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Abstract
The main result of this note is the strengthening of a quite arbitrary a priori Fourier
restriction estimate to a multi-parameter maximal estimate of the same type. This
allows us to discuss a certain multi-parameter Lebesgue point property of Fourier
transforms, which replaces Euclidean balls by standard ellipsoids or axes-parallel
rectangles. Along the lines of the same proof, we also establish a d-parameter
Menshov–Paley–Zygmund-type theorem for theFourier transformonR

d . Such a result
is interesting for d � 2 because, in a sharp contrast with the one-dimensional case, the
corresponding endpoint L2 estimate (i.e., a Carleson-type theorem) is known to fail
since the work of C. Fefferman in 1970. Finally, we show that a Strichartz estimate
for a given homogeneous constant-coefficient linear dispersive PDE can sometimes
be strengthened to a certain pseudo-differential version.

Keywords Fourier transform · Fourier restriction operator · Maximal estimate ·
Multi-parameter estimate · Convergence almost everywhere · Christ–Kiselev lemma

Mathematics Subject Classification Primary 42B10 · Secondary 42B25 · 37L50

1 Introduction

A classical sub-branch of harmonic analysis, started in the late 1960s, asks to restrict
meaningfully the Fourier transform ̂f of a certain non-integrable function f to cer-
tain curved lower-dimensional subsets of the Euclidean space; see Stein’s book [19,
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§VIII.4]. A general setting is obtained by taking a σ -finite measure σ on Borel subsets
of R

d . Also, let S ⊆ R
d be a Borel set such that σ(Rd \ S) = 0. Typically, S is a

closed manifold in R
d and σ is an appropriately weighted surface measure on S. As

soon as we have an a priori estimate

∥

∥ ̂f
∣

∣

S

∥

∥

Lq (S,σ )
�d,σ,p,q ‖ f ‖Lp(Rd ) (1.1)

for some p ∈ (1,∞) and q ∈ [1,∞], we can define the Fourier restriction operator
as the unique bounded linear operator

R : Lp(Rd) → Lq(S, σ )

such that R f = ̂f |S for every function f in the Schwartz space S(Rd). Here and in
what follows, we write A �P B, when the estimate A � CP B holds for some finite
(but unimportant) constant CP depending on a set of parameters P .

Let us agree to use the following normalization of the Fourier transform:

(F f )(ξ) = ̂f (ξ) :=
∫

Rd
f (x)e−2π i x ·ξ dx

for an integrable function f on R
d and for every ξ ∈ R

d , so that the inverse Fourier
transform is given by

qg(x) :=
∫

Rd
g(ξ)e2π i x ·ξ dξ

for g ∈ L1(Rd) and x ∈ R
d . We always have the trivial estimate

∥

∥ ̂f
∣

∣

S

∥

∥

L∞(S,σ )
� ‖ f ‖L1(Rd ) (1.2)

for every f ∈ L1(Rd), so restriction of the Fourier transform f �→ ̂f |S also gives a
bounded linear operator

R : L1(Rd) → L∞(S, σ ).

Using the Riesz–Thorin theorem to interpolate between (1.1) and (1.2) then gives us
a family of bounded linear operators

R : Ls(Rd) → Lqs′/p′
(S, σ )

for every 1 � s � p, where p′ denotes the conjugated exponent of p, i.e., 1/p+1/p′ =
1. All these operators are mutually compatible on their intersections, so they are
rightfully denoted by the same letterR.
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A novel route was taken recently by Müller, Ricci, and Wright [14], who initiated
the program of justifying pointwise Fourier restriction,

lim
t→0+

̂f ∗ χt = R f σ -a.e. on S

for f ∈ Lp(Rd), via maximal estimates

∥

∥

∥ sup
t∈(0,∞)

∣

∣ ̂f ∗ χt
∣

∣

∥

∥

∥

Lq (S,σ )
�d,σ,χ,p,q ‖ f ‖Lp(Rd ). (1.3)

Here, χ ∈ S(Rd) is a Schwartz function with integral 1 and we write χt (x) :=
t−dχ(t−1x) for a given parameter t ∈ (0,∞). Note that the operator on the left-hand
side of (1.3) cannot be understood as a composition of the Fourier transform with
some maximal function of the Hardy–Littlewood type, since the measure σ can be
(and typically is) singular with respect to the Lebesgue measure.

The authors of [14] achieved the aforementioned goal in two dimensions by adapt-
ing the proofs of two-dimensional restriction theorems of Carleson and Sjölin [4] and
Sjölin [18]. This methodology was later followed by Ramos [16, 17], Jesurum [9], and
Fraccaroli [8] to obtain some higher-dimensional or less smooth/regular results. The
second approach to themaximal Fourier restrictionwas suggested byVitturi [24], soon
after the appearance of [14]. He deduced a non-trivial result for higher-dimensional
compact hypersurfaces from ordinary restriction estimates (1.1) by inserting the iter-
ated Hardy–Littlewood maximal function in a clever non-obvious way. The idea of
using (1.1) as a black box was later also employed by Oliveira e Silva and one of
the present authors [12], while the subsequent paper [11] built on this idea to show
that the a priori estimate (1.1) implies the maximal estimate (1.3) in a general and
abstract way, as soon as p < q. Each of these two approaches has its advantages and
its limitations. The present paper builds further upon the second approach and it has
been partially motivated by a question posed by Vitturi [23]. In fact, Theorem 1 below
answers one of the open questions that appeared in [23, §4].

For a given function χ : R
d → C and arbitrary parameters r1, . . . , rd ∈ (0,∞) we

define the multi-parameter dilate of χ as

χr1,...,rd : R
d → C, χr1,...,rd (x1, . . . , xd) := 1

r1 · · · rd χ
( x1
r1

, . . . ,
xd
rd

)

.

Also let

Br1,...,rd (y1, . . . , yd) :=
{

(x1, . . . , xd) ∈ R
d : (x1 − y1)2

r21
+ · · · + (xd − yd)2

r2d
� 1

}

be the ellipsoid centered at (y1, . . . , yd) ∈ R
d with semi-axes of lengths r1, . . . , rd in

directions of the coordinate axes. Its volume will be written simply as |Br1,...,rd |. The
particular case Br (y) := Br ,...,r (y) for r ∈ (0,∞) is simply the Euclidean ball.
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Theorem 1 Suppose that themeasure space (S, σ ) and the exponents 1 < p < q < ∞
are such that the a priori restriction estimate (1.1) holds for every Schwartz function
f . Let χ be a function satisfying

∣

∣

(

∂1 · · · ∂d χ̂
)

(x)
∣

∣ �d,δ (1 + |x |)−d−δ (1.4)

for some δ > 0 and every x ∈ R
d . Then the following hold.

