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Abstract
We prove compactness of the embeddings in Sobolev spaces for fractional super and
sub harmonic functions with radial symmetry. The main tool is a pointwise decay for
radially symmetric functions belonging to a function space defined by finite homo-
geneous Sobolev norm together with finite L2 norm of the Riesz potentials. As a
byproduct we prove also existence of maximizers for the interpolation inequalities in
Sobolev spaces for radially symmetric fractional super and sub harmonic functions.
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1 Introduction

The classical embedding in Sobolev spaces HS(Rd) ⊂ Ḣr (Rd) for 0 ≤ r ≤ S follows
from the interpolation inequality in homogeneous Sobolev spaces

‖Drϕ‖L p(Rd ) ≤ C(r , S, p, d) ‖ϕ‖1−θ

L2(Rd )
‖DSϕ‖θ

L2(Rd )
, (1.1)

where ϕ ∈ HS(Rd) and Dsϕ is defined by

(
D̂sϕ

)
(ξ) = |ξ |s ϕ̂(ξ). (1.2)

For the definition of homogeneous and nonhomogeneous Sobolev spaces Ḣ s(Rd)

and Hs(Rd) see the notation subsection at the end of the introduction.
The inequality (1.1) holds, see [5, 6] or Theorem 2.44 in [1] provided that

1

p
= 1

2
− θ S − r

d
, p > 1,

0 < r ≤ θ S, θ ≤ 1.

We notice that at the endpoint case p = 2, corresponding to θ S = r , we have

‖Drϕ‖L2(Rd ) ≤ C(r , S, 2, d)‖ϕ‖1−
r
S

L2(Rd )
‖DSϕ‖

r
S
L2(Rd )

, (1.3)

for any ϕ ∈ HS(Rd) and hence the embedding HS ⊂ Ḣr for 0 ≤ r ≤ S is just a
consequence of (1.3). Moreover, the operator Dr defined in (1.2) is well defined on
HS .

If we look at the endpoint cases θ = r
S and θ = 1 in (1.1), then we obtain that the

range of exponents p without any symmetry and positivity assumption on ϕ fulfills

p ∈
[
2,

2d

d − 2(S − r)

]
if S − r <

d

2
,

p ∈ [2,∞) if S − r ≥ d

2
.

We remark that the lower endpoint does not depend on dimension d.
Moreover, looking at (1.3), it is easy to prove that the best constant in (1.3) is

C(r , S, 2, d) = 1. Indeed from Hölder’s inequality in frequency applied to l.h.s. of
(1.3) we get C(r , S, 2, d) ≤ 1 and calling An = {

ξ ∈ R
d s.t. 1 − 1

n < |ξ | < 1 + 1
n

}
it suffices to consider a sequence ϕn such that ϕ̂n(ξ) = 1An (ξ) to prove that
C(r , S, 2, d) = 1.

In the sequel we consider r , S, d as fixed quantities and we aim to study the range of
p such that (1.1) holds in case we restrict to radially symmetric functions ϕ in HS(Rd)

such that Drϕ is not only radially symmetric but also either positive or negative.
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We introduce the notation for 0 < r < s

Hs
rad(R

d) :=
{
ϕ ∈ Hs(Rd), ϕ = ϕ(|x |)

}
,

Hs,r
rad,+(Rd) :=

{
ϕ ∈ Hs

rad(R
d), Drϕ ≥ 0

}
,

Hs,r
rad,−(Rd) :=

{
ϕ ∈ Hs

rad(R
d), Drϕ ≤ 0

}
.

We can mention that (1.3) implies that

ϕ ∈ Hs(Rd) �⇒ ϕ, Drϕ ∈ L2, s ≥ r ≥ 0,

so the positivity assumption is well - defined. By the relation

(−̂�ϕ)(ξ) = 4π2|ξ |2ϕ̂(ξ) = 4π2(D̂2ϕ)(ξ).

We shall emphasize that Hs,2
rad,+(Rd) corresponds to the set of superharmonic radi-

ally symmetric functions belonging to Hs(Rd), while Hs,2
rad,−(Rd) corresponds to the

set of subharmonic radially symmetric functions belonging to Hs(Rd). In the sequel
we will call when r 
= 2 fractional superharmonic radially symmetric functions
belonging to Hs(Rd) the functions belonging to Hs,r

rad,+(Rd) and fractional subhar-

monic radially symmetric functions belonging to Hs(Rd) the functions belonging to
Hs,r
rad,−(Rd).
The main questions we are interesting in are the following ones:
Question A Can we find appropriate values of (r , S) such that p can be chosen

below 2 in (1.1) for fractional superharmonic (resp. subharmonic) functions belonging
to HS,r

rad,+(Rd)?
Question B If the answer of question A is positive, then can we expect a compact

embedding of type

HS,r
rad,+(Rd) ⊂⊂ Ḣr (Rd)? (1.4)

The compact embedding (1.4) means that if ϕn converges weakly to some ϕ in
HS,r
rad,+(Rd), then ‖Dr (ϕn − ϕ)‖L2 = o(1).

In the sequel we will consider the case ϕ ∈ HS,r
rad,+(Rd) but all the results are still

valid if we consider ϕ ∈ HS,r
rad,−(Rd). In order to avoid any possible misunderstanding

we recall that ϕ belongs to the nonhomogeneous Sobolev space HS of functions and
despite Ḣr (Rd) is a set of tempered distribution with certain properties we are in fact
considering measurable functions and not general distributions. The first result of the
paper gives a positive answer to Question A.
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Theorem 1.1 Let d ≥ 2 and 1
2 < r < min

(
d
2 , S − 1

2

)
, then

‖Drϕ‖L p(Rd ) ≤ Crad,+(r , S, p, d) ‖ϕ‖1−θ

L2(Rd )
‖DSϕ‖θ

L2(Rd )
,

∀ϕ ∈ HS,r
rad,+(Rd),

(1.5)

with

p ∈
(
p0,

2d

d − 2(S − r)

]
if S − r <

d

2
,

p ∈ (p0,∞) if S − r ≥ d

2
,

with θ fixed by the scaling equation

1

p
= 1

2
+ r − θ S

d
,

and p0 < 2 is given by

p0 = p0(S, r , d) = d − 2r + 2(S − r)(d − 1)

−((S − r) − 1
2 )(d − 2r) + 2(S − r)(d − 1)

.

Remark 1.1 Theorem 1.1 holds also for ϕ ∈ HS,r
rad,−(Rd). The crucial condition is

that Drϕ does not change sign.

The constant Crad,+(r , S, p, d) in (1.5) is defined as best constant in case of
functions belonging to HS,r

rad,+(Rd).
The fact that p0 < 2 in the above Theorem implies Drϕ ∈ L p with p ∈ (p0, 2)

and this allows us to obtain also a positive answer to Question B.

Theorem 1.2 Let d ≥ 2 and 1
2 < r0 < min

(
d
2 , S − 1

2

)
, then the embedding

H S,r0
rad,+(Rd) ⊂⊂ Ḣr (Rd),

is compact for any 0 < r < S.

Remark 1.2 Theorem 1.2 holds also in HS,r0
rad,−(Rd). Clearly the main difficulty in

Theorem 1.2 is to prove that the embedding HS,r0
rad,+(Rd) ⊂⊂ Ḣr0(Rd) is compact,

the compactness for r 
= r0 will then follow by interpolation.

