∇A ∈ BMO(Rd). Suppose that
� ∈ L(log L)2(Sd−1). Then for any λ > 0 and 
(t) = t log(e + t), the following
inequalities hold

∣∣{x ∈ R
d : |T�,A f (x)| > λ}∣∣ �

∫
Rd




( | f (x)|
λ

)
dx; (1.6)

∣∣{x ∈ R
d : |T̃�,A f (x)| > λ}∣∣ � λ−1‖ f ‖L1(Rd ). (1.7)

As far as we know, there is no previous study concerning the weak type endpoint
estimates for T̃�,A, even if � ∈ Lipα(Sd−1) for α ∈ (0, 1]. We consider this operator
mainly to deduce the following precise L p(Rd) bounds of T�, A.
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Theorem 1.3 Let � be homogeneous of degree zero, satisfy the vanishing condition
(1.1), and A be a function on R

d such that ∇A ∈ BMO(Rd). Suppose that � ∈
L(log L)2(Sd−1). Then

‖T�, A f ‖L p(Rd ) �
{ p′2‖ f ‖L p(Rd ), p ∈ (1, 2];
p‖ f ‖L p(Rd ), p ∈ (2, ∞).

Remark 1.4 Theorem 1.1, along with Theorem 1.3, shows that � ∈ L(log L)2(Sd−1)

is a sufficient condition such that T�, A is bounded on L p(Rd) for all p ∈ (1, ∞). This
improves essentially the result obtained in [19, Theorem 1.1], in which, it was shown
that if � ∈ ∪q>1Lq(Sd−1), then T�, A is bounded on L p(Rd) for all p ∈ (1, ∞).

Remark 1.5 As it was pointed out, for β ∈ [1, ∞), L(log L)β(Sd−1) ⊂ GSβ(Sd−1).
However, it is unknown whether L(log L)β(Sd−1) ⊂ GSβ ′(Sd−1) when β ′ > β.
We conjecture that there is no inclusion relationship between L(log L)β(Sd−1) and
GSβ ′(Sd−1) when β ′ > β, and believe Theorem A and Theorem 1.3 do not imply
each other in the case p = 2.

We believe that the condition � ∈ L(log L)2(Sd−1) is the weakest condition for
these weak type results to hold, in the following sense.

Conjecture 1.6 � ∈ L(log L)2(Sd−1) is the minimal condition for the weak L log L
type estimate of T�, A, and weak (1, 1) estimate of T̃�,A, in the sense that the power
2 can’t be replaced by any real number smaller than 2.

The article is organized as follows. Section2 will be devoted to demonstrate the L2

boundedness of T�,A. In Sect. 3, we will prove Theorem 1.2 and Theorem 1.3. The
proof of Theorem 1.2 is not short and will be divided into several cases and steps.
Smoothness trunction method will play an important role and will be used several
times.

Let’s explain a little bit about the proofs of the main results. In Sect. 2, we will
introduce a convolution operator Qs with the property that

∫ ∞

0
Q4

s
ds

s
= I .

This makes it possible to commutate with the paraproducts appeared in the proof and
thus obtains more freedom in dealing with the estimates of the L2 boundedness. More-
over, the method of dyadic analysis has been applied in the delicate decomposition
of L2 norm of T�, A. At some key points, we will use some properties of Carleson
measure.

The key ingredient in our proof of Theorem 1.2 is to estimate the bad part in the
Calderón-Zygmund decomposition of f . In the work of [31], Seeger showed that if
� ∈ L log L(Sd−1), then T� is bounded from L1(Rd) to L1,∞(Rd). Ding and Lai [9]
proved that if � ∈ L log L(Sd−1) and for some δ ∈ (0, 1], the function K satisfies

|K (x, y)| � 1

|x − y|d ; (1.8)
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|K (x1, y) − K (x2, y)| � |x1 − x2|δ
|x1 − y|d+δ

, |x1 − y| ≥ 2|x1 − x2|, (1.9)

|K (x, y1) − K (x, y2)| � |y1 − y2|δ
|x − y1|d+δ

, |x − y1| ≥ 2|y1 − y2|, (1.10)

and T ∗
� is bounded on L2(Rd), then T ∗

� is bounded from L1(Rd) to L1,∞(Rd).
However, when A has derivatives of order one in BMO(Rd), the function
[A(x) − A(y) − ∇A(y)(x − y)]|x − y|−d−1 does not satisfy the conditions (1.8)–
(1.10). Let f be a bounded function with compact support, b = ∑

L bL be the bad
part in the Calderón-Zygmund decomposition of f . In order to overcome this essential
difficulty, we write

T�, Ab(x) =
∑
L

∑
s

∫
Rd

�(x − y)

|x − y|d+1φs(x − y)
(
AL(x) − AL(y)

)
bL(y)dy

+error terms,

where AL(y) = A(y) − ∑d
n=1〈∂n A〉L yn . φs(x) = φ(2−s x). Here, 〈∂n A〉L denotes

the mean value of ∂n A on the cube L , φ is a smooth radial nonnegative function on
R
d such that suppφ ⊂ {x : 1

4 ≤ |x | ≤ 1} and ∑
s φs(x) = 1 for all x ∈ R

d\{0}.
Then, our key observation is that, for each s ∈ Z and L with side length (L) = 2s− j ,
the kernel |x − y|−d−1φs(x − y)

(
AL(x) − AL(y)

)
χL(y) instead satisfies (1.9) and

(1.10).
In what follows, C always denotes a positive constant which is independent of the

main parameters involved but whose value may differ from line to line. We use the
symbol A � B to denote that there exists a positive constant C such that A ≤ CB.
Specially, we use A �n,p B to denote that there exists a positive constantC depending
only on n, p such that A ≤ CB. Constant with subscript such as c1, does not change
in different occurrences. For any set E ⊂ R

d , χE denotes its characteristic function.
For a cube Q ⊂ R

d , (Q) denotes the side length of Q, and for λ ∈ (0, ∞), we use
λQ to denote the cube with the same center as Q and whose side length is λ times that
of Q. For a suitable function f , f̂ denotes the Fourier transform of f . For p ∈ [1, ∞],
p′ denotes the dual exponent of p, namely, 1/p′ = 1 − 1/p.

2 Proof of Theorem 1.1

This section will be devoted to prove Theorem 1.1, the L2(Rd) boundedness of T�, A

when� ∈ L(log L)2(Sd−1).Wewill employ some ideas from [19], togetherwithmany
more refined estimates. We begin with some notions and lemmas. Let ψ ∈ C∞

0 (Rd)

be a radial function with integral zero, suppψ ⊂ B(0, 1), ψs(x) = s−dψ(s−1x) and
assume that

∫ ∞

0
[ψ̂(s)]4 ds

s
= 1.
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Consider the convolution operator Qs f (x) = ψs ∗ f (x). It enjoys the property
that

∫ ∞

0
Q4

s
ds

s
= I . (2.1)

Moreover, by the classical Littlewood-Paley theory, it follows that

∥∥∥
( ∫ ∞

0
|Qs f |2 ds

s

)1/2∥∥∥
L2(Rd )

� ‖ f ‖L2(Rd ). (2.2)

Letφ be a smooth radial nonnegative function onR
d with suppφ ⊂ {x : 1

4 ≤ |x | ≤ 1},∑
s φs(x) = 1 with φ j (x) = 2− jdφ(2− j x) for all x ∈ R

d\{0}. For each fixed j ∈ Z,
define

T�, A; j f (x) =
∫
Rd

KA, j (x, y) f (y)dy, (2.3)

where

KA, j (x, y) = �(x − y)

|x − y|d+1 (A(x) − A(y) − ∇A(y)(x − y)
)
φ j (x − y).

The following lemmas are needed in our analysis.

Lemma 2.1 ([19]) Let � be homogeneous of degree zero, satisfies the vanishing con-
dition (1.1) and� ∈ L1(Sd−1). Let A be a function onR

d such that∇A ∈ BMO(Rd).
Then for any k1, k2 ∈ Z with k1 < k2, the following inequality holds

∣∣∣ ∑
k1≤ j≤k2

∫
Rd

KA, j (x, y)dy
∣∣∣ � ‖�‖L1(Sd−1).

Lemma 2.2 ([19]) Let � be homogeneous of degree zero, integrable on S
d−1 and sat-

isfy the vanishing moment (1.1). Let A be a function onR
d such that∇A ∈ BMO(Rd).

Then there exists a constant ε ∈ (0, 1), such that for s ∈ (0, ∞) and j ∈ Z with
s2− j ≤ 1,

‖QsT�, A; j1‖L∞(Rd ) � ‖�‖L1(Sd−1)(2
− j s)ε.

Lemma 2.3 ([19]) Let� be homogeneous of degree zero and� ∈ L∞(Sd−1). Let A be
a function on R

d such that ∇A ∈ BMO(Rd). Then there exists a constant ε ∈ (0, 1),
such that for s ∈ (0, ∞) and j ∈ Z with 2− j s ≤ 1,

‖QsT�, A; j f ‖L2(Rd ) � ‖�‖L∞(Sd−1)(2
− j s)ε‖ f ‖L2(Rd ).
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Lemma 2.4 ([20]) Let � be homogeneous of degree zero, have mean value zero on
S
d−1 and � ∈ L(log L)2(Sd−1). Then for b ∈ BMO(Rd), [b, T�], the commutator

of T� with symbol b, defined by

[b, T�] f (x) = b(x)T� f (x) − T�(b f )(x), f ∈ C∞
0 (Rd),

is bounded on L p(Rd) for all p ∈ (1, ∞).

Lemma 2.5 ([19]) Let � be homogeneous of degree zero, and integrable on S
d−1 and

satisfy the vanishing moment (1.1), A be a function inR
d with derivatives of order one

inBMO(Rd). Then for any r ∈ (0, ∞), functions η̃1, η̃2 ∈ C∞
0 (Rd)whose supported

on balls of radius r ,

∣∣∣
∫
Rd

η̃2(x)T�, Aη̃1(x)dx
∣∣∣ � ‖�‖L1(Sd−1)r

−d
2∏
j=1

(‖η̃ j‖L∞(Rd ) + r‖∇η̃ j‖L∞(Rd )).

The following lemma plays an important role in our analysis.

Lemma 2.6 ([4]) Let A be a function on R
d with derivatives of order one in Lq(Rd)

for some q ∈ (d, ∞]. Then

|A(x) − A(y)| � |x − y|
( 1

|I(x,|x−y|)|
∫
I(x,|x−y|)

|∇A(z)|qdz
) 1

q
,

where I(x,|x−y|) is a cube which is centered at x with length 2|x − y|.

We need a lemma from the book of Grafakos.

Lemma 2.7 ([12, p. 140]) Let 
 be a function on R
d satisfying for some 0 < C, δ <

∞, |
(x)| ≤ C(1 + |x)|)−d−δ . For t > 0, set 
t (x) = t−d
(t−1x). Then a measure
μ on R

d+1+ is a Carleson if and only if for every p with 1 < p < ∞ there is a constant
Cp,d,μ such that for all f ∈ L p(Rd) we have

∫
R
d+1+

|
t ∗ f (x)|pdμ(x, t) ≤ Cp,d,μ

∫
Rd

| f (x)|pdx .

Proof of Theorem 1.1 Invoking (2.1), to prove that T�, A is bounded on L2(Rd), it
suffices to show the following inequalities hold for f , g ∈ C∞

0 (Rd),

∣∣∣
∫ ∞

0

∫ t

0

∫
Rd

Q4
s T�, AQ

4
t f (x)g(x)dx

ds

s

dt

t

∣∣∣ � ‖ f ‖L2(Rd )‖g‖L2(Rd ); (2.4)

∣∣∣
∫ ∞

0

∫ ∞

t

∫
Rd

Q4
s T�, AQ

4
t f (x)g(x)dx

ds

s

dt

t

∣∣∣ � ‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.5)
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First, we will prove (2.4). To this aim, the kernel � will be decomposed into disjoint
forms. Let

E0 = {θ ∈ S
d−1 : |�(θ)| ≤ 1} and Ei = {θ ∈ S

d−1 : 2i−1 < |�(θ)| ≤ 2i }, i ∈ N.

Set

�0(θ) = �(θ)χE0(θ), �i (θ) = �(θ)χEi (θ) (i ∈ N).