(a) For every f ∈ Lp(Rd) one also has the multi-parameter maximal estimate

∥

∥

∥ sup
r1,...,rd∈(0,∞)

∣

∣ ̂f ∗ χr1,...,rd

∣

∣

∥

∥

∥

Lq (S,σ )
�d,σ,χ,p,q ‖ f ‖Lp(Rd ). (1.5)

(b) For every χ that additionally satisfies
∫

Rd χ = 1 and every f ∈ Ls(Rd), 1 � s �
p, one also has the multi-parameter convergence result

lim
(0,∞)d
(r1,...,rd )→(0,...,0)

̂f ∗ χr1,...,rd = R f σ -a.e. on S. (1.6)

(c) Moreover, if f ∈ Ls(Rd), 1 � s � 2p/(p + 1), then we also have the “multi-
parameter Lebesgue point property”

lim
(0,∞)d
(r1,...,rd )→(0,...,0)

1

|Br1,...,rd |
∫

Br1,...,rd (ξ)

∣

∣ ̂f (η) − (R f )(ξ)
∣

∣ dη = 0 (1.7)

of σ -almost every point ξ ∈ S. In particular,

lim
(0,∞)d
(r1,...,rd )→(0,...,0)

1

|Br1,...,rd |
∫

Br1,...,rd (ξ)

̂f (η) dη = (R f )(ξ) (1.8)

for σ -a.e. ξ ∈ S.

Since (1.5) is a stronger maximal inequality than (1.3), Theorem 1 can be viewed as
amulti-parameter generalization of [11, Theorem1] suggested byVitturi [23, §4], even
though a bi-parameter two-dimensional case appeared already in [14]. For instance, by
(1.6) now we are able to justify the existence of limits for various anisotropic scalings,
such as

lim
t→0+

̂f ∗ χt,t2,...,td .

However, the required assumptions on χ are more restrictive here, when compared to
[11]: condition (1.4) is different from

∣

∣

(∇χ̂
)

(x)
∣

∣ �d,δ (1 + |x |)−1−δ,
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used in [11]. The last condition is satisfied when χ is the (normalized) indicator
function of the standard unit ball in d � 2 dimensions, while our standing assumption
(1.4) is not. Still, (1.4) certainly holds at least for Schwartz functions χ .

For similar reasons we conclude the convergence of the Fourier averages over
shrinking ellipsoids, (1.7) and (1.8), only in the smaller range 1 � s � 2p/(p + 1),
and not in the full range 1 � s � p, as it was the case with averages over balls [11].
This leads us to interesting open questions, like Problem 2 below. We will explain in
Remark 2 after the proof of Theorem 1 that (1.7) and (1.8) could have been equally
well formulated for axes-parallel rectangles as

lim
r1→0+,...,rd→0+

1

2dr1 · · · rd
∫

ξ+[−r1,r1]×···×[−rd ,rd ]
∣

∣ ̂f (η) − (R f )(ξ)
∣

∣ dη = 0

(1.9)

and

lim
r1→0+,...,rd→0+

1

2dr1 · · · rd
∫

ξ+[−r1,r1]×···×[−rd ,rd ]
̂f (η) dη = (R f )(ξ), (1.10)

respectively. Thiswould have been a bitmore standard. However, the same observation
combined with a counterexample by Ramos [17, Proposition 4] reveals a limitation in
obtaining the full range of exponents for (1.7) and (1.9) (see the comments in Remark 2
again), and thus also for (1.8) and (1.10), which are shown here as their consequences.
On the other hand, it is still theoretically possible that (1.8) holds in the same range
as (1.1). A supporting argument is that the proof of its one-parameter case in [11]
actually depended on the geometry of Euclidean balls.

Problem 2 Prove or disprove that the assumptions of Theorem 1 imply (1.8) for every
f ∈ Lp(Rd) and for σ -a.e. ξ ∈ S.

Another question, related to property (1.7) and stated in Problem 3 below, remained
open after [11] and particular cases of it have already been studied by Ramos [16, 17]
and Fraccaroli [8]. In words, we do not know how to extend the range 1 � s �
2p/(p + 1) even when we only consider balls instead of arbitrary ellipsoids.

Problem 3 Prove or disprove that, for every f ∈ Lp(Rd), the assumptions of Theo-
rem 1 imply that σ -almost every point ξ ∈ S is the Lebesgue point of ̂f , in the sense
that

lim
t→0+

1

|Bt |
∫

Bt (ξ)

∣

∣ ̂f (η) − (R f )(ξ)
∣

∣ dη = 0.

The general maximal principle from [11], which yields information about the
Lebesgue sets of Fourier transforms ̂f from restriction estimates (1.1), has been used
by Bilz [2]. He showed that there exists a subset of R

d of full dimension that is
“avoided” by every Borel measure that satisfies a nontrivial Fourier restriction esti-
mate (1.1). It would be interesting to find similar applications of the stronger properties
(1.7) or (1.9).
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The main new ingredient in the proof of Theorem 1 is a multi-parameter variant of
the Christ–Kiselev lemma [5]. Even if its generalization is somewhat straightforward,
we will argue that it is substantial by using it to deduce the following result on the
Fourier transform alone, with no restriction phenomena involved. In what follows the
indicator function of a set A ⊆ R

d is denoted by 1A.

Theorem 4 (a) For p ∈ [1, 2) and f ∈ Lp(Rd) we have the maximal estimate

∥

∥

∥ sup
R1,...,Rd∈(0,∞)

∣

∣F(

f 1[−R1,R1]×···×[−Rd ,Rd ]
)∣

∣

∥

∥

∥

Lp′ (Rd )
�d,p ‖ f ‖Lp(Rd )

and d-parameter convergence

lim
R1→∞,...,Rd→∞

∫

[−R1,R1]×···×[−Rd ,Rd ]
f (x)e−2π i x ·ξ dx = ̂f (ξ) (1.11)

holds for a.e. ξ ∈ R
d .

(b) If d � 2, then there exist a function f ∈ L2(Rd) and a set of positive measure
Q ⊆ R

d such that

lim sup
R1→∞,...,Rd→∞

∣

∣

∣

∣

∫

[−R1,R1]×···×[−Rd ,Rd ]
f (x)e−2π i x ·ξ dx

∣

∣

∣

∣

= ∞ for every x ∈ Q. (1.12)

In particular, even the weak L2 estimate

∥

∥

∥ sup
R1,...,Rd∈(0,∞)

∣

∣F(

f 1[−R1,R1]×···×[−Rd ,Rd ]
)∣

∣

∥

∥

∥

L2,∞(Rd )
�d ‖ f ‖L2(Rd )

does not hold.

Part (a) can be thought of as amulti-parameter Menshov–Paley–Zygmund theorem,
while part (b) gives a counterexample to the corresponding multi-parameter analogue
of Carleson’s theorem [3]. The latter is not our original result, but a mere adaptation
of the argument by Charles Fefferman [7] to the continuous setting. We include its
proof for completeness of the exposition.