As a second byproduct we have also the following result concerning the existence
of maximizers for the interpolation inequality (1.5) in case p = 2.
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Theorem 1.3 Let d ≥ 2 and 1
2 < r < min( d2 , S − 1

2 ) then

‖Drϕ‖L2(Rd ) ≤ Crad,+(r , S, 2, d)‖ϕ‖1−
r
S

L2(Rd )
‖DSϕ‖

r
S
L2(Rd )

,

∀ϕ ∈ HS,r
rad,+(Rd),

and the best constant Crad,+(r , S, 2, d) is attained and Crad,+(r , S, 2, d) < 1.

Remark 1.3 It is interesting to notice that if we restrict only to radial functions the
existence of maximizers of interpolation inequalities at the level of L2 as

‖Drϕ‖L2(Rd ) ≤ Crad‖ϕ‖1−
r
S

L2(Rd )
‖DSϕ‖

r
S
L2(Rd )

,

cannot be achieved by the fact that the best constant, as noticed before, is Crad = 1,
and therefore the maximizers have to satisfy equality in Cauchy–Schwarz which is
clearly not possible.

The strategy to prove Theorem 1.1 and as a byproduct, the compactness result
given in Theorem 1.2, it to rewrite (1.1) involving L2 norms of Riesz potentials when
0 < r < d. By defining u = Drϕ we obtain

‖u‖L p(Rd ) ≤ C(α, s, p, d) ‖ 1

|x |α �u‖1−θ

L2(Rd )
‖Dsu‖θ

L2(Rd )
, (1.6)

where α = d − r , s = S − r . With respect to the new variables α, s we get without
any symmetry or positivity assumption

p ∈
[
2,

2d

d − 2s

]
if s <

d

2
,

p ∈ [2,∞) if s ≥ d

2
.

(1.7)

If one considers functions fulfilling Drϕ = u ≥ 0, inequality (1.6) is hence
equivalent to the following inequality

‖u‖L p(Rd ) ≤ C(α, s, p, d) ‖ 1

|x |α �|u|‖1−θ

L2(Rd )
‖Dsu‖θ

L2(Rd )
, (1.8)

considering |u| instead of u in the Riesz potential. The strategy is hence to prove
that the radial symmetry increases the range of p for which (1.8) holds and therefore
as byproduct the range of p for which (1.6) holds when Drϕ = u is positive and
radially symmetric (resp. negative). In particular we will show that the lower endpoint
is allowed to be below p = 2.

The inequality (1.6) canbe connectedwith another aspect of theSobolev embedding

Hs ⊂ L p,
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Fig. 1 The graph of the function p0(S) = (16S − 30)/(14S − 27) in the case of superharmonic or
subharmonic functions. Here r = 2, d = 5 and S > 5/2

since modulo constant

1

|x |α �u ∼ Dα−du = D−r u, 0 < α < d, r = d − α.

In fact (1.6) (with additional radiality and positivity assumptions) implies

Ḣ−r ∩ Hs ⊂ L p,

modifying the range of p in (1.7) allowing the lower end point for p below 2. (see The-
orem 2.1 for precise definition of the lower end point prad(s, α, d)). As and example,
on Fig. 1 we consider the simple embedding

Ḣ−2(R5) ∩ Hs(R5) ⊂ L p(R5),

i.e. we have the case r = 2, d = 5, α = d − r = 3, and the graph of the function
prad(s, 3, 5) = p0(s + 2, 2, 5). We note that lims→∞ p0(s + 2, 2, 5) = 8/7.

A reasonable idea to prove that the lower endpoint exponent in (1.8) decreases with
radial symmetry is to look at a suitable pointwise decay in the spirit of the Strauss
lemma [20] (see also [7, 18, 19] for Besov andLizorkin–Triebel classes). In our context
where two terms are present, the Sobolev norm and the Riesz potential involving |u|,
we have been inspired by [14] where the case s = 1 in (1.8) has been studied (see also
[3, 4]). For our purposes the fact that s is in general not integer makes however the
strategy completely different from the one in [14] and we need to estimate the decay
of the high/low frequency part of the function to compute the decay. To this aim we
compute the high frequency part using the explicit formula for the Fourier transform
for radially symmetric function involving Bessel functions, in the spirit of [7], while
we use a weighted L1 norm to compute the decay for the low frequency part. The
importance of a pointwise decay for the low frequency part involving weighted L p

norms goes back to [9] and we need to adapt it to our case in order to involve the
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Riesz potential. Here is the step where positivity is crucial. Indeed if one is interested
to show a scaling invariant weighted inequality as

∫

Rd

|u(x)|
|x |γ dx ≤ C‖ 1

|x |α �|u|‖L2(Rd ), (1.9)

a scaling argument forces the exponent γ to verify the relation γ = α − d
2 . Unfortu-

nately (1.9) cannot hold in the whole Euclidean space following a general argument
that goes back to [14, 16]. However a scaling invariant inequality like (1.9) restricted
on balls and on complementary of balls is enough for our purposes. Eventually, using
all these tools, we are able to compute a pointwise decay that allows the lower end-
point for (1.8) to be below the threshold p = 2. Computed the pointwise decay wewill
follow the argument in [3] to estimate the lower endpoint for fractional superharmonic
(resp. subharmonic) radially symmetric functions.

We summarize the pointwise estimates generalizing Strauss decay estimates in the
following.

Theorem 1.4 Let s > 1
2 ,

d
2 < α < d and δ ∈ (0, d − α). Then there exists

C(α, s, δ, d) > 0, so that for any u ∈ Hs(Rd) with

||Dsu||L2(Rd ) = || 1

|x |α �|u|||L2(Rd ) = 1,

we have

|u(x)| ≤ C(α, s, δ, d)|x |−σ ,

with

σ = σ(s, α, d, δ) = −(2s − 1)(α − d
2 + δ) + 2s(d − 1)

2s + 1
. (1.10)

Concerning the compactness we prove that taking a bounded sequence ϕn ∈ HS,r
rad,+

then ϕn → ϕ in Ḣr with r > 0. Our strategy is to prove the smallness of ‖Dr (ϕn −
ϕ)‖L2(Bρ) and of ‖Dr (ϕn − ϕ)‖L2(Bc

ρ) for suitable choice of the ball Bρ. For the first
term we use Rellich–Kondrachov argument combined with commutator estimates,
while for the exterior domain we use the crucial fact that Dr (ϕn −ϕ) is in L p(|x | > ρ)

for some p ∈ (1, 2).
Turning to the case r = 2, , d = 5, α = d − r = 3 discussed above and presented

on Fig. 1, we see that the decay rate at infinity is lims→∞,δ→0 σ(s, 3, 5, δ) = 7/2.
Comparing with classical Strauss estimate that gives decay |x |−2, we see the decay
improvement.

Looking at the case r = 0, byRellich–Kondrachovwe have ‖ϕn−ϕ‖L2(Bρ) = o(1),
however we can not obtain the smallness in the complementary Bc

ρ of the ball so the
requirement r > 0 seems to be optimal.
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It is interesting to look at the lower endpoint exponent p0 given in Theorem 1.1 in
case we consider radially symmetric superharmonic (or subharmonic), namely when
r = 2. In this case the condition 1

2 < r < min( d2 , S− 1
2 ), imposes to consider the case

d ≥ 5 and S > 5
2 . As an example we show on Fig. 1 the graph of the function p0(S),

that now is only a function of S, in lowest dimensional case d = 5 that is a branch
of hyperbola with asymptote p∞ = limS→∞ p0(S) = 8/7. It is interesting how the
regularity improves the lower endpoint p0(S).

