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Abstract
We consider the initial value problem (IVP) associated to the cubic nonlinear
Schrödinger equation with third-order dispersion

∂t u + iα∂2x u − ∂3x u + iβ|u|2u = 0, x, t ∈ R,

for given data in the Sobolev space Hs(R). This IVP is known to be locally well-
posed for given data with Sobolev regularity s > − 1

4 and globally well-posed for
s ≥ 0 (Carvajal in Electron J Differ Equ 2004:1–10, 2004). For given data in Hs(R),
0 > s > − 1

4 no global well-posedness result is known. In this work, we derive an
almost conserved quantity for such data and obtain a sharp global well-posedness
result. Our result answers the question left open in (Carvajal in Electron J Differ Equ
2004:1–10, 2004).
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1 Introduction

In this work we consider the initial value problem (IVP) associated to the cubic
nonlinear Schrödinger equation with third-order dispersion

{
∂t u + iα∂2x u − ∂3x u + iβ|u|2u = 0, x, t ∈ R,

u(x, 0) = u0(x),
(1.1)

where α, β ∈ R and u = u(x, t) is complex valued function.
The equation in (1.1), also known as the extended nonlinear Schrödinger (e-NLS)

equation, appears to describe several physical phenomena like the nonlinear pulse
propagation in an optical fiber, nonlinear modulation of a capillary gravity wave on
water, for more details we refer to [1, 3, 12, 15, 18, 21, 25] and references therein. In
some literature, this model is also known as the third order Lugiato-Lefever equation
[19] and can also be considered as a particular case of the higher order nonlinear
Schrödinger (h-NLS) equation proposed by Hasegawa and Kodama in [14, 17] to
describe the nonlinear propagation of pulses in optical fibers

{
∂t u − iα∂2x u + ∂3x u − iβ|u|2u + γ |u|2∂xu + δ∂x (|u|2)u = 0, x, t ∈ R,

u(x, 0) = u0(x),

where α, β, γ ∈ R, δ ∈ C and u = u(x, t) are complex valued function.
The well-posedness issues and other properties of solutions of the IVP (1.1) posed

on R or T have extensively been studied by several authors, see for example [3, 6, 12,
19, 20] references threrein. As far as we know, the best local well-posedness result
for the IVP (1.1) with given data in the L2-based Sobolev spaces Hs(R), s > − 1

4 , is
obtained by the first author in [3]. More precisely, the following result was obtained
in [3].

Theorem 1.1 [3] Let u0 ∈ Hs(R) and s > − 1
4 . Then there exist δ = δ(‖u0‖Hs ) (with

δ(ρ) → ∞ as ρ → 0) and a unique solution to the IVP (1.1) in the time interval
[0, δ]. Moreover, the solution satisfies the estimate

‖u‖Xs,b
δ

� ‖u0‖Hs , (1.2)

where the norm ‖u‖Xs,b
δ

is as defined in (2.5).

To obtain this result, the author in [3] derived a trilinear estimate

‖u1u2ū3‖Xs,b′ �
3∏
j=1

‖u j‖3Xs,b , 0 ≥ s > −1

4
, b >

7

12
, b′ <

s

3
, (1.3)
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where, for s, b ∈ R, Xs,b is the Fourier transform restriction norm space introduced
by Bourgain [2] with norm

‖u‖Xs,b := ‖〈ξ 〉s〈τ − φ(ξ)〉bû(ξ, τ )‖L2
ξ L

2
τ
, (1.4)

where 〈x〉 := 1+ |x | and φ(ξ) is the phase function associated to the e-NLS equation
(1.1) (for detailed definition, see (2.4) below). The author in [3] also showed that the
crucial trilinear estimate (1.3) fails for s < − 1

4 . Further, it has been proved that the
application data to solution fails to be C3 at the origin if s < − 1

4 , see Theorem 1.3,
iv) in [5]. In this sense, the local well-posedness result given by Theorem 1.1 is sharp
using this method.

Remark 1.2 We note that, the following quantity

E(u) :=
∫
R

|u(x, t)|2dx, (1.5)

is conserved by the flow of (1.1). Using this conserved quantity, the local solution
given by Theorem 1.1 can be extended globally in time, thereby proving the global
well-posedness of the IVP (1.1) in Hs(R), whenever s ≥ 0.

Looking at the local well-posedness result given by Theorem 1.1 and the Remark
above, it is clear that there is a gap between the local and the global well-posedness
results. In other words, one may ask the following natural question. Is it possible
that the local solution given by Theorem 1.1 can be extended globally in time for
− 1

4 < s < 0?
The main objective of this work is to answer the question raised in the previous

paragraph that is left open in [3] since 2004. In other words, the main focus of this
work is in investigating the global well-posedness issue of the IVP (1.1) for given data
in the low regularity Sobolev spaces Hs(R), − 1

4 < s < 0. No conserved quantities
are available for data with regularity below L2 to apply the classical method to extend
the local solution globally in time. To overcome this difficulty we use the famous I-
method introduced by Colliander et al [8–10] and derive an almost conserved quantity
to obtain the global well-posedness result for given data in the low regularity Sobolev
spaces. More precisely, the main result of this work is the following.

Theorem 1.3 The IVP (1.1) is globally well-posed for any initial data u0 ∈ Hs(R),
s > − 1

4 .

Remark 1.4 In the proof of this theorem, an almost conservation of the second
generation of the modified energy, viz.,

|E2
I (u(δ))| ≤ |E2

I (φ)| + CN− 7
4 ‖I u‖6

X
0, 12+
δ

plays a crucial role. The decay N− 7
4 is more than enough to get the required result.

Behind the proof of an almost conservation law, there are decay estimates of the
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multipliers involved. Structure of the multipliers in our case is different from the ones
that appear in the case of the KdV or the NLS equations, see for example [4, 9, 10].
This fact creates some extra difficulties as can be seen in the proof of Proposition 3.3.

The well-posedness issues of the IVP (1.1) posed on the periodic domain T :=
R/2πZ are also considered by several authors in recent time. The authors in [19]
studied the IVP (1.1) considering that 2α

3 /∈ Z with data u0 ∈ L2(T) and obtained the
global existence of the solution. They also obtained the global attractor in L2(T). The
local existence result obtained in [19] is further improved in [18] for given data in the
Sobolev spaces Hs(T) with s > − 1

6 (see also [25]) with the same consideration.
Taking in consideration the results in [19] and [18], there is a gap between the local

and the global well-posedness results in the periodic case too. In other words, one has
the following natural question. Is it possible to extend to local solution to the IVP (1.1)
posed on periodic domain T can be extended globally in time for given data in Hs(T),
− 1

6 < s < 0? Although this is a very good question, deriving almost conserved
quantities in the periodic setting is more demanding and we will not consider it here.