Finally, connections between the Fourier restriction problem and PDEs have been
known since the work of Strichartz [20]. Let us comment on a certain reformulation
of (1.5) in that direction. The following standard setting is taken from the textbook by
Tao [21]; see also the lecture notes by Koch, Tataru, and Vişan [10]. Let φ : R

n → R

be a C∞ function. The self-adjoint operator φ(D) = φ(∇/2π i) is defined to be the
Fourier multiplier associated with the symbol φ, i.e.,

(φ̂(D) f )(ξ) = φ(ξ) ̂f (ξ).
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If φ happens to be a polynomial

φ(ξ) =
∑

|α|�k

cαξα

in n variables ξ = (ξ1, . . . , ξn) of degree k with real coefficients cα , then φ(D) is just
the self-adjoint differential operator acting on Schwartz functions,

φ(D) =
∑

|α|�k

(2π i)−|α|cα∂α.

The solution of a general scalar constant-coefficient linear dispersive initial value
problem

{

∂t u(x, t) = iφ(D)u(x, t) in R
n × R,

u(x, 0) = f (x) in R
n (1.13)

is given explicitly as

u(x, t) = (eitφ(D) f )(x) :=
∫

Rn
eitφ(ξ)+2π i x ·ξ

̂f (ξ) dξ

for x ∈ R
n , t ∈ R, and a Schwartz function f ∈ S(Rd); see [21, Section 2.1].

Corollary 5 Suppose that a Strichartz-type estimate for (1.13) of the form

∥

∥(eitφ(D) f )(x)
∥

∥

Ls
(x,t)(R

n×R)
�n,φ ‖ f ‖L2(Rn) (1.14)

holds for some exponent s ∈ (2,∞) and every Schwartz function f ∈ S(Rn). Then for
every ψ ∈ S(Rn+1) and any choice of measurable functions r1, . . . , rn+1 : R

n → R

the pseudo-differential operator

(Tψ,r1,...,rn+1 f )(x, t) :=
∫

Rn
ψ

(

r1(ξ)x1, . . . , rn(ξ)xn, rn+1(ξ)t
)

eitφ(ξ)+2π i x ·ξ
̂f (ξ) dξ

satisfies the analogous bound

‖Tψ,r1,...,rn+1 f ‖Ls (Rn+1) �n,φ,ψ,s ‖ f ‖L2(Rn), (1.15)

with a constant that is independent of r1, . . . , rn+1.

Note that (1.14) is a particular case of (1.15), as the former inequality can be easily
recovered by taking r1, . . . , rn+1 to be identically 0. Specifically for the Schrödinger
equation, i.e., when φ(D) = �, the Strichartz estimate (1.14) holds with s = 2+4/n.
A larger range of Strichartz estimates is available when one introduces the mixed
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norms [1], see [21, Theorem 2.3] or the review paper [6], but our proof of Corollary 5
is not well suited for this generalization.

While (1.15) might not have substantial applications in the theory of PDEs, we
merely wanted to present a restatement of (1.5) in that language. Note that in the
definition of the above pseudo-differential operator it is only meaningful (from the
aspect of physical dimensions) to scale the spatial variable x and the time variable
t independently. In other words, just writing ψ(r(ξ)(x, t)) would make no sense.
This also partly motivates the study of multiparameter maximal Fourier restriction
estimates.

2 Multi-Parameter Christ–Kiselev Lemma

This section is devoted to a bound on rather general multi-parameter maximal opera-
tors, which generalizes a classical result of Christ and Kiselev [5].

Let (X,X , μ) and (Y,Y, ν) be measure spaces. Let d be a positive integer, which
we interpret as the number of “parameters.” For every 1 � j � d we are also given
a countable totally ordered set I j and an increasing system (E j (i) : i ∈ I j ) of sets
from Y , i.e., an increasing function E j : I j → Y with respect to the order on I j and
the set inclusion on Y .

Lemma 6 (Multi-parameter Christ–Kiselev Lemma) Take exponents 1 � p < q �
∞ and a bounded linear operator T : Lp(Y,Y, ν) → Lq(X,X , μ). The maximal
operator

(T� f )(x) := sup
(i1,...,id )∈I1×···×Id

∣

∣T
(

f 1E1(i1)∩···∩Ed (id )

)

(x)
∣

∣

is also bounded from Lp(Y,Y, ν) to Lq(X,X , μ) with the operator norm satisfying

‖T�‖Lp(Y)→Lq (X) �
(

1 − 21/q−1/p)−d‖T ‖Lp(Y)→Lq (X). (2.1)

The particular case d = 1 is precisely [5, Theorem 1.1]. The proof given below is a
d-parameter modification of the approach from [5], incorporating a simplification due
to Tao [22, Note #2], who used an induction on the cardinality of I1 to immediately
handle general measure spaces with atoms.

Proof By theMonotone Convergence Theorem it is sufficient to prove the claim when
the ordered sets I1, . . . , Id are finite. Note that it is crucial that the desired bound does
not depend on their sizes. The exponents p and q, the two measure spaces, and the
operator T are fixed throughout the proof.Wewill use a nestedmathematical induction,
first on d and then on the cardinality of Id , to prove (2.1) for all finite increasing systems
of sets (E j (i) : i ∈ I j ), 1 � j � d. The induction basis d = 1 = |I1| is trivial, since
then T� satisfies the same bound as T .

We turn to the induction step. By relabeling the indices we can achieve that I j =
{1, 2, . . . , n j } for each 1 � j � d and some positive integers n1, . . . , nd . Denote

F(i) := E1(n1) ∩ · · · ∩ Ed−1(nd−1) ∩ Ed(i) for 1 � i � nd .
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Take a function f ∈ Lp(Y,Y, ν). By the assumption that the system (Ed(i) : i ∈ Id)
is increasing, we have

0 � ‖ f ‖Lp(F(1)) � ‖ f ‖Lp(F(2)) � · · · � ‖ f ‖Lp(F(nd )).

Let 1 � l � nd be the smallest integer such that

‖ f ‖p
Lp(F(l)) � 1

2
‖ f ‖p

Lp(F(nd ))
.