As a final comment we notice that for d ≥ 2 if D2ϕ ≥ 0 then D
3
4 ϕ =

D− 5
4
(
D2 ϕ

) ≥ 0 then, taking r0 = 3/4 and using the positivity of the Riesz kernel

of D− 5
4 , we apply Theorem 1.2 and we get the following corollary.

Corollary 1.1 Let ϕn be a sequence of radially symmetric superharmonic functions
uniformly bounded in H2(Rd), d ≥ 2. Then for any 0 < r < 2, up to a subsequence
ϕn → ϕ in Ḣr (Rd).

We underline that this Corollary concerning compactness properties for superhar-
monic or subharmonic functions is interesting in the context of bifurcation phenomena
or in general for convergence properties for solutions of elliptic equations in R

d that
depend on a parameter λ. As an example if one looks at radially symmetric solution
ϕλ to the elliptic equation −�ϕ = f (ϕ, λ) with f positive, then an a priori bound on
a nonhomogeneous Sobolev norm guarantees that ϕλ admits a subsequence that con-
verges when λ → λ0 in all the intermediate homogeneous Sobolev norms 0 < r < 2.
This fact we think that could be important in the applications.

1.1 Notations

The L p(Rd) spaces, with p ∈ [1,∞], denote the usual Lebesgue spaces. Ḣ s(Rd)

stands for the usual homogeneous Sobolev space, namely the space of tempered
distribution u over R

d , the Fourier transform of which belongs L1
loc(R

d) and satisfies

||u||2
Ḣ s(Rd )

=
∫

Rd

|ξ |2s |û|2dξ < +∞.

For references on the properties of homogeneous and nonhomogeneous Sobolev
spaces we refer to [1]. Note that for s ≥ d/2 the homogeneous Sobolev space Ḣ s(Rd)

is not Hilbert, being not complete. However this fact is irrelevant concerning the
embedding theorems we study in this paper. For a more general definition of homo-
geneous Sobolev space when s ≥ d/2, such that this homogeneous space become
complete, we refer to [12, 15, 17].
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2 Interpolation Inequalities for Radial Functions Involving Riesz
Potentials

Let d ≥ 2, 0 < α < d, 1
2 < s, we define

X = Xs,α,d =
{
u radial, u ∈ Hs(Rd),

∥∥∥∥ 1

|x |α �|u|
∥∥∥∥
L2

< +∞
}

.

We remark again that elements of X are measurable functions, but not general
distributions.

The aim of this section is to prove the following

Theorem 2.1 Let d ≥ 2, s > 1
2 ,

d
2 < α < d − 1

2 . Then there exists C(α, s, p, d) > 0
so that u ∈ X implies u ∈ L p(Rd) with

p ∈
(
prad ,

2d

d − 2s

]
if s <

d

2
,

p ∈
(
prad ,∞

)
if s ≥ d

2
,

(2.1)

where prad < 2 with

prad = prad(s, α, d) = 2(α − d
2 ) + 2s(d − 1)

−(2s − 1)(α − d
2 ) + 2s(d − 1)

.

Moreover, we have the scaling invariant inequality

‖u‖L p(Rd ) ≤ C(α, s, p, d) ‖ 1

|x |α �|u|‖1−θ

L2(Rd )
‖Dsu‖θ

L2(Rd )
,

for any u ∈ X and for any p satisfying (2.1). Here θ is fixed by the scaling invariance

d

p
= (1 − θ)

(
(d − α) + d

2

)
+ θ

(
− s + d

2

)
.

Proposition 2.1 Let d ≥ 1, q > 1, d
q < α < d, δ > 0, then there exists C > 0 such

that we have

∫
BR(0)c

|u(x)|
|x |α− d

q +δ
dx ≤ C

Rδ

∥∥∥∥ 1

|x |α �|u|
∥∥∥∥
Lq (Rd )

(2.2)

∫
BR(0)

|u(x)|
|x |α− d

q −δ
dx ≤ CRδ

∥∥∥∥ 1

|x |α �|u|
∥∥∥∥
Lq (Rd )

. (2.3)
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The proposition for q = 2 has been proved in [14], we follow the same argument
for q > 1. In order to prove Proposition 2.1 two crucial lemmas are necessary. The
case q = 2 has been proved in [14] and we follow the same argument.

Lemma 2.1 Let d ≥ 1, q ≥ 1, 0 < α < d, then there exists C > 0 such that for any
a ∈ R

d

∞∫
0

(∫
—Bρ(a)|u(y)|dy

)q

ρ(d−α)q+d−1dρ ≤ C

∥∥∥∥ 1

|x |α �|u|
∥∥∥∥
q

Lq (Rd )

.

Proof Let us take x ∈ Aρ = Bρ(a)\B ρ
2
(a), then

1

|x |α �|u|(x) =
∫

Rd

|u(y)|
|x − y|α dy

≥
∫

Bρ(a)

|u(y)|
|x − y|α dy ≥ Cρd−α

∫
—Bρ(a)|u(y)|dy.

Thus we obtain for x ∈ Aρ

(
1

|x |α �|u|(x)
)q

≥ Cρ(d−α)q
(∫
—Bρ(a)|u(y)|dy

)q

,

and hence

∫
Aρ

(
1

|x |α �|u|(x)
)q

dx ≥ Cρ(d−α)q+d
(∫
—Bρ(a)|u(y)|dy

)q

.

By integration we conclude that

∫ ∞

0
ρ(d−α)q+d−1

(∫
—Bρ(a)|u(y)|dy

)q

dρ

≤ C
∫ ∞

0

(∫
Aρ

(
1

|x |α �|u|(x)
)q

dx

)
dρ

ρ
= C || 1

|x |α �|u|||q
Lq (Rd )

.

��
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Let us call W (ρ) =
∞∫
ρ

w(s)ds where w : (0,∞) → R is a measurable function

such that

∞∫
0

|w(ρ)| q
q−1 ρ

αq+1−d
q−1 dρ < +∞.

Lemma 2.2 Let d ≥ 1, q > 1, 0 < α < d, then

∣∣∣∣
∫

Rd

|u(x)|W (|x |)dx | �,

⎛
⎝

∞∫
0

|w(ρ)| q
q−1 ρ

αq+1−d
q−1 dρ

⎞
⎠

q−1
q

⎛
⎝

∞∫
0

(∫
—Bρ(a)|u(y)|dy

)q

ραq+d−1dρ

⎞
⎠

1
q

,

and hence
∣∣∣∣
∫

Rd

|u(x)|W (|x |)dx
∣∣∣∣ ≤ C

∥∥∥∥ 1

|x |α �|u|
∥∥∥∥
Lq (Rd )

. (2.4)

Proof We have, thanks to Fubini Theorem,

∫

Rd

|u(x)|W (|x |)dx =
∫

Rd

|u(x)|
⎛
⎜⎝

∞∫
|x |

w(ρ)dρ

⎞
⎟⎠ dx

= C

∞∫
0

w(ρ)ρd
(∫
—Bρ(0)|u(y)|dy

)
dρ,

such that by Hölder’s inequality we obtain

∣∣∣∣
∫

Rd

|u(x)|W (|x |)dx
∣∣∣∣ = C

∣∣∣∣
∞∫
0

w(ρ)ρd−β

(∫
—Bρ(0)|u(y)|dy

)
ρβdρ

∣∣∣∣ �

⎛
⎝

∞∫
0

|w(ρ)| q
q−1 ρ

αq+1−d
q−1 dρ

⎞
⎠

q−1
q

⎛
⎝

∞∫
0

(∫
—Bρ(0)|u(y)|dy

)q

ραq+d−1dρ

⎞
⎠

1
q

,

choosing β such that βq = (d − α)q + d − 1. Eq. (2.4) comes from Lemma 2.1. ��
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Proof of Proposition 2.1 If we choose

w(ρ) =
{
0, if 0 < ρ < R;

1

ρ
α− d

q +1+δ
, if ρ > R,

thanks to Lemma 2.2 we get (2.2). In order to get (2.3) it is enough to choose

w(ρ) =
{
0, if ρ > 2R;

1

ρ
α− d

q +1−δ
, if 0 < ρ < 2R.

