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Abstract
In this article, we studied the convolution operators Mk with oscillatory kernel, which
are related to the solutions of the Cauchy problem for the strictly hyperbolic equations.
The operator Mk is associated to the characteristic hypersurfaces � ⊂ R

3 of a hyper-
bolic equation and smooth amplitude function, which is homogeneous of the order−k
for large values of the argument. We investigated the convolution operators assuming
that the corresponding amplitude function is contained in a sufficiently small conic
neighborhood of a given point v ∈ � at which, exactly one of the principal curvatures
of the surface � does not vanish. Such surfaces exhibit singularities of the type A in
the sense of Arnold’s classification. Denoting by kp the minimal number such that Mk

is L p �→ L p′
-bounded for k > kp, we showed that the number kp depends on some

discrete characteristics of the surface �.
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1 Introduction

It is well known that the solution operator of the Cauchy problem for homogeneous
constant coefficient strictly hyperbolic equation, up to a regularizing operator, can be
written as a sum of convolution operators of the type:

Mk = F−1[eitϕ(ξ)ak]F, (1.1)

where F is the Fourier transform operator, ϕ ∈ C∞(Rν\{0}) is homogeneous of order
one function, ak ∈ C∞(Rν

ξ ) is a homogeneous function of order −k for large ξ .
We demonstrate the motivation of the main problem in a simple example. Consider

the classical example related to the Cauchy problem for the wave equation inR×R
ν :

∂2u

∂t2
− �u = 0, u(x, 0) = g0(x),

∂u(x, 0)

∂t
= g1(x),

where g0, g1 are distributions.
The solution to the Cauchy problem formally can be written as:

u(x, t) = F−1
(
eit |ξ | + e−i t |ξ |

2
F(g0)

)
+ F−1

(
eit |ξ | − e−i t |ξ |

2i |ξ | F(g1)

)
.

Thus, the solution operator of the Cauchy problem, modulo a regularizing operator,
can be written as a sum of Fourier multiplier operators having the form (1.1). Actually,
the classical Strichartz estimates are related to the wave equation [18].

Surely, analogical issues require much more effort for the higher order strictly
hyperbolic equation (see [12] and references therein).

After the scaling arguments for time t > 0 the operator Mk is reduced to the
following convolution operator (see [16]):

Mk = F−1[eiϕ(ξ)ak]F . (1.2)

Let 1 ≤ p ≤ 2be afixednumber:Weconsider the problem:find theminimal number
k(p) such that the operator Mk : L p(Rν) → L p′

(Rν) is bounded for any k > k(p).
Where and further the p′ denotes the conjugate exponent e.g. 1/p + 1/p′ = 1.

Similar problems have been considered by many authors including Strichartz [18,
19], in the case when the characteristic hypersurface is the unit sphere, Brenner [5],
when the characteristic hypersurface has non-vanishing Gaussian curvature. These
results were extended by Sugimoto [14–16], in which the characteristic hypersur-
face was convex (but, not necessarily strictly convex) and also for some non-convex
hypersurfaces (see also [13]).

Nevertheless, the problem remains in general wide open. Also, the issue is related
to many other open problems of harmonic analysis related to oscillatory integrals.

Note that if ak(ξ) = |ξ |−k for large ξ with 0 < k < ν and ϕ ≡ 0 then the problem
can be solved by using the classical Hardy–Littlewood–Sobolev’s inequality. Due to
the classical Hardy–Littlewood–Sobolev’s inequality if k ≥ 2n(1/p − 1/2) then the
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operator (1.2) is bounded from L p(Rν) to L p′
(Rν). Moreover, if ak is a classical

symbol of PsDO and ϕ ≡ 0 then we deal with L p(Rν) �→ L p′
(Rν) boundedness

problem for pseudo-differential operators (see [14]). It is well-known that if ak is a
classical symbol of the PsDO of order zero then the corresponding PsDO is bounded
on L p(Rν) for 1 < p < ∞.

Further, we assume that the function ϕ preserves sign, e.g. ϕ(ξ) �= 0 for any
ξ ∈ R

ν\{0}(ν ≥ 2). Note that, due to the oscillation factor for a wider range of the
order −k of the amplitude ak we get the L p(Rν) �→ L p′

(Rν) boundedness of the
operator (1.2).

Next, without loss of generality we may assume that ϕ(ξ) > 0 for any ξ �= 0.
Since ϕ is a smooth homogeneous function of order one, then, due to the Euler’s
homogeneity relation we have:

ν∑
j=1

ξ j
∂ϕ(ξ)

∂ξ j
= ϕ(ξ),

and hence the set � defined by the following

� = {ξ ∈ R
ν : ϕ(ξ) = 1}

is a smooth or a real analytic hypersurface provided ϕ is a smooth or a real analytic
function on R

ν \ {0} respectively.
Further, we use notation:

kp := kp(�) := inf
k>0

{k > 0 : Mk is L
p(Rν) → L p′

(Rν) bounded for any ak}.
(1.3)

It turns out that the number kp(�) depends on geometric properties of the hypersur-
face �. More precisely, the number depends on behavior of the Fourier transform of
measures supported on �. The monograph [10] contains many modern results related
to the Fourier transform of surface-carried measures.

Since � ⊂ R
ν \ {0} is a compact hypersurface, then following Sugimoto [16],

it is enough to consider the local version of the problem. More precisely, we may
assume that the amplitude function ak(ξ) is concentrated in a sufficiently small conic
neighborhood� of a fixed point v ∈ � and ϕ(ξ) ∈ C∞(�). Fixing such a point v ∈ �,
let us define the following local exponent kp(v) associated to this point:

kp(v) := inf
k>0

{k : ∃�, Mk : L p(Rν) �→ L p′
(Rν)

is bounded, whenever supp(ak) ⊂ �}.

The definition of kp(v) yields that it is an upper semicontinuous function of v for a
fixed p.
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Further, we use the following standard notation, assuming F being a sufficiently
smooth function:

∂γ F(x) := ∂
γ1
1 . . . ∂γν

ν F(x) := ∂ |γ |F(x)

∂xγ1
1 . . . ∂xγν

ν

,

where γ := (γ1, . . . , γν) ∈ Z
ν+ is a multiindex, with Z+ := {0} ∪ N, and |γ | :=

γ1 + · · · + γν.