If l � 2, then

‖ f ‖p
Lp(F(l−1)) <

1

2
‖ f ‖p

Lp(F(nd ))
� 1

2
‖ f ‖p

Lp(Y)
,

so applying the induction hypothesis with the last system of sets replaced with the
subsystem

(Ed(id) : id ∈ {1, . . . , l − 1}),

we get

∥

∥

∥ max
i1,...,id

1�id�l−1

∣

∣T
(

f 1E1(i1)∩···∩Ed (id )

)∣

∣

∥

∥

∥

Lq (X)

=
∥

∥

∥ max
i1,...,id

1�id�l−1

∣

∣T
(

f 1F(l−1)1E1(i1)∩···∩Ed (id )

)∣

∣

∥

∥

∥

Lq (X)

�
(

1 − 21/q−1/p)−d‖T ‖Lp(Y)→Lq (X)‖ f 1F(l−1)‖Lp(Y)

� 2−1/p(1 − 21/q−1/p)−d‖T ‖Lp(Y)→Lq (X)‖ f ‖Lp(Y). (2.2)

Also,

‖ f ‖p
Lp(F(nd )\F(l)) = ‖ f ‖p

Lp(F(nd ))
− ‖ f ‖p

Lp(F(l)) � 1

2
‖ f ‖p

Lp(F(nd ))
� 1

2
‖ f ‖p

Lp(Y)
,

so, if l � nd − 1, then applying the induction hypothesis with the last system of sets
replaced with the subsystem,

(Ed(id) : id ∈ {l + 1, . . . , nd}),

we obtain
∥

∥

∥ max
i1,...,id

l+1�id�nd

∣

∣T
(

f 1E1(i1)∩···∩Ed−1(id−1)∩(Ed (id )\Ed (l))
)∣

∣

∥

∥

∥

Lq (X)

=
∥

∥

∥ max
i1,...,id

l+1�id�nd

∣

∣T
(

f 1F(nd )\F(l)1E1(i1)∩···∩Ed−1(id−1)∩(Ed (id )\Ed (l))
)∣

∣

∥

∥

∥

Lq (X)
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�
(

1 − 21/q−1/p)−d‖T ‖Lp(Y)→Lq (X)‖ f 1F(nd )\F(l)‖Lp(Y)

� 2−1/p(1 − 21/q−1/p)−d‖T ‖Lp(Y)→Lq (X)‖ f ‖Lp(Y). (2.3)

Finally, if d � 2, then we can also apply the induction hypothesis with the same first
d − 1 systems of sets, to conclude

∥

∥

∥ max
i1,...,id−1

∣

∣T
(

f 1E1(i1)∩···∩Ed−1(id−1)∩Ed (l)
)∣

∣

∥

∥

∥

Lq (X)

=
∥

∥

∥ max
i1,...,id−1

∣

∣T
(

f 1Ed (l)1E1(i1)∩···∩Ed−1(id−1)

)∣

∣

∥

∥

∥

Lq (X)

�
(

1 − 21/q−1/p)−d+1‖T ‖Lp(Y)→Lq (X)‖ f 1Ed (l)‖Lp(Y)

�
(

1 − 21/q−1/p)−d+1‖T ‖Lp(Y)→Lq (X)‖ f ‖Lp(Y). (2.4)

The last bound also holds in the case d = 1, with the maximum disappearing from
the left-hand side, and it is a consequence of the mere boundedness of T .

Now denote

S := {

x ∈ X : (T� f )(x) = ∣

∣

(

T
(

f 1E1(i1)∩···∩Ed (id )

))

(x)
∣

∣

for some (i1, . . . , id) ∈ I1 × · · · × Id such that id � l − 1
}

,

so that, by linearity of T ,

T� f � 1S max
i1,...,id

1�id�l−1

∣

∣T
(

f 1E1(i1)∩···∩Ed−1(id−1)∩Ed (id )

)∣

∣

+ 1X\S max
i1,...,id

l+1�id�nd

∣

∣T
(

f 1E1(i1)∩···∩Ed−1(id−1)∩(Ed (id )\Ed (l))
)∣

∣

+ 1X\S max
i1,...,id−1

∣

∣T
(

f 1E1(i1)∩···∩Ed−1(id−1)∩Ed (l)
)∣

∣.

Here, maximum over an empty set is understood to be 0. When q < ∞ we conclude

‖T� f ‖Lq (X) �
(

∥

∥

∥ max
i1,...,id

1�id�l−1

∣

∣T
(

f 1E1(i1)∩···∩Ed (id )

)∣

∣

∥

∥

∥

q

Lq (S)

+
∥

∥

∥ max
i1,...,id

l+1�id�nd

∣

∣T
(

f 1E1(i1)∩···∩Ed−1(id−1)∩(Ed (id )\Ed (l))
)∣

∣

∥

∥

∥

q

Lq (X\S)

)1/q

+
∥

∥

∥ max
i1,...,id−1

∣

∣T
(

f 1E1(i1)∩···∩Ed−1(id−1)∩Ed (l)
)∣

∣

∥

∥

∥

Lq (X\S)
,

while in the endpoint case q = ∞ we instead have

‖T� f ‖L∞(X) � max

{

∥

∥

∥ max
i1,...,id

1�id�l−1

∣

∣T
(

f 1E1(i1)∩···∩Ed (id )

)∣

∣

∥

∥

∥

L∞(S)
,
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∥

∥

∥ max
i1,...,id

l+1�id�nd

∣

∣T
(

f 1E1(i1)∩···∩Ed−1(id−1)∩(Ed (id )\Ed (l))
)∣

∣

∥

∥

∥

L∞(X\S)

}

+
∥

∥

∥ max
i1,...,id−1

∣

∣T
(

f 1E1(i1)∩···∩Ed−1(id−1)∩Ed (l)
)∣

∣

∥

∥

∥

L∞(X\S)
.

Applying (2.2), (2.3), and (2.4) we complete the induction step.

Remark 1 An alternative proof of Lemma 6 can be obtained as follows. We can gen-
eralize the claim further to general sublinear operators T , i.e., operators satisfying

|T (α f )| = |α||T f |, |T ( f + g)| � |T f | + |Tg|

for all α ∈ C and all f , g ∈ Lp(Y,Y, ν). The advantage of doing this is that various
maximal operators are always sublinear. Then we can write the operator T� as a com-
position of d maximal truncations, each one with respect to a single increasing system
(E j (i) : i ∈ I j ), namely

T� f = sup
i1∈I1

sup
i2∈I2

· · · sup
id∈Id

∣

∣

∣T
(

· · · (( f 1E1(i1))1E2(i2)
) · · ·1Ed (id )

)∣

∣

∣,

so the claim is reduced merely to the one-parameter case. Finally, one can notice that
the known proofs of the particular case d = 1, both the one by Christ and Kiselev
[5, Theorem 1.1] and the one by Tao [22, Note #2], clearly remain valid for merely
sublinear operators T . We leave the details to the reader.

Now assume that the second measurable space splits as a product

(Y,Y) = (Y1 × · · · × Yd , Y1 ⊗ · · · ⊗ Yd)

of d � 1 measurable spaces (Y j ,Y j ). The product σ -algebraY1⊗· · ·⊗Yd is defined
to be the smallest σ -algebra on the set Y1 × · · · × Yd that contains all Cartesian
products A1 × · · · × Ad with A j ∈ Y j for every index 1 � j � d. Also suppose
that for each 1 � j � d we have a countable totally ordered set I j and an increasing
system (Ai

j : i ∈ I j ) of sets from Y j .