��
Lemma 2.3 Let d ≥ 1, d

2 < α < d and let u ∈ X satisfy ||u||L2(Rd ) =
|| 1

|x |α �|u|||L2(Rd ) = 1. Then for any δ > 0 such that 0 < δ < d − α,

∫

Rd

|u(x)|
|x |α− d

2 +δ
dx ≤ C(α, s, δ, d).

Proof First let us notice that ||Dsu||L2(Rd ) = || 1
|x |α �|u|||L2(Rd ) = 1 implies by (1.6)

that ||u||L2(Rn) � 1. Let 0 < ε < d
2 be a number to be fixed later. We have

∫
B(0,1)

|u(x)|
|x |α− d

2 +δ
dx =

∫
B(0,1)

|u(x)|
|x |α− d

2 +δ−ε

1

|x |ε dx ≤

≤ cd,ε

⎛
⎜⎝

∫
B(0,1)

|u(x)|2
|x |2(α− d

2 +δ−ε)

⎞
⎟⎠

1
2

,

where cd,ε =
( ∫
B(0,1)

1
|x |2ε dx

) 1
2

. Now choose ε = α − d
2 + δ. Notice that ε < d

2 such

that

∫
B(0,1)

|u(x)|
|x |α− d

2 +δ
dx ≤ cd,ε

⎛
⎜⎝

∫
B(0,1)

|u(x)|2dx
⎞
⎟⎠

1
2

,

which implies

∫
B(0,1)

|u(x)|
|x |α− d

2 +δ
dx � 1.
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On the other hand by Proposition 2.1, when d
2 < α < d

∫
B(0,1)c

|u(x)|
|x |α− d

2 +δ
dx ≤ C || 1

|x |α �|u|||L2(Rd )

and hence we obtain the claim. ��
Our next step is to obtain appropriate pointwise decay for radial functions in X

following the strategy of Theorem 3.1 in [9]. We will decompose the function in
high/low frequency part, estimating the high frequency part involving the Sobolev
norm while we control the low frequency part involving the Riesz norm. The next
Proposition is an equivalent statement of Theorem 1.4.

Proposition 2.2 Let d ≥ 2, u be a radial function in X with s > 1
2 ,

d
2 < α < d, and

∥∥∥∥Dsu

∥∥∥∥
L2(Rd )

=
∥∥∥∥ 1

|x |α �|u|
∥∥∥∥
L2(Rd )

= 1. (2.5)

Then for any σ satisfying

2s
( d
2 − 1

) + ( d
2

)
2s + 1

< σ <
2s(d − 1) − (2s − 1)

(
α − d

2

)
2s + 1

we have

|u(x)| ≤ C(α, s, σ, d)|x |−σ .

Proof For any R > 1 we can take a function ψR(x) = R−dψ(x/R) such that ψ̂(ξ) is
a radial nonnegative function with support in |ξ | ≤ 2 and ψ̂(ξ) = 1 for |ξ | ≤ 1 and
then we make the decomposition of u into low and high frequency part as follows

u(x) = ψR�u(x) + h(x)

where ĥ(ξ) = (1 − ψ̂(R|ξ |))û(ξ). For the high frequency part we will use Fourier
representation for radial functions in R

d (identifying the function with its profile)

|h(x)| = (2π)
d
2 |x |− d−2

2

∞∫
0

Jd−2
2

(|x |ρ)(1 − ψ(Rρ))û(ρ)ρ
d
2 dρ,

where Jd−2
2

is the Bessel function of order d−2
2 .Applying the results in [7, 9], we find

|h(x)| ≤ cRs− 1
2 |x |− 1

2 (d−1)||u||Ḣ s(Rd ), s >
1

2
. (2.6)
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Indeed, using the uniform bound

∣∣∣∣Jd−2
2

(ρ)

∣∣∣∣ � (1 + ρ)−1/2,

we get

|h(x)| � |x |− d−2
2

∞∫
0

|(Jd−2
2

)(|x |ρ)||(1 − ψ(Rρ))||û(ρ)|ρ d
2 dρ

� |x |− d−2
2

⎛
⎜⎝

∞∫
1/R

|Jd−2
2

(|x |ρ)|2 dρ

ρ2s−1

⎞
⎟⎠

1/2 ⎛
⎝

∞∫
0

|û(ρ)|2ρ2s+d−1dρ

⎞
⎠

1/2

� |x |− d−2
2 Rs−1

⎛
⎝

∞∫
1

(1 + |x |ρ/R)−1 dρ

ρ2s−1

⎞
⎠

1/2

‖u‖Ḣ s (Rd )

� Rs−1/2|x |− d−1
2 ‖u‖Ḣ s (Rd ),

and this gives (2.6).

For low frequency term ψR�u(x), since ψ ∈ S (
R
d
)
, we can take any γ > 1 so

that there exists C > 0 such that

|ψ(x)| ≤ C
(
1 + |x |2

)−γ /2
.

We shall need the following estimate that can be found also in [8, 9]. For sake of
completeness we give an alternative proof of the Lemma in the Appendix.

Lemma 2.4 If b ∈ (−d + 1, 0), γ > d − 1, then for any radially symmetric function
f (|y|) we have

∣∣∣∣∣∣∣
∫

Rd

f (|y|)dy
(1 + |x − y|2)γ /2

∣∣∣∣∣∣∣
� 1

|x |d−1+b

∥∥∥|y|b f
∥∥∥
L1(Rd )

.

Then we estimate ψR�u(x) as follows,

|ψR�u(x)| ≤ |ψR | ∗ |u|(x) ≤ C
∫

Rd

1

Rd

|u(y)|(
1 + ∣∣ x−y

R

∣∣)γ /2 dy

≤ C
∫

Rd

|u(Rz)|(
1 + ∣∣ x

R − z
∣∣2 dz)γ /2 dz (y = Rz).
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To this end we plan to apply Lemma 2.4 assuming b = −(α − d/2+ δ). To check
the assumption of the Lemma we use the inequalities

α − d

2
+ δ <

d

2
≤ d − 1,

for d ≥ 2. Applying the Lemma 2.4 we deduce

|ψR�u(x)|
≤ C

∣∣∣ x
R

∣∣∣−(d−1+b)
∫

Rd

|u(Rz)||z|bdz

≤ CR(d−1+b)|x |−(d−1+b)
∫

Rd

|u(y)|
∣∣∣ y
R

∣∣∣b dy

Rd

≤ CR−1|x |−(d−1+b)‖|y|bu‖L1(Rd ).