Also, for the sake of being definite, we assume that v = (0, . . . , 0, 1) and ϕ(v) = 1.
After possible a linear transform in the spaceRν

ξ , which preserves the point v, we may
assume that ∂ jϕ(v) = 0( j = 1, . . . , ν − 1). Thus, in a neighborhood of the point v

the hypersurface � is given as the graph of a smooth function:

� ∩ � = {(ξ1, . . . , ξν−1, 1 + φ(ξ1, . . . , ξν−1)) ∈ R
ν : (ξ1, . . . , ξν−1) ∈ U },

where U ⊂ R
ν−1 is a sufficiently small neighborhood of the origin and, φ ∈ C∞(U )

is a smooth function satisfying the conditions: φ(0) = 0,∇φ(0) = 0 (compare with
[16]).

Further, we mainly consider the problem for the case ν = 3. In order to state the
main results, we need the following Proposition [9]:

Proposition 1.1 Assume that φ is a smooth function defined in a neighborhood of the
origin of R2 satisfying the conditions: ∂22φ(0, 0) �= 0 and also ∂γ φ(0, 0) = 0 for any
|γ | ≤ 2 with γ �= (0, 2).

Then, φ can be written in the following form on a sufficiently small neighborhood
of the origin:

φ(x1, x2) = b(x1, x2)(x2 − ψ(x1))
2 + b0(x1), (1.4)

where b, b0 andψ are smooth functionswith b(0, 0) �= 0. The functionψ (resp. b0) can
be written asψ(x1) = xm1 ω(x1)with a smooth functionω satisfyingω(0) �= 0, m ≥ 2
(resp. b0(x1) = xn1β(x1), with a smooth function β satisfying β(0) �= 0, n ≥ 2) unless
ψ (resp. b0) is a flat function.

Further, we assume that if� is aC∞ hypersurface and b0 is a flat function then b0 ≡
0. This condition agrees with so-called “R−condition” introduced in the monograph
[9]. Surely, if φ is a real analytic function then the R− condition is automatically
fulfilled.

Also, we assume that the function φ has a singularity of type An(1 ≤ n ≤ ∞) at
the origin (see [3] for a definition of A type singularities). The last condition means
that the hypersurface � has exactly one non-vanishing principal curvature at the point
v, whenever n ≥ 2 in the case ν = 3.

Remark 1.2 It is easy to show that the numbers m and n are well-defined for arbitrary
smooth function φ having A type singularity (see [16] and also [9]). Moreover, to each
point v ∈ � of the surface with at least one non-vanishing principal curvature we can
attach a pair (m(v), n(v)) due to the Proposition 1.1.
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1.1 TheMain Results

In this paper we prove the following statement, which is the main our result.

Theorem 1.3 Let� ⊂ R
3 \{0} be a smooth surface having at least one non-vanishing

principal curvature at the point v = (0, 0, 1) ∈ � and 1 ≤ p ≤ 2 be a fixed
number and also (m, n) be the pair defined by the Proposition 1.1. Then the following
statements hold:
(i) If 2m ≥ n (with 2 ≤ n ≤ ∞) then kp(v) = (5 − 2

n )( 1p − 1
2 );

(ii) If � is a smooth hypersurface satisfying the R−condition and m ≥ 3 and also
2m < n ≤ ∞ then

kp(v) = max

{(
5 − 1

m

)(
1

p
− 1

2

)
,

(
6 − 2(m + 1)

n

)(
1

p
− 1

2

)
− 1

2
+ m

n

}
.

(1.5)

Let p ∈ [1, 2] be a fixed number. As noted before, the kp(v) is an upper semicon-
tinuous function of v defined on a compact hypersurface� ⊂ R

3 \ {0}. Then the main
Theorem 1.3 yields.

Corollary 1.4 If � ⊂ R
3 \ {0} is a smooth compact hypersurface satisfying the

conditions of the main Theorem 1.3 at any point v ∈ � then the following relation

kp(�) = max
v∈�

kp(v)

holds true.

1.2 Classes of Hypersurfaces

Sugimoto [16] considered the problem for the casewhen� ⊂ R
3 is an analytic surface

having at least one non-vanishing principal curvature at every point and obtained an
upper bound for the number kp(�). More precisely, Sugimoto introduced [16] three
classes of hypersurfaces in R3 with at least one non-vanishing principal curvature.

Following [16] we can introduce the following classes of hypersurfaces by the
function φ, defined in a small neighborhood of the origin, having the form given in
the Eq. (1.4): We say that � is of type I with order n if b0(x1) = xn1β(x1), where β is
a smooth function with β(0) �= 0; � is of type II with orderm if b0 is a flat function at
the origin and also ψ(x1) = xm1 ω(x1), where ω is a smooth function with ω(0) �= 0,
and finally, � is of type III if both functions ψ, b0 are flat at the origin.

It has been obtained an upper bound for the number kp(v) for each class of hyper-
surfaces [16]. Moreover, Sugimoto suggested examples for each classes showing
sharpness of the bounds for those examples.

The natural question is:Whether the upper estimate for the number kp(v) given in
[16] is the sharp bound for each hypersurface of the appropriate class ?

Actually, due to the Theorem 1.3, we obtain the exact value of kp(v), improving
the results proved in [16], for arbitrary analytic hypersurfaces having at least one
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non-vanishing principal curvature and smooth hypersurfaces under the so-called R−
condition introduced in [9].

Remark 1.5 Note that in the case (i) of the Theorem 1.3 formally it is possiblem = ∞
e.g. the ψ can be a flat function. Sugimoto [16] suggested the example:

φI (x) = 1 − (x22 − xn1 ), (1.6)

which corresponds to the case (i), with ψ(x1) ≡ 0. From our results it follows that
the Sugimoto result [16] is sharp in that case. Moreover, the Sugimoto result, for a
surface of the class I with order n, is sharp if and only if 2m ≥ n.

Note that the first case (i) agrees with the so-called linearly adapted condition
introduced in themonograph [9] (see also [8]).Also note that under the linearly adapted
case the sharp uniform (with respect to directions of the frequencies) estimates for the
Fourier transformofmeasures give the sharp bound for the exponent p in the L p �→ L2

Fourier restriction estimate. It had been shown in [9] that it is only the case.
If n = ∞ e.g. if b0 is a flat function at the origin then so is ψ , under the condition

2m ≥ n. Hence, the Sugimoto result is sharp in that case also, in other words, the
results of the paper [16] are sharp for arbitrary smooth surface of the class III.

On the other hand if 2m < n < ∞ then the result of Sugimoto [16] is not sharp
for the hypersurfaces � of the class I. Our results show that one can not be ignored
influence of the number m for the surfaces of the class I.