Corollary 7 Take exponents 1 � p < q � ∞ and a bounded linear operator
T : Lp(Y,Y, ν) → Lq(X,X , μ). The maximal operator

(T� f )(x) := sup
(i1,...,id )∈I1×···×Id

∣

∣

∣T
(

f 1
A
i1
1 ×···×A

id
d

)

(x)
∣

∣

∣ (2.5)

is also bounded from Lp(Y,Y, ν) to Lq(X,X , μ) with the operator norm satisfying

‖T�‖Lp(Y)→Lq (X) �
(

1 − 21/q−1/p)−d‖T ‖Lp(Y)→Lq (X).
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Proof. This result is an immediate consequence of Lemma 6, obtained by taking

E j (i) = Y1 × · · · × Y j−1 × Ai
j × Y j+1 × · · · × Yd .

The constants blow up as q approaches p. An easy modification of the proof of
Lemma 6 gives the following endpoint result with logarithmic losses when the sets I j
are finite.

Corollary 8 Take an exponent p ∈ [1,∞] and a bounded linear operator T : Lp(Y,Y,

ν) → Lp(X,X , μ). The maximal operator given by (2.5) satisfies

‖T�‖Lp(Y)→Lp(X) � (�log2 |I1|� + 1) · · · (�log2 |Id |� + 1) ‖T ‖Lp(Y)→Lp(X).

Formulation of Corollary 8 is motivated by Tao’s [22, Note #2, Q14]. The par-
ticular case in which p = 2 and T is the Fourier transform is a multi-parameter
version of the Rademacher–Menshov theorem. We will not need Corollary 8 in the
later text and we formulated it only for comparison with a different method by Krause,
Mirek, and Trojan [13, Section 3]. The authors of [13] established their two-parameter
Rademacher–Menshov theorem by a certain greedy selection algorithm, which also
leads to logarithmic losses.

3 Proof of Theorem 1

Denote by M the maximal operator

M f := sup
r1,...,rd∈(0,∞)

∣

∣ ̂f ∗ χr1,...,rd

∣

∣.

In the proof of (1.5) we can assume that f is a Schwartz function, since afterwards
one can simply use the density of S(Rd) in Lp(Rd). We begin with the observation
that ̂f ∗ χr1,...,rd is the Fourier transform of

(x1, . . . , xd) �→ f (x1, . . . , xd) qχ(r1x1, . . . , rd xd).

Using (1.4) and the Fundamental Theorem of Calculus we expand, for any
(x1, . . . , xd) ∈ (R \ {0})d and (r1, . . . , rd) ∈ (0,∞)d ,

qχ(r1x1, . . . , rd xd )

=
∑

ε∈{−1,1}d
(−1)#ε 1Q(ε)(x1, . . . , xd )

∫

{(t1,...,td )∈Q(ε):|t j |�r j |x j | for 1� j�d}

(

∂1 · · · ∂d qχ
)

(t1, . . . , td ) dt1 · · · dtd

=
∑

ε∈{−1,1}d
(−1)#ε

∫

Q(ε)

1R(ε;|t1|/r1,...,|td |/rd )(x1, . . . , xd )

(

∂1 · · · ∂d qχ
)

(t1, . . . , td ) dt1 · · · dtd .
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Here Q(ε) is the open coordinate “quadrant” determined by ε = (ε1, . . . , εd) ∈
{−1, 1}d , i.e.,

Q(ε) := {(x1, . . . , xd) ∈ R
d : sgn x j = ε j for 1 � j � d},

#ε denotes the number of 1’s among the coordinates of ε, and we also denote

R(ε; s1, . . . , sd) := Q(ε) ∩ ([−s1, s1] × · · · × [−sd , sd ]) (3.1)

for any s1, . . . , sd ∈ (0,∞). Multiplying by f and taking Fourier transforms we
obtain the pointwise identity

̂f ∗ χr1,...,rd =
∑

ε∈{−1,1}d
(−1)#ε

∫

Q(ε)

F(

f 1R(ε;|t1|/r1,...,|td |/rd )

)

(

∂1 · · · ∂d qχ
)

(t1, . . . , td) dt1 · · · dtd ,

so that

M f �
∑

ε∈{−1,1}d

∫

Rd

(

sup
r1,...,rd∈(0,∞)

∣

∣F(

f 1R(ε;|t1|/r1,...,|td |/rd )

)∣

∣

)

∣

∣

(

∂1 · · · ∂d qχ
)

(t1, . . . , td)
∣

∣ dt1 · · · dtd .

Note that each of the sets (3.1) is a d-dimensional rectangle in R
d , so invoking Corol-

lary 7 with T = F , which is assumed to satisfy (1.1), gives

∥

∥

∥ sup
r1,...,rd∈(0,∞)∩Q

∣

∣F(

f 1R(ε;|t1|/r1,...,|td |/rd )

)∣

∣

∥

∥

∥

Lq (S,σ )
�d,σ,p,q ‖ f ‖Lp(Rd ).

The last implicit constant is independent of t1, . . . , td , so integrability of ∂1 · · · ∂d qχ ,
thanks to (1.4) again, establishes

‖M f ‖Lq (S,σ ) �d,σ,χ,p,q ‖ f ‖Lp(Rd ), (3.2)

which is precisely (1.5).
The proof of (1.6) is now standard. The claim is clear for f ∈ L1(Rd). By

Ls(Rd) ⊆ L1(Rd) + Lp(Rd)

it is sufficient to verify it when f ∈ Lp(Rd). For any ε > 0 define the exceptional set

Eε :=
{

ξ ∈ R
d : inf

r∈(0,∞)
sup

r1,...,rd∈(0,r ]

∣

∣

(

̂f ∗ χr1,...,rd

)

(ξ) − (R f )(ξ)
∣

∣ � ε
}

,
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and observe that (1.6) holds for every point outside of ∪ε∈(0,∞)Eε. It is easy to see
that for every g ∈ S(Rd) by the mere continuity of ĝ we have

lim
(0,∞)d
(r1,...,rd )→(0,...,0)

ĝ ∗ χr1,...,rd = Rg

pointwise on S and, consequently,

Eε ⊆
{

ξ ∈ S : M( f − g)(ξ) � ε

2

}

∪
{

ξ ∈ S : R( f − g)(ξ) � ε

2

}

.

Thus, estimates (3.2), (1.1) and the Markov–Chebyshev inequality give

σ(Eε) � ε−q‖ f − g‖q
Lp(Rd )

.

By the density of S(Rd) in Lp(Rd) we conclude σ(Eε) = 0 and nestedness of these
sets also gives σ(∪ε∈(0,∞)Eε) = 0. Thus, (1.6) really holds for σ -almost every ξ ∈ S.