Therefore, collecting our estimates and using the condition (2.5), we find

|u(x)| ≤ C
[
|x |−(d−1)/2Rs−1/2 + |x |−(d−1+b)R−1‖|y|bu‖L1(Rd )

]
.

We use Lemma 2.3 and we get

|u(x)| ≤ C
[
|x |−(d−1)/2Rs−1/2 + |x |−(d−1+b)R−1

]
.

Minimizing in R or equivalently choosing R > 0 so that

|x |−(d−1)/2Rs−1/2 = |x |−(d−1+b)R−1,

i.e.

Rs+1/2 = |x |−b−(d−1)/2,

we find

|u(x)| ≤ C(d, s, α, δ)|x |−σ ,

where σ is defined in (1.10).
This completes the proof. ��
With all these preliminary results we are now ready to prove Theorem 2.1.

Proof Let u ∈ X with

∥∥∥∥Dsu

∥∥∥∥
L2(Rd )

=
∥∥∥∥ 1

|x |α �|u|
∥∥∥∥
L2(Rd )

= 1, then by Proposition 2.2

|u(x)| ≤ C(d, s, α, δ)|x |−σ ,
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with

σ = −(2s − 1)(α − d
2 + δ) + 2s(d − 1)

2s + 1
.

We aim to show that prad < 2, where p = 2 is the lower endpoint for (1.6).
Therefore it sufficies to show that

∫
|x |>1

|u|pdx < +∞ provided that u ∈ X and

prad < p (indeed
∫

|x |≤1
|u|pdx < +∞ for all 0 < p < 2 by interpolation).

We have, thanks to Proposition 2.2 and Lemma 2.3,

∫
|x |>1

|u||u|p−1dx �
∫

|x |>1

|u|
|x |σ(p−1)

dx � 1,

provided that σ(p − 1) > α − d
2 . This condition is equivalent, σ is defined in (1.10)

and letting δ → 0, to

p >
σ + α − d

2

σ
= 2(α − d

2 ) + 2s(d − 1)

−(2s − 1)(α − d
2 ) + 2s(d − 1)

:= prad .

An elementary computation shows that prad < 2 provided that d
2 < α < d − 1

2 .
Now consider an arbitrary v ∈ X and let us call u = λv(μx) where the parameters

λ,μ > 0 are chosen such that

∥∥∥∥Dsu

∥∥∥∥
L2(Rd )

=
∥∥∥∥ 1

|x |α �|u|
∥∥∥∥
L2(Rd )

= 1. By scaling we

have

1 =
∥∥∥∥Dsu

∥∥∥∥
L2(Rd )

= λμs− d
2

∥∥∥∥Dsv

∥∥∥∥
L2(Rd )

,

1 =
∥∥∥∥ 1

|x |α �|u|
∥∥∥∥
L2(Rd )

= λμα− 3
2 d

∥∥∥∥ 1

|x |α �|v|
∥∥∥∥
L2(Rd )

,

and hence we obtain the relations

μ =

⎛
⎜⎜⎜⎝

∥∥∥∥Dsv

∥∥∥∥
L2(Rd )∥∥∥∥ 1

|x |α �|v|
∥∥∥∥
L2(Rd )

⎞
⎟⎟⎟⎠

1
α−s−d

, λ =

∥∥∥∥ 1
|x |α �|v|

∥∥∥∥
s− d

2
α−d−s

L2(Rd )

∥∥∥∥Dsv

∥∥∥∥
α− 3

2 d
α−d−s

L2(Rd )

.

By the previous estimates we have

||u||L p(Rd ) = λμ
− d

p ||v||L p(Rd ) � 1,
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which implies

||v||L p(Rd ) � λ−1μ
d
p =

∥∥∥∥Dsv

∥∥∥∥
θ

L2(Rd )

‖ 1

|x |α �|v|‖1−θ

L2(Rd )
,

where

θ = d2 − 2α p + 3dp − 2ds

2p(d + s − α)
, 1 − θ = (2s − d)(d + p)

2p(d + s − α)
.

It is easy to see that θ is fixed by the scaling invariance

d

p
= (1 − θ)((d − α) + d

2
) + θ(−s + d

2
).

��

3 Proof of Theorem 1.1

Our goal is to represent ϕ ∈ HS(Rd) in the form ϕ = 1
|x |α �u = cD−r u, with

α = d−r , c = πd/2�((d−α)/2)
�(α/2) and apply Theorem 2.1. Therefore, we choose (modulo

constant) u = Drϕ ∈ HS−r (Rd).

Then the estimate of Theorem 2.1 gives

‖Drϕ‖L p(Rd ) = ‖u‖L p(Rd ) � ‖ 1

|x |α �|u|‖1−θ

L2(Rd )
‖Dsu‖θ

L2(Rd )

= ∥∥D−r |Drϕ|∥∥1−θ

L2(Rd )

∥∥∥∥DSϕ|
∥∥∥∥

θ

L2(Rd )

.

By the assumption

Drϕ(x) ≥ 0,

for almost every x ∈ R
d , then we deduce

∥∥D−r |Drϕ|∥∥1−θ

L2(Rd )
‖DSϕ|‖θ

L2(Rd )
= ∥∥D−r Drϕ

∥∥1−θ

L2(Rd )
‖DSϕ|‖θ

L2(Rd )
,

and we obtain (1.5). Notice that D−r Drϕ = ϕ follows from the fact that ϕ and Drϕ

belong to L2(Rd).

The lower endpoint p0 is hence nothing but prad of Theorem 2.1 substituting α

with d − r and s with S − r . The condition 1
2 < r < min

( d
2 , S − 1

2

)
is equivalent

to the conditions d
2 < α < d − 1

2 , s > 1
2 of Theorem 2.1. All these estimates remain
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valid if we consider Drϕ(x) ≤ 0, i.e if ϕ ∈ Hs,r
rad,−(Rd). Indeed if ϕ ∈ Hs,r

rad,−(Rd)

∥∥D−r |Drϕ|∥∥1−θ

L2(Rd )
‖DSϕ|‖θ

L2(Rd )

= ∥∥−D−r Drϕ
∥∥1−θ

L2(Rd )
‖DSϕ|‖θ

L2(Rd )
= ‖ϕ‖1−θ

L2(Rd )
‖DSϕ|‖θ

L2(Rd )
.

