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Abstract
Revisiting themain point of the almost everywhere convergence, it becomes clear that a
weak (1,1)-type inequalitymust be established for themaximal operator corresponding
to the sequence of operators. The better route to take in obtaining almost everywhere
convergence is by using the uniform boundedness of the sequence of operator, instead
of using the mentioned maximal type of inequality. In this paper it is proved that a
sequence of operators, defined by matrix transforms of the Walsh–Fourier series, is
convergent almost everywhere to the function f ∈ L1 if they are uniformly bounded
from the dyadic Hardy space H1 (I) to L1 (I). As a further matter, the characterization
of the points are put forth where the sequence of the operators of the matrix transform
is convergent.
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1 Introduction

Walsh–Fourier series has some popular problems in relation to its convergence that
has gained traction amongst many mathematicians. For instance, Stein [16] proved
the existence of an integrable function whose Walsh–Fourier series is divergent at all
points. In contrast, a sequence of linear operators on certain function spaces is defined
as partial sums that are associated with Walsh–Fourier series obtained by a matrix
transformation. Some of the most well known examples of sequences of this kind are
Fejér means, Cesáro means, logarithmic means, Nörlund means, etc.

Hence, revisiting themain point of the almost everywhere convergence, for the cases
mentioned, it becomes clear that a weak (1,1)-type inequality must be established for
the maximal operator corresponding to the sequence of operators. Having said that,
the better route to take in obtaining almost everywhere convergence is by using the
uniform boundedness of the sequence of operator, instead of using the mentioned
maximal type of inequality.

Therefore, this paper considers a general type of sequences of operators that are
associated with the Walsh system. The operators are established to be convergent
almost everywhere by establishing uniformly bounded inequalities in the dyadicHardy
space H1.

Note, necessary information regarding the Walsh–Fourier series that is imperative
to understanding the paper, is given below.

Note,N stands for the set of all non-negative integers.Adyadic interval in I := [0, 1)
means an interval in the form I (l, k) :=

[
l
2k , l+1

2k

)
for some k ∈ N, 0 ≤ l < 2k .

Given k ∈ N and x ∈ I, Ik(x) denotes the dyadic interval of length 2−k which
contains the point x . For the sake of shortness, In := In (0) (n ∈ N) is denoted as
I k (x) := I\Ik (x). Given n ∈ N, n �= 0 by |n| which indicates 2|n| ≤ n < 2|n|+1.

Let L0 (I) be the set of all a. e. finite, Lebesgue measurable functions from I into
[−∞,∞]. For 0 < p < ∞ by L p(I ) the set of all f ∈ L0 (I) is denoted such that

‖ f ‖p :=
⎛
⎝
∫

I

| f (x)|p dx

⎞
⎠

1/p

< ∞.

As usual, L∞(I ) denotes the set of all f ∈ L0 (I) such that

‖ f ‖∞ := inf
{

y ∈ R
1 : | f (x)| ≤ y for a. e. x ∈ I

}
< ∞.

The space L1,∞ (I) consists of all measurable functions f ∈ L0 (I) such that

‖ f ‖1,∞ := sup
λ>0

λ |(| f | > λ)| < +∞. (1)
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Let

x =
∞∑

n=0

xn2
−(n+1)

be the dyadic expansion of x ∈ I, where xn ∈ {0, 1}. If x is a dyadic rational number
the expansion which terminate in 0′s is chosen.

By �, the logical addition on I is denoted, i.e. for any x, y ∈ I

x � y :=
∞∑

n=0

|xn − yn| 2−(n+1).

For every n ∈ N the following binary expansion can be written

n =
∞∑

k=0

εk (n) 2k,

where εk (n) = 0 or 1 for k ∈ N. The numbers εk (n) will be called the binary
coefficients of n.

The Rademacher system is defined by

ρn (x) := (−1)xn (x ∈ I, n ∈ N) .

The Walsh-Paley system is defined as the sequence of the Walsh-Paley functions:

w0(x) = 1, wn (x) :=
∞∏

k=0

(ρk (x))εk (n) = (−1)

|n|∑
k=0

εk (n)xk
(x ∈ I, n ∈ N) .

The Walsh-Dirichlet kernel is defined by

Dn (x) :=
n−1∑
k=0

wk (x) (n ∈ N) , D0 = 0.