In recent time, other properties of solutions of the IVP (1.1) have also been studied
in the literature. The authors in [20] proved that the mean-zero Gaussian measures on
Sobolev spaces Hs(T) are quasi-invariant under the flow whenever s > 3

4 . This result
is further improved in [12] on Sobolev spaces Hs(T) for s > 1

2 . Quite recently, in [6],

we considered the IVP (1.1) with given data in the modulation spaces M2,p
s (R) and

obtained the local well-posedness result for s > − 1
4 and 2 ≤ p < ∞.

Now we present the organization of this work. In Sect. 2, we define function spaces
and provide some preliminary results. In Sect. 3 we introduce multilinear estimates
and an almost conservation law that is fundamental to prove the main result of this
work. In Sect. 4 we provide the proof of the main result of this paper. We finish this
section recording some standard notations that will be used throughout this work.

Notations: We use c to denote various constants whose exact values are immaterial
and may vary from one line to the next. We use A � B to denote an estimate of the
form A ≤ cB and A ∼ B if A ≤ cB and B ≤ cA. Also, we use the notation a+ to
denote a + ε for 0 < ε � 1.

2 Function Spaces and Preliminary Results

We start this section by introducing some function spaces that will be used throughout
this work. For f : R × [0, T ] → R we define the mixed L p

x L
q
T -norm by

‖ f ‖L p
x L

q
T

=
(∫

R

(∫ T

0
| f (x, t)|q dt

)p/q

dx

)1/p

,

with usual modifications when p = ∞. We replace T by t if [0, T ] is the whole real
line R.
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We use f̂ (ξ) to denote the Fourier transform of f (x) defined by

f̂ (ξ) = c
∫
R

e−i xξ f (x)dx

and f̃ (ξ) to denote the Fourier transform of f (x, t) defined by

f̃ (ξ, τ ) = c
∫
R2

e−i(xξ+tτ) f (x, t)dxdt .

We use Hs to denote the L2-based Sobolev space of order s with norm

‖ f ‖Hs (R) = ‖〈ξ 〉s f̂ (ξ)‖L2
ξ
,

where 〈ξ 〉 = 1 + |ξ |.
In order to simplify the presentation we consider the following gauge transform

considered in [24]

u(x, t) := v(x − d1t,−t)ei(d2x+d3t). (2.1)

Using this transformation the IVP (1.1) turns out to be

{
∂tv + ∂3x v − i(α − 3d2)∂2x v + (d1 + 2αd2 − 3d22 )∂xv − i(d32 − αd22 + d3)v − iβ|v|2v = 0,

v(x, 0) = v0(x) := u0(x)e−id2x .

(2.2)

If one chooses d1 = −α2

3 , d2 = α
3 and d3 = 2α3

27 the third, fourth and fifth terms in
the first equation in (2.2) vanish. Also, we note that

‖u0‖Hs ∼ ‖v0‖Hs .

So from now on, we will consider the IVP (1.1) with α = 0, more precisely,

{
∂t u + ∂3x u − iβ|u|2u = 0, x, t ∈ R,

u(x, 0) = u0(x).
(2.3)

This simplification allows us to work in the Fourier transform restriction norm
space restricted to the cubic τ − ξ3. In what follows we formally introduce the Fourier
transform restriction norm space, commonly known as the Bourgain’s space.

For s, b ∈ R, we define the Fourier transform restriction norm space Xs,b(R × R)

with norm

‖ f ‖Xs,b = ‖(1 + Dt )
bU (t) f ‖L2

t (Hs
x ) = ‖〈τ − ξ3〉b〈ξ 〉s f̃ (ξ, τ )‖L2

ξ,τ
, (2.4)

where U (t) = e−t∂3x is the unitary group.
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If b > 1
2 , the Sobolev lemma imply that, Xs,b ⊂ C(R; Hs

x (R)). For any interval I ,

we define the localized spaces Xs,b
I := Xs,b(R × I ) with norm

‖ f ‖Xs,b(R×I ) = inf
{‖g‖Xs,b ; g|R×I = f

}
. (2.5)

Sometimes we use the definition Xs,b
δ := ‖ f ‖Xs,b(R×[0,δ]).

Wedefine a cut-off functionψ1 ∈ C∞(R; R
+)which is even, such that 0 ≤ ψ1 ≤ 1

and

ψ1(t) =
{
1, |t | ≤ 1,

0, |t | ≥ 2.
(2.6)

We also define ψT (t) = ψ1(t/T ), for 0 ≤ T ≤ 1.
In the following lemma we list some estimates that are crucial in the proof of the

local well-posedness result whose proof can be found in [13].

Lemma 2.1 For any s, b ∈ R, we have

‖ψ1U (t)φ‖Xs,b ≤ C‖φ‖Hs . (2.7)

Further, if − 1
2 < b′ ≤ 0 ≤ b < b′ + 1 and 0 ≤ δ ≤ 1, then

‖ψδ

∫ t

0
U (t − t ′) f (u(t ′))dt ′‖Xs,b � δ1−b+b′ ‖ f (u)‖Xs,b′ . (2.8)

As mentioned in the introduction, our main objective is to prove the global well-
posedness result for the low regularity data. Using the L2 conservation law (1.5) we
have the global well-posedness of the IVP (2.3) for given data in Hs(R), s ≥ 0. So,
from now on we suppose − 1

4 < s < 0 throughout this work.
Our aim is to derive an almost conserved quantity and use it to prove Theorem

1.3. For this, we use the I-method introduced in [10] and define the Fourier multiplier
operator I by,

Î u(ξ) = m(ξ )̂u(ξ), (2.9)

where m(ξ) is a smooth, radially symmetric and nonincreasing function given by

m(ξ) =
{
1, |ξ | < N ,

N−s |ξ |s, |ξ | ≥ 2N ,
(2.10)

with N � 1 to be fixed later.
Note that, I is the identity operator in low frequencies, {ξ : |ξ | < N }, and simply

an integral operator in high frequencies. In general, it commutes with differential
operators and satisfies the following property.
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Lemma 2.2 Let − 1
4 < s < 0 and N ≥ 1. Then the operator I maps Hs(R) to L2(R)

and

‖I f ‖L2(R) � N−s‖ f ‖Hs (R). (2.11)

Now record a variant of the local well-posedness result for initial data u0 ∈ Hs ,
0 > s > − 1

4 such that I u0 ∈ L2. More precisely we have the following result which
will be very useful in the proof of the global well-posedness theorem.