For i ∈ N ∪ {0}, let T i
�, A; j be the same as in (2.3) for T�, A; j with � replaced by �i .

Then

∫ ∞

0

∫ t

0

∫
Rd

Q4
s T�, AQ

4
t f (x)g(x)dx

ds

s

dt

t

=
∑
i

∑
j

∫ ∞

0

∫ t

0

∫
Rd

Q4
s T

i
�, A; j Q

4
t f (x)g(x)dx

ds

s

dt

t
. (2.6)

Let α ∈ ( d+1
d+2 , 1

)
be a constant. Fix j ∈ Z, we decompose the set {(s, t) : 0 < t <

∞, 0 < s ≤ t} into three regions:

E1( j, s, t) = {(s, t) : 0 ≤ t ≤ 2 j , 0 < s ≤ t};
E2( j, s, t) = {

(s, t) : 2 j ≤ t < (2 j s−α)
1

1−α , 0 < s ≤ t
};

E3( j, s, t) = {
(s, t) : max{2 j , (2 j s−α)

1
1−α } ≤ t < ∞, 0 < s ≤ t

}
.

In the following three subsections, we will discuss the contribution of each E j,s,t on
the right ride of (2.6) to inequality (2.4). ��

2.1 Contribution of E1(j, s, t)

Let ε be the same constant appeared in Lemma 2.3 and denote N = 2(�ε−1� + 1).
For each fixed i ∈ N, we introduce the notion Ei

1,1 and Ei
1,2 as follows

Ei
1,1( j, s, t) = {( j, s, t) : 0 ≤ t ≤ 2 j , 0 ≤ s ≤ t, 2 j ≤ s2i N };

Ei
1,2( j, s, t) = {( j, s, t) : 0 ≤ t ≤ 2 j , 0 ≤ s ≤ t, 2 j > s2i N }.

Then, one gets obviously that E1( j, s, t) = Ei
1,1( j, s, t) ∪ Ei

1,2( j, s, t) := Ei
1,1 ∪

Ei
1,2. Therefore

∣∣∣
∞∑
i=0

∑
j

∫ ∞

0

∫ t

0

∫
Rd

χE1( j,s,t)Q
4
s T

i
�, A; j Q

4
t f (x)g(x)dx

ds

s

dt

t

∣∣∣
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≤
∞∑
i=1

∑
j

∫ ∞

0

∫ ∞

0
χEi

1,1

∣∣∣
∫
Rd

Q4
s T

i
�, A; j Q

4
t f (x)g(x)dx

∣∣∣ds
s

dt

t

+
∞∑
i=1

∑
j

∫ ∞

0

∫ ∞

0
χEi

1,2

∣∣∣
∫
Rd

Q4
s T

i
�, A; j Q

4
t f (x)g(x)dx

∣∣∣ds
s

dt

t

+
∑
j

∫ ∞

0

∫ ∞

0
χE1( j,s,t)

∣∣∣
∫
Rd

Q4
s T

0
�, A; j Q

4
t f (x)g(x)dx

∣∣∣ds
s

dt

t
=: I + II + III.

We first consider term I. Let {Il}l be a sequence of cubes having disjoint interiors
and side lengths 2 j , such that

R
d = ∪

l
Il . (2.7)

For each fixed l, let ζl ∈ C∞
0 (Rd) such that supp ζl ⊂ 48d Il , 0 ≤ ζl ≤ 1 and

ζl(x) ≡ 1 when x ∈ 32d Il . Let xl be a point on the boundary of 50d Il and

ÃIl (y) = A(y) −
d∑

m=1

〈∂m A〉Il ym, AIl (y) = A∗
Il (y)ζl(y), y ∈ R

d ,

with A∗
Il
(y) = ÃIl (y) − ÃIl (xl). Note that for x ∈ 30d Il and y ∈ R

d with

|x − y| ≤ 2 j , we have

A(x) − A(y) − ∇A(y)(x − y) = AIl (x) − AIl (y) − ∇AIl (y)(x − y).

An application of Lemma 2.6 then implies that ‖AIl‖L∞(Rd ) � 2 j .

For each fixed j ∈ Z, consider the operators Wi
�, j and U

i
�,m; j defined by

Wi
�, j h(x) =

∫
Rd

�i (x − y)

|x − y|d+1φ j (x − y)h(y)dy

and

Ui
�,m; j h(x) =

∫
Rd

�i (x − y)(xm − ym)

|x − y|d+1 φ j (x − y)h(y)dy.

The method of rotation of Caldeón-Zygmund states that for p ∈ (1, ∞), they enjoy
the following properties:

‖Wi
�, j h‖L p(Rd ) � 2− j‖�i‖L1(Sd−1)‖h‖L p(Rd );

‖Ui
�,m, j h‖L p(Rd ) � ‖�i‖L1(Sd−1)‖h‖L p(Rd ),
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see [12, pp. 272–274]. For each fixed l, let hs,l(x) = Qsg(x)χIl (x) and I ∗
l = 60d Il .

For x ∈ supphs,l , we have

T i
�,A, j Q

4
t f (x) = AIl (x)W

i
�, j Q

4
t f (x) − Wi

�, j (AIl Q
4
t f )(x)

−
d∑

m=1

Ui
�,m, j (∂m AIl Q

4
t f )(x).

Hence, to show the estimate for I, we need to consider the following three terms.

R1
i =

∑
j

∫ 2 j

2 j−Ni

∫ 2 j

2 j−Ni

∣∣∣ ∑
l

∫
Rd

AIl (x)Q
3
s hs,l(x)W

i
�, j Q

4
t f (x)dx

∣∣∣dt
t

ds

s
;

R2
i =

∑
j

∫ 2 j

2 j−Ni

∫ 2 j

2 j−Ni

∣∣∣ ∑
l

∫
Rd

Q3
s hs,l(x)W

i
�, j (AIl Q

4
t f )(x)dx

∣∣∣dt
t

ds

s
;

and

R3
i =

d∑
m=1

∑
j

∫ 2 j

2 j−Ni

∫ 2 j

2 j−Ni

∣∣∣∑
l

∫
Rd

Q3
s hs,l(x)U

i
�,m, j (∂m AIl Q

4
t f

)
(x)dx

∣∣∣ds
s

dt

t

=:
d∑

m=1

R3
i,m .

For R1
i , note that

∑
j

∑
l

∫ 2 j

2 j−i N
‖Q3

s hs,l‖2L2(Rd )

ds

s
� i N

∑
j

∫ 2 j

2 j−1

∑
l

‖hs,l‖2L2(Rd )

ds

s

� i
∫ ∞

0
‖Qsg‖2L2(Rd )

ds

s
.

Then, the well-known Littlewood-Paley theory for g-function leads to that

∑
j

∑
l

∫ 2 j

2 j−i N
‖Q3

s hs,l‖2L2(Rd )

ds

s
� i

∥∥∥∥
( ∫ ∞

0
|Qsg(·)|2 ds

s

)1/2∥∥∥∥
2

L2(Rd )

� i‖g‖2L2(Rd )
.

For x ∈ 48d Il , since sup{φ j } ⊂ [2 j−2, 2 j ] and note that φ j (x − y)Q4
t f (y) =

χI ∗
l
(y)φ j (x − y)Q4

t f (y), then, W
i
�, j (Q

4
t f ) = Wi

�, j (χI ∗
l
Q4

t f ). It then follows from

Hölder’s inequality, Cauchy-Schwarz inequality and the boundedness of Wi
�, j that

|R1
i | ≤

( ∑
j

∑
l

∫ 2 j

2 j−i N

∫ 2 j

2 j−i N
‖Q3

s hs,l‖2L2(Rd )

ds

s

dt

t

)1/2



32 Page 12 of 44 Journal of Fourier Analysis and Applications (2024) 30 :32

×
( ∑

j

∑
l

∫ 2 j

2 j−i N

∫ 2 j

2 j−i N
‖AIlW

i
�, j (χI ∗

l
Q4

t f )‖2L2(Rd )

dt

t

ds

s

)1/2

� ‖�i‖L1(Sd−1)

( ∑
j

∑
l

∫ 2 j

2 j−i N

∫ 2 j

2 j−i N
‖Q3

s hs,l‖2L2(Rd )

dt

t

ds

s

)1/2

×
( ∑

j

∑
l

∫ 2 j

2 j−i N

∫ 2 j

2 j−i N
‖χI ∗

l
Q4

t f ‖2L2(Rd )

dt

t

ds

s

)1/2

� i2‖�i‖L1(Sd−1)‖ f ‖L2(Rd )‖g‖L2(Rd ),

where in the last inequality we have used the fact that the cubes {60d Il}l have bounded
overlaps.

The same reasoning applies to R2
i with small and straightforward modifications

yields that

|R2
i | � i‖�i‖L1(Sd−1)

(∑
j

∫ 2 j

2 j−i N
‖Qsg‖2L2(Rd )

ds

s

)1/2

×
( ∑

j

∑
l

∫ 2 j

2 j−i N
‖ζl Q4

t f ‖2L2(Rd )

dt

t

)1/2

� i2‖�i‖L1(Sd−1)‖ f ‖L2(Rd )‖g‖L2(Rd ).

Now we are in a position to consider each term R3
i,m . For x ∈ 32d Il , it is easy to

check

∂m AIl (x)Q
4
t f (x) = ζl(x)[∂m A, Qt ]Q3

t f (x) + ζl(x)Qt ([∂m A, Qt ]Q2
t f )(x)

+ζl(x)Q
2
t (∂m ÃIl Q

2
t f )(x).

Therefore R3
i,m can be controlled by the sum of the following terms:

R3,1
i,m =

∑
j

∫ 2 j

2 j−Ni

∫ 2 j

2 j−i N

∣∣∣∑
l

∫
Rd

Q3
s hs,l(x)U

i
�,m, j

([∂m A, Qt ]Q3
t f

)
(x)dx

∣∣∣dt
t

ds

s
;

R3,2
i,m =

∑
j

∫ 2 j

2 j−Ni

∫ 2 j

2 j−i N

∣∣∣∑
l

∫
Rd

Q3
s hs,l(x)U

i
�,m, j Qt

([∂m A, Qt ]Q2
t f

)
(x)dx

∣∣∣dt
t

ds

s
;

R3,3
i,m =

∑
j

∫ 2 j

2 j−Ni

∫ 2 j

2 j−i N

∣∣∣∑
l

∫
Rd

Q3
s hs,l(x)U

i
�,m, j Q

2
t (∂m ÃIl Q

2
t ) f (x)dx

∣∣∣dt
t

ds

s
.
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Observe that |[∂m A, Qt ]h(x)| � M∂m Ah(x), where M∂m A is the commutator of the
Hardy-Littlewood maximal operator defined by

M∂m Ah(x) = sup
r>0

r−d
∫

|x−y|<r
|∂m A(x) − ∂m A(y)||h(y)|dy.

Hölder’s inequality, alongwith the L2(Rd) boundedness ofM∂m A andUi
�,m, j , it yields

that

|R3,1
i,m | ≤

( ∑
j

∫ 2 j

2 j−Ni

∫ 2 j

2 j−i N

∥∥∥Q3
s

( ∑
l

hs,l
)∥∥∥2

L2(Rd )

dt

t

ds

s

)1/2

×
( ∑

j

∫ 2 j

2 j−Ni

∫ 2 j

2 j−i N
‖Ui

�,m, j ([∂m A, Qt ]Q3
t f ‖2L2(Rd )

dt

t

ds

s

)1/2

� i2‖�i‖L1(Sd−1)‖ f ‖L2(Rd )‖g‖L2(Rd ).

Exactly the same reasoning applies to R3,2
i,m , we obtain

|R3,2
i,m | � i2‖�i‖L1(Sd−1)‖ f ‖L2(Rd )‖g‖L2(Rd ).

As for R3,3
i,m, observing that for fixed l ∈ Z, s, t ≤ 2 j , one gets

Qt (∂m ÃIl Q
2
t f )(x) = Qt (∂m ÃIlχI ∗

l
Q2

t f )(x),

Ui
�,m, j Qs = QsU

i
�,m, j and QsQt = Qt Qs .