Turning to (1.7), we define the ellipsoid maximal function of the Fourier transform
as

(

˜M f
)

(ξ) := sup
r1,...,rd∈(0,∞)

1

|Br1,...,rd |
∫

Br1,...,rd (ξ)

∣

∣ ̂f (η)
∣

∣ dη

and repeat a trick from [14]. It is again sufficient to verify the claim in the endpoint
case f ∈ L2p/(p+1)(Rd). Define

g(x) :=
∫

Rd
f (y) f (y − x) dy,

so that g ∈ Lp(Rd) and ĝ(ξ) = ∣

∣ ̂f (ξ)
∣

∣

2. Choose any non-negative χ ∈ S(Rd) with
integral 1 that is strictly positive on the closed unit ball B1(0, . . . , 0). Then, by the
Cauchy–Schwartz inequality,

1

|Br1,...,rd |
∫

Br1,...,rd (ξ)

∣

∣ ̂f (η)
∣

∣ dη �
(

1

|Br1,...,rd |
∫

Br1,...,rd (ξ)

∣

∣ ̂f (η)
∣

∣

2 dη

)1/2

�χ

(

ĝ ∗ χr1,...,rd

)

(ξ)1/2,

so the bound (3.2) applied to g gives

∥

∥ ˜M f
∥

∥

L2q (S,σ )
�χ ‖Mg‖1/2Lq (S,σ )

�d,σ,χ,p,q ‖g‖1/2
Lp(Rd )

� ‖ f ‖L2p/(p+1)(Rd ).

Now we can repeat exactly the same density argument as before to conclude that (1.7)
holds for σ -almost every ξ ∈ S. Finally, (1.8) is an obvious consequence of (1.7) and
the triangle inequality.
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Remark 2 Note that (1.9) and (1.10) now also follow, only by observing that the max-
imal function ˜M is pointwise comparable to the rectangular maximal function,

(Mrect f
)

(ξ) := sup
r1,...,rd∈(0,∞)

1

2dr1 · · · rd
∫

ξ+[−r1,r1]×···×[−rd ,rd ]
∣

∣ ̂f (η)
∣

∣ dη

= sup
R is an axes-parallel rectangle

R
ξ

1

|R|
∫

R

∣

∣ ̂f (η)
∣

∣ dη,

so the latter one satisfies the same bound as before. In the other direction, Ramos [17,
Proposition 4] showed that, in the case of spheres S = S

d−1 in dimensions d � 4, the
operator Mrect does not satisfy estimates in the full conjectural range of (1.1).

4 Proof of Theorem 4

The maximal operator appearing in part (a) is simply T� from (2.5), where X = R
d ,

Y j = R, T = F , q = p′, I j = (0,∞) ∩ Q, and AR
j = [−R, R]. Note that we

use p < 2 in the condition p < p′ = q, so that Corollary 7 applies and yields the
desired estimate from the well-known fact that the Fourier transform F is bounded
from Lp(Rd) to Lp′

(Rd). The convergence result is then proved via exactly the same
density argument as the one given in the previous section.

We turn to part (b), i.e., we construct a function in L2(Rd) for which the limit (1.11)
does not exist. Thiswill be an adaptation of Fefferman’s argument [7] to the continuous
case. It is necessary for us to construct the counterexample explicitly, instead of just
disproving L2(Rd) → L2,∞(Rd) boundedness, because Stein’s Maximal Principle
does not apply in the case of non-compact groups, such as R

d .
We define DR(t) := sin(2πRt)/π t . The operator SR1,...,Rd is defined on L2(Rd)

as

SR1,...,Rd f := F( qf 1[−R1,R1]×···×[−Rd ,Rd ]) = f ∗ (DR1 ⊗ · · · ⊗ DRd ).

Here u1⊗· · ·⊗ud denotes the elementary tensor made of one-dimensional functions,
defined as

(u1 ⊗ · · · ⊗ ud)(x1, . . . , xd) := u1(x1) · · · ud(xd).

Observe that Young’s convolution inequality implies

‖SR1,...,Rd‖L2(Rd )→L∞(Rd ) � (R1 · · · Rd)
1/2.

Following Fefferman’s example, we use the following definition throughout the
remainder of this section. For λ ∈ R we define

fλ(x1, x2) := e2π iλx1x21[−2,2]2(x1, x2).
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The next lemma gives bounds that are crucial for the proof.

Lemma 9 (a) There exists C > 0 such that for all x1, x2 ∈ [2/3, 1] the following
holds:

|Sλx2,λx1 fλ(x1, x2)| � C log λ

whenever λ is large enough.
(b) There exists C > 0 such that for all x1, x2 ∈ [2/3, 1] and λ′ � 3λ > 0 the

following holds:

|Sλ′x2,λ′x1 fλ(x1, x2)| � C .

The reader should note the reverse order of subscripts in the previous lemma. Before
proving the lemma, we prove that it implies part (b) of Theorem 4. We will prove that
there exist a function f ∈ L2(Rd) and a number δ > 0 such that

lim sup
R1→∞,...,Rd→∞

|SR1,...,Rd f (x1, . . . , xd)|

= ∞ for every (x1, . . . , xd) ∈ [2/3, 1]2 × [−δ, δ]d−2, (4.1)

so the function qf ∈ L2(Rd) will be the one for which (1.12) holds.
Let ψ ∈ S(R) be a real-valued Schwartz function such that ψ(0) > 0 and

supp(qψ) ⊆ [−1, 1]. For the function F(x1, . . . , xd) := f (x1, x2)
∏d

j=3 ψ(x j ),

because of the assumption on the support of qψ , we have

lim sup
R1→∞,...,Rd→∞

|SR1,...,Rd F(x1, . . . , xd)|

= lim sup
R1→∞,R2→∞

∣

∣

∣SR1,R2 f (x1, x2)
d

∏

j=3

ψ(x j )
∣

∣

∣.

Furthermore, since ψ(0) > 0, there exists some δ > 0 such that ψ(x) > 0 for all
x ∈ [−δ, δ], so it is enough to prove (4.1) for d = 2.

We define the very rapidly decreasing sequence of positive real numbers (ak)∞k=1
recursively as a1 = 1, ak+1 = 2−k/ak and the sequence of positive real numbers
(λk)

∞
k=1 with λk = a−1

k+1. Observing that
∑∞

k=1 ak < ∞, it follows that the function

f (x1, x2) :=
∞
∑

k=0

ak fλk (x1, x2)

is well-defined and in L2(R2)

We claim that there exist real numbers Ci > 0, i = 1, 2, 3 such that the following
inequalities hold for all x1, x2 ∈ [2/3, 1] and n ∈ N:

(1) |Sλn x2,λn x1 fλn (x1, x2)| � C1 log λn ,
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(2) |Sλn x2,λn x1 fλk (x1, x2)| � C2 when k < n,
(3) |Sλn x2,λn x1 fλk (x1, x2)| � C3λn when k > n.