For the case n = ∞ and m < ∞ e.g. for hypersurfaces of the class II Sugimoto
obtained the sharp bound for kp(v), when � belongs to a subclass of analytic surfaces
of the class II. It turns out that the analogical result holds true for arbitrary analytic
hypersurfaces of the class II and also for arbitrary smooth surfaces of the class II under
the R− condition.More precisely, from our result it follows that actually the statement
of the Theorem 2 proved by Sugimoto [16] (page no. 396) holds true for arbitrary
analytic hypersurface having type II and also for analogical smooth hypersurfaces
under the R-condition.

Consider the example of strictly hyperbolic equation of order 4 in the spaceR×R
3,

for which the corresponding surface� can be written as the graph of a function having
A∞ type singularities:

∂4u

∂t4
− 2

∂2(� + ∂23 )u

∂t2
+ 1

2
(�2u + ∂43u) = 0, (1.7)

where � is the standard Laplace operator in R
2. It is the axisymmetric partial

differential equation.
Consider one of the roots of the characteristic equation

P(τ, ξ) := τ 4 − 2τ 2|ξ |2 + 1

2
((ξ21 + ξ22 )2 + ξ43 ) = 0
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given by

ϕ(ξ) :=
√

|ξ |2 −
√

|ξ |4 − 1

2
((ξ21 + ξ22 )2 + ξ43 ).

Then the corresponding hypersurface � can be obtained from the plane curve

{(ξ1, ξ3) : ξ21 + ξ23 > 1, (ξ21 − 2)2 + (ξ23 − 2)2 = 6}

by rotation around the Oξ3 axis. It is easy to see that at least one of the principal
curvatures of the surface � does not vanish at any point. Moreover, exactly one of the
principal curvatures does not vanish at the points

(√
2 cos ς,

√
2 sin ς,

√
2 + √

6

)
∈ �,

with 0 ≤ ς ≤ 2π , and directions of the normals to the surface� at the points coincide
with the direction of the Oξ3 axis. Thus, the corresponding phase function φ has A∞
type singularities at those points.

Actually, one can consider the analogical axisymmetric equation in the space
R
n(n ≥ 4). Thenmore complicated non-isolated singular points appear. In this casewe

can not get analogical estimates for the corresponding convolution operators. More-
over, one can construct examples of hypersurfaces in three dimensional space, for
which both principal curvatures vanish at some point and our methods can not be
applied.

We plan to consider the case of hypersurfaces in R
3 for which both principal

curvatures vanish at some point (work in progress).
This paper organized as follows: in Sect. 2 we give preliminary results on relations

between decay rate of oscillatory integrals and upper estimates for the number kp(v).
Then we obtain an upper bound for the number kp(v), for each class of surfaces in
Sect. 3. Finally, in Sect. 4we give lower bounds for the number kp(v), which agreewith
the upper bounds. The results of the last Sect. 4 finish a proof of the main Theorem 1.3.

Conventions: Throughout this article, we use the variable constant notation, i.e.,
many constants appearing in the course of our arguments, often denoted by c,C, ε, δ;
will typically have different values at different lines. Moreover, we use symbols such
as ∼,� or << in order to avoid writing down constants, as explained in [9] ( Chapter
1). By χ0 we denote a non-negative smooth cut-off function onRwith typically small
compact support which is identically 1 on a small neighborhood of the origin.

2 Preliminaries

The boundedness problem for the convolution operators is related to behaviour of the
following convolution kernel:

Kk := F−1(eiϕ(ξ)ak(ξ)).
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We define the Fourier transform operator and its inverse as [17]:

F(u)(ξ) := 1√
(2π)ν

∫
Rν

eiξ ·xu(x)dx,

and the inverse

u(x) := 1√
(2π)ν

∫
Rν

e−iξ ·x F(u)(ξ)dξ

for a Schwartz function u, where ξ · x is the usual inner product of the vectors ξ and
x . Then it has been defined for distributions by the standard arguments.

It is well known that (see [16]) the main contribution to Kk gives points x which
belongs to a sufficiently small neighborhood of the set −∇ϕ(supp(ak) \ {0}).

In the paper [16] it had been shown the relation between the boundedness of the
convolution operator Mk and behaviour of the following oscillatory integral:

I (λ, z) =
∫
Rν−1

eiλ(φ(x)+z·x)g(x)dx, (λ > 0, z ∈ R
ν−1),

where g ∈ C∞
0 (U ) and U is a sufficiently small neighborhood of the origin.

More precisely the following statements were proved in [16]:

Proposition 2.1 Let q ≥ 2 and α ≥ 0. Suppose for all g ∈ C∞
0 (U ) and λ > 1,

‖I (λ, ·)‖Lq (Rν−1
z )

≤ Cgλ
−α, (2.1)

where Cg is independent of λ. Then Kk(·) := F−1[eiϕ(ξ)ak(ξ)](·) ∈ Lq(Rν) and

Mk : L p(Rν) → L p′
(Rν) bounded for p = 2q

2q−1 , if k > ν − α − 1
q .

Also, Sugimoto [16] proved another version of the Proposition 2.1 in the case
q = ∞. One can define

Kk, j (x) = F−1[eiϕ(ξ)ak(ξ)� j (ξ)](x).

Here {� j (ξ)}∞j=1 is a Littlewood–Paley partition of unity which is used to define the
norm

‖η‖Bs
p,q

:=
⎛
⎝ ∞∑

j=0

(2 js‖F−1(� j (ξ)F(η)‖L p )q

⎞
⎠

1
q

of Besov space Bs
p,q (see [4]).

Proposition 2.2 Let α ≥ 0. Suppose, for all g ∈ C∞
0 (U ) and λ > 1,

‖I (λ; ·)‖L∞(Rν−1
z )

≤ Cgλ
−α, (2.2)
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where Cg is independent of λ. Then {Kk, j }∞j=1 is bounded in L∞(Rν), if k = ν − α.

Hence Mk is L p �→ L p′
bounded, if k > (2ν − 2α)

( 1
p − 1

2

)
. This inequality can be

replaced by an equation, if p �= 1.