Henceforth we have

R3,3
i,m =

∑
j

∫ 2 j

2 j−Ni

∫ 2 j

2 j−i N

∣∣∣ ∑
l

∫
Rd

Qt Q
2
s hs,l (x)QsU

i
�,m, j Qt (∂m ÃIlχI ∗

l
Q2
t f )(x)dx

dt

t

ds

s

∣∣∣

≤
( ∑

j

∑
l

∫ 2 j

2 j−Ni

∫ 2 j

2 j−i N
‖Qt Q

2
s hs,l‖2L2(Rd )

dt

t

ds

s

)1/2

×
( ∑

j

∑
l

∫ 2 j

2 j−Ni

∫ 2 j

2 j−i N

∥∥∥Qs
(
Ui

�,m, j Qt (∂m ÃIlχI ∗
l
Q2
t f )

)∥∥∥2
L2(Rd )

dt

t

ds

s

)1/2
.

Let x ∈ 48d Il , q ∈ (1, 2) and s ∈ (2 j−1, 2 j ). A straightforward computation
involving Hölder’s inequality and the John-Nirenberg inequality gives us that

|Qs(∂m ÃIl h)(x)| ≤
∫
Rd

|ψs(x − y)||∂m A(y) − 〈∂m A〉I (x, s)||h(y)|dy

+|〈∂m A〉Il − 〈∂m A〉I (x, s)|
∫
Rd

|ψs(x − y)||h(y)|dy
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� Mqh(x) + log(1 + 2 j/s)Mh(x)

� Mqh(x), (2.8)

where I (x, s) is the cube center at x and having side length s.
This inequality, together with the boundedness of Ui

�,m, j and maximal function
Mqh, implies that

( ∑
j

∑
l

∫ 2 j

2 j−Ni

∫ 2 j

2 j−i N

∥∥Qs
(
Ui

�,m, j Qt (∂m ÃIlχI ∗
l
Q2

t f )
)∥∥2

L2(Rd )

dt

t

ds

s

)1/2

�
(
i
∑
j

∑
l

∫ 2 j

2 j−1

∥∥Ui
�,m, j Qt (∂m ÃIlχI ∗

l
Q2

t f )
∥∥2
L2(Rd )

dt

t

)1/2

� i‖�i‖L1(Sd−1)‖ f ‖L2(Rd ).

On the other hand, by the L2 boundedness of convolution operators and theLittlewood-
Paley theory for g-function again, we have that

∑
j

∑
l

∫ 2 j

2 j−Ni

∫ 2 j

2 j−i N
‖Qt Q

2
s hs,l‖2L2(Rd )

dt

t

ds

s

� i2
∫ ∞

0
‖Qsg‖2L2(Rd )

ds

s
� i2‖g‖2L2(Rd )

.

Therefore

R3,3
i,m � i2‖�i‖L1(Sd−1)‖ f ‖L2(Rd )‖g‖L2(Rd ).

Combining the estimates for R1
i , R

2
i and R3,n

i,m (with 1 ≤ m ≤ d, n = 1, 2, 3) in all
yields that

I �
∞∑
i=1

i2‖�i‖L1(Sd−1)‖ f ‖L2(Rd )‖g‖L2(Rd ) � ‖ f ‖L2(Rd )‖g‖L2(Rd ), (2.9)

since

∞∑
i=1

i2‖�i‖L1(Sd−1) � ‖�‖L(log L)2(Sd−1).

It remains to discuss the contribution of terms II and III. For i ∈ N∪{0}, by Lemma
2.3, one gets

∑
j

∫ ∞

0

∫ ∞

0
χEi

1,2
‖QsT

i
�, A; j Q

4
t f ‖L2(Rd )‖Q3

s g‖L2(Rd )

ds

s

dt

t
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� ‖�i‖L∞(Sd−1)

( ∫ ∞

0

∫ ∞

0

∑
j

χEi
1,2

(2− j s)ε‖Q3
s g‖2L2(Rd )

ds

s

dt

t

) 1
2

×
( ∫ ∞

0

∫ ∞

0

∑
j

χEi
1,2

(2− j s)ε‖Q4
t f ‖2L2(Rd )

ds

s

dt

t

) 1
2
. (2.10)

Note that

Ei
1,2( j, s, t) ⊂ {

( j, s, t) : 0 ≤ t ≤ 2 j , 0 ≤ s ≤ t, 2 j ≥ max{t, s2i N }},

Thus

∑
j

χEi
1,2

(2− j s)ε ≤ 2−i Nε/2( s
t

)ε/2
χ{(s,t): s≤t}(s, t),

which further implies that

( ∫ ∞

0

∫ ∞

0

∑
j

χEi
1,2

(2− j s)ε‖Q3
s g‖2L2(Rd )

ds

s

dt

t

) 1
2

� 2−Niε/4
( ∫ ∞

0

∫ ∞

s

( s
t

)ε/2 dt

t
‖Qsg‖2L2(Rd )

ds

s

)1/2
� 2−Niε/4‖g‖L2(Rd ).

Similarly, we have that

( ∫ ∞

0

∫ ∞

0

∑
j

χEi
1,2

(2− j s)ε‖Q4
t f ‖2L2(Rd )

ds

s

dt

t

) 1
2 � 2−Niε/4‖ f ‖L2(Rd ).

Therefore, these inequalities, together with the fact that E0
1,1 = ∅ may lead to

II + III �
∞∑
i=0

2i2−Niε/2‖ f ‖L2(Rd )‖g‖L2(Rd ) � ‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.11)

Inequality (2.11), together with the estimate (2.9) for I, gives that

∣∣∣∑
i

∑
j

∫ ∞

0

∫ t

0

∫
Rd

χE1( j,s,t)Q
4
s T

i
�, A; j Q

4
t f (x)g(x)dx

ds

s

dt

t

∣∣∣
� ‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.12)
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2.2 Contribution of E2(j, s, t)

Let α ∈ ( d+1
d+2 , 1), i ∈ N ∪ {0}, and write

∑
i

∑
j∈Z

∫ ∞

2 j

∫ (2 j tα−1)
1
α

0

∣∣∣
∫
Rd

Q4
s T

i
�,A, j Q

4
t f (x)g(x)dx

∣∣∣ds
s

dt

t

≤
∑
i

∑
j∈Z

∫ 2 j

2 j−Ni

∫ (2 j s−α)
1

1−α

2 j

∣∣∣
∫
Rd

Q4
s T

i
�,A, j Q

4
t f (x)g(x)dx

∣∣∣dt
t

ds

s

+
∑
i

∑
j∈Z

∫ 2 j−Ni

0

∫ (2 j s−α)
1

1−α

2 j

∣∣∣
∫
Rd

Q4
s T

i
�,A, j Q

4
t f (x)g(x)dx

∣∣∣dt
t

ds

s

=: IV + V. (2.13)

Firstly, we consider the term IV.When i = 0, the integral
∫ 2 j

2 j−Ni

∫ (2 j s−α)1/(1−α)

2 j
dt
t
ds
s

vanishes, we only need to consider the case i ∈ N. Since s > 2 j−Ni , then

(2 j s−α)
1

1−α ≤ 2 j2i N
α

1−α . Therefore

IV =
∑
i

∑
j∈Z

∫ 2 j

2 j−Ni

∫ (2 j s−α)
1

1−α

2 j

∣∣∣
∫
Rd

Q4
s T

i
�,A, j Q

4
t f (x)g(x)dx

∣∣∣dt
t

ds

s

≤
∑
i

∑
j

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j

∣∣∣
∫
Rd

T i
�,A, j Q

4
t f (x)Q

4
s g(x)dx

∣∣∣dt
t

ds

s

≤
∑
i

∑
j

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j

∣∣∣∑
l

∫
Rd

T i
�,A, j Q

4
t f (x)Q

3
s hs,l(x)dx

∣∣∣dt
t

ds

s
,

where hs,l(x) = Qsg(x)χIl (x), and {Il}l be the cubes in (2.7).
Observe that when x ∈ 4d Il , T i

�,A, j (Q
4
t f )(x)Q

3
s hs,l(x) =

T i
�,A, j (ζl Q

4
t f )(x)Q

3
s hs,l(x), we rewrite

T i
�,A, j (ζl Q

4
t f )(x)

=
(
AIl (x)W

i
�, j Q

4
t f (x) − Wi

�, j (AIl Q
4
t f )(x) −

d∑
m=1

Ui
�,m, j (ζl [∂m A, Qt ]Q3

t f )(x)

−
d∑

m=1

Ui
�,m, j (ζl Qt [∂m A, Qt ]Q2

t f )(x)

−
d∑

m=1

Ui
�,m, j (ζl Qt Qt (∂m ÃIl Q

2
t f )(x)

)
χ4d Il (x).



Journal of Fourier Analysis and Applications (2024) 30 :32 Page 17 of 44 32

Similar to the estimate for R1
i and R2

i , we know that

∑
j

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j

∣∣∣ ∑
l

∫
Rd

W i
�, j (AIl Q

4
t f )(x)Q

3
s hs,l(x)dx

∣∣∣dt
t

ds

s

� i2‖�i‖L1(Rd )‖ f ‖L2(Rd )‖g‖L2(Rd ), (2.14)

and

∑
j

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j

∑
l

∣∣∣
∫
Rd

AIl (x)W
i
�, j Q

4
t f (x)Q

3
s hs,l(x)dx

∣∣∣dt
t

ds

s

� i2‖�i‖L1(Rd )‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.15)

On the other hand, for each fixed 1 ≤ m ≤ d, the same reasoning as what we have
done for R3,1

i,m and R3,2
i,m yields that

∑
j

∑
l

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j

∣∣∣
∫
Rd

U i
�,m, j (ζl [∂m A, Qt ]Q3

t f )(x)Q
3
s hs,l(x)dx

∣∣∣dt
t

ds

s

� i2‖�i‖L1(Rd )‖ f ‖L2(Rd )‖g‖L2(Rd ), (2.16)

and

∑
j

∑
l

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j

∣∣∣
∫
Rd

U i
�,m, j (ζl Qt [∂m A, Qt ]Q2

t f )(x)Q
3
s hs,l(x)dx

∣∣∣dt
t

ds

s

� i2‖�i‖L1(Rd )‖ f ‖L2(Rd )‖g‖L2(Rd ), (2.17)

Note that if x ∈ 4d Il(x), then Ui
�,m, j (Qt Qt (∂m ÃIl Q

2
t f ))(x) =

Ui
�,m, j (ζl Qt Qt (∂m ÃIl Q

2
t f ))(x). Since the kernel of Qt is radial and it enjoys

the property that

< Ui
�,m, j (ζl Qt f ), g >=< Ui

�,m, j (ζl f ), Qtg > .

Hence, we have

∫
Rd

U i
�,m, j (ζl Qt Qt (∂m ÃIl Q

2
t f ))(x)Q

3
s hs,l(x)dx

=
∫
Rd

U i
�,m, j Qs(∂m ÃIl QsQ

2
t f )(x)Q

2
t Qshs,l(x)dx

−
∫
Rd

U i
�,m, j Qs[∂m A, Qs]Q2

t f (x)Q
2
t Qshs,l(x)dx .
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A trivial argument then yields that

∣∣∣∑
j

∑
l

∫ 2 j

2 j−i N

∫ 2 j2
i N α

1−α

2 j

∫
Rd

U i
�,m, j Qs[∂m A, Qs]Q2

t f (x)Q
2
t Qshs,l(x)dx

dt

t

ds

s

∣∣∣
� i2‖�i‖L1(Sd−1)‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.18)

Now we write
∫
Rd

U i
�,m, j Qs(∂m ÃIl QsQ

2
t f )(x)Q

2
t Qshs,l(x)dx

=
∫
Rd

QsQ
2
t f (x)[∂m A, Qs]Ui

�,m, j Q
2
t Qshs,l(x)dx

+
∫
Rd

QsQ
2
t f (x)Qs[∂m A, Ui

�,m, j ]Q2
t Qshs,l(x)dx

+
∫
Rd

QsQ
2
t f (x)QsU

i
�,m, j [∂m A, Q2

t ]Qshs,l(x)dx

+
∫
Rd

QsQ
2
t f (x)QsU

i
�,m, j Q

2
t [∂m A, Qs]hs,l(x)dx

+
∫
Rd

QsQ
2
t f (x)QsU

i
�,m, j Q

2
t Qs(∂m ÃIl hs,l)(x)dx :=

5∑
k=1

Ski,m,l .