Indeed, sinceλk+1 � 4λk for all k ∈ N, the first two inequalities follow fromLemma9,
while the third one follows fromYoung’s convolution inequality. Therefore, observing
that the sequences satisfy λn

∑

k>n ak � 1 for all n ∈ N and an log λn ∼ n, for
x1, x2 ∈ [2/3, 1] and n large enough it follows that

|Sλn x2,λn x1 f (x1, x2)| � an|Sλn x2,λn x1 fλn (x1, x2)| −
∑

k �=n

ak |Sλn x2,λn x1 fλk (x1, x2)|

� C1an log λn − C2

∑

k<n

ak − C3λn
∑

k>n

ak � n.

Finally, noting that λnx2, λnx1 → ∞ as n → ∞ finishes the proof of (4.1) in the case
d = 2 and therefore also part (b) of the theorem.

The following technical lemma will be needed in the proof of Lemma 9.

Lemma 10 (a) There exist C, λ0 > 0 such that

∣

∣

∣

∣

p. v.
∫ 1

−1

∫ 1

−1

e2π iλx1x2

x1x2
dx1 dx2

∣

∣

∣

∣

� C log λ for every λ � λ0.

(b) There exists C > 0 such that for all c1, c2 ∈ R for which max{|c1|, |c2|} � 4/3,
the following holds:

∣

∣

∣

∣

p. v.
∫ 1

−1

∫ 1

−1

e2π iλ(x1x2+c1x1+c2x2)

x1x2
dx1 dx2

∣

∣

∣

∣

� C for every λ > 0.

Proof (a) This was proved in [15], but we repeat the short proof for the completeness.
Since

∫ ∞
0 sin t dt/t = π/2, there exists λ1 > 0 such that

∫ x
0 sin t dt/t ∈ [π/4, 3π/4],

for all x � λ1. Now, using symmetries of the integrand and a change of variables, it
follows that

p. v.
∫ 1

−1

∫ 1

−1

e2π iλx1x2

x1x2
dx1 dx2 = 4i

∫ 1

0

∫ 1

0

sin(2πλx1x2)

x1x2
dx1 dx2

= 4i
∫ 2π

0

1

x2

∫ λx2

0

sin t

t
dt dx2

= 4i
∫ λ1/λ

0

1

x2

∫ λx2

0

sin t

t
dt dx2

+ 4i
∫ 2π

λ1/λ

∫ λx2

0

sin t

t
dt

dx2
x2

.

For the first integral observe that t �→ (sin t)/t is absolutely bounded by 1, so the
integral is absolutely bounded by λ1. For the second integral we use fact that λx2 � λ1
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so:

∫ 2π

λ1/λ

∫ λx2

0

sin t

t
dt

dx2
x2

�
∫ 2π

λ1/λ

dx2
x2

= log λ + log(2π) − log λ1.

Finally, adding the two integrals and choosing λ0 large enough compared to λ1, the
statement holds.

(b) Assume, without loss of generality, that c1 � 4/3. Using symmetries of the
integrand, it follows that

p. v.
∫ 1

−1

∫ 1

−1

e2πλi(x1x2+c1x1+c2x2)

x1x2
dx1dx2

= 2i p. v.
∫ 1

−1

∫ 1

0

sin(2πλx1(x2 + c1))

x1x2
e2π iλc2x2 dx1dx2.

If we define

gε(x2) := 2
∫ 1

ε

sin(2πλx1(x2 + c1))

x1
dx1,

from the assumption c1 � 4/3, it follows that |g′
ε(x2)| � (x2 + c1)−1 � 1 for all

x2 ∈ [−1, 1], where the implicit constant is independent of both λ and ε. Therefore,

∣

∣

∣

∣

∫

([−1,1]\[−ε,ε])2
sin(2πλx1(x2 + c1))

x1

e2π iλc2x2

x2
dx1dx2

∣

∣

∣

∣

=
∣

∣

∣

∣

∫

[−1,1]\[−ε,ε]
gε(x2)

e2π iλc2x2

x2
dx2

∣

∣

∣

∣

�
∣

∣

∣

∣

∫

[−1,1]\[−ε,ε]
gε(x2) − gε(0)

x2
e2π iλc2x2 dx2

∣

∣

∣

∣

+
∣

∣

∣

∣

gε(0)
∫

[−1,1]\[−ε,ε]
e2π iλc2x2

x2
dx2

∣

∣

∣

∣

�
∫ 1

−1

∣

∣

∣ sup
t∈[−1,1]

g′(t)
∣

∣

∣ dx2 + sup
N>0

∣

∣

∣

∣

∫ N

0

sin t

t
dt

∣

∣

∣

∣

2

� 1.

Letting ε → 0, the statement follows.

We proceed to the proof of Lemma 9.

Proof of Lemma 9 Observe that:

SR1,R2 fλ = TR1,R2 fλ − T−R1,R2 fλ − TR1,−R2 fλ + T−R1,−R2 fλ, (4.2)
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where

Tr1,r2 f (x1, x2) = − 1

4π2 p. v.
∫

R2

e2π i(r1x
′
1+r2x ′

2)

x ′
1x

′
2

f (x1 − x ′
1, x2 − x ′

2) dx
′
1dx

′
2.

We prove the following two observations for part (a) of the lemma.

(1) There exists C > 0 such that for λ large enough and x1, x2 ∈ [0, 1]:

|Tλx2,λx1 fλ(x1, x2)| � C log λ.

(2) For λ > 0 and x1, x2 ∈ [2/3, 1], all of the expressions

|T−λx2,λx1 fλ(x1, x2)|, |Tλx2,−λx1 fλ(x1, x2)|, |T−λx2,−λx1 fλ(x1, x2)|

are bounded by a constant independent of λ.

In order to prove the observation (1), we note that because

x2x
′
1 + x1x

′
2 + (x1 − x ′

1)(x2 − x ′
2) = x1x2 + x ′

1x
′
2,

the following holds

|Tλx2,λx1 fλ(x1, x2)| = 1

4π2

∣

∣

∣

∣

p. v.
∫

[x1−2,x1+2]

∫

[x2−2,x2+2]
e2π iλx

′
1x

′
2

x ′
1x

′
2

dx ′
2dx

′
1

∣

∣

∣

∣

.

We decompose R
2 into 4 regions:

[ − 1, 1]2, [−1, 1] × (R \ [−1, 1]), (R \ [−1, 1]) × [−1, 1], (R \ [−1, 1])2.