4 Proof of Theorem 1.2

We prove that under the assumption of Theorem 1.2, the embedding

HS,r0
rad,+(Rd) ⊂⊂ Ḣr0(Rd),

is compact. As a byproduct the embedding

HS,r0
rad,+(Rd) ⊂⊂ Ḣr (Rd), (4.1)

is compact for any 0 < r < S. The embedding (4.1) follows noticing that if ϕn

converges weakly to some ϕ in HS
rad(R

d) then ϕn converges weakly to the same ϕ in
Hr0
rad(R

d). Now if we prove that (taking a subsequence)

‖Dr0(ϕn − ϕ)‖L2 = o(1), (4.2)

as n → ∞, then by the following interpolation inequalities

‖Dr (ϕn − ϕ)‖L2 � ‖Dr0(ϕn − ϕ)‖1−
r−r0
S−r0

L2 ‖DS(ϕn − ϕ)‖
r−r0
S−r0
L2 = o(1),

if 0 < r0 < r < S and

‖Dr (ϕn − ϕ)‖L2 � ‖(ϕn − ϕ)‖1−
r
r0

L2 ‖Dr0(ϕn − ϕ)‖
r
r0
L2 = o(1),

if 0 < r < r0, we get (4.1).
To prove (4.2) we recall that (ϕn)n∈N is a bounded sequence in HS,r0

rad,+(Rd) and

we can assume that ϕn converges weakly to some ϕ in HS(Rd). To simplify the
notation we will use r instead of r0 in the proof of (4.2). We choose a bump function
θ ∈ C∞

0 (Rd), such that θ = 1 on B1 and θ = 0 inR
d \B2 and for any ρ > 1 we define

θρ(x) = θ(x/ρ). Clearly the multiplication by θρ ∈ S(Rd) is a continuous mapping
HS(Rd) → HS(Rd). Now setting vn = θρϕn and v = θρϕ we aim to show that

lim
n→∞

∥∥∥∥Dr (vn − v)

∥∥∥∥
2

L2(Rd )

= lim
n→∞

∥∥∥∥Dr (θρ(ϕn − ϕ))

∥∥∥∥
2

L2(Rd )

= 0, (4.3)

for any r ∈ [0, S).
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Indeed, by Plancharel’s identity we have

‖Dr (vn − v)‖2L2(Rd )
=

∫
|ξ |≤R

|ξ |2r |̂vn(ξ) − v̂(ξ)|2dξ

︸ ︷︷ ︸
=I

+
∫

|ξ |>R

|ξ |2r |̂vn(ξ) − v̂(ξ)|2dξ

︸ ︷︷ ︸
=I I

.

Clearly

I I ≤ 1

R2(S−r)

∫
|ξ |>R

|ξ |2S |̂vn(ξ) − v̂(ξ)|2dξ,

and then we can choose R > 0 such that I I ≤ ε
2 .

Since e−2π i x ·ξ ∈ L2
x (B2ρ), by weak convergence in L2(B2ρ) we have

v̂n(ξ) → v̂(ξ) almost everywhere. Notice that

∥∥∥∥v̂n

∥∥∥∥
L∞

≤
∥∥∥∥vn

∥∥∥∥
L1(B2ρ)

≤

μ(B2ρ)
1
2 ||vn||L2(B2ρ) ≤ μ(B2ρ)

1
2 ||vn||HS(Rd ) and hence |̂vn(ξ) − v̂(ξ)|2 is estimated

by a uniform constant so that by Lebesgue’s dominated convergence theorem

I =
∫

|ξ |≤R

|ξ |2r |̂vn(ξ) − v̂(ξ)|2dξ <
ε

2
,

for n sufficiently large. This proves (4.3).
Our next step is to show that for a given ε > 0 one can find ρ0 = ρ0(ε) sufficiently

large and n0(ε) sufficiently large so that

‖θρD
r (ϕn − ϕ)‖2L2(Rd )

≤ ε

2
, (4.4)

for n ≥ n0, ρ ≥ ρ0 and any r ∈ [0, S).

We consider first the case 0 ≤ r ≤ 2, r < S. The cases r = 0 and r = 2 are trivial,
for this we assume 0 < r < min(2, S). We shall use the following statement (see [13]
or Corollary 1.1 in [11]).

Proposition 4.1 Let p, p1, p2 satisfy 1 < p, p1, p2 < ∞ and 1/p = 1/p1 + 1/p2.
Let r , r1, r2 satisfy 0 ≤ r1, r2 ≤ 1, and r = r1 + r2. Then the following bilinear
estimate

∥∥∥∥ Dr ( f g) − f Dr g︸ ︷︷ ︸
=[Dr , f ]g

−gDr f

∥∥∥∥
L p

≤ C

∥∥∥∥Dr1 f

∥∥∥∥
L p1

∥∥∥∥Dr2g

∥∥∥∥
L p2

,
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holds for all f , g ∈ S.
By a density argument the statement holds for f , g ∈ HS(Rd).We choose f = θρ,

g = ϕn − ϕ and r1 = r2 = r/2 and therefore we aim to use (4.3) and prove that

∥∥∥∥[θρ, Dr ](ϕn − ϕ)

∥∥∥∥
L2(Rd )

≤ O(ρ−r )

∥∥∥∥ϕn − ϕ

∥∥∥∥
L2(Rd )

+ O(ρ−r/4)

∥∥∥∥ϕn − ϕ

∥∥∥∥
Hr (Rd )

.

(4.5)

Indeed from the Proposition 4.1 we have

∥∥∥∥[θρ, Dr ](ϕn − ϕ)

∥∥∥∥
L2(Rd )

�
∥∥∥∥Drθρ

∥∥∥∥
L∞(Rd )

∥∥∥∥ϕn − ϕ

∥∥∥∥
L2(Rd )︸ ︷︷ ︸

=O(ρ−r )

+
∥∥∥∥Dr/2θρ

∥∥∥∥
L p1 (Rd )

∥∥∥∥Dr/2(ϕn − ϕ))

∥∥∥∥
L p2 (Rd )

.

It is easy to check the estimate

‖Dr/2θρ‖L p1 (Rd ) = O(ρ−r/4),

asρ → ∞, and this is obviously fulfilled if d
p1

< r
4 . To control‖Dr/2(ϕn−ϕ))‖L p2 (Rd )

we use Sobolev inequality

‖Dr/2(ϕn − ϕ))‖L p2 (Rd ) � ‖ϕn − ϕ‖Hr (Rd ),

so we need

1

p2
>

1

2
− r − r/2

d
.

Summing up we have the following restrictions for 1/p1, 1/p2

1

p1
+ 1

p2
= 1

2
1

p1
<

r

4d
,

1

p2
>

1

2
− r − r/2

d
.

(4.6)

Choosing p2 = 2 + κ, p1 = 2(2 + κ)/κ with κ > 0 sufficiently small we see that
(4.6) is nonempty. Now notice that

∥∥∥∥θρD
r (ϕn − ϕ)

∥∥∥∥
L2(Rd )

≤
∥∥∥∥Dr (θρ(ϕn − ϕ)

∥∥∥∥
L2(Rd )

+
∥∥∥∥[θρ, Dr ](ϕn − ϕ)

∥∥∥∥
L2(Rd )

,
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and we conclude that (4.4) is true for 0 ≤ r < min(2, S) thanks to (4.3) and (4.5).
Now we consider the case 2 ≤ r < S. We have Dr = Dr1(−�)�, where � ≥ 1 is

integer and 0 < r1 < 2. Then the commutator relation

[A, BC] = [A, B]C + B[A,C],

implies

[θρ, Dr ] = [θρ, Dr1 ](−�)� + Dr1 [θρ, (−�)�].

In fact, we have the relation

θρD
r (ϕn − ϕ) = [θρ, Dr1 ]((−�)�(ϕn − ϕ)) + Dr1 [θρ, (−�)�](ϕn − ϕ),

and we use (4.5) so that

∥∥∥∥[θρ, Dr1 ](−�)�(ϕn − ϕ)

∥∥∥∥
L2(Rd )

≤ O(ρ−r1)‖(−�)�(ϕn − ϕ)‖L2(Rd )

+O(ρ−r1/4)

∥∥∥∥Dr1+2�(ϕn − ϕ)

∥∥∥∥
L2(Rd )

= o(1),

for ρ → ∞.