A standard argument involving Hölder’s inequality leads to that

∑
j

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j

∣∣ ∑
l

S1i,m,l

∣∣dt
t

ds

s

�
∑
j

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j
‖QsQ

2
t f ‖L2(Rd )

∥∥∥[∂m A, Qs]Ui
�,m, j Q

2
t Q

2
s g

∥∥∥
L2(Rd )

dt

t

ds

s

� ‖�i‖L1(Sd−1)

(∑
j

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j
‖QsQ

2
t f ‖2L2(Rd )

dt

t

ds

s

)1/2

×
(∑

j

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j

∥∥∥Q2
t Q

2
s g

∥∥∥2
L2(Rd )

dt

t

ds

s

)1/2

� i2|�i‖L1(Sd−1)‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.19)

Similarly, one can verify that

∑
j

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j

∣∣ ∑
l

S3i,m,l

∣∣dt
t

ds

s
� i2‖�i‖L1(Sd−1)‖ f ‖L2(Rd )‖g‖L2(Rd ).

(2.20)
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and

∑
j

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j

∣∣ ∑
l

S4i,m,l

∣∣dt
t

ds

s
� i2‖�i‖L1(Sd−1)‖ f ‖L2(Rd )‖g‖L2(Rd ).

(2.21)

On the other hand, the fact (see [20, Lemma 4 and Lemma 3])

‖[∂m A, Ui
�,m, j ]h‖L2(Rd ) �

(
2−i + i‖�i‖L1(Sd−1)

)‖h‖L2(Rd ),

implies that

∑
j

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j

∣∣∑
l

S2i,m,l

∣∣dt
t

ds

s

�
(
i2−i + i2‖�i‖L1(Sd−1)

)‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.22)

ApplyingHölder’s inequality and inequality (2.8) in the case s ∈ (2 j−1, 2 j ), we obtain

∑
j

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j

∣∣∑
l

S5i,m,l

∣∣dt
t

ds

s

� ‖�i‖L1(Sd−1)

( ∑
j

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j
‖QsQ

2
t f ‖2L2(Rd )

dt

t

ds

s

)1/2

×
( ∑

j

∫ 2 j

2 j−Ni

∫ 2 j2
i N α

1−α

2 j

∥∥∥Q2
t Qs

(∑
l

∂m ÃIl hs,l
)∥∥∥2

L2(Rd )

dt

t

ds

s

)1/2

� i
3
2 ‖�i‖L1(Sd−1)‖ f ‖L2(Rd )

( ∑
j

∫ 2 j

2 j−Ni

∥∥∥ ∑
l

Qs
(
∂m ÃIl hs,l

)∥∥∥2
L2(Rd )

ds

s

)1/2

� i2‖�i‖L1(Sd−1)‖ f ‖L2(Rd )

(∑
j

∫ 2 j

2 j−1
‖Mqh‖2L2(Rd )

ds

s

)1/2

� i2‖�i‖L1(Sd−1)‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.23)

Collecting the estimates from (2.14) to (2.23) in all, we deduce that

IV =
∑
i

∑
j

∫ 2 j

2 j−Ni

∫ (2 j s−α)
1

1−α

2 j

∣∣∣
∫
Rd

Q4
t f (x)T

i
�,A, j Q

4
s g(x)dx

∣∣∣dt
t

ds

s

�
( ∑

i

i2−i +
∑
i

i2‖�i‖L1(Sd−1)

)
‖ f ‖L2(Rd )‖g‖L2(Rd )



32 Page 20 of 44 Journal of Fourier Analysis and Applications (2024) 30 :32

� ‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.24)

To show the estimate for V, note that for each fixed j , it holds that

{
(s, t) : 0 ≤ s ≤ 2 j−Ni , 2 j ≤ t < (2 j s−α)

1
1−α

}
⊂ {

(s, t) : 2 j ≤ t < ∞, 0 < s ≤ min{2 j−Ni , (2 j tα−1)
1
α }}.

It then follows that

∑
j

∫ 2 j−Ni

0

∫ (2 j s−α)
1

1−α

2 j
‖Q4

t f ‖2L2(Rd )

dt

t
(2− j s)ε

ds

s

≤ 2−Niε/2
∫ ∞

0

∑
j : 2 j≤t

∫ (2 j tα−1)
1
α

0
(2− j s)

ε
2
ds

s
‖Q4

t f ‖2L2(Rd )

dt

t

� 2−Niε/2‖ f ‖2L2(Rd )
,

and

∑
j

∫ 2 j−Ni

0

∫ (2 j s−α)
1

1−α

2 j

dt

t
‖Q3

s g‖2L2(Rd )
(2− j s)ε

ds

s

≤ 2−Niε/2
∫ ∞

0

( ∑
j : 2 j≥s2Ni

∫ (2 j s−α)
1

1−α

2 j

dt

t
(2− j s)

ε
2

)
‖Q3

s g‖2L2(Rd )

ds

s

� 2−Niε/2‖g‖2L2(Rd )
,

Thus, by Lemma 2.3, we obtain

V ≤
∑
i

∑
j

∫ 2 j−Ni

0

∫ (2 j s−α)
1

1−α

2 j
‖QsT

i
�, A; j Q

4
t f ‖L2(Rd )‖Q3

s g‖L2(Rd )

dt

t

ds

s

≤
∑
i

2i
( ∑

j

∫ 2 j−Ni

0

∫ (2 j s−α)
1

1−α

2 j
‖Q4

t f ‖2L2(Rd )

dt

t
(2− j s)ε

ds

s

) 1
2

×
( ∑

j

∫ 2 j−Ni

0

∫ (2 j s−α)
1

1−α

2 j
‖Q3

s g‖2L2(Rd )
(2− j s)ε

dt

t

ds

s

)1/2

�
∑
i

2i2−Niε/2‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.25)
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Combining estimates (2.24)–(2.25) yields

∣∣∣∑
i

∑
j

∫ ∞

2 j

∫ (2 j tα−1)1/α

0

∫
Rd

Q4
s T

i
�,A, j Q

4
t f (x)g(x)dx

ds

s

dt

t

∣∣∣
� ‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.26)

Therefore, by (2.13), (2.24) and (2.26), it holds that

∣∣∣ ∑
i

∑
j

∫ ∞

0

∫ t

0

∫
Rd

χE2( j,,s,t)Q
4
s T

i
�, A; j Q

4
t f (x)g(x)dx

ds

s

dt

t

∣∣∣
� I V + V � ‖ f ‖L2(Rd )‖g‖L2(Rd ),

which gives the contribution of E2( j, s, t).
To finish the proof of (2.4), it remains to show the contribution of the term

Ei
3( j, s, t).

2.3 Contribution of E3(j, s, t)

Our aim is to prove

∣∣∣
∞∑
i=0

∑
j

∫ ∞

0

∫ t

0

∫
Rd

χE3( j, s, t)Q
4
s T

i
�, A; j Q

4
t f (x)g(x)dx

ds

s

dt

t

∣∣∣
� ‖ f ‖L2(Rd )‖g‖L2(Rd ), (2.27)

where

T�i , A; j f (x) =
∫
Rd

�i (x − y)

|x − y|d+1

×(A(x) − A(y) − ∇A(y)(x − y)
)
φ j (|x − y|) f (y)dy, (2.28)

Since the sum of i and the sum of j are independent and the sum of j depends only on
the functions φ j and χE3( j, s, t), one may put φ j · χE3( j, s, t) together in the place
of φ j in (2.28), and temporary moves the summation over j before φ j · χE3( j, s, t),
which indicates that it is possible to move the summation over i inside the integral
again before�i to obtain�. After that, onemaymove the sum of j outside the integral.
Therefore, to prove (2.27), it suffices to show that

∑
j

∫ ∞

2 j

∫ t

(2 j tα−1)1/α

∣∣∣
∫
Rd

Q4
s T�,A, j Q

4
t f (x)g(x)dx

∣∣∣ds
s

dt

t

� ‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.29)
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To this purpose, we set

h(1)(x, y) =
∫ ∫

ψs(x − z)
∑

j :2 j≤sα t1−α

KA, j (z, u)
[
ψt (u − y) − ψt (x − y)]dudz.

Let H (1) be the integral operator corresponding to kernel h(1). It then follows that

∣∣∣∑
j

∫ ∞

2 j

∫ t

(2 j tα−1)1/α

∫
Rd

Q4
s T�,A, j Q

4
t f (x)g(x)dx

ds

s

dt

t

∣∣∣

≤
∫ ∞

0

∫ t

0
‖H (1)Q3

t f ‖L2(Rd )‖Q3
s g‖L2(Rd )

ds

s

dt

t

+
∑
j

∫ ∞

2 j

∫ t

(2 j tα−1)1/α

∫
Rd

(QsT�,A; j1)(x)Q4
t f (x)Q

3
s g(x)dx

ds

s

dt

t
.(2.30)

Applying Lemma 2.5 and reasoning as the same argument as in [18, p. 1282] give us
that

|h(1)(x, y)| �
( s
t

)γ
t−dχ{(x, y): |x−y|≤Ct}(x, y),

where γ = (d + 2)α − d − 1. This in turn indicates that |H (1)Qt f (x)| �( s
t

)γ
M(Qt f )(x). Therefore

∫ ∞

0

∫ t

0
‖H (1)Q3

t f ‖L2(Rd )‖Q3
s g‖L2(Rd )

ds

s

dt

t

�
( ∫ ∞

0

∫ t

0

( s
t

)γ ‖M(Q3
t f )‖2L2(Rd )

ds

s

dt

t

) 1
2

×
( ∫ ∞

0
‖Q3

s g‖2L2(Rd )

∫ ∞

s

( s
t

)γ dt

t

ds

s

) 1
2

� ‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.31)

It remains to show the corresponding estimate for the second term on the rightside of
(2.30).

Let F j
x (s, t) = (QsT�,A; j1)(x)Q4

t f (x)Q
3
s g(x). Then

∫ ∞

2 j

∫ t

(2 j tα−1)1/α
F j
x (s, t)

dsdt

st

=
∫ ∞

0

∫ t

0
F j
x (s, t)

dsdt

st
−

∫ 2 j

0

∫ t

0
F j
x (s, t)

dsdt

st

−
∫ ∞

2 j

∫ (2 j tα−1)1/α

0
F j
x (s, t)

dsdt

st
(2.32)
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Therefore, it is sufficient to consider the contributions of each terms in Eq. (2.32) to
the second term in (2.30).

Consider the first term in (2.32). Let Ps = ∫ ∞
s Q4

t
dt
t .Han andSawyer [16] observed

that the kernel 
 of the convolution operator Ps is a radial bounded function with
bound cs−d , supported on a ball of radius Cs and has integral zero. Therefore, it is
easy to see that 
 is a Schwartz function. Since Psg = 
s ∗ g, it then follows from
the Littlewood-Paley theory that

∫ ∞

0
‖Psg‖2L2(Rd )

ds

s
� ‖g‖2L2(Rd )

.

On the other hand, whenever� ∈ L1(Rd), it was shown in [19, p.121, Lemma 4.1] that
T�,A1 ≡ b ∈ BMO(Rd). Therefore, by [19, p.114, (3.1)],

∫ ∞
0 Q3

s (QsbPs)
ds
s defines

an operator which is bounded on L2(Rd). However, we can’t use this boundedness
directly in our case, since once using Hölder’s inequality, we have to put the absolute
value inside the integral and the L2(Rd)boundednessmay fail in this case.Toovercome
this obstacle, we apply the property of Carleson measure.

Note that |QsT�, A1(x)|2 dxdss is a Carleson measure since T�, A1 ∈ BMO(Rd).
By Hölder’s inequality, Lemma 2.7, it yields that

∣∣∣
∫ ∞

0

∫ t

0

∫
Rd

∑
j

QsT�, A; j1(x)Q4
t f (x)Q

3
s g(x)dx

ds

s

dt

t

∣∣∣

�
( ∫ ∞

0

∫
Rd

|Q3
s g(x)|2dx

ds

s

) 1
2
( ∫

R
n+1+

|Ps f (x)|2|QsT�, A1(x)|2 dxds
s

) 1
2

� ‖ f ‖L2(Rd )‖g‖L2(Rd ) (2.33)

On the other hand, by Lemma 2.2, one gets

‖QsT�, A; j1‖L∞(Rd ) � ‖�‖L1(Sd−1)(2
− j s)ε.