3 An Upper Bound for the Number kp(v)

Note that we deal with the two-dimensional oscillatory integral I (λ, z) e. g. ν = 3. If
φ has singularity of type An−1 with 2 ≤ n ≤ ∞ at the origin and |z| > δ (where δ is a
fixed positive number) then the phase function φ(x1, x2)+ x1z1 + x2z2 has no critical
points providedU is a sufficiently small neighborhood of the origin and g ∈ C∞

0 (U ).
Therefore we can use integration by parts arguments and obtain:

|I (λ, z)| � 1

|zλ|2 ,

which is better than what we expected.
Further, we assume that |z| << 1 and U is a sufficiently small neighborhood of

the origin. Then we use the stationary phase method in x2 variable and obtain as:

I (λ, z) = C

λ
1
2

∫
R

eiλ(φ1(x1,z2)+xn1β(x1)+z2xm1 ω(x1)+z1x1))g(xc2(x1, z2), x1)dx1 + R(λ, z),

where R is a remainder term satisfying the estimate |R(λ, z)| � λ− 3
2 and xc2(x1, z2) is

the unique critical point of the phase function with respect to x2. Moreover, the phase
function φ1(x1, z2) can be written as:

φ1(x1, z2) = z22B(z2) + z22x1q(x1, z2),

where B, q are smooth functions with B(0) �= 0 (see [6]).
Then by using the Van der Corput type lemma [2] (the paper [7] contains analogical

estimates for oscillatory integrals with more general phase function) we see that the
estimate (2.2) holds true with α = 1

2 + 1
n (see [11] and [8] for analogical estimates in

the case n = ∞). It is the sharp uniform (with respect to the parameters z) bound for
the oscillatory integrals with phase having A type singularities. In this case we can
use Proposition 2.2 and have the following upper bound for the kp(v):

kp(v) ≤
(
5 − 2

n

)(
1

p
− 1

2

)
. (3.1)

This case includes the class of surfaces of type III e.g. the case m = n = ∞. Note
that the upper bound (3.1) does not depend on the number m. It turns out that, it is the
sharp bound for the kp(v) under the condition 2m ≥ n. However, if 2m < n then the
bound (3.1) is not sharp. Thus, the sharp uniform estimates for the oscillatory integrals
give the sharp bound for kp(v) if and only if 2m ≥ n.



29 Page 10 of 23 Journal of Fourier Analysis and Applications (2024) 30 :29

Now, we consider the more subtle case 2m < n. In this case we use the following
Lemma (compare with the Theorem 2 of [16]):

Lemma 3.1 Letφ be a smooth function satisfying the conditions of the Proposition 1.1,
in addition the R−condition, in which 2m ≤ n ≤ ∞ and 3 ≤ m < ∞ and also ε > 0
be a fixed positive number. Then the following estimate

‖I (λ, ·)‖Lm+1(R2) ≤ Cελ
−
(
1
2+ 2

m+1

)
+ε

.

holds true.

Remark 3.2 For the case n = 2m the result of the Lemma 3.1 does not give a better
estimate for kp(v) than the sharp uniform,with respect to the parameters z, estimate for
the corresponding oscillatory integrals. On the other hand if 2m > n then the phase
function may have more degenerate than Am−1 critical points and we can not get
the sharp analogical estimates for Lm+1(R2)−norm of the corresponding oscillatory
integrals.

Proof As noted before, we assume that |z| << 1 and ε is a fixed positive number. So,
in order to prove the Lemma 3.1 we show the validity of the following estimate:

‖I (λ, ·)‖Lm+1(V ) ≤ C |λ|−
(
1
2+ 2

m+1

)
+ε

,

where V is a sufficiently small neighborhood of the origin.
Due to the stationary phase arguments it is enough to estimate the integral

I1(λ, z) :=
∫
R

eiλ�1(x1,z)g(x1, x
c
2(z2, x1))dx1 =:

∫
R

eiλ�1(x1,z)a(x1, z2)dx1,

where we use the notation:

a(x1, z2) := g(x1, x
c
2(z2, x1)),

�1(x1, z) := xn1β(x1) + z2x
m
1 ω(x1) + z22x1q(x1, z2) + z1x1.

First, we assume that
{
|z2| < δ|z1| n−m

n−1

}
, where δ is a sufficiently small fixed

number, which will be defined later.
If
{
λ|z1| n

n−1 ≤ 1
}
, then the classical van der Corpute Lemma [2] yields:

|I1| � 1

|λ| 1n
≤ 1

|λ| 1n (λ|z1| n
n−1 )

2
m+1− 1

n

= 1

|λ| 2
m+1 |z1|

2n−m−1
(n−1)(m+1)

. (3.2)

We show that, the estimate (3.2) holds true for λ|z1| n
n−1 > 1, whenever δ is a

sufficiently small positive number.
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Indeed, we use change of variables as x1 = |z1| 1
n−1 y1 in the integral I1 and denoting

y1 again by x1 obtain:

I1 = |z1| 1
n−1

∫
eiλ|z1|

n
n−1 �2(x1,z)a(|z1| 1

n−1 x1, z2)dx1,

where

�2(x1, z) = β(|z1| 1
n−1 x1)x

n
1

+ z2

|z1| n−m
n−1

xm1 ω(|z1| 1
n−1 x1) + z22

|z1| x1q(|z1| 1
n−1 x1, z2) + sgn(z1)x1.

Note that

|z2|
|z1| n−m

n−1
≤ δ << 1 and also

z22
|z1| ≤ δ2|z1| n−2m+1

n−1 << 1.

There exists a number N such that the phase function �2 has no critical point on
the set {|x1| ≥ N }. Take a smooth non-negative function χ0 such that

χ0(x) =
{
1, for |x | ≤ 1.1

0, for |x | > 2.

We write the integral I1 as the sum of two integrals using the function χ0:

I1 = |z1| 1
n−1

∫
eiλ|z1|

n
n−1 �2(x1,z)a(|z1| 1

n−1 x1, z2)χ0

( x1
N

)
dx1 +

|z1| 1
n−1

∫
eiλ|z1|

n
n−1 �2(x1,z)a(|z1| 1

n−1 x1, z2)
(
1 − χ0

( x1
N

))
dx1 =: I11 + I12.

Using the integration by parts formula in the integral I12 we get:

|I12| ≤ c|z1| 1
n−1

|λ|z1| n−1
n |

≤ c|z1| 1
n−1

|λ|z1| n
n−1 | 2

m+1

= c

|λ| 2
m+1 |z1|

2n−m−1
(n−1)(m+1)

.

Surely, it coincides with the estimate (3.2).
Now,we consider the estimate for the integral I11. The phase function of the integral

can be considered as a small perturbation of the function β(0)xn1 + sgn(z1)x1. Hence,
there exists a positive number δ > 0 such that the function �2(x1, z) has only non-
degenerate critical points, whenever the parameter z satisfies the condition: |z2| <

δ|z1| n−m
n−1 . Therefore we use Van der Corpute type estimate and obtain:

|I11| ≤ c|z1| 1
n−1

|λ| 12 |z1|
n

2(n−1)
≤ c

|λ| 2
m+1 |z1|

2n−m−1
(n−1)(m+1)

.



29 Page 12 of 23 Journal of Fourier Analysis and Applications (2024) 30 :29

This completes a proof of the estimate (3.2) in the considered case.