The term

Dr1[θρ, (−�)�](ϕn − ϕ),

can be evaluated pointwise via the classical Leibnitz rule and then via the fractional
Leibnitz rule as follows

∥∥∥∥Dr1 [θρ, (−�)�](ϕn − ϕ)

∥∥∥∥
L2(Rd )

�
∑

1≤|α|,|α|+|β|=2�

∥∥∥∥Dr1(∂α
x θρ)∂β

x (ϕn − ϕ)

∥∥∥∥
L2(Rd )

� O(ρ−1)‖ϕn − ϕ‖Hr (Rd ).

Summing up, we conclude that (4.4) holds in case r ∈ [0, S).

To conclude that the embedding is compact it remains to show that also ‖Dr (ϕn −
ϕ)‖2

L2(Bc
ρ)

≤ ε. To this purpose we first use the pointwise decay in terms of homoge-

neous Sobolev norm, see [7]. Given r there exists 0 < δ < d−1
2 with r + 1

2 + δ < S
such that

∣∣∣∣Dr (ϕn − ϕ)(x)

∣∣∣∣ ≤ C

|x |γ
∥∥∥∥ϕn − ϕ

∥∥∥∥
Ḣr+ 1

2+δ
(Rd )

� C

|x |γ ,
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with γ = d−1
2 − δ. Secondly we use that p0 < 2, i.e. that p = 2 is non endpoint.

By Theorem 1.1 there exists δ0 > 0 sufficiently small such that Drϕn is uniformly
bounded in L2−δ0(Rd) and the same holds hence for Drϕ and Dr (ϕn − ϕ). As a
consequence we have

∥∥∥∥Dr (ϕn − ϕ)

∥∥∥∥
2

L2(Bc
ρ)

=
∫
Bc

ρ

∣∣∣∣Dr (ϕn − ϕ)

∣∣∣∣
δ0
∣∣∣∣Dr (ϕn − ϕ)

∣∣∣∣
2−δ0

dx

≤ C

ργ

δ0
∥∥∥∥Dr (ϕn − ϕ)

∥∥∥∥
2−δ

L2−δ0 (Bc
ρ)

,

with

‖Dr (ϕn − ϕ)‖L2−δ0 (Bc
ρ) ≤ ‖Dr (ϕn − ϕ)‖L2−δ0 (Rd ) = O(1).

This proves that ‖Dr (ϕn−ϕ)‖2
L2(Bρ)

� ε and hence that the embedding is compact.

5 Proof of Theorem 1.3

For easier reference we state the following.

Lemma 5.1 (pqrLemma [10]) Let 1 ≤ p < q < r ≤ ∞ and let α, β, γ > 0. Then
there are constants η, c > 0 such that for any measurable function f ∈ L p(X) ∩
Lr (X), X a measure space, with

‖ f ‖p
L p ≤ α, ‖ f ‖qLq ≥ β, ‖ f ‖rLr ≤ γ,

one has (with | · | denoting the underlying measure on X)

|{x ∈ X : | f (x)| > η}| ≥ c.

Lemma 5.2 (Compactness up to translations in Ḣ s [2]) Let s > 0, 1 < p < ∞ and
un ∈ Ḣ s(Rd) ∩ L p(Rd) be a sequence with

sup
n

(
‖un‖Ḣ s (Rd ) + ‖un‖L p(Rd )

)
< ∞, (5.1)

and, for some η > 0, (with | · | denoting Lebesgue measure)

inf
n

|{|un| > η}| > 0. (5.2)

Then there is a sequence (xn) ⊂ R
d such that a subsequence of un(· + xn) has a

weak limit u 
≡ 0 in Ḣ s(Rd) ∩ L p(Rd).
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The strategy to prove Theorem 1.3 follows the one developed in [2]. First we aim
to show that the maximum of

W (ϕ) = ‖Drϕ‖L2(Rd )

‖ϕ‖1−
r
S

L2(Rd )
‖DSϕ‖

r
S
L2(Rd )

ϕ ∈ HS,r
rad,+(Rd),

is achieved in HS,r
rad,+(Rd). Let us consider a maximizing sequence ϕn . Since W is

invariant under homogeneity ϕ(x) �→ λϕ(x) and scaling ϕ �→ ϕ(λx) for any λ > 0,
we can choose a maximizing sequence ϕn such that

‖Drϕn‖L2(Rd ) = Crad,+(r , S, 2, d) + o(1), (5.3)

and

‖ϕn‖L2(Rd ) = ‖DSϕn‖L2(Rd ) = 1. (5.4)

The key observation is that, since we are looking at a non-endpoint case (i.e. p0 <

2), there exists ε > 0 such that from inequality (1.5) we infer that

sup
n

max
{‖Drϕn‖L2−ε (Rd ), ‖Drϕn‖L2+ε (Rd )

}
< ∞.

The pqr -lemma (Lemma 5.1) now implies that

inf
n

∣∣{|Drϕn| > η}∣∣ > 0. (5.5)

Next, we apply the compactness modulo translations lemma (Lemma 5.2) to the
sequence (Drϕn). This sequence is bounded in Ḣ S−r by (5.4), (5.1) and (5.2) are
satisfied by (5.3) and (5.5). Thus possibly after passing to a subsequence, we have
Drϕn⇀ψ 
≡ 0 in HS−r (Rd). By the fact the embedding is compact we deduce that
ϕn(x) → ψ 
≡ 0 in Ḣr (Rd) and hence ψ is a maximizer for W .

Now we conclude showing that Crad,+(r , S, 2, d) < 1.
Indeed if the best constant is Crad,+(r , S, 2, d) = 1, the maximizer ψ achieves the

equality in Hölder’s inequality, which means

∫

Rd

|ξ |2r |ψ̂ |2dξ =
∫

Rd

|ψ̂ |2− 2r
S |ξ |2r |ψ̂ | 2rS dξ

=
⎛
⎜⎝
∫

Rd

|ψ̂ |2dξ

⎞
⎟⎠

1− r
S
⎛
⎜⎝
∫

Rd

|ξ |2S|ψ̂ |2dξ

⎞
⎟⎠

r
S

,

(5.6)

where we used as conjugated exponents S
S−r and

S
r . Nowwe recall that if f ∈ L p(Rd)

and g ∈ Lq(Rd) with p and q conjugated exponents achieve the equality in Hölder’s
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inequality then | f |p and |g|q shall be linearly dependent, i.e. for a suitable μ, | f |p =
μ|g|q almost everywhere. Therefore, calling f = |ψ̂ |2− 2r

S and g = |ξ |2r |ψ̂ | 2rS , the
maximizer ψ should satisfy |ψ̂ |2 = μ|ξ |2 S|ψ̂ |2 for a suitable μ which drives to the
contradiction ψ̂ = 0.
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Appendix

The statement of Lemma 2.4 can be found in [8]. Somehow, due to the fact that in the
original paper the proof of Lemma 2.4 is not easy readable, being a part of a more
general statement, we give an alternative short proof.

Proof of Lemma 2.4 We divide the integration domain in two subdomains:

� = {|x | < |y|/2} ∪ {|x | > 2|y|},

and its complementary set �c. In � we use

|x − y| ≥ max(|x |, |y|)
2

,

and via

(1 + |x − y|2)(d−1)/2 � (1 + (max(|x |, |y|))2)(d−1)/2

≥ max(|x |, |y|))(d−1) � |x |(d−1+b)|y|−b,

with d − 1 + b > 0,−b > 0 we deduce

1

(1 + |x − y|2)γ /2 = 1

(1 + |x − y|2)(d−1)/2

1

(1 + |x − y|2)(γ−d+1)/2

� 1

|x |d−1+b
|y|b 1

(1 + |x − y|2)(γ−d+1)/2
≤ 1

|x |d−1+b
|y|b.

http://creativecommons.org/licenses/by/4.0/
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These estimates imply

∣∣∣∣∣∣
∫
�

f (y)dy

(1 + |x − y|2)γ /2

∣∣∣∣∣∣ � 1

|x |d−1+b

∥∥∥|y|b f
∥∥∥
L1(Rd )

.