Denote by D1
j,s,t = {( j, s, t) : s ≤ t ≤ 2 j }, D2

j,s,t = {( j, s, t) : s ≤ t, sαt1−α ≤
2 j ≤ t}. It then follows that

∑
j

∫ 2 j

0

∫ t

0

∫
Rd

∣∣∣QsT�, A; j1(x)Q4
t f (x)Q

3
s g(x)

∣∣∣dx ds
s

dt

t

+
∑
j

∫ ∞

2 j

∫ (2 j tα−1)1/α

0

∫
Rd

∣∣∣QsT�, A; j1(x)Q4
t f (x)Q

3
s g(x)

∣∣∣dx ds
s

dt

t

�
2∑

i=1

{( ∫ ∞

0

∫ ∞

0

∑
j

(2− j s)εχDi
j,s,t

( j, s, t)‖Qt f ‖2L2(Rd )

ds

s

dt

t

)1/2

×
( ∫ ∞

0

∫ ∞

0

∑
j

(2− j s)εχDi
j,s,t

( j, s, t)‖Qsg‖2L2(Rd )

ds

s

dt

t

)1/2}
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� ‖ f ‖L2(Rd )‖g‖L2(Rd ), (2.34)

where in the last inequality, we used the property (2.2).
Combining (2.32)–(2.34), we have

∣∣∣∑
j

∫ ∞

2 j

∫ t

(2 j tα−1)1/α

∫
Rd

(QsT�,A; j1)(x)Q4
t f (x)Q

3
s g(x)dx

ds

s

dt

t

∣∣∣
� ‖ f ‖L2(Rd )‖g‖L2(Rd ),

which, together with (2.31), leads to (2.27). This finishes the proof of E3( j, s, t), and
also completes the proof of inequality (2.4).

2.4 Proof of (2.5)

To finish the proof of Theorem 1.1, it remains to show the estimate (2.5). Observe that

∫ ∞

0

∫ ∞

t

∫
Rd

Q4
s T�, AQ

4
t f (x)g(x)dx

ds

s

dt

t

= −
∫ ∞

0

∫ s

0

∫
Rd

Q4
t T̃�̃, AQ

4
s g(x) f (x)dx

dt

t

ds

s
,

where �̃(x) = �(−x) and T̃�̃, A is the operator defined by (1.5), with � replaced by
�̃. Let T�̃,m be the operator defined by

T�̃,mh(x) = p. v.
∫
Rd

�̃(x − y)(xm − ym)

|x − y|d+1 h(y)dy.

It then follows that

T̃�̃, Ah(x) = T�̃, Ah(x) −
d∑

m=1

[∂m A, T�̃,m]h(x).

Inequality (2.4) tells us that

∣∣∣
∫ ∞

0

∫ t

0

∫
Rd

Q4
s T�̃, AQ

4
t g(x) f (x)dx

ds

s

dt

t

∣∣∣ � ‖ f ‖L2(Rd )‖g‖L2(Rd ). (2.35)

For each fixed m with 1 ≤ m ≤ d, by duality, involving Lemma 2.4 and Hölder’s
inequality may lead to

∣∣∣
∫ ∞

0

∫ t

0

∫
Rd

Q4
s [∂m A, T�̃,m]Q4

t g(x) f (x)dx
ds

s

dt

t

∣∣∣
�

∫ ∞

0
‖[∂m A, T�̃,m]Q4

s f ‖L2(Rd )

∥∥∥
∫ ∞

s
Q4

t g
dt

t

∥∥∥
L2(Rd )

ds

s
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�
( ∫ ∞

0
‖Q4

s f ‖2L2(Rd )

ds

s

)1/2( ∫ ∞

0
‖Psg‖2L2(Rd )

ds

s

)1/2

� ‖ f ‖L2(Rd )‖g‖L2(Rd ).

This estimate, together with (2.35), leads to (2.5) and then completes the proof of
Theorem 1.1.

3 Proof of Theorems 1.2 and 1.3

This section is devoted to prove Theorem 1.2, the weak type endpoint estimates for
T�, A and T̃�,A. To this end, we first introduce the definition of standard dyadic grid.
Recall that the standard dyadic grid in R

d , denoted by D, consists of all cubes of the
form

2−k([0, 1)d + j), k ∈ Z, j ∈ Z
d .

For each fixed j ∈ Z, set D j = {Q ∈ D : (Q) = 2 j }.

3.1 Proof of (1.6) in Theorem 1.2

The key ingredient of our proof lies in the step of dealing with the bad part of the
Calderón-Zygmund decomposition of f . By homogeneity, it suffices to prove (1.6)
for the case λ = 1. Applying theCalderón-Zygmund decomposition to | f | log(e+| f |)
at level 1, we can obtain a collection of non-overlapping closed dyadic cubes S = {L},
such that

(i) ‖ f ‖L∞(Rd\∪L∈SL) � 1;
(ii)

∫
L

| f (x)| log(e + | f (x)|)dx � |L|;
(iii)

∑
L∈S |L| �

∫
Rd | f (x)| log(e + | f (x)|)dx .

Let g be the good part and b be the bad part of the decomposition of f , which are
defined by

g(x) = f (x)χRd\∪L∈SL(x) +
∑
L∈S

〈 f 〉LχL(x) and

b(x) =
∑
L∈S

( f − 〈 f 〉L)χL(x) =
∑
L∈S

bL(x).

It is easy to see that ‖g‖L∞(Rd ) � 1, and for E = ∪L∈S100dL, it holds that

|E | �
∫
Rd

| f (x)| log(e + | f (x)|)dx .

The L2(Rd) boundedness of T�, A then yields that

∣∣{x ∈ R
d : |T�, Ag(x)| ≥ 1/2}∣∣ � ‖T�, Ag‖2L2(Rd )
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� ‖g‖2L2(Rd )
� ‖ f ‖L1(Rd ). (3.1)

Therefore, it is sufficient to show that

∣∣{x ∈ R
d : |T�, Ab(x)| ≥ 1/2}∣∣ �

∫
Rd

| f (x)| log(e + | f (x)|)dx . (3.2)

To prove (3.2), let φ be a smooth radial nonnegative function on R
d with suppφ ⊂

{x : 1
4 ≤ |x | ≤ 1} and ∑

s φs(x) = 1 with φs(x) = φ(2−s x) for all x ∈ R
d\{0}. Set

S j = {L ∈ S : (L) = 2 j }. Then, we have
∫
Rd

�(x − y)

|x − y|d+1 (A(x) − A(y))b(y)dy

=
∫
Rd

�(x − y)

|x − y|d+1 (A(x) − A(y))
∑
s

φs(x − y)
∑
j

∑
L∈Ss− j

bL(y)dy

=
∫
Rd

�(x − y)

|x − y|d+1 (A(x) − A(y))
∑
j

∑
s

φs(x − y)
∑

L∈Ss− j

bL(y)dy

=
∑
j

∑
s

∑
L∈Ss− j

T�, A; s, j bL(x),

where

T�, A; s, j bL(x) =
∫
Rd

φs(x − y)
�(x − y)

|x − y|d+1 (A(x) − A(y))bL(y)dy. (3.3)

Let AL(y) = A(y) − ∑d
n=1〈∂n A〉Lyn . A trivial computation leads to the fact that

AL(x) − AL(y) − ∇AL(y) · (x − y) = A(x) − A(y) − ∇A(y) · (x − y).

Now write T�,Ab as

T�,Ab(x) =
∑
j

∑
s

∑
L∈Ss− j

T�, AL;s, j bL(x) −
d∑

n=1

T n
�

( ∑
L∈S

bL∂n AL

)
(x),

where

T n
�h(x) = p. v.

∫
Rd

�(x − y)

|x − y|d+1 (xn − yn)h(y)dy, for 1 ≤ n ≤ d.

Fixed 1 ≤ n ≤ d, since the kernel�(x)xn |x |−1 is still in L log L(Sd−1), homogenous
of degree zero and satisfies the vanishing condition on the unit sphere, by the weak
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endpoint estimate of the operators T n
� (see [31] or [9]), it follows that

∣∣∣
{
x ∈ R

d\E :
∣∣∣T n

�

( ∑
L∈S

bL∂n AL

)
(x)

∣∣∣ >
1

4d

}∣∣∣ �
∥∥∥ ∑
L∈S

bL∂n AL

∥∥∥
L1(Rd )

�
∑
L∈S

|L|‖bL||L log L,L

�
∫
Rd

| f (x)| log(e + | f (x)|)dx, (3.4)

where in the last inequality, we have used the fact that ‖bL‖L log L,L � 1 for each cube
L ∈ S.

Therefore, to prove inequality (1.6), by (3.1), (3.2) and (3.4), it is sufficient to show
that

∣∣∣
{
x ∈ R

d\E :
∣∣∣∑

j

∑
s

∑
L∈Ss− j

T�,AL;s, j bL(x)
∣∣∣ > 1/4

}∣∣∣ � ‖ f ‖L1(Rd ). (3.5)

In order to prove inequality (3.5), we first give some estimate for∑
s
∑

L∈Ss− j
T�, AL;s, j bL. For this purpose, we need to introduce some notations.

For L ∈ Ss− j , s, j ∈ Z with j ≥ log2(100d/2) =: j0. Let L j,1 = 2 j+2dL,

L j,2 = 2 j+4dL, L j,3 = 2 j+6dL, and y j
L
be a point on the boundary of L j,3. Set

AϕL(y) = ϕL(y)
(
AL(y) − AL(y j

L
)),

where ϕL ∈ C∞
c (Rd), suppϕL ⊂ L j,1, ϕL ≡ 1 on 3·2 j dL, and ‖∇ϕL‖L∞(Rd ) � 2−s .

Let y0 be the center point of L. Observe that for x ∈ R
d\E , j ≤ j0, y ∈ L, we have

|x − y| ≥ |x − y0| − |y − y0| > 2s . The support condition of φ then implies that
T�,AL;s, j bL(x) = 0 if j ≤ j0. For y ∈ L ∈ Ss− j , s, j ∈ Z with j > j0, we have
ϕL(y) = 1. By the support condition ofφ, it follows that |x−y0| ≤ |x−y|+|y−y0| ≤
1.5d2s . Hence x ∈ 3 · 2 j dL and ϕL(x) = 1. Collecting these facts in all, it follows
that

φs(x − y)(AL(x) − AL(y)) = φs(x − y)(AϕL(x) − AϕL(y)).

The kernel � will be decomposed into disjoint forms as in Section 2 as follows:

�0(θ) = �(θ)χE0(θ), �k(θ) = �(θ)χEk (θ) (k ∈ N),

where E0 = {θ ∈ S
d−1 : |�(θ)| ≤ 1} and Ek = {θ ∈ S

d−1 : 2k−1 < |�(θ)| ≤ 2k}
for k ∈ N.

Let the operator T i
�,AL; s, j bL be defined in the same form as T�,AL; s, j bL, with �

replaced by �i . Then we can divide the summation of T�,AL; sbL into two terms as
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follows

∑
j> j0

∑
s

∑
L∈Ss− j

T�,AL; s, j bL(x) =
∞∑
i=0

∑
j> j0

∑
s

∑
L∈Ss− j

T i
�,AL; s, j bL(x)

=
∞∑
i=0

∑
j0< j≤Ni

∑
s

∑
L∈Ss− j

T i
�,AL; s, j bL(x)

+
∞∑
i=0

∑
j>Ni

∑
s

∑
L∈Ss− j

T i
�,AL; s, j bL(x)

:= D1(x) + D2(x),

where N is some constant which will be chosen later. If we can verify that

‖D1‖L1(Rd ) � ‖�‖L(log L)2(Sd−1)‖ f ‖L1(Rd ). (3.6)

and

|[x ∈ R
d : |D2(x)| > 1/8}| � ‖ f ‖L1(Rd ), (3.7)

the inequality (1.6) then follows directly. The proofs of these two estimate will be
given in the next two subsections respectively.

3.2 Proof of Inequality (3.6)

We first claim that if L ∈ Ss− j , then

∣∣T i
�,AL; s, j bL(x)

∣∣ � j
∫

{2s−2≤|y|≤2s+2}
|�i (y′)|

|y|d |bL(x − y)|dy.

This claim is a consequence of the following lemma, which will also be used several
times later.

Lemma 3.1 Let A be a function in R
d with derivatives of order one in BMO(Rd). Let

s, j ∈ Z and L ∈ Ss− j with j > j0 and let Rs,L; j (x, y) be the function on R
d × R

d

defined by

Rs,L; j (x, y) = φs(x − y)
AϕL(x) − AϕL(y)

|x − y|d+1 .