Now, suppose {|z1| n−m
n−1 ≤ 1

δ
|z2|}.

If |z2| n
n−m |λ| ≤ 1 then by using Van der Corpute type estimate we obtain the

following bound:

|I1 � 1

|λ| 1n
≤ 1

|λ| 1n (|z2| n
n−m |λ|) 2

m+1− 1
n

= 1

|λ| 2
m+1 |z2|

2n−m−1
(n−m)(m+1)

.

Finally, we consider the case |z2| n
n−m |λ| > 1, where our arguments based on induc-

tion method over m (see Proposition 3.3 stated below and we refer readers to [1] for
more general result with the detailed proof). In this case, it is natural to use the change

of variables x1 �→ |z2| 1
n−1 x1 in the integral I1 which can be written as:

I1 = |z2| 1
n−1

∫
eiλ|z2|

n
n−m �2(x1,z)a(|z2| 1

n−m x1, z2)dx1,

where

�2(x1, z) := xn1β(|z2| 1
n−m x1) + sgn(z2)x

m
1 ω(|z2| 1

n−m x1)

+|z2|2− n−1
n−m sgn(z2)x1q(|z2| 1

n−m x1, z2) + z1

|z2| n−1
n−m

x1.

There exists a positive number N such that the phase function �2 has no critical
points on the set {|x1| ≥ N }. Again, as before we write the integral I1 as the sum of
two integrals I11, I12 given by the formulas:

I11 = |z2| 1
n−m

∫
eiλ|z2|

n
n−m �2(x1,z)a(|z2| 1

n−m x1)χ0

( x1
N

)
dx1,

|I12| = |z2| 1
n−m

∫
eiλ|z2|

n
n−m �2(x1,z)a(|z2| 1

n−m x1)
(
1 − χ0

( x1
N

))
dx1.

For the integral I12 we get:

|I12| ≤ c|z2| 1
n−m

|λ|z2| n
n−m | ≤ c|z2| 1

n−m

|λ|z2| n
n−m | 2

m+1

= c

|λ| 2
m+1 |z2|

2n−m−1
(n−m)(m+1)

,

because on the support of the amplitude function of the integral I12 the function
�2(x1, z) has no critical points.

Finally, we consider estimate for the integral I11. Note that

ξ1 := z1

|z2| n−1
n−m

∈
[
− 1

δ
n−1
n−m

,
1

δ
n−1
n−m

]
= [−δ− n−1

n−m , δ− n−1
n−m ].
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Since the interval
[

− δ− n−1
n−m , δ− n−1

n−m

]
is the compact set then the required estimate

follows from the corresponding local estimates. Let ξ1 = ξ01 be a fixed point of

the interval
[

− δ− n−1
n−m , δ− n−1

n−m

]
. Further, suppose that the parameter ξ1 changes in a

sufficiently small neighborhood of the fixed point ξ01 . Then the phase function �2 can
be considered as a small perturbation of the function

xn1β(0) + sgn(z2)x
m
1 ω(0) + ξ01 x1.

If ξ01 �= 0, then the phase function has only singularities of type Ak with (k ≤ 2).
If ξ01 = 0, then the phase function has singularities of type Am−1 at the origin and all
other critical points are non-degenerate. In particular, if 2 ≤ m ≤ 3 then the phase
function has only singularities of type Ak with k ≤ 2.

Assume m ≥ 3 and ξ01 = 0. Consider a smooth function φ(x1, s2) satisfying the
condition φ(x1, 0) = xm1 bm(x1), where bm is a smooth function with bm(0) �= 0. We
define the phase function

�(x1, s1, s2) := φ(x1, s2) + s1x1 (3.3)

and consider the oscillatory integral:

I (λ, s1, s2) :=
∫
R

a(x1, s)e
iλ�(x1,s1,s2)dx1,

where a is a smooth function concentrated in a sufficiently small neighborhood of the
origin.

The following Proposition is analogy of the Lemma 4 of the paper [1]:

Proposition 3.3 Assume I (λ, s1, s2) is the oscillatory integral with phase (3.3). Then
there exists a neighborhood U × V ⊂ R × R

2 of the origin of R × R
2, (where

V := [−�,�]2 with a sufficiently small positive number �) and a function � such
that the following estimate:

|I (λ, s1, s2)| ≤ �(s1, s2)

|λ| 12
(3.4)

holds true. Moreover, the following relation
∫
[−�,�] �(s1, s2)pds1 � 1 is fulfilled for

any 1 < p <
2(m−1)
m−2 .

Proof The proof of Proposition 3.3 directly follows from the more general Lemma 4
of the paper [1]. Also, Proposition 3.3 can be proved by induction method over m.
Note that if m = 2, then due to Van der Corpute Lemma the analogical estimate (3.4)
holds true with � ≡ C . ��
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Therefore from the Proposition 3.3 there exists a function

�(·, z2) ∈ L
2(m−1)
m−2 −0

[
− δ− n−1

n−m , δ− n−1
n−m

]
:=

⋂
p< 2(m−1)

m−2

L p[−δ− n−1
n−m , δ− n−1

n−m ]

such that the following estimate:

|I11| ≤
|z2| 1

n−m �

(
z1

|z2|
n−1
n−m

, z2

)

λ
1
2 |z2|

n
2(n−m)

=
�

(
z1

|z2|
n−1
n−m

, z2

)

|λ| 12 |z2|
n−2

2(n−m)

(3.5)

holds true for the integral I11, whenever m ≥ 3. If m = 2 then there exists a function

�(ξ1, z2) ∈ L4−0
[

− δ− n−1
n−m , δ− n−1

n−m

]
such that the estimate (3.5) holds true with the

function �.
On the other hand the Van der Corpute Lemma yields:

|I11| ≤ c|z2| 1
n−m∣∣∣λz n

n−m
2

∣∣∣
1
m

.

By interpolating the two bounds we get:

|I11| ≤
�

(
z1

|z2|
n−1
n−m

, z2

) 2(m−1)
(m−2)(m+1)

λ
2

m+1 |z2| 2n−m−1
n−m

.