For the complementary domain �c we use spherical coordinates x = rθ, y = ρω,

where r = |x |, ρ = |y|. We have to estimate

∫
�c

f (y)dy

(1 + |x − y|2)γ /2 =
2r∫

r/2

K (r , ρ) f (ρ)ρd−1dρ,

where

K (r , ρ) = Kθ,γ (r , ρ) =
∫

Sd−1

(1 + |rθ − ρω|2)−γ /2dω.

To get the desired estimate

∣∣∣∣∣∣
∫
�c

f (y)dy

(1 + |x − y|2)γ /2

∣∣∣∣∣∣ � 1

|x |d−1+b

∥∥∥|y|b f
∥∥∥
L1(Rd )

,

it is sufficient to check the pointwise estimate

K (r , ρ) � r−(d−1+b)ρb ∼ r−(d−1) for r/2 ≤ ρ ≤ 2r . (6.1)

To deduce this pointwise estimate of the kernel K we note first that K does not
depend on θ so we can take θ = ed = (0, . . . , 0, 1) and ω = (ω′ sin ϕ, cosϕ),

ω′ ∈ S
d−2 and get

K (r , ρ) = c

π∫
0

sind−2 ϕdϕ

(1 + r2 + ρ2 − 2rρ cosϕ)γ/2 .

Using the relation

(1 + r2 + ρ2 − 2rρ cosϕ) = 1 + (r − ρ)2 + rρ sin2(ϕ/2),

we can use the

(1 + r2 + ρ2 − 2rρ cosϕ) � rρ ∼ r2,
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when ρ ∼ r and ϕ is not close to 0, say ϕ ∈ (π/4, π). Then we get

π∫
π/4

sind−2 ϕdϕ

(1 + r2 + ρ2 − 2rρ cosϕ)γ/2 �
π∫

π/4

r−γ dϕ � r−γ ≤ r−d+1.

For ϕ close to 0, say ϕ ≤ π/4 we use

sind−2 ϕ

(1 + r2 + ρ2 − 2rρ cosϕ)γ/2 � ϕd−2

(1 + rρϕ2)γ /2 .

In this way, making the change of variable rϕ = η we get

π/4∫
0

ϕd−2dϕ

(1 + rρϕ2)γ /2 �
∞∫
0

ϕd−2dϕ

(1 + r2ϕ2)γ /2

≤ r−d+1

∞∫
0

ηd−2dη

(1 + η2)γ /2 � r−d+1,

in view of ρ ∼ r and γ > d − 1. Taking together the above estimates of the integrals
over (0, π/4) and (π/4, π), we arrive at (6.1).

This completes the proof of the Lemma. ��

References

1. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis andNonlinear Partial Differential Equations.
Springer, New York (2011)

2. Bellazzini, J., Frank, R.L., Visciglia, N.: Maximizers for Gagliardo–Nirenberg inequalities and related
non-local problems. Math. Ann. 3–4, 653–673 (2014)

3. Bellazzini, J., Ghimenti, M., Ozawa, T.: Sharp lower bounds for Coulomb energy. Math. Res. Lett.
23(3), 621–632 (2016)

4. Bellazzini, J., Ghimenti, M., Mercuri, C., Moroz, V., Van Schaftingen, J.: Sharp Gagliardo–Nirenberg
inequalities in fractional Coulomb–Sobolev spaces. Trans. Am.Math. Soc. 370(11), 8285–8310 (2018)

5. Brezis, H., Mironescu, P.: Gagliardo–Nirenberg, composition and products in fractional Sobolev
spaces. Dedicated to the memory of Tosio Kato. J. Evol. Equ. 1(4), 387–404 (2001)

6. Brezis, H., Mironescu, P.: Where Sobolev interacts with Gagliardo–Nirenberg. J. Funct. Anal. 277(8),
2839–2864 (2019)

7. Cho, Y., Ozawa, T.: Sobolev inequality with symmetry. Commun. Contemp. Math. 11(3), 355–365
(2009)

8. D’Ancona, P., Lucá, R.: Stein–Weiss and Caffarelli–Kohn–Nirenberg inequalities with angular
integrability. J. Math. Anal. Appl. 388(2), 1061–1079 (2012)

9. De Nápoli, P.L.: Symmetry breaking for an elliptic equation involving the fractional Laplacian. Differ.
Integr. Equ. 31(1–2), 75–94 (2018)

10. Fröhlich, J., Lieb, E.H., Loss, M.: Stability of Coulomb systems with magnetic fields. I. The one-
electron atom. Commun. Math. Phys. 104(2), 251–270 (1986)

11. Fujiwara, K., Georgiev, V., Ozawa, T.: Higher order fractional Leibniz rule. J. Fourier Anal. Appl.
24(3), 650–665 (2018)



Journal of Fourier Analysis and Applications (2024) 30 :27 Page 27 of 27 27

12. Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics, vol. 250. Springer, New York
(2014)

13. Kenig, C.E., Ponce,G., Vega, L.:Well-posedness and scattering results for the generalizedKorteweg-de
Vries equation via the contraction principle. Commun. Pure Appl. Math. 46(4), 527–620 (1993)

14. Mercuri, C., Moroz, V., Van Schaftingen, J.: Groundstates and radial solutions to nonlinear
Schrödinger–Poisson–Slater equations at the critical frequency. Calc. Var. Part. Differ. Eq. 55, 146
(2016)

15. Monguzzi, A., Peloso, M.M., Salvatori, M.: Fractional Laplacian, homogeneous Sobolev spaces and
their realizations. Ann. Mater. Pura Appl. 199(4), 2243–2261 (2020)

16. Ruiz, D.: On the Schrödinger–Poisson–Slater system: behavior of minimizers, radial and nonradial
cases. Arch. Ration. Mech. Anal. 198(1), 349–368 (2010)

17. Sawano, Y.: Theory of Besov Spaces. Developments in Mathematics, vol. 56. Springer, Singapore
(2018)

18. Sickel, W., Skrzypczak, L.: Radial subspaces of Besov and Lizorkin–Triebel classes: extended Strauss
lemma and compactness of embeddings. J. Fourier Anal. Appl. 6(6), 639–662 (2000)

19. Sickel, W., Skrzypczak, L.: On the interplay of regularity and decay in case of radial functions II.
Homogeneous spaces. J. Fourier Anal. Appl. 18(3), 548–582 (2012)

20. Strauss, W.A.: Existence of solitary waves in higher dimensions. Commun. Math. Phys. 55, 149–162
(1977)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Compact Embeddings for Fractional Super and Sub Harmonic Functions with Radial Symmetry
	Abstract
	1 Introduction
	1.1 Notations

	2 Interpolation Inequalities for Radial Functions Involving Riesz Potentials
	3 Proof of Theorem 1.1
	4 Proof of Theorem 1.2
	5 Proof of Theorem 1.3
	Acknowledgements
	Appendix
	References