Then, Rs,L; j enjoys the properties that
(i) For any x, y ∈ R

d ,

∣∣Rs,L; j (x, y)
∣∣ � j

|x − y|d χ{2s−2≤|x−y|≤2s+2}(x, y);
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(ii) For any x, x ′ ∈ R
d and y ∈ L with |x − y| > 2|x − x ′|,

∣∣Rs,L; j (x, y) − Rs,L; j (x ′, y)
∣∣ � |x − x ′|

|x − y|d+1

(
j +

∣∣∣ log (
2s− j |x − x ′|−1)∣∣∣

)
;

(iii) For any x, y′ ∈ R
d and y ∈ L with |x − y| > 2|y − y′|,

∣∣Rs,L; j (x, y) − Rs,L; j (x, y′)
∣∣ � |y − y′|

|x − y|d+1

(
j +

∣∣∣ log (
2s− j |y − y′|−1)∣∣∣

)
.

Proof We first prove (i). It is obvious that supp Rs,L; j ⊂ L j,2 × L j,2. Fixed x ∈ L j,1,

we know that 2s− j < |x − y j
L
| and

∣∣〈∇A〉L − 〈∇A〉I
(x,|x−y

j
L

|)

∣∣ ≤ ∣∣〈∇A〉L − 〈∇A〉I
(x,2s− j )

∣∣ + ∣∣〈∇A〉I
(x,2s− j )

− 〈∇A〉I
(x,|x−y

j
L

|)

∣∣.

Note that if x ∈ 4L, then I(x,2s− j ) ⊂ 8L and it holds that

∣∣〈∇A〉L − 〈∇A〉I
(x,2s− j )

∣∣ ≤ ∣∣〈∇A〉L − 〈∇A〉8L
∣∣ + ∣∣〈∇A〉8L − 〈∇A〉I

(x,2s− j )

∣∣ � 1.

If x ∈ L j,1\4L, then the center of L and the center of I(x,2s− j ) are at a distance of
a2s− j with a > 1. Hence, the results in [13, Proposition 3.1.5, p. 158 and 3.1.5–3.1.6,
p. 166.] gives that

∣∣〈∇A〉L − 〈∇A〉I
(x,2s− j )

∣∣ � j and
∣∣〈∇A〉I

(x,2s− j )
− 〈∇A〉I

(x,|x−y
j
L

|)

∣∣ � j,

since 2s < |x − y j
L
| < 2s+5+d2 .

Therefore, for x ∈ L j,1, it holds that

∣∣〈∇A〉L − 〈∇A〉I
(x,|x−y

j
L

|)

∣∣ � j . (3.8)

Lemma 2.6, together with John-Nirenberg inequality then gives that

|AϕL(x)| � |x − y j
L
|
( 1

|I
(x,|x−y j

L
|)|

∫
I
(x,|x−y

j
L

|)
|∇A(z) − 〈∇A〉L|qdz

)1/q
� j2s,

(3.9)

which finishes the proof of (i).
Nowwegive the proof of (ii). For any x, x ′ ∈ R

d and y ∈ Lwith |x−y| > 2|x−x ′|,
it is easy to see that

(1) if x /∈ L j,1 and x ′ /∈ L j,1, then Rs,L; j (x, y) = Rs,L; j (x ′, y) = 0;
(2) if x /∈ L j,1, then x ′ /∈ 3 · 2 j dL, hence Rs,L; j (x, y) = Rs,L; j (x ′, y) = 0;
(3) if x ′ /∈ L j,1, then x /∈ 3 · 2 j dL, hence Rs,L; j (x, y) = Rs,L; j (x ′, y) = 0.
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If z ∈ I(x,|x−x ′|), another application of Lemma 2.6 and John-Nirenberg inequality
indicates

|∇AϕL(z)| � 2−s |AL(z) − AL(y j
L)| + |∇A(z) − 〈∇A〉L|

� j + |∇A(z) − 〈∇A〉L|, (3.10)

and the similar method as what was used in the proof of (3.8) further implies that

|〈∇A〉L − 〈∇A〉I(x,|x−x ′ |) | ≤ |〈∇A〉L − 〈∇A〉I
(x,2s− j )

| + |〈∇A〉I(x,|x−x ′ |)〈∇A〉I
(x,2s− j )

|
� log 2 j +

∣∣∣ log (
2s− j |x − x ′|−1)∣∣∣. (3.11)

By Lemma 2.6, (3.10) and (3.11), we have

|AϕL(x) − AϕL(x ′)| � |x − x ′|
( 1

|I(x,|x−x ′|)|
∫
I(x,|x−x ′|)

|∇AϕL(z)|qdz
) 1

q

� |x − x ′|
(
j + 1

|I(x,|x−x ′|)|
∫
I(x,|x−x ′|)

|∇A(z) − 〈∇AL 〉|qdz
) 1

q

(3.12)

Similarly, we obtain

|AϕL(x) − AϕL(x ′)| � |x − x ′|( j + |〈∇A〉L − 〈∇A〉I(x,|x−x ′ |) |
)

� |x − x ′|
[
j +

∣∣∣ log (
2s− j |x − x ′|−1)∣∣∣

]
. (3.13)

In a similar way, we have

|AϕL(x) − AϕL(y)| � |x − y|
[
j +

∣∣∣ log (
2s− j |x − y|−1)∣∣∣

]
;

|AϕL(x ′) − AϕL(y)| � |x ′ − y|
[
j +

∣∣∣ log (
2s− j |x ′ − y|−1)∣∣∣

]
.

Therefore,

|Rs,L; j (x, y) − Rs,L; j (x ′, y)|
≤ |φs(x − y)|

∣∣∣ AϕL(x) − AϕL(y)

|x − y|d+1 − AϕL(x ′) − AϕL(y)

|x ′ − y|d+1

∣∣∣
+ |AϕL(x ′) − AϕL(y)|

|x ′ − y|d+1

∣∣φs(x − y) − φs(x
′ − y)

∣∣

� |x − x ′|
|x − y|d+1

(
j +

∣∣∣ log (
2s− j |x − x ′|−1)∣∣∣

)
.

This completes the proof of (ii) in Lemma 3.1. (iii) can be proved in the same way as
(ii). ��
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Let us turn back to the contribution of D1. It follows from the method of rotation
of Calderón-Zygmund that

‖D1‖L1(Rd ) =
∞∑
i=0

∑
j0< j≤Ni

∑
s

∑
L∈Ss− j

‖T i
�,AL; s, j bL(x)‖L1(Rd )

�
∞∑
i=0

∑
j0< j≤Ni

∑
s

∑
L∈Ss− j

j

∫
Rd

∫ 2s+2

2s−2

∫
Sd−1

|�i (y′)|
|r | |bL(x − r y′)| dy′ dr dx

�
∞∑
i=0

‖�i‖L1(Sd−1)

∑
j0< j≤Ni

j
∑
s

∑
L∈Ss− j

‖bL‖L1(Rd )

� ‖�‖L(log L)2(Sd−1)‖ f ‖L1(Rd ).

This verifies (3.6).

3.3 Proof of the Inequality (3.7)

The estimate of D2 is long and complicated. We split the proof into three steps.
Step 1. A reduction for the estimate of D2.
Let lτ ( j) = τ j + 3, where 0 < τ < 1 will be chosen later. Let ω be a nonnegative,

radial C∞
c (Rd) function which is supported in {x ∈ R

d : |x | ≤ 1} and has integral 1.

Set ωt (x) = 2−tdω(2−t x). For s ∈ N and a cube L, we define R j
s,L as

R j
s,L(x, y) =

∫
Rd

ωs−lτ ( j)(x − z)
1

|z − y|d+1φs(z − y)
(
AϕL(z) − AϕL(y)

)
dz.

(3.14)

It is obvious that suppR j
s,L(x, y) ⊂ {(x, y) : 2s−3 ≤ |x − y| ≤ 2s+3}. Moreover, if

y ∈ L with L ∈ Ss− j , then (i) of Lemma 3.1 implies that

|R j
s,L(x, y)| � j2−sdχ{2s−3≤|x−y|≤2s+3}(x, y). (3.15)

We define the operator T i, j
�,L; s by

T i, j
�,L; sh(x) =

∫
Rd

�i (x − y)R j
s,L(x, y)h(y)dy,
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and let D∗
2 be the operator as follows

D∗
2(x) =

∞∑
i=0

∑
j>Ni

∑
s

∑
L∈Ss− j

T i, j
�,L; sbL(x).

The following lemma indicates the intrinsically close relationship in each subtract
terms between D2 and D∗

2. Thus, the corresponding proof is transferred to verify it for
each term of D∗

2.

Lemma 3.2 Let � be homogeneous of degree zero, A be a function on R
d with

derivatives of order one in BMO(Rd). For j > j0 and i ≥ 0, it holds that

‖T i
�,AL; s, j bL − T i, j

�,L; sbL‖L1(Rd ) � j2−τ j‖�i‖L1(Sd−1)‖bL‖L1(Rd ).

Proof For each y ∈ L and z ∈ suppωs−lτ ( j), notice that Rs,L; j (x, y) − Rs,L; j (x −
z, y) = 0 if x ∈ L j,1\3 · 2 j dL. In fact, since |z| ≤ 2s−τ j−3, then we have 2s+1 <

|x − y| < 3 · 2s and 2s < |x − y − z| < 2s+2.
By Lemma 3.1, we have

∣∣Rs,L; j (x, y) − Rs,L; j (x − z, y)
∣∣ � |z|

2s(d+1)

[
j + log

(
2s− j

|z|
)]

χ{2s−2≤|x−y|≤2s+2}(x, y).

Observing that the function �(t) = t log(e + 1
t ) is bounded at t ∈ (0, 1], and then

for 0 < t ≤ r ,

t log
(
e + r

t

)
� r ,

we deduce that

∣∣∣
∫
Rd

ωs−lτ ( j)(z)
(
Rs,L; j (x, y) − Rs,L; j (x − z, y)

)
dz

∣∣∣

� 2(−s+τ j)d
∫

{|z|≤2s−τ j }
|z|

2s(d+1)

[
j + log

(
2s−τ j

|z|
)]

dz � j2−sd−τ j .

Therefore

‖T i
�,AL; s, j bL − T i, j

�,L; sbL‖L1(Rd )

≤
∫
Rd

∫
Rd

|�i (x − y)|
∣∣∣
∫
Rd

ωs−lτ ( j)(z)
(
Rs,L; j (x, y)

− Rs,L; j (x − z, y)
)
dz

∣∣∣|bL(y)|dydx

� j2−sd−τ j
∫
Rd

∫
Rd

|�i (y)|χ{2s−2≤|y|≤2s+2}(y)|bL(x − y)|dydx
� j2−τ j‖�i‖L1(Sd−1)‖bL‖L1(Rd ).
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This leads to the desired conclusion of Lemma 3.2. ��
With Lemma 3.2 in hand, we only need to estimate D∗

2. This is the content of the
second step.

Step 2. Estimate for each term of D∗
2.

Define Pt f (x) = ωt ∗ f (x). Now we split

T i, j
�,L; s = Ps− jκT

i, j
�,L; s + (I − Ps− jκ)T i, j

�,L; s,

where κ ∈ (0, 1)will be chosen later. In the following, we will estimate this two terms
one by one. We have the following norm inequality for Ps− jκT

i, j
�,L; s .

Lemma 3.3 Let � be homogeneous of degree zero, A be a function in R
d with deriva-

tives of order one in BMO(Rd), bL satisfies the vanishing moment with (L) = 2s− j .
For each j ∈ N with j > j0, we have

∥∥Ps− jκT
i, j
�,L; sbL

∥∥
L1(Rd )

� j
(
2−(1−κ) j + 2−(1−τ) j )‖�i‖L∞(Sd−1)‖bL‖L1(Rd ).

Before proving Lemma 3.3, we need the following lemma for R j
s,L.

Lemma 3.4 Let R j
s,L be defined as (3.14), θ ∈ S

d−1, y, y′ ∈ L with (L) = 2s− j .
Then

∫
L

∫
L

|R j
s,L(y + rθ, y) − R j

s,L(y′ + rθ, y′)||bL(y)|dydy′

� j2−sd2τ j2− j |L|
∫
L

|bL(y)|dy.