Theorem 2.3 Let − 1
4 < s < 0, then for any u0 such that I u0 ∈ L2, there exist

δ = δ(‖I u0‖L2) (with δ(ρ) → ∞ as ρ → 0) and a unique solution to the IVP (2.3)
in the time interval [0, δ]. Moreover, the solution satisfies the estimate

‖I u‖X0,b
δ

� ‖I u0‖L2 , (2.12)

and the local existence time δ can be chosen satisfying

δ � ‖I u0‖−θ

L2 , (2.13)

where θ > 0 is some constant.

Proof As the operator I commutes with the differential operators, the linear estimates
in Lemma 2.1 necessary in the contraction mapping principle hold true after applying
I to equation (2.3). Since the operator I does not commute with the nonlinearity, the
trilinear estimate is not straightforward. However, applying the interpolation lemma
(Lemma12.1 in [11]) to (1.3)we obtain, under the same assumptions on the parameters
s, b and b′ that

‖I (u3)x‖X0,b′ � ‖I u‖3X0,b , (2.14)

where the implicit constant does not depend on the parameter N appearing in the
definition of the operator I .

Now, using the trilinear estimate (2.14) and the linear estimates the proof of this
theorem follows exactly as in the proof of Theorem 1.1. So, we omit the details.

We finish this section recording some known results that will be useful in our work.
First we record the following double mean value theorem (DMVT).

Lemma 2.4 (DMVT) Let f ∈ C2(R), and max{|η|, |λ|} � |ξ |, then

| f (ξ + η + λ) − f (ξ + η) − f (ξ + λ) + f (ξ)| � | f ′′(θ)| |η| |λ|,

where |θ | ∼ |ξ |.
The following Strichartz’s type estimates will also be useful.
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Lemma 2.5 For any s1 ≥ − 1
4 , s2 ≥ 0 and b > 1/2, we have

‖u‖L5
x L

10
t

� ‖u‖Xs2,b , (2.15)

‖u‖
L20/3
x L5

t
� ‖u‖Xs1,b , (2.16)

‖u‖L∞
x L∞

t
� ‖u‖Xs2,b , (2.17)

‖u‖L2
x L

2
t

� ‖u‖X0,0 , (2.18)

‖u‖L∞
t L2

x
� ‖u‖X0,0 . (2.19)

Proof The estimates (2.15) and (2.16) follow from

‖U (t)u0‖L5
x L

10
t

� ‖u0‖L2 and ‖D
1
4
x U (t)u0‖L20/3

x L5
t

� ‖u0‖L2 ,

whose proofs can be found in [16]. The estimates (2.17) and (2.19) follow by
immersion and inequality (2.18) is obviuous.

Lemma 2.6 Let n ≥ 2 be an even integer, f1, . . . , fn ∈ S(R), then

∫
ξ1+···+ξn=0

f̂1(ξ1) f̂2(ξ2) · · · f̂n−1(ξn−1) f̂n(ξn) =
∫
R

f1(x) f2(x) · · · fn−1(x) fn(x).

3 Almost Conservation Law

3.1 Modified Energy

Before introducing modified energy functional, we define n-multiplier and n-linear
functional.

Let n ≥ 2 be an even integer. An n-multiplier Mn(ξ1, . . . , ξn) is a function defined
on the hyper-plane �n := {(ξ1, . . . , ξn); ξ1 + · · · + ξn = 0} with Dirac delta δ(ξ1 +
· · · + ξn) as a measure.

If Mn is an n-multiplier and f1, . . . , fn are functions on R, we define an n-linear
functional, as

�n(Mn; f1, . . . , fn) :=
∫

�n

Mn(ξ1, . . . , ξn)

n∏
j=1

f̂ j (ξ j ). (3.1)

When f is a complex function and �n is applied to the n copies of the same function
f , we write

�n(Mn) ≡ �n(Mn; f ) := �n(Mn; f , f̄ , f , f̄ , . . . , f , f̄ ).
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For 1 ≤ j ≤ n and k ≥ 1, we define the elongation Xk
j (Mn) of the multiplier Mn

to be the multiplier of order n + k given by

Xk
j (Mn)(ξ1, · · · , ξn+k) := Mn(ξ1, · · · , ξ j−1, ξ j + · · · + ξ j+k, ξ j+k+1, · · · , ξn+k).

(3.2)

Using Plancherel identity, the energy E(u) defined in (1.5) can be written in terms
of the n-linear functional as

E(u) = �2(1). (3.3)

In what follows we record a lemma that relates the time-derivative of the n-linear
functional defined for the solution u of the e-NLS equation (2.3).

Lemma 3.1 Let u be a solution of the IVP (2.3) and Mn be a n-multiplier, then

d

dt
�n(Mn; u) = i�n(Mnγn; u) + i�n+2

( n∑
j=1

γ
β
j X

2
j (Mn; u)

)
, (3.4)

where γn = ξ31 + · · · + ξ3n , γ
β
j = (−1) j−1β and X2

j (Mn) as defined in (3.2).

Now we introduce the first modified energy

E1
I (u) := E(I u), (3.5)

where I is the Fourier multiplier operator defined in (2.9) with m given by (2.10).
Note that for m ≡ 1, E1

I (u) = ‖u‖2L2
= ‖u0‖2L2

.
Using Plancherel identity, we can write the first modified energy in terms of the

n-linear functional as

E1
I (u) =

∫
m(ξ )̂u(ξ)m(ξ) ¯̂u(ξ)dξ

=
∫

ξ1+ξ2=0
m(ξ1)m(ξ2)̂u(ξ1)̂ū(ξ2)

= �2(M2; u),

(3.6)

where M2 = m1m2 with m j = m(ξ j ), j = 1, 2.
We define the second generation of the modified energy as

E2
I (u) := E1

I (u) + �4(M4; u), (3.7)

where the multiplier M4 is to be chosen later.
Now, using the identity (3.4), we get

d

dt
E2
I (u) = i�2

(
M2γ2; u

)
+ i�4

( 2∑
j=1

γ
β
j X

2
j (M2); u

)
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+i�4

(
M4γ4; u

)
+ i�6

( 4∑
j=1

γ
β
j X

2
j (M4); u

)
.