Thus, for the integral I1 we have the estimate:

|I1| ≤
cχ|z2|<δ|z1|

n−m
n−1

(z2)

|λ| 2
m+1 |z1|

2n−m−1
(n−1)(m+1)

+
χ

δ|z1|
n−m
n−1 <|z2|

(z1)�

(
z1

|z2|
n−1
n−m

, z2

) 2(m−1)
(m−2)(m+1)

|λ| 2
m+1 |z2|

2n−m−1
(n−m)(m+1)

= �̃(z1, z2)

|λ| 2
m+1

,

where

�̃(z1, z2) :=
cχ|z2|<δ|z1|

n−m
n−1

(z2)

|z1|
2n−m−1

(n−1)(m+1)

+
χ

δ|z1|
n−m
n−1 <|z2|

(z1)�

(
z1

|z2|
n−1
n−m

, z2

) 2(m−1)
(m−2)(m+1)

|z2|
2n−m−1

(n−m)(m+1)

.
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Now, we show that �̃ ∈ Lm+1−0(V ). Indeed, let 1 < p < m+1 be a fixed number.
Then

∫
|z1|<1

dz1

|z1|
2n−m−1

(n−1)(m+1) p

∫ δ|z1|
n−m
n−1

0
dz2 = 2δ

∫ 1

0

dz1

z
2n−m−1

(n−1)(m+1) p− n−m
n−1

1

.

Obviously, the last integral converges, whenever p < m + 1. Moreover,

∫
V

�

(
z1

|z2|
n−1
n−m

, z2

) 2(m−1)p
(m−2)(m+1)

χ
c|z1|

n−m
n−1 <|z2|

(z1)

|z2|
2n−m−1

(n−m)(m+1) p
dz1dz2 =

=
∫ 1

0
dz2

1

|z2|
2n−m−1

(n−m)(m+1) p− n−1
n−m

∫ δ
n−1
m−n

0
�

2(m−1)
(m−2)(m+1) p(ξ1, z2)dξ1 ≤

c
∫ 1

0

dz2

z
2n−m−1

(n−m)(m+1) p− n−1
n−m

2

< +∞

whenever p < m + 1.
Actually, in summation of the obtained estimates we came to a proof of the

Lemma 3.1.
Indeed, for the integral I1 we have the following uniform, with respect to the

parameters z, estimate:

|I1| � 1

|λ| 1n
.

If ε ≥ 2
m+1 − 1

n then the last estimate enough to have a proof of the Lemma 3.1.

Suppose 0 < ε < 2
m+1 − 1

n . Then we use the estimate

|I1| � �̃1(z)

|λ| 2
m+1

,

with �̃1 ∈ Lm+1−0(V ).
Finally, interpolating the last two inequalities we get:

|I1| � �̃1−θ
1

|λ| θ
n + 2(1−θ)

m+1

,

where 0 < θ < 1. We can choose the number θ such that the following relation

θ

n
+ 2(1 − θ)

m + 1
= 2

m + 1
− ε or ε = θ

(
2

m + 1
− 1

n

)
> 0.
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holds. Then the inclusion �̃1−θ
1 ∈ Lm+1(V ) is obviously valid.

Analogical result holds true for the case n = ∞.
Indeed, assume n = ∞ then b0 is a flat function at the origin. Note that it is enough

to use uniform, with respect to the parameter z, estimates obtained by Karpushkin for
the case n = m = ∞ for an analytic phase function [11] and alternatively we use the
estimates proved in the paper [8] for smooth functions. This case corresponds to the
surfaces of the class III.

Further, we assume that n = ∞ and 3 ≤ m < ∞. In this case, we essentially use
the R−condition. So, b0 ≡ 0 and we have

φ(x1, x2) = b(x1, x2)(x2 − xm1 ω(x1))
2.

In this case the phase function �2 has the form:

�1(x1, z) = z2x
m
1 ω(x1) + z22x1q(x1, z2) + z1x1.

Then if |z1| ≥ |z2| then the phase function has no critical point in x1, provided
that the amplitude function is concentrated in a sufficiently small neighborhood of the
origin. Then we use the integration by parts formula and have:

|I1| � 1

1 + |λz1| .

The last estimate yields

|I1| � 1
4
√|z1z2|√|λ| .

Now, suppose |z1| ≤ |z2|. Then we can pull out z2 and due to Proposition 3.3 we
have the following estimate

|I1| ≤
�
(
z1
z2

, z2
)

|z2λ| 12
=: �̃(z)

|λ| 12
,

where �̃ ∈ L
2(m−1)
m−2 −0(V ). Thus, we have a conclusion of the Lemma 3.1 as before,

which finishes a proof of the Lemma 3.1. ��
From the Lemma 3.1 it follows the required upper bound for the number kp(v)

in the case 2m < n. Indeed, first, we use the Proposition 2.1 and obtain L p0 �→ L p′
0

boundedness of the convolution operator Mk with k > 5
2 − 3

m+1 for p0 = 2m+2
2m+1 . Also,

we get L p1 �→ L p′
1 boundedness of the convolution operator with k > 5

2 − 1
n for

p1 = 1 and also L p2 �→ L p′
2 boundedness of the convolution operator with k = 0 for

p2 = 2. Then by analytic interpolation of the obtained estimates, we get the required
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upper bound for the number kp(v):

kp(v) ≤ max

{(
5 − 1

m

)(
1

p
− 1

2

)
,

(
6 − 2(m + 1)

n

)(
1

p
− 1

2

)
− 1

2
+ m

n

}
.

(3.6)

Further, we consider a lower bound for the number kp(v).

4 On the Sharpness of Results (a Lower Bound for the Number kp(v))

Theorem 4.1 If 2m ≥ n, then there exists an amplitude function ak such that the
associated operator Mk is not L p(R3) �→ L p′

(R3) bounded, whenever k < (5 −
2
n )( 1p − 1

2 ).

Proof We show that the sequence of functions suggested in [16] can be used to prove
sharpness of the upper bound for the kp(v) in the case (i) of the Theorem 1.3. Let us
take a smooth function inR3 such that ak(ξ) = |ξ |−k for large ξ . For instance, we can
take ak(ξ) = (1−χ0(|ξ |))|ξ |−k . Following, Sugimoto [16] we introduce the function:
G(y) = 1 + φ(y1, y2) − y∇φ(y). Define smooth non-negative functions f , g with
f (0) = g(0) = 1 concentrated in a sufficiently small neighborhood of the origin,
and a smooth non-negative function with χ1(1) = 1 and with support in a sufficiently
small neighborhood of the point 1.

We set

u j (x) = 2
j
(
5
2− 1

n

)(
− 1

p′
)
F−1(v j (2

− j ·))(x),

where

v j (ξ) =
f
(
2

j
n

ξ1
ϕ(ξ)

)
g
(
2

j
2

ξ2
ϕ(ξ)

)
χ1(ϕ(ξ))|ξ |k

ϕ(ξ)2G
(

ξ1
ϕ(ξ)

,
ξ2

ϕ(ξ)

) ∈ C∞
0 (R3).