Proof By the triangle inequality, the mean value theorem and the support condition of
φ, we get

|R j
s,L(y′ + rθ, y) − R j

s,L(y′ + rθ, y′)|

�
∫
Rd

|ωs−lτ ( j)(y
′ + rθ − z)||φs(z − y′)| |AϕL(y) − AϕL(y′)|

|z − y′|d+1 dz

+
∫
Rd

|ωs−lτ ( j)(y
′ + rθ − z)| |AϕL(z) − AϕL(y)|

|z − y|d+1 |φs(z − y) − φs(z − y′)|dz

+
∫
Rd

|ωs−lτ ( j)(y
′ + rθ − z)||φs(z − y′)| |AϕL(z) − AϕL(y)||y − y′|

|z − y|d+2 dz

=: I + II + III.

If r /∈ [2s−4, 2s+4], by the support of R j
s,L, it gives that |R j

s,L(y′ + rθ, y)− R j
s,L(y′ +

rθ, y′)| = 0.
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For y, y′ ∈ L, (3.13) gives us that

|AϕL(y′) − AϕL(y)| � |y − y′|
[
j +

∣∣∣∣ log
(

2s− j

|y − y′|
)∣∣∣∣

]
.

For I, since |z − y′| ≥ 2s−2, y, y′ ∈ L, then (3.13) gives us that

I � |y − y′|
[
j +

∣∣∣∣ log
(

2s− j

|y − y′|
)∣∣∣∣

]
2−s(d+1).

Consider now the other two terms. If y, y′ ∈ L and |z − y′| ≤ 2s , (i) of Lemma 3.1
gives us that

|AϕL(y)| � j2s, |AϕL(z)| � j2s .

On the other hand, for j > j0, when y, y′ ∈ L and |z − y′| ≥ 2s−2, it holds that

|z − y| ≥ |z − y′| − |y − y′| ≥ 2s−2 − √
d2s− j > 2s−2 − √

d2s−log2(100d/2) > 2s−3.

Therefore,

II � j2s

(2s)d+1

∫
Rd

|ωs−lτ ( j)(y
′ + rθ − z)||φs(z − y) − φs(z − y′)|dz

� j2−s(d+1)|y − y′|
∫
Rd

|ωs−lτ ( j)(y
′ + rθ − z)|dz � j2−s(d+1)|y − y′|,

where the second inequality follows from the fact that

|φs(z − y) − φs(z − y′)| � |y − y′|
2s

‖∇φ‖L∞(Rd ) � |y − y′|
2s

.

Similarly, we have

III � j2−s(d+1)|y − y′|.

Estimates for I, II and III above lead to that

|R j
s,L(y′ + rθ, y) − R j

s,L(y′ + rθ, y′)| � j |y − y′|
2s(d+1)

[
1 +

∣∣∣∣ log
(

2s− j

|y − y′|
)∣∣∣∣

]
.

(3.16)

Similar to (3.16), we also have

|R j
s,L(y + rθ, y) − R j

s,L(y′ + rθ, y)|
≤

∫
Rd

|ωs−lτ ( j)(y + rθ − z) − ωs−lτ ( j)(y
′ + rθ − z)||φs(z − y)|
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|AϕL(z) − AϕL(y)|
|z − y|d+1 dz

≤ j2−sd2−s+lτ ( j)|y − y′|
∫
Rd

|∇ωs−lτ ( j)(z)|dz
� j |y − y′|2−s+lτ ( j)2−sd . (3.17)

Notice that

∫
L

∫
L

|y − y′|
[
1 +

∣∣∣ log
( 2s− j

|y − y′|
)∣∣∣

]
dy′|bL(y)|dy ≤ 2s− j |L|

∫
L

|bL(y)|dy.

Combining (3.16) with (3.17), it gives that

∫
L

∫
L

|R j
s,L(y + rθ, y) − R j

s,L(y′ + rθ, y′)||bL(y)|dydy′

� j2−s(d+1)2lτ ( j)
∫
L

∫
L

|y − y′|dy′|bL(y)|dy

+ j2−s(d+1)
∫
L

∫
L

|y − y′|
[
1 +

∣∣∣ log
( 2s− j

|y − y′|
)∣∣∣

]
dy′|bL(y)|dy

� j2−sd2lτ ( j)2− j |L|
∫
L

|bL(y)|dy.

This finishes the proof of Lemma 3.4. ��
With Lemma 3.4, we are ready to prove Lemma 3.3 now.

Proof of Lemma 3.3 Write

Ps− jκT
i, j
�,L; sbL(x) =

∫
Rd

( ∫
Rd

ωs− jκ(x − z)�i (z − y)R j
s,L(z, y)dz

)
bL(y)dy.

Let z − y = rθ . By Fubini’s theorem, Ps− jκT
i, j
�,L; sbL(x) can be written as

∫
Sd−1

∫
Rd

∫ ∞

0
�i (θ)ωs− jκ(x − y − rθ)R j

s,L(y + rθ, y)rd−1bL(y)drdydσθ .

Let y′ ∈ L. By the vanishing moment of bL, we have

|Ps− jκT
i, j
�i ,L; sbL(x)|

≤ inf
y′∈L

∫
Sd−1

|�i (θ)|
∣∣∣
∫
Rd

∫ ∞

0

(
ωs− jκ(x − y − rθ)R j

s,L(y + rθ, y)

− ωs− jκ(x − y′ − rθ)R j
s,L(y′ + rθ, y′)

)
rd−1drbL(y)dy

∣∣∣dσθ

≤
∫
Sd−1

|�i (θ)| 1

|L|
∫
L

∣∣∣
∫
Rd

∫ ∞

0

(
ωs− jκ(x − y − rθ)R j

s,L(y + rθ, y)
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− ωs− jκ(x − y′ − rθ)R j
s,L(y′ + rθ, y′)

)
rd−1drbL(y)dy

∣∣∣dy′dσθ

� I + II,

where

I =: 1

|L|
∫
Sd−1

|�i (θ)|
∫
L

∣∣∣
∫
Rd

∫ ∞

0

(
ωs− jκ(x − y − rθ) − ωs− jκ(x − y′ − rθ)

)

× R j
s,L(y + rθ, y)rd−1drbL(y)dy

∣∣∣dy′dσθ ,

and

II =: 1

|L|
∫
Sd−1

|�i (θ)|
∫
L

∣∣∣
∫
Rd

∫ ∞

0
ωs− jκ(x − y′ − rθ)

(
R j
s,L(y + rθ, y)

− R j
s,L(y′ + rθ, y′)

)
rd−1drbL(y)dy

∣∣∣dy′ dσθ .

Note that |y − y′| � 2s− j , when y, y′ ∈ L. By (3.15) and the mean value formula, it
follows that

‖I‖L1(Rd ) � j
∫
Sd−1

|�i (θ)|
∫
Rd

∫ 2s+3

2s−3
2−s+ jκ‖�ω‖L1(Rd )2

s− j2−sdrd−1dr |bL(y)|dydσ(θ)

� j2−(1−κ) j‖�i‖L∞(Sd−1)‖bL‖L1(Rd ).

By Lemma 3.4 and the Fubini’s theorem one can get

‖I I‖L1(Rd ) �
∫
Sd−1

∫ 2s+3

2s−3
|�i (θ)| 1

|L|
∫
L

∫
L

‖ωs− jκ(· − y′ − rθ)‖L1(Rd )

× |(R j
s,L(y + rθ, y)

− R j
s,L(y′ + rθ, y′)

)||bL(y)|dydy′ rd−1drdσθ

� j2−(1−τ) j‖�i‖L∞(Sd−1)‖bL‖L1(Rd ).

This finishes the proof of Lemma 3.3. ��

To estimate the term (I − Ps− jκ)T i, j
�,L; s , we introduce a partition of unity on the

unit surface S
d−1. For j > j0, let E j = {e jν } be a collection of unit vectors on S

d−1

such that

(a) for ν �= ν′, |e jν − e j
ν′ | > 2− jγ−4;

(b) for each θ ∈ S
d−1, there exists an e jν satisfying that |e jν − θ | ≤ 2− jγ−4, where

γ ∈ (0, 1) is a constant.
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The set E j can be constructed as in [31]. Observe that card(E j ) � 2 jγ (d−1).
Below, we will construct an associated partition of unity on the unit surface S

d−1.
Let ζ be a smooth, nonnegative, radial function with ζ(u) ≡ 1 when |u| ≤ 1/2 and
supp ζ ⊂ {|x | ≤ 1}. Set

�̃ j
ν (ξ) = ζ

(
2 jγ

(
ξ

|ξ | − e jν

))
, and � j

ν (ξ) = �̃ j
ν (ξ)

( ∑
e jν∈E j

�̃ j
ν (ξ)

)−1

.

It is easy to verify that � j
ν is homogeneous of degree zero, and for all j and ξ ∈ S

d−1,∑
ν �

j
ν (ξ) = 1. Let ψ̃ ∈ C∞

c (R) such that 0 ≤ ψ̃ ≤ 1, supp ψ̃ ⊂ [−4, 4] and
ψ̃(t) ≡ 1 when t ∈ [−2, 2]. Define the multiplier operator G j

ν by

̂
G j

ν f (ξ) = ψ̃
(
2 jγ 〈ξ/|ξ |, e jν 〉) f̂ (ξ).

Denote the operator T i, j
�,L; s,ν by

T i, j
�,L; s,νh(x) =

∫
Rd

�i (x − y)� j
ν (x − y)R j

s,L(x, y)h(y)dy. (3.18)

It is obvious that T i, j
�,L; sh(x) = ∑

ν T
i, j
�,L; s,νh(x). For each fixed i, s, j, L and ν,

(I − Ps− jκ )T i, j
�,L; s,ν can be decomposed in the following way

(I − Ps− jκ)T i, j
�,L; s,ν = G j

ν(I − Ps− jκ )T i, j
�,L; s,ν + (1 − G j

ν)(I − Ps− jκ )T i, j
�,L; s,ν .

Estimate for the term G j
ν(I − Ps− jκ)T i, j

�,L; s,ν .
For the term G j

ν(I − Ps− jκ)T i, j
�,L; s,ν , we have the following lemma.

Lemma 3.5 Let � be homogeneous of degree zero, A be a function in R
d with

derivatives of order one in BMO(Rd). For each j ∈ N with j > j0, we have that,

∥∥∥ ∑
ν

∑
s

∑
L∈Ss− j

G j
ν(I − Ps− jκ )T i, j

�,L; s,νbL
∥∥∥2
L2(Rd )

� j22− jγ ‖�i‖2L∞(Sd−1)

∑
s

∑
L∈Ss− j

‖bL‖L1(Rd ).

Proof The proof is similar to the proof of Lemma 2.3 in [9]. For the sake of self-
contained, we present the proof here. Observe that

sup
ξ �=0

∑
ν

|ψ̃(2 jγ 〈e jν , ξ/|ξ |〉)|2 � 2 jγ (d−2).
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This, together with Plancherel’s theorem and Cauchy-Schwartz inequality, leads to
that

∥∥∥ ∑
ν

∑
s

∑
L∈Ss− j

G j
ν(I − Ps− jκ )T i, j

�,L; s,νbL
∥∥∥2
L2(Rd )

=
∥∥∥∑

ν

ψ̃
(
2 jγ 〈e jν , ξ/|ξ |〉

)
F

( ∑
s

∑
L∈Ss− j

(I − Ps− jκ)T i, j
�,L; s,νbL

)
(ξ)

∥∥∥2
L2(Rd )

� 2 jγ (d−2)
∑
ν

∥∥∥∑
s

∑
L∈Ss− j

(I − Ps− jκ)T i, j
�,L; s,νbL

∥∥∥2
L2(Rd )

.