By the first part of Lemma 10, there exists C > 0 such that the integral over the first
region is at least C log λ whenever λ is large enough. Integrals over the second and
third regions are all O(1) because of the following calculation:

∣

∣

∣

∣

∫ x2+2

1

∫ 1

−1

sin(2πλx ′
1x

′
2)

x ′
1x

′
2

dx ′
1dx

′
2

∣

∣

∣

∣

=
∫ x2+2

1

1

x ′
2

∣

∣

∣

∣

∫ 2πλx ′
2

−2πλx ′
2

sin t

t
dt

∣

∣

∣

∣

dx ′
2

�
∫ 3

1

1

x ′
2
dx ′

2 � 1.

Finally, the integral over the last region is bounded using the triangle inequality by:

∫ x1+2

x1−2

∫ x2+2

x2−2

1

x ′
1x

′
2
1{|x ′

1|,|x ′
2|>1} dx ′

1dx
′
2 � 1.

Summing all the bounds proves observation (1).
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We turn to the proof of observation (2). First note that for ε1, ε2 ∈ {−1, 1},

|Tε1λx2,ε2λx1 fλ(x1, x2)|

= 1

4π2

∣

∣

∣

∣

p. v.
∫

[x1−2,x1+2]

∫

[x2−2,x2+2]
e2π iλ(x ′

1x
′
2+(ε1−1)x ′

1x2+(ε2−1)x ′
2x1)

x ′
1x

′
2

dx ′
2dx

′
1

∣

∣

∣

∣

.

Assume, without loss of generality that ε1 = −1. From the assumption on x2 it follows
that |(ε1 − 1)x2| � 4/3, so using the second part of Lemma 10, the integral over the
first region (where the integral is being decomposed into the same regions as before)
is bounded by a constant. The integral over the fourth region is bounded as in the
previous observation. Integrals over the second and the third region can be bounded
using the following calculation

∣

∣

∣

∣

∫ x2+2

1

∫ 1

−1

sin(2πλx ′
1(x

′
2 + (ε1 − 1)x2))

x ′
1

dx ′
1
e2π iλ(ε2−1)x ′

2x1

x ′
2

dx ′
2

∣

∣

∣

∣

�
∫ 3

1

dx ′
2

x ′
2

� 1.

Combining observations (1) and (2) with (4.2), we conclude the proof of part (a)
of the lemma.

For part (b), we observe that for ε1, ε2 ∈ {−1, 1} the following holds:

|Tε1λ′x2,ε2λ′x1 fλ(x1, x2)|

= 1

4π2

∣

∣

∣

∣

p. v.
∫

[x1−2,x1+2]

∫

[x2−2,x2+2]
e2π iλ(x ′

1x
′
2+(ε1λ

′/λ−1)x ′
1x2+(ε2λ

′/λ−1)x ′
2x1)

x ′
1x

′
2

dx ′
2dx

′
1

∣

∣

∣

∣

.

We then decompose the area of integration in the same four regions as before. For the
first region, since |(ε1λ′/λ − 1)x2| � 4/3, we use the second part of Lemma 10 to get
the upper bound and we treat the other regions as in part (a) of the lemma.

Remark 3 It is obvious that the function f in the proof of part (b) is in L1(Rd), so the
function qf , for which the convergence (1.11) fails, is also continuous and therefore
the counterexample belongs to the class C(Rd) ∩ L2(Rd).

5 Proof of Corollary 5

Let

S :=
{(

ξ,
φ(ξ)

2π

)

: ξ ∈ R
n
}

⊆ R
n+1

be the hypersurface naturally associated with (1.13). Equip S with the measure
dσ(ξ, τ ) = dξ . For every g ∈ L2(S, σ ) there exists a unique f ∈ L2(Rn) such
that

g
(

ξ,
φ(ξ)

2π

)

= ̂f (ξ) (5.1)
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for a.e. ξ ∈ R
n . By the assumption (1.14) and Plancherel’s identity we then know that

E given by the formula

(Eg)(x, t) := (eitφ(D) f )(x)

extends to a bounded linear operator E : L2(S, σ ) → Ls(Rn+1). When f ∈ S(Rn),
we can write

(Eg)(x, t) =
∫

Rn
eitφ(ξ)+2π i x ·ξ g

(

ξ,
φ(ξ)

2π

)

dξ =
∫

S
e2π i(x,t)·(ξ,τ )g(ξ, τ ) dσ(ξ, τ )

and, taking another Schwartz function h ∈ S(Rn+1),

∫

Rn+1
h(x, t) (Eg)(x, t) dx dt =

∫

S

̂h(ξ, τ ) g(ξ, τ ) dσ(ξ, τ ).

By duality we now see that the a priori restriction estimate (1.1) holds with d = n+1,
p = s′, q = 2. In fact, the so-called Fourier extension operator E is precisely the
adjoint of the Fourier restriction operator R : Ls′(Rn+1) → L2(S, σ ).

Note that p = s′ < 2 = q. Now Theorem 1 applies, so that the maximal estimate
(1.5) gives

∥

∥

∥ sup
r1,...,rn+1∈(0,∞)

∣

∣̂h ∗ χr1,...,rn+1

∣

∣

∥

∥

∥

L2(S,σ )
�n,φ,χ,s ‖h‖Ls′ (Rn+1)

(5.2)

for any given Schwartz function χ ∈ S(Rn+1). If we extend the definition of dilates
as

χr1,...,rd (x1, . . . , xd) := 1

|r1 · · · rd |χ
( x1
r1

, . . . ,
xd
rd

)

for r1, . . . , rd ∈ R \ {0}, then (5.2) implies

∥

∥

∥ sup
r1,...,rn+1∈R\{0}

∣

∣̂h ∗ χr1,...,rn+1

∣

∣

∥

∥

∥

L2(S,σ )
�n,φ,χ,s ‖h‖Ls′ (Rn+1)

, (5.3)

by considering 2n+1 quadrants of R
n+1, flipping χ as necessary, and increasing the

implicit constant by the factor 2n+1. Linearizing and dualizing (5.3) we obtain

∣

∣

∣

∣

∫

S

(

̂h ∗ χr1(ξ),...,rn+1(ξ)

)

(ξ, τ ) g(ξ, τ ) dσ(ξ, τ )

∣

∣

∣

∣

�n,φ,χ,s ‖g‖L2(S,σ )‖h‖Ls′ (Rn+1)

for any choice of measurable functions r1, . . . , rn+1 : R
n → R \ {0}. If we further

substitute (5.1) and choose χ such that qχ = ψ , then we can rewrite the last bilinear
estimate as

∣

∣

∣

∣

∫

Rn+1
h(x, t) (Tψ,r1,...,rn+1 f )(x, t) dx dt

∣

∣

∣

∣

�n,φ,ψ,s ‖ f ‖L2(Rn)‖h‖Ls′ (Rn+1)
,
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which is just the dualized formulation of the desired bound (1.15). The case of general
measurable functions r1, . . . , rn+1 : R

n → R now easily follows in the limit, by
approximating pointwise each r j with a real measurable function with no zeros.
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