The sequence
{
F−1(v j (2− j

n ·, 2− j
2 ·, ·))

}∞
j=1

is bounded in L p(R3). Indeed, the

following inequality holds:

‖F−1(v j (2
− j/n ·, 2− j/2·, ·))‖L p � ‖v j (2

− j/n ·, 2− j/2·, ·)‖L p′ .

On the other hand

‖v j (2
− j/n ·, 2− j/2·, ·)‖p′

L p′

=
∫

f p
′
(

ξ1

ϕ(2− j/nξ1, 2− j/2ξ2, ξ3)

)
gp′
(

ξ2

ϕ(2− j/nξ1, 2− j/2ξ2, ξ3)

)

χ
p′
1 (ϕ(2− j/nξ1, 2− j/2ξ2, ξ3))((2− j/nξ1)

2 + (2− j/2ξ2)
2 + ξ23 )k/2

ϕ(2− j/nξ1, 2− j/2ξ2, ξ3)2p
′Gp′

(ξ1/ϕ(2− j/nξ1, 2− j/2ξ2, ξ3), ξ2/ϕ(2− j/nξ1, 2− j/2ξ2, ξ3))
dξ.
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Since χ1 is concentrated in a sufficiently small neighborhood of one, then we have:
1
2 ≤ ϕ(2− j/nξ1, 2− j/2ξ2, ξ3) ≤ 2. On the other hand supports of the functions f and
g are concentrated in a sufficiently small neighborhood of the origin. Hence, |ξ1| < 1
and |ξ2| < 1 and also |ξ3| ∼ 1, because ϕ(0, 0, 1) = 1. This yields:

‖v j (2
− j/n ·, 2− j/2·, ·)‖L p′ � 1.

Consequently,

‖F−1(v j (2
− j ·))‖L p � 2

j
(
1
2+ n−1

n +1
)

1
p′ = 2

j
(
5
2− 1

n

)
1
p′ .

Hence the sequence {u j }∞j=1 is bounded in the space L p(R3).
On the other hand there is a relation:

Mku j (x) = 2
j
(
5
2− 1

n

)(
− 1

p′
)
−k j+2 j

F−1

⎛
⎝eiϕ(ξ)

f
(
2

j
n

ξ1
ϕ(ξ)

)
g
(
2

j
2

ξ2
ϕ(ξ)

)
χ1(2− jϕ(ξ))

ϕ(ξ)2G
(

ξ1
ϕ(ξ)

,
ξ2

ϕ(ξ)

)
⎞
⎠ .

We perform the change of variables given by the scaling 2− jξ �→ ξ and obtain:

Mku j (x) = 2
j
((

5
2− 1

n

)(
− 1

p′
)
−k+3

)
√

(2π)3

∫
R3

ei2
j (ϕ(ξ)−xξ)

f
(
2

j
n

ξ1
ϕ(ξ)

)
g
(
2

j
2

ξ2
ϕ(ξ)

)
χ1(ϕ(ξ))

ϕ2(ξ)G
(

ξ1
ϕ(ξ)

,
ξ2

ϕ(ξ)

) dξ.

Then following Sugimoto we use change of variables ξ = (λy, λ(1 + φ(y))) and
get:

Mku j (x) = 2
j
((

5
2− 1

n

)(
− 1

p′
)
−k+3

)
√

(2π)3∫
ei2

jλ(1−(x1y1+x2 y2+x3(1+φ(y)))) f (2
j
n y1)g(2

j
2 y2)χ1(λ)dλdy.

Finally, we use change of variables 2 j/n y1 �→ y1, 2 j/2y2 �→ y2 and obtain:

Mku j (x) = 2
j
((

5
2− 1

n

)(
− 1

p′
)
−k− 1

2− 1
n +3
)

∫
R3

e2
j iλ((x3−1)−2− j

n y1x1−2− j
2 y2x2−x3φ(2− j

n y1,2
− j
2 y2))

f (y1)g(y2)χ1(λ)dλdy.
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If |x3 − 1| � 2− j , |x1| � 2− j(n−1)/n, |x2| � 2− j/2, then the phase is the non-
oscillating function, because φ(2− j/n y1, 2− j/2y2) = o(2− j ) provided the supports of
f , g are small enough.
Consequently, we have the following lower bound:

‖Mku j‖L p′ � 2
j
((

5
2− 1

n

)(
− 1

p′
)
−k+ 5

2− 1
n −
(
5
2− 1

n

)(
1
p′
))

= 2
j
((

5− 2
n

)(
− 1

p′
)
+ 5

2− 1
n −k
)

= 2 j
((

5− 2
n

)(
1
p − 1

2

)
−k
)
.

Therefore, if k < kp(v) := (5− 2
n

)( 1
p − 1

2

)
, then ‖Mku j‖L p′ → ∞(as j → +∞).

Thus, the operator Mk : L p(R3) → L p′
(R3) is unbounded. ��

The Theorem 4.1 finishes a proof of the part (i) of the main Theorem 1.3 for the
case n < ∞.

Remark 4.2 The proof of the Theorem 4.1 shows that if 2m ≤ n and k <
(
5− 1

m

)( 1
p −

1
2

)
, then ‖Mku j‖L p′ → ∞(as j → +∞), for some bounded sequence {u j } in the

space L p(R3). Thus, the operatorMk : L p(R3) → L p′
(R3) is an unbounded operator,

whenever k <
(
5 − 1

m

)( 1
p − 1

2

)
. Indeed, we can repeat all arguments of the proof of

the Theorem 4.1 taking the sequence of functions:

u j (x) = 2
j
(
5
2− 1

2m

)(
− 1

p′
)
F−1(v j (2

− jξ))(x),

with

v j (ξ) =
f
(
2

j
2m

ξ1
ϕ(ξ)

)
g
(
2

j
2

ξ2
ϕ(ξ)

)
χ1(ϕ(ξ))|ξ |k

ϕ(ξ)2G
(

ξ1
ϕ(ξ)

,
ξ2

ϕ(ξ)

) ∈ C∞
0 (R3)

for the case 2m ≤ n and obtain the following lower bound:

kp(v) ≥
(
5 − 1

m

)(
1

p
− 1

2

)
(4.1)

for the number kp(v) whenever 2m ≤ n.
The same arguments can be used for the case n = m = ∞. Then we have the

following lower bound:

kp(v) ≥ 5

(
1

p
− 1

2

)
(4.2)

for the number kp(v), which corresponds to the class III of surfaces.
The lower bound (4.2) finishes a proof of the part (i) of Theorem 1.3.