Applying (3.15), we see that for each fixed s, L, and x ∈ R
d ,

∣∣(I − Ps− jκ)T i, j
�,L; s,νbL(x)

∣∣
�

∫
Rd

|�i (x − y)||� j
ν (x − y)||R j

s,L(x, y)||bL(y)|dy

+
∫
Rd

∫
Rd

|�i (z − y)||ωs− jκ(x − z)||� j
ν (z − y)||R j

s,L(z, y)|dz|bL(y)|dy

� j‖�i‖L∞(Sd−1)H
j
s,ν ∗ |bL|(x), (3.19)

where H j
s,ν(x) = 2−sdχR j

sν
(x), and R j

sν = {x ∈ R
d : |〈x, e jν 〉| ≤ 2s+3, |x −

〈x, e jν 〉e jν | ≤ 2s+3− jγ }. This means that R j
sν is contained in a box having one long

side of length � 2s and (d − 1) short sides of length � 2s− jγ . Therefore, we have

∥∥∥ ∑
s

∑
L∈Ss− j

(I − Ps− jκ )T i, j
�,L; s,νbL

∥∥∥2
L2(Rd )

� j2‖�i‖2L∞(Sd−1)

∑
s

∑
L∈Ss− j

∑
I∈Ss− j

∫
Rd

(
H j
s,ν ∗ H j

s,ν ∗ |bI |
)
(x)|bL(x)|dx

+2 j2‖�i‖2L∞(Sd−1)

∑
s

∑
L∈Ss− j

∑
i<s

∑
I∈Si− j

∫
Rd

(
H j
s,ν ∗ H j

i,ν ∗ |bI |
)
(x)|bL(x)|dx .

Let R̃ j
sν = R j

sν +R j
sν . As in the proof of Lemma 2.3 in [9], for each fixed L ∈ Ss− j ,

x ∈ L, ν and s, we obtain

∑
i≤s

∑
I∈Si− j

H j
s,ν ∗ H j

i,ν ∗ |bI |(x) � 2− jγ (d−1)2−sd
∑
i≤s

∑
I∈Si− j

∫
x+R̃ j

sν

|bI (y)|dy

� 2−2 jγ (d−1),

where we have used the fact that
∫
Rd |bI (y)|dy � |I | and the cubes I ∈ S are pairwise

disjoint.
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This, in turn, implies further that

∥∥∥∑
s

∑
L∈Ss− j

(I − Ps− jκ)T i, j
�,L; s,νbL

∥∥∥2
L2(Rd )

� j2‖�i‖2L∞(Sd−1)
2−2 jγ (d−1)

×
∑
s

∑
L∈Ss− j

‖bL‖L1(Rd ).

which finishes the proof of Lemma 3.5. ��
Estimate for the term (I − G j

ν)(I − Ps− jκ )T i, j
�,L; s,ν .

We need to present a lemma for (I − G j
ν)(I − Ps− jκ)T i, j

�,L; s,ν .

Lemma 3.6 Let � be homogeneous of degree zero, A be a function in R
d with deriva-

tives of order one in BMO(Rd). For each j ∈ N with j > j0, (L) = 2s− j , some
s0 > 0, we have that

∑
ν

‖(I − G j
ν)(I − Ps− jκ)T i, j

�,L; s,νbL‖L1(Rd ) � j2−s0 j‖�i‖L∞(Sd−1)‖bL‖L1(Rd ).

Next we give the estimate of D∗
2 and postpone the proof of Lemma 3.6 later.

Let ε = min{(1 − κ), (1 − τ), s0, γ }. With Lemma 3.3, Lemma 3.5 and Lemma
3.6, we have

∣∣∣
{
x ∈ R

d : |D∗
2| > 1/16

}∣∣∣ �
∞∑
i=0

∑
j>Ni

j22− jε‖�i‖2L∞(Sd−1)

∥∥∥ ∑
s

∑
L∈Ss− j

bL
∥∥∥
L1(Rd )

� ‖ f ‖L1(Rd ). (3.20)

The proof of Lemma 3.6 is similar to the proof of Lemma 2.4 in [9]. For the complete-
ness of this paper,wegive the proof for the remaining term (1−G j

ν)(I−Ps− jκ )T i, j
�,L; s,ν

here. Let’s introduce the Littlewood-Paley decomposition first. Let α be a radial C∞
function such that α(ξ) = 1 for |ξ | ≤ 1, α(ξ) = 0 for |ξ | ≥ 2 and 0 ≤ α(ξ) ≤ 1 for
all ξ ∈ R

d . Define βk(ξ) = α(2kξ) − α(2k+1ξ). Choose β̃ be a radial C∞ function
such that β̃(ξ) = 1 for 1/2 ≤ |ξ | ≤ 2, supp β̃ ∈ [1/4, 4] and 0 ≤ β̃ ≤ 1 for all
ξ ∈ R

d . Set β̃k(ξ) = β̃(2kξ), then it is easy to see βk = β̃kβk . Define the convolution
operators �k and �̃k with Fourier multipliers βk and β̃k , respectively.

�̂k f (ξ) = βk(ξ) f̂ (ξ),
̂̃
�k f (ξ) = β̃k(ξ) f̂ (ξ).

It is easy to have �k = �̃k�k .

Proof of Lemma 3.6 We first write (I −G j
ν)T

i, j
�,L; s,ν = ∑

k
(I −G j

ν)�kT
i, j
�,L; s,ν . Then

‖(I − G j
ν)(I − Ps− jκ )�kT

i, j
�,L; s,νbL‖L1(Rd )
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≤ ‖(I − Ps− jκ )�̃k(I − G j
ν)�kT

i, j
�,L; s,νbL‖L1(Rd )

≤ ‖(I − Ps− jκ )�̃k‖L1(Rd )→L1(Rd )‖(I − G j
ν)�kT

i, j
�,L; s,νbL‖L1(Rd ).

We can write

(I − G j
ν)�kT

i, j
�,L; s,νbL(x) =

∫
L

(I − G j
ν)�k�i (x − y)� j

ν (x − y)R j
s,L(x, y)bL(y)dy

:=
∫
L

Mk(x, y)bL(y)dy,

where Mk is the kernel of the operator (I − G j
ν)�kT

i, j
�,L; s,ν . Then

‖(I − G j
ν)�kT

i, j
�,L; s,νbL‖L1(Rd ) ≤

∫
L

‖Mk(·, y)‖L1(Rd )|bL(y)|dy.

Applying the method of Lemma 4.2 in [9], there exists M > 0 such that

‖Mk(·, y)‖L1(Rd ) � j2τ j− jγ (d−1)−s+k+ jγ (1+2M)‖�i‖L∞(Sd−1).

Hence, note that ‖(I − Ps− jκ)�̃k‖L1(Rd )→L1(Rd ) ≤ ‖F−1(β̃k) − ωs− jκ ∗
F−1(β̃k)‖L1(Rd ) � 1, we have

‖(I − G j
ν)(I − Ps− jκ )�kT

i, j
�,L; s,νbL‖L1(Rd )

� j2τ j− jγ (d−1)−s+k+ jγ (1+2M)‖�i‖L∞(Sd−1)‖bL‖L1(Rd ). (3.21)

On the other hand, we can write

‖(I − G j
ν )(I − Ps− jκ )�kT

i, j
�,L; s,νbL‖L1(Rd )

≤ ‖(I − Ps− jκ )�̃k‖L1(Rd )→L1(Rd )‖(I − G j
ν )�k‖L1(Rd )→L1(Rd )‖T i, j

�,L; s,νbL‖L1(Rd ).

By (3.18), it is easy to show that

‖T i, j
�,L; s,νbL‖L1(Rd ) � j2− jγ (d−1)‖�i‖L∞(Sd−1)‖bL‖L1(Rd ).

LetW j
k,s, κ be the kernel of (I −Ps− jκ )�̃k , then by the mean value formula, we obtain

∫
Rd

|W j
k,s,κ (y)|dy ≤

∫
Rd

∫
Rd

∣∣F−1β̃k(y) − F−1β̃k(y − z)
∣∣ωs− jκ(z)dzdy

� 2s− jκ−k . (3.22)

By the proof of [26, Lemma 3.2], it holds that ‖(I − G j
ν)�k‖L1(Rd )→L1(Rd ) � 1.

Hence

‖(I − G j
ν)(I − Ps− jκ)�kT

i, j
�,L; s,νbL‖L1(Rd )
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� j2− jγ (d−1)+s−k− jκ‖�i‖L∞(Sd−1)‖bL‖L1(Rd ). (3.23)

Let m = s − [ jε0], with 0 < ε0 < 1. Since card(E j ) � 2 jγ (d−1). Then (3.21) and
(3.23) lead to

∑
ν

‖(I − G j
ν)(I − Ps− jκ)T i, j

�,L; s,ν(bL)‖L1(Rd )

≤
(∑

ν

∑
k<m

+
∑
ν

∑
k≥m

)
‖(I − Ps− jκ)(I − G j

ν)�kT
i, j
�,L; s,νbL‖L1(Rd )

� (2s1 j + 2s2 j ) j‖�i‖L∞(Sd−1)‖bL‖L1(Rd ),

where s1 = (
τ − ε0 + γ (1 + 2M)

)
and s2 = −κ + ε0.

We can now choose 0 � τ � γ � ε0 < κ < 1 such that max{s1, s2} < 0. Let
s0 = −max{s1, s2}, then the proof of Lemma 3.6 is finished now. ��

With Lemma 3.2 and (3.20) in hand, we can deduce (3.7) by

∣∣{x ∈ R
d\E : |D2 > 1/8

}∣∣ ≤ 16‖D2 − D∗
2‖L1(Rd ) + ∣∣{x ∈ R

d : |D∗
2| > 1/16

}∣∣
� ‖ f ‖L1(Rd ).

3.4 Proof of (1.7) in Theorem 1.2

It suffices to prove (1.7) for λ = 1. For a bounded function f with compact support, we
employ the Calderón-Zygmund decomposition to | f | at level 1 then obtain a collection
of non-overlapping dyadic cubes S = {Q}, such that

‖ f ‖L∞(Rd\∪Q∈SQ) � 1,
∫
Q

| f (x)|dx � |Q|, and
∑
Q∈S

|Q| �
∫
Rd

| f (x)|dx .

Let E = ∪Q∈S100dQ.With the same notations as in the proof of (1.6), for x ∈ R
d\E ,

we write

T̃�,Ab(x) =
∑
j

∑
Q∈S

T�, AQ , j bQ(x) −
∑
Q∈S

d∑
n=1

∂n AQ(x)T n
�bQ(x).

By estimate (3.5), the proof of (1.7) can be reduced to show that for each n with
1 ≤ n ≤ d,

∣∣∣
{
x ∈ R

d\E :
∣∣∣ ∑
Q∈S

∂n AQ(x)T n
�bQ(x)

∣∣∣ > 1/4d
}∣∣∣ �

∫
Rd

| f (x)|dx .

But this inequality has already been proved in [22, inequality (3.3)]. Then the proof
of (1.7) is finished. ��
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3.5 Proof of Theorem 1.3

The proof of Theorem 1.3 is now standard. We present the proof here mainly to make
the constant of the norm inequality clearly. Consider the case p ∈ (1, 2]. Let

fλ(x) =
{ f (x), | f (x)| > λ

0, | f (x)| ≤ λ;

and

f λ(x) =
{ 0, | f (x)| > λ

f (x), | f (x)| ≤ λ

By (1.6), we have

p
∫ ∞

0
λp−1|{x ∈ R

d : |T�,A fλ(x)| > λ/2}|dλ

�p
∫ ∞

0
λp−1

∫
Rd

| fλ(x)|
λ

log

(
e + | fλ(x)|

λ

)
dx dλ

≤
(

p

p − 1

)2

‖ f ‖p
L p(Rd )

.

L2(Rd) boundedness of T�, A implies that

p
∫ ∞

0
λp−1|{x ∈ R

d : |T�,A f λ(x)| > λ/2}|dλ

� p
∫ ∞

| f (x)|
λp−1λ−2‖ f λ‖2L2(Rd ) dλ ≤ p

2 − p
‖ f ‖p

L p(Rd )
.

Since p ∈ (1, 2), we have

‖T�, A f ‖L p(Rd ) =
(
p

∫ ∞

0
λp−1

∣∣{x ∈ R
d : |T�,A f (x)| > λ}∣∣ dλ

)1/p

≤ (p′)2‖ f ‖L p(Rd ).

When p ∈ (2,∞), by (1.7), we know T̃�,A f (x) is of weak type (1, 1). Combining
the L2(Rd) boundedness of T̃�,A f (x) and the Marcinkiewicz interpolation theorem,
we have

‖T̃�, A f ‖L p′ (Rd )
≤ p′‖ f ‖L p′ (Rd )

.

By duality, it holds that

‖T�, A f ‖L p(Rd ) ≤ p‖ f ‖L p(Rd ).
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This completes the proof of Theorem 1.3. ��
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