(3.8)

Note that �2
(
M2γ2; u

) = 0. If we choose, M4 in such a way that

M4γ4 +
2∑
j=1

γ
β
j X

2
j (M2) = 0,

i.e.,

M4(ξ1, ξ2, ξ3, ξ4) = −
∑2

j=1 γ
β
j X

2
j (M2)

γ4
, (3.9)

then we get �4 = 0 as well.
So, for the choice of M4 in (3.9), we have

d

dt
E2
I (u) = �6(M6), (3.10)

where

M6 =
4∑
j=1

γ
β
j X

2
j (M4), (3.11)

with M4 given by (3.9).
We recall that on �n (n = 4, 6), one has ξ1 + · · · + ξn = 0. Let us introduce the

notations ξi + ξ j = ξi j , ξi jk = ξi + ξ j + ξk and so on.
Using the fact that m is an even function, we can symmetrize the multiplier M4

given by (3.9), to obtain

δ4 ≡ δ4(ξ1, ξ2, ξ3, ξ4) := [M4]sym = β(m2
1 − m2

2 + m2
3 − m2

4)

6ξ12ξ13ξ14
, (3.12)

where we have used the identity ξ31 + ξ32 + ξ33 + ξ34 = 3ξ12ξ13ξ14 on the hyperplane
ξ1 + ξ2 + ξ3 + ξ4 = 0.

Using the multiplier [M4]sym given by (3.12) in (3.11) we obtain [M6]sym in the
symmetric form as follows

δ6 ≡ δ6(ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) := [M6]sym
= β

36

∑
{k,m,o}={1,3,5}
{l,n,p}={2,4,6}

[
δ4(ξklm , ξn , ξo, ξp) − δ4(ξk , ξlmn , ξo, ξp) + δ4(ξk , ξl , ξmno, ξp) − δ4(ξk , ξl , ξm , ξnop)

]
.

(3.13)
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Remark 3.2 In the case k = 1, l = 2, m = 3, n = 4, o = 5, p = 6, one can obtain the
following sum of the symmetric multiplier [M6]sym in the extended form as

β2

36

[
− m2(ξ123) − m2(ξ4) + m2(ξ5) − m2(ξ6)

ξ56ξ46ξ45
+ m2(ξ1) − m2(ξ234) + m2(ξ5) − m2(ξ6)

ξ56ξ15ξ16

− m2(ξ1) − m2(ξ2) + m2(ξ345) − m2(ξ6)

ξ12ξ26ξ16
+ m2(ξ1) − m2(ξ2) + m2(ξ3) − m2(ξ456)

ξ12ξ13ξ23

]
.

But, for our purpose δ6 given by (3.13) in terms of δ4 is enough to obtain the required
estimates, see Proposition 3.3 below.

3.2 Multilinear Estimates

In this subsection we will derive some multilinear estimates associated to the sym-
metric multipliers δ4 and δ6, use them to get some local estimates in the Bourgain’s
space that will be useful to obtain an almost conserved quantity.

From here onwards we will consider the notation |ξi | = Ni , m(Ni ) = mi . Given
four number N1, N2, N3, N4 and C = {N1, N2, N3, N4}, we will denote Ns = max C,
Na = max C \ {Ns}, Nt = max C \ {Ns, Na}, Nb = min C. Thus

Ns ≥ Na ≥ Nt ≥ Nb.

Proposition 3.3 Let m be as defined in (2.10)
1) If |ξ1 j | � Ns for all j = 2, 3, 4 and |Nb| � Ns, then

|δ4| ∼ m2(Nb)

N 3
s

. (3.14)

2) If |ξ1 j | � Ns for all j = 3, 4 and |ξ12| � Ns, then

|δ4| � m2(Nb)

max{Nt , N } N 2
s
. (3.15)

3) If |ξ1 j | � Ns for j = 2, 3, a ≥ 0, b ≥ 0, a + b = 1, then

|δ4| � m2(Ns)

N 2
s |ξ12|a |ξ13|b . (3.16)

4) In the other cases, we have

|δ4| � m2(Ns)

N 3
s

. (3.17)

Proof Let f (ξ) := m2(ξ) be an even function, nonincreasing on |ξ |. From definition

of m(ξ), we have | f ′(ξ)| ∼ m2(ξ)
|ξ | if |ξ | > N . Without loss of generality we can
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assume Ns = |ξ1| and Na = |ξ2|. As Ns = |ξ2 + ξ3 + ξ4|, we have Na ∼ Ns . Also by
symmetry we can assume |ξ12| ≤ |ξ14|.

By the definition of δ4, if Ns ≤ N then δ4 = 0. Thus so from now on, throughout the
proof, we will consider that Ns > N . Depending on the frequency regimes we divide
the proof in two different cases, viz., |ξ13| � Ns and |ξ14| � Ns ; and |ξ14| � Ns or
|ξ13| � Ns .
Case A. |ξ13| � Ns and |ξ14| � Ns : We further divide this case in two sub-cases.
Sub-case A1. |ξ12| � Ns : Using the standard Mean Value Theorem, we have

|m2(ξ1) − m2(ξ2)| = | f (ξ1) − f (−ξ2)| = | f ′(ξθ1)| |ξ12| (3.18)

where ξθ1 = ξ1 − θ1ξ12 with θ1 ∈ (0, 1).
Since |ξ12| � Ns we have |ξθ1 | ∼ |ξ1| ∼ Ns and consequently | f ′(ξθ1)| ∼

m2(Ns)

Ns
. Using this in (3.18), we obtain

|m2(ξ1) − m2(ξ2)|
|ξ12||ξ13||ξ14| � m2(Ns)

N 3
s

. (3.19)

Now, we move to estimate |m2(ξ3) − m2(ξ4)|. First note that, if Nt ≤ N , then we
have |m2(ξ3) − m2(ξ4)| = 0. Thus we will assume that |ξ3| = Nt > N . We divide in
two cases.
Case 1. |ξ34| � Nt : Using the Mean Value Theorem, we get

|m2(ξ3) − m2(ξ4)| = | f (ξ3) − f (−ξ4)| = | f ′(ξθ2)| |ξ34|, (3.20)

where ξθ2 = ξ3 − θ2ξ34 with θ2 ∈ (0, 1). Since |ξ34| � Nt we have |ξθ2 | ∼ |ξ3| ∼ Nt

and consequently | f ′(ξθ2)| ∼ m2(Nt )