Further, we consider the case 2m < n. We prove the following statement.
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Theorem 4.3 If 2m < n, and m ≥ 3 then

kp(v) = max

{(
5 − 1

m

)(
1

p
− 1

2

)
,

(
6 − 2m + 2

n

)(
1

p
− 1

2

)
− 1

2
+ m

n

}
.

(4.3)

Proof Since we already got the upper bound for kp(v) (see (3.6)), then it is enough to
prove a lower bound for that number.

If k <
(
5− 1

m

)( 1
p − 1

2

)
, then the operator Mk is not L p(R3) �→ L p′

(R3) bounded
(see Remark 4.2).

Assume k <
(
6 − 2(m+1)

n

) (
1
p − 1

2

)
− 1

2 + m
n . We show that Mk is not L p(R3) �→

L p′
(R3) bounded.
We slightly modified the Sugimoto [16] arguments and consider the sequence

u j = 2
− 3 j

p′ +
j(m+1)

n F−1(v j (2
− j ·))(x),

where

v j (ξ) = f

(
2

j
n

ξ1

ϕ(ξ)

)
g

(
2

jm
n

(
ξ2

ϕ(ξ)
−
(

ξ1

ϕ(ξ)

)m
ω

(
ξ1

ϕ(ξ)

)))
χ1(ϕ(ξ))|ξ |k

ϕ2(ξ)G
(

ξ1
ϕ(ξ)

,
ξ2

ϕ(ξ)

) ,

where f , g, χ1 ∈ C∞
0 (R) are non-negative smooth functions satisfying the conditions:

f (0) = g(0) = 1 and supports of functions f , g lie in a sufficiently small neigh-
borhood of the origin of R and χ1 is a non-negative smooth function concentrated
in a sufficiently small neighborhood of 1 and identically vanishes in a neighbor-
hood of the origin and also χ1(1) = 1 (cf. [16]). Obviously v j ∈ C∞

0 (R3) and

‖v j‖L p′ (R3)
∼ 2

− j m+1
p′n , where the symbol “ ∼′′ means that there exist non-zero

constants c1, c2 > 0 such that

c12
− j m+1

n ≤
∫
R3

|v j (ξ)|p′
dξ ≤ c22

− j m+1
n .

Indeed, we use change of variables ξ = λ(y1, y2, 1 + φ(y1, y2)) in the integral∫
R3 |v j (ξ)|p′

dξ . Note that on the support of v j make sense the change of variables,
provided j is big enough. Then we get:

∫
R3

|v j (ξ)|p′
dξ =

∫
R3

f p
′
(2

j
n y1)g

p′
(2 j mn (y2 − ym1 ω(y1)))χ

p′
1 (λ)

λ(k−2)p′+2(y21 + y22 + (1 + φ(y1, y2))
2)

kp′
2 G2−p′

(y1, y2)dy1dy2dλ ∼ 2− j m+1
n .

Thus, for large j we have

‖u j‖L p(R3) ∼ 1.
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Now, we consider the lower estimate for ‖Mku j‖L p′ (R3)
.

We have:

Mku j = F−1eiϕ(ξ)ak(ξ)Fu j = 2
− 3 j

p′ + j m+1
np′ F−1(eiϕ(ξ)ak(ξ)v j (2

− jξ))(x).

We perform change of variables given by the scaling 2 jξ → ξ and obtain:

Mku j (x) = 2
3 j
p + j(m+1)

np′ −k j

√
(2π)3

∫
R3

ei2
j (ϕ(ξ)−ξ x)

f

(
2

j
n

ξ1

ϕ(ξ)

)
g

(
2

jm
n

(
ξ2

ϕ(ξ)
−
(

ξ1

ϕ(ξ)

)m

ω

(
ξ1

ϕ(ξ)

)))
χ1(ϕ(ξ))

ϕ2(ξ)G
(

ξ1
ϕ(ξ)

,
ξ2

ϕ(ξ)

)dξ.

Finally, we use the change of variables ξ → λ(y1, y2, 1+φ(y1, y2)) and we have:

Mku j (x) = 2
3 j
p + j(m+1)

p′ −k j

√
(2π)3

∫
R3

ei2
jλ(1−x3−(y1x1+y2x2+x3φ(y1,y2))) ×

× f (2
j
n y1)g(2

jm
n (y2 − ym1 ω(y1)))χ1(λ)dλdy1dy2.

Now, we perform the change of variables

y1 = 2− j
n z1, y2 = ym1 ω(y1) + 2− j mn z2.

Then we get

Mku j (x) = 2
3 j
p +m+1

np′ j−m+1
n j−k j

∫
ei2

jλ�3(z,x, j) f (z1)g(z2)χ1(λ)dλdz1dz2,

where

�3(z, x, j) := 1 − x3 − (2− j
n x1z1 + x22

− jm
n zm1 ω(2− j

n z1) + z22
− jm

n x2 +
x32

− 2 jm
n z22b(2

− j
n z1, 2

− jm
n (zm1 ω(2− j

n z1) + z2)) + 2− j zn1β(2− j
n z1)).

We use the stationary phase method in z2 assuming,

|1 − x3| << 2− j , |x1| << 2− n−1
n j , |x2| << 2− j(n−m)

n (4.4)

and, reminding that 2m < n, to obtain:
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Mku j (x) = 2
j
(
3
p +m+1

np′ − 1
n − 1

2−k
)

(∫
R2

ei2
jλ�4 f (z1)g(z

c
2(z1, x2))χ1(λ)dλdz1 + O(2

j
(
2m
n −1

))
,

where

�4 := �4(z1, x, j) := 1 − x3 − x1z12
− j

n − x22
− jm

n zm1 ω(2− j
n z1)

−2− j zn1β(2− j
n z1) + x22 B(z1, x2, x3, 2

− j ),

and B is a smooth function satisfying the condition |B| � 1. Consequently, accounting
the conditions (4.4) and the inequality 2m < n, we establish the following lower
bound:

‖Mku j‖L p′ (R3)
≥ 2

j
(
3
p +m+1

np′ − 1
n − 1

2− 1
p′
(
3−m+1

n

)
−k
)
c,

where c > 0 is a constant which does not depend on j . Thus if

k <

(
6 − 2(m + 1)

n

)(
1

p
− 1

2

)
− 1

2
+ m

n

then the operator Mk is not L p(R3) �→ L p′
(R3) bounded.

Analogical result holds true for the case n = ∞.
Thus, if k < kp(v) then the Mk is not L p − L p′

bounded operator. This completes
a proof of the Theorem 4.3. ��

Theorem 4.3 finishes a proof of the part (ii) of the main Theorem 1.3.
Thus, the main Theorem 1.3 is proved.
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