Nt
. Using this in (3.20), we obtain

|m2(ξ3) − m2(ξ4)|
|ξ12||ξ13||ξ14| � m2(Nt )

Nt N 2
s

. (3.21)

Case 2. |ξ34| � Nt : In this case, using triangular inequality and the fact that the
function f (ξ) = m2(ξ) is nonincreasing on |ξ | we obtain from the definition of δ4
that

|m2(ξ3) − m2(ξ4)|
|ξ12| |ξ13| |ξ14| � m2(Nb)

Nt N 2
s

. (3.22)

Now, combining (3.19), (3.21) and (3.22), we obtain from the definition of δ4 in
(3.12) that

|δ4| ∼ | f (ξ1) − f (ξ2) + f (ξ3) − f (ξ4)|
|ξ12| |ξ13| |ξ14| � m2(Nb)

max{Nt , N } N 2
s
.
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Sub-case A2. |ξ12| � Ns : Here also, we divide in two different sub-cases.
Sub-case A21. Nb � Ns : In this case we have Nb ∼ Nt ∼ Na ∼ Ns . Without loss of
generality we can assume ξ1 > 0. Since ξ1 + · · · + ξ4 = 0, two largest frequencies
must have opposite signs, i.e., ξ2 < 0. If possible, suppose ξ2 ≥ 0. Then we have
ξ1 + ξ2 =: M > Ns and ξ3 + ξ4 = −M < −Ns < 0. In this situation one has
ξ3ξ4 > 0, otherwise

ξ23 + ξ24 = M2 − 2ξ3ξ4 ≥ M2 > ξ21 + ξ22 ,

which is a contradiction. As ξ3 + ξ4 < 0, we conclude that ξ3 < 0 and ξ4 < 0. Now,
the frequency ordering |ξ2| ≥ |ξ3| implies

ξ2 = M − ξ1 ≥ |ξ3| = −ξ3 = M + ξ4,

and consequently ξ14 ≤ 0. On the other hand, |ξ1| ≥ |ξ4| �⇒ ξ1 ≥ −ξ4 �⇒ ξ14 ≥
0. Therefore, we get ξ14 = 0 contradicting the hypothesis |ξ14| � Ns of this case.

Now, for ξ1 > 0 and ξ2 < 0, we have

|m2(ξ1) − m2(ξ2)| = | f (ξ1) − f (−ξ2)| = | f ′(ξθ )| |ξ12|, (3.23)

where ξ1 ≥ ξθ ≥ −ξ2, so that ξθ ∼ Ns and consequently | f ′(ξθ )| ∼ m2(Ns)

Ns
. Using

this in (3.23), we get

|m2(ξ1) − m2(ξ2)| � m2(Ns). (3.24)

Similarly, one can also obtain

|m2(ξ3) − m2(ξ4)| � m2(Ns). (3.25)

Thus, taking in consideration of (3.24) and (3.25), from definition of δ4, we get

|δ4| � m2(Ns)

N 3
s

.

Sub-case A22. Nb � Ns : Without loss of generality we can assume |ξ4| = Nb. In
this case |ξ3| = |ξ12 + ξ4| ∼ |ξ12| ∼ Ns ∼ |ξ1| ∼ |ξ2|. It follows that

|m2(ξ1) − m2(ξ2) + m2(ξ3) − m2(ξ4)| ∼ |m2(ξ4)| = |m2(Nb)|.

Therefore in this case

|δ4| ∼ m2(Nb)

N 3
s

.

Case B. |ξ14| � Ns or |ξ13| � Ns : We divide in two sub-cases.
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Sub-case B1. |ξ14| � Ns : We move to find estimates considering two different sub-
cases

Sub-case B11. |ξ13| � Ns : In this case we necessarily have |ξ12| � Ns . If |ξ12| �
Ns , using the consideration made in the beginning of the proof, we get

|ξ14| � |ξ12| � Ns,

but this contradicts the defining condition |ξ14| � Ns of Case B1.
Now, for |ξ12| � Ns using the Double Mean Value Theorem with ξ := −ξ1,

η := ξ12 and λ := ξ14, we have

| f (ξ + λ + η) − f (ξ + η) − f (ξ + λ) + f (ξ)| � | f ′′(ξθ )| |ξ12| ξ14|

� m2(Ns)|ξ12| |ξ14|
N 2
s

.

Hence,

|δ4| � m2(Ns)|ξ12| |ξ14|
N 2
s

1

|ξ13| |ξ12| |ξ14| ∼ m2(Ns)

N 3
s

.

Sub-case B12. |ξ13| � Ns : Without loss of generality we can assume ξ1 ≥ 0. Recall
that, in this Sub-case |ξ12| ≤ |ξ14| � Ns . As Ns = ξ1, we have⎧⎪⎨

⎪⎩
|ξ12| � Ns �⇒ ξ2 < 0 and |ξ2| ∼ Ns,

|ξ13| � Ns �⇒ ξ3 < 0 and |ξ3| ∼ Ns,

|ξ14| � Ns �⇒ ξ4 < 0 and |ξ4| ∼ Ns .

Combining these informations, we get

Ns � |ξ13| = |ξ24| = |ξ2| + |ξ4| ∼ Ns,

which is a contradiction. Consequently this case is not possible.
Sub-case B2. |ξ13| � Ns : Taking in consideration Sub-case B1, we will assume that
|ξ14| � Ns . In this case too, we will analyse considering two different sub-cases.
Sub-case B21. |ξ12| � Ns : In this case we have |ξ1| ∼ |ξ2| ∼ |ξ3| ∼ Ns . Furthermore
|ξ4| = |ξ12 + ξ3| ∼ Ns . Hence

|ξ1| ∼ |ξ2| ∼ |ξ3| ∼ |ξ4| ∼ Ns .

Observe that, Na = |ξ2| ≥ |ξ3| implies |ξ12| ≤ |ξ13|. In fact, if ξ1 > 0, then

{
|ξ12| � Ns �⇒ ξ2 < 0,

|ξ13| � Ns �⇒ ξ3 < 0,

and it follows that ξ13 ≥ ξ12 ≥ 0.
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If ξ1 < 0, then

{
|ξ12| � Ns �⇒ ξ2 > 0,

|ξ13| � Ns �⇒ ξ3 > 0,

and it follows that 0 ≥ ξ12 ≥ ξ13. Hence |ξ12| ≤ |ξ13|.
On the other hand using the Mean Value Theorem, we obtain

| f (ξ1) − f (ξ2) + f (ξ3) − f (ξ4)| = | f (ξ1) − f (−ξ2) + f (ξ3) − f (−ξ4)|
= |ξ12 f ′(−ξ2 + θ1ξ12) + ξ34 f

′(−ξ4 + θ2ξ34)|
= |ξ12| | f ′(−ξ2 + θ1ξ12) − f ′(−ξ4 + θ2ξ34)|
� |ξ12| | f ′(Ns)|

� |ξ12| m
2(Ns)

Ns
,

where |θ j | ≤ 1, j = 1, 2. From this we deduce

|δ4| � |ξ12|m2(Ns)

Ns
· 1

|ξ12| |ξ13| |ξ14| ≤ m2(Ns)

N 2
s |ξ12|a |ξ13|b .

Sub-case B22. |ξ12| � Ns : As Na = |ξ2| ∼ |ξ1| = Ns ∼ |ξ3|, one has Ns ∼ |ξ2| =
|ξ13 + ξ4|. Thus |ξ4| ∼ Ns and |ξ j | ∼ Ns , j = 1, 2, 3, 4. Also

|ξ24| = |ξ13| � Ns �⇒ ξ3 ξ1 < 0 and ξ2 ξ4 < 0. (3.26)

Let

ε := ξ13 = −ξ24. (3.27)

We consider the following cases.
Case 1. ε > 0: In this case if ξ1 < 0, then ξ3 = ε+|ξ1| > |ξ1|which is a contradiction
because |ξ3| ≤ |ξ1|. Similarly by (3.26) and (3.27) if ξ2 > 0, then |ξ4| = ε+|ξ2| > |ξ2|
which is a contradiction. Therefore we can assume ξ1 > 0 and ξ2 < 0 and by (3.26)
ξ3 < 0 and ξ4 > 0. One has that

ξ1 ≥ −ξ2 ≥ −ξ3 ≥ ξ4 > 0,

and using (3.27)

ξ1 ≥ ξ4 + ε ≥ ξ1 − ε ≥ ξ4 > 0. (3.28)

Let b := ξ4 − Ns , using (3.28), we have

Ns ≥ Ns + b + ε ≥ Ns − ε ≥ Ns + b > 0,
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which implies that −2ε ≤ b ≤ −ε. Consequently by (3.27), ξ2 = −Ns − b − ε and
therefore using the condition of this Sub-case B22

Ns � ξ12 = −b − ε,

which is a contradiction. So, this case is not possible.
Case 2. ε < 0: Similarly as above, if ξ1 > 0, then |ξ3| = |ε| + ξ1 > |ξ1| which is
a contradiction. Similarly by (3.26) if ξ2 < 0, then ξ4 = |ε| + |ξ2| > |ξ2| which is a
contradiction. Therefore we can assume ξ1 < 0 and ξ2 > 0 and by (3.26) ξ3 > 0 and
ξ4 < 0. Using (3.27) one has that

− ξ1 ≥ |ε| − ξ4 ≥ Ns − |ε| ≥ −ξ4 > 0. (3.29)

Let b := ξ4 + Ns , using (3.29), we have

Ns ≥ Ns − b + |ε| ≥ Ns − |ε| ≥ Ns − b > 0,

which implies that 2|ε| ≥ b ≥ |ε|. Consequently ξ2 = Ns − b + |ε| and

Ns � ξ12 = |ε| − b,

which is a contradiction. Therefore, this case also does not exist.
Combining all cases we finish the proof of proposition.

Remark 3.4 Let 0 < ε � Ns . An example for the Sub-case A1 is

ξ1 = Ns, ξ2 = −Ns + ε, ξ3 = −ε

2
, ξ4 = −ε

2
,

other example is

ξ1 = Ns, ξ2 = −Ns + ε, ξ3 = Ns

2
− ε

2
, ξ4 = −Ns

2
− ε

2
.

An example for the Sub-case A21 with ξ1 ≥ 0 and ξ2 ≤ 0 is

ξ1 = Ns, ξ2 = −Ns

2
, ξ3 = −Ns

4
, ξ4 = −Ns

4
.

An example for the Sub-case A22 is

ξ1 = Ns, ξ2 = −Ns

2
− ε, ξ3 = −Ns

2
, ξ4 = ε.

An example for the Sub-case B21 is

ξ1 = Ns, ξ2 = −Ns + ε

2
, ξ3 = −Ns + ε

2
, ξ4 = Ns − ε.
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Proposition 3.5 Let w ∈ S(R × R), 0 > s > − 1
4 and b > 1

2 , then we have

|�4(δ4; u(t))dt | � 1

N ( 54−3s)
‖I u‖4L2 , (3.30)

and

∣∣∣∣
∫ δ

0
�6(δ6; u(t))dt

∣∣∣∣ � N− 7
4 ‖I u‖6

X0,b
δ

. (3.31)

Proof To prove (3.30), taking idea from [9, 10], first we perform a Littlewood-Paley
decomposition of the four factors u on δ4 so that ξ j are essentially constants N j ,
j = 1, 2, 3, 4. To recover the sum at the end we borrow a factor N−ε

s from the large
denominator Ns and often this will not be mentioned. Also, without loss of generality,
we can suppose that the Fourier transforms involved in the multipliers are all positive.

Recall that for Ns ≤ N one has m(ξ j ) = 1 for all j = 1, 2, 3, 4 and consequently
the multiplier δ4 vanish. Therefore, we will consider Ns ≤ N .

In view of the estimates obtained in Proposition 3.3, we divide the proof of (3.30)
in two different parts.

First part: Cases 1), 2) and 4) of Proposition 3.3. We observe that N
1
4
s ms � N−s .

In fact, if Ns ∈ [N , 2N ], then ms ∼ 1 and N
1
4
s ms � N−s

s � N−s . If Ns > 2N , then

from the definition of m and the fact that s > − 1
4 , we arrive at N

1
4
s ms = N

1
4
s
N−s

N−s
s

=

N
1
4+s
s N−s � N−s . Furthermore, we observe that 1

max{Nt , N } ≤ 1
N . Thus

|�4(δ4; u(t))| =
∣∣∣∣
∫

ξ1+···+ξ4=0
δ4(ξ1, . . . , ξ4)û1(ξ1) · · · û4(ξ4)

∣∣∣∣
�

∫
ξ1+···+ξ4=0

m2(Nb)

N N 2
s

Î u1(ξ1) · · · Î u4(ξ4)
m1 · · ·m4

�
∫

ξ1+···+ξ4=0

Ns

N N 2
s m

3
s

̂

D
− 1

4
x I u1(ξ1) · · · ̂

D
− 1

4
x I u4(ξ4)

�
∫

ξ1+···+ξ4=0

1

N N
1
4−3s
s

̂

D
− 1

4
x I u1(ξ1) · · · ̂

D
− 1

4
x I u4(ξ4)

� 1

N N
1
4−3s
s

‖D−1/4
x I u‖4L4

� 1

N ( 54−3s)
‖I u‖4L2 , (3.32)
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where in the fourth line we used the following estimate

Ns

N 2
s m

3
s

= 1

N
1
4
s (N

1
4
s ms)3

� 1

N
1
4−3s
s

.

Second part. Case 3) of Proposition 3.3. Recall from the first part, we have N
1
4
s ms �

N−s . Using (3.16) with a = 1 and b = 0, and recalling the fact that |ξ12| = |ξ34|, we
get

|�4(δ4; u(t))| =
∣∣∣∣
∫

ξ1+···+ξ4=0
δ4(ξ1, . . . , ξ4)û1(ξ1) · · · û4(ξ4)

∣∣∣∣
=

∣∣∣∣∣
∫

ξ1+···+ξ4=0
δ4(ξ1, . . . , ξ4)

Î u1(ξ1) · · · Î u4(ξ4)
m1 · · ·m4

∣∣∣∣∣
�

∫
ξ1+···+ξ4=0

1

N 2
s m

2
s
|ξ12|− 1

2 Î u1(ξ1) Î u2(ξ2) |ξ34|− 1
2 Î u3(ξ3) Î u4(ξ4)

�
∫
R

1

N 3/2−2s
s

D
− 1

2
x (I u1 I u2) D

− 1
2

x (I u3 I u4)

� 1

N
3
2−2s
s

‖D− 1
2

x (I u1 I u2)‖L2‖D− 1
2

x (I u3 I u4)‖L2 ,

(3.33)

where in the second last line we used

1

N 2
s m

2
s

= 1

N
3
2
s (N

1
4
s ms)2

� 1

N 3/2−2s
s

.

Now, applying Hardy-Litlewwod-Sobolev inequality, we obtain from (3.33) that

|�4(δ4; u(t))| � 1

N ( 32−2s)
‖I u1 I u2‖L1‖I u3 I u4‖L1

� 1

N ( 32−2s)
‖I u‖4L2 .

(3.34)

Observe that the condition s > − 1
4 implies that 54 −3s < 3

2 −2s and this completes
the proof of (3.30).

Now we move to prove (3.31). As in the proof of (3.30), first we perform a
Littlewood-Paley decomposition of the six factors u on δ6 so that ξ j are essentially
constants N j , j = 1, · · · , 6. Recall that for Ns ≤ N one has m(ξ j ) = 1 for all
j = 1, · · · , 6 and consequently the multiplier δ6 vanish. Therefore, we will consider
Ns ≤ N . Since Na ∼ Ns > N , it follows that

msNs � N and maNa � N .
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Without loss of generality we will consider only the term δ4(ξ123, ξ4, ξ5, ξ6) in the
symmetrization of δ6(ξ1, . . . , ξ6), see (3.13). The estimates for the other terms are
similar.

Here also, we will provide a proof of (3.31) dividing in two parts.
First part. Cases 1), 2) and 4) in Proposition 3.3. In these cases, we have

J :=
∣∣∣∣
∫ δ

0
�6(δ6; u(t))

∣∣∣∣ =
∣∣∣∣
∫ δ

0

∫
ξ1+···+ξ6=0

δ4(ξ123, ξ4, ξ5, ξ6)û1(ξ1) · · · û6(ξ6)
∣∣∣∣

�
∫ δ

0

∫
ξ1+···+ξ6=0

m2
b

max{Nt , N } N 2
s

· mamsû1(ξ1) · · · û6(ξ6)
mams

�
∫ δ

0

∫
R

1

max{Nt , N } N 2 I us I ua I ubutu5u6

�
∫ δ

0

∫
R

N
1
4
t

max{Nt , N } N 2 I us I ua I ub(D
− 1

4
x ut )u5u6

� 1

N 11/4 ‖I us‖L2
x L

2
t
‖I ua‖L∞

x L∞
t

‖I ub‖L∞
x L∞

t
‖D− 1

4
x ut‖L5

x L
10
t

‖u5‖L20/3
x L5

t
‖u6‖L20/3

x L5
t
.

(3.35)

Using estimates from Lemma 2.5, we obtain from (3.35) that

J � 1

N
11
4

‖I us‖X0,b
δ

‖I ua‖X0,b
δ

‖I ub‖X0,b
δ

‖ut‖
X

− 1
4 ,b

δ

‖u5‖
X

− 1
4 ,b

δ

‖u6‖
X

− 1
4 ,b

δ

� 1

N
11
4

‖I us‖X0,b
δ

‖I ua‖X0,b
δ

‖I ub‖X0,b
δ

‖I ut‖X0,b
δ

‖I u5‖X0,b
δ

‖I u6‖X0,b
δ

� 1

N
11
4

‖I u‖6
X0,b

δ

.

(3.36)

Second part. Case 3) in Proposition 3.3. Without loss of generality we can assume
that |ξ123| = Ns , |ξ4| = Na , |ξ5| = Nt and |ξ6| = Nb. Notice that m2

s ≤ mtmb

and |ξ j | ∼ Ns for some j = 1, 2, 3. So, we can assume |ξ3| ∼ Ns . Using (3.16) in
Proposition 3.3 with a = 1, and b = 0, we can obtain

J :=
∣∣∣∣
∫ δ

0
�6(δ6; u(t))

∣∣∣∣ =
∣∣∣∣
∫ δ

0

∫
ξ1+···+ξ6=0

δ4(ξ123, ξ4, ξ5, ξ6)û1(ξ1) · · · û6(ξ6)
∣∣∣∣

�
∫ δ

0

∫
ξ1+···+ξ6=0

mtmb

N 2
s |ξ1234| 12 |ξ56| 12

· maû1(ξ1) · · · û6(ξ6)
ma

�
∫ δ

0

∫
ξ1+···+ξ6=0

N
1
4
s

N Ns
|ξ1234|− 1

2 (û1(ξ1)û2(ξ2)|ξ3|− 1
4 û3(ξ3)) Î u4(ξ4))|ξ56|− 1

2 ( Î u5(ξ1) Î u6(ξ6))

� 1

N
7
4

∫ δ

0

∫
R

D
− 1

2
x (u1u2(D

− 1
4

x u3)I ua)D
− 1

2
x (I ut I ub)

� 1

N
7
4

∫ δ

0
‖D− 1

2
x (u1u2(D

− 1
4

x u3)I ua)‖L2
x
‖D− 1

2
x (I ut I ub)‖L2

x
.

(3.37)
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Now, applying Hardy-Litlewwod-Sobolev inequality followed by estimates from
Lemma 2.5, we obtain from (3.37) that

J � 1

N
7
4

∫ δ

0
‖u1u2(D− 1

4
x u3)I ua‖L1

x
‖I ut I ub‖L1

x

� 1

N
7
4

‖u1‖L20/3
x L5

t
‖u2‖L20/3

x L5
t
‖D− 1

4
x u3‖L5

x L
10
t

‖I ua‖L2
x L

2
t
‖I ut‖L∞

t L2
x
‖I ub‖L∞

t L2
x

� 1

N
7
4

‖u1‖
X

− 1
4 ,b

δ

‖u2‖
X

− 1
4 ,b

δ

‖u3‖
X

− 1
4 ,b

δ

‖I ua‖X0,b
δ

‖I ut‖X0,b
δ

‖I ub‖X0,b
δ

� 1

N
7
4

‖I u1‖X0,b
δ

‖I u2‖X0,b
δ

‖I u3‖X0,b
δ

‖I ua‖X0,b
δ

‖I ut‖X0,b
δ

‖I ub‖X0,b
δ

� 1

N
7
4

‖I u‖6
X0,b

δ

.

(3.38)

3.3 Almost Conserved Quantity

We use the estimates proved in the previous subsection to obtain the following almost
conservation law for the second generation of the energy.

Proposition 3.6 Let u be the solution of the IVP (2.3) given by Theorem 2.3 in the
interval [0, δ]. Then the secondgeneration of themodified energy satisfies the following
estimates

|E2
I (u(δ))| ≤ |E2

I (φ)| + CN− 7
4 ‖I u‖6

X
0, 12+
δ

. (3.39)

Proof The proof follows combining (3.10) and (3.31).

4 Proof of theMain Results

In this section we provide proof of the main results of this work.

Proof of Theorem 1.3 Let u0 ∈ Hs(R), − 1
4 < s < 0. Given any T > 0, we are

interested in extending the local solution to the IVP (2.3) to the interval [0, T ].
To make the analysis a bit easy we use the scaling argument. If u(x, t) solves the

IVP (2.3) with initial data u0(x) then for 1 < λ < ∞, so does uλ(x, t) with initial
data uλ

0(x); where u
λ(x, t) = λ− 3

2 u( x
λ
, t

λ3
) and uλ

0(x) = λ− 3
2 u0(

x
λ
).

Our interest is in extending the rescaled solution uλ to the bigger time interval
[0, λ3T ].

Observe that

‖uλ
0‖Hs � λ−1−s‖u0‖Hs . (4.1)
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From this observation and (2.11) we have that

E1
I (u

λ
0) = ‖I uλ

0‖2L2 � N−2sλ−2(1+s)‖u0‖2L2 . (4.2)

The number N � 1 will be chosen later suitably. Now we choose the parameter
λ = λ(N ) in such a way that E1

I (u
λ
0) = ‖I uλ

0‖2L2 becomes as small as we please. In
fact, for arbitrary ε > 0, if we choose

λ ∼ N− s
1+s , (4.3)

we can obtain

E1
I (u

λ
0) = ‖I uλ

0‖2L2 ≤ ε. (4.4)

From (4.4) and the variant of the local well-posedness result (2.13), we can
guarantee that the rescaled solution I uλ exists in the time interval [0, 1].

Moreover, for this choice of λ, from (3.7), (3.30) and (4.4), in the time interval
[0, 1], we have

|E2
I (u

λ
0)| � |E1

I (u
λ
0)| + |�4(M4)| � ‖I uλ

0‖2L2 + ‖I uλ
0‖4L2 ≤ ε + ε2 � ε. (4.5)

Using the almost conservation law (3.39) for the modified energy, (2.12), (4.4) and
(4.5), we obtain

|E2
I (u

λ)(1)| � |E2
I (u

λ
0)| + N− 7

4 ‖I uλ‖6
X
0, 12+
1

� ε + N− 7
4 ε3

� ε + N− 7
4 ε.

(4.6)

From (4.6), it is clear that we can iterate this process N
7
4 times before doubling

the modified energy |E2(uλ)|. Therefore, by taking N
7
4 times steps of size O(1),

we can extend the rescaled solution to the interval [0, N 7
4 ]. As we are interested in

extending the the solution to the interval [0, λ3T ], we must select N = N (T ) such

that λ3T ≤ N
7
4 . Therefore, with the choice of λ in (4.3), we must have

T N
−7−19s
4(1+s) ≤ c. (4.7)

Hence, for arbitrary T > 0 and large N , (4.7) is possible if s > − 7
19 , which is true

because we have considered s > − 1
4 . This completes the proof of the theorem.

Remark 4.1 From the proof of Theorem 1.3 it can be seen that the global well-
posedness result might hold for initial data with Sobolev regularity below − 1

4 as
well provided there is local solution. But, as shown in [3] one cannot obtain the local
well-posedness result for such data because the crucial trilinear estimate fails for
s < − 1

4 .
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Remark 4.2 In this work we focused to address the well-posedness issues for the IVPs
associated to the nonlinear Schrödinger equations with third order dispersion. Mainly,
we obtained the least possible Sobolev regularity requirement on the initial data that
suffices to get the global solution. In the recent time, study of the existence of the soliton
solutions and their dynamics has also attracted attention of several mathematicians
and physicists. Solitons play a very important role in many fields of nonlinear science
such as nonlinear optics, Bose-Einstein condensates, plamas physics, biology, fluid
mechanics, and other related fields. The nonlinear Schrödinger equations with third
order dispersion considered in this work are also widely studied in this context see for
example [7, 22, 23] and references therein.
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