It is well-known [9, 15] that

D2n (x) =
{
2n, if x ∈ In

0, if x ∈ I n
. (2)

Given f ∈ L1 (I) its partial sums of the Walsh–Fourier series are defined by

Sm ( f , x) :=
m−1∑
i=0

f̂ (i) wi (x) ,
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where

f̂ (i) =
∫

I

f (t) wi (t) dt

which is referred as the i − th Walsh–Fourier coefficient of the function f .
Denote

En ( f , x) := S2n ( f , x) , E∗ ( f , x) := sup
n∈N

|En ( f , x)| .

Recall, that for 0 < p < ∞, the Hardy space Hp(I) is the set of all functions
f ∈ L1 (I) such that

‖ f ‖Hp
:= ∥∥E∗ ( f )

∥∥
p < ∞.

The Fejér means and kernel, respectively, are defined by

σn( f , x) := 1

n

n∑
k=1

Sk( f , x), Kn(t) := 1

n

n∑
k=1

Dk(t).

It is well-known [9, 15] that the operator σn( f ) := σn( f , x) can be represented as a
convolution of f and Kn , i.e.,

σn( f ) = f ∗ Kn .

Conclusively, the following maximal operators will be considered

σ∗( f ) := sup
n∈N

|σn( f )|

and

σ abc∗ ( f ) := sup
n∈N

| f ∗ |Kn|| .

The validity of the following inequality has been proven in [6].

∥∥∥σ abc∗ ( f )

∥∥∥
p

≤ cp ‖ f ‖p
(

f ∈ Hp (I) , p > 0
)
. (3)

Now, recall certain properties of various sequences of operators associated with
Walsh systems.

A very well known fact is that [9, 15] L1 norms of Fejér kernels are uniformly
bounded i.e.,

‖Kn‖1 ≤ c for all n ∈ N. (4)
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We notice that in [17] the constant c is explicitly calculated as c = 17/15. The last
condition implies

sup
n∈N

‖σn ( f )‖∞ ≤ c ‖ f ‖∞ ( f ∈ L∞ (I)) . (5)

This means that the sequence of operators {σn} are uniformly bounded from L∞ (I)

to L∞ (I). One can check that the conditions (4) and ( 5) are equivalent.
Schipp [14] showed that the maximal operator σ∗ is of weak type (1, 1), i. e.

∥∥∥∥sup
n∈N

|σn ( f )|
∥∥∥∥
1,∞

(I) ≤ c ‖ f ‖1 ( f ∈ L1 (I)) , (6)

This inequality by standard argument [11] implies the a. e. convergence of {σn}. The
Schipp’s result together with interpolation yields the boundedness of σ∗ : L p (I) →
L p (I) (1 < p ≤ ∞). However, at p = 1, this fails to hold. However Fujii [2] proved
a weaker estimation

‖σ∗ ( f )‖1 ≤ c ‖ f ‖H1
( f ∈ H1 (I)) . (7)

In addition, Fujii’s theorem has been extended by Weisz [20]. In other words, the
maximal operator of the Fejér means of the one-dimensional Walsh–Fourier series is
bounded from the martingale Hardy space Hp (I) to the space L p (I) for p > 1/2.

Recall that the (C, αn)means of theWalsh–Fourier series of the function f is given
by

σαn
n ( f , x) = 1

Aαn
n

n∑
j=0

Aαn−1
n− j S j ( f , x),

where {αn} is some sequence, and

Aα
n := (1 + α) . . . (n + α)

n!
for any n ∈ N , α �= −1,−2, . . . .

Denote

σαn∗ f = sup
n∈N

|σαn
n ( f )|.

Weisz [20] investigated the maximal operator σα∗ with 0 < α < 1, where the
sequence {αn} is stationary, i.e., αn = α for all n ∈ N. His results prove the bounded-
ness of σα∗ : L∞ (I) → L∞ (I).

This result implies

sup
n∈N

∥∥σα
n ( f )

∥∥∞ ≤ c ‖ f ‖∞ ( f ∈ L∞ (I)) . (8)
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Moreover, Weisz also established the boundedness of σα∗ : Hp (I) → L p (I) when
p > 1/ (1 + α) .

However, if αn → 0, then in [4], the sequence of operators {σαn
n } is proved to

not be bounded from L∞ (I) to L∞ (I). Moreover, all subsequences {na : a ∈ N}
are characterized which provide the uniform boundedness of {σαna

na } from L∞ (I) to
L∞ (I).

Recall that the Nörlund logarithmic means are defined by

Mn ( f , x) := 1

ln

n−1∑
k=0

Sk ( f , x)

n − k
, ln :=

n∑
k=1

(1/k) .

In [5] the sequence of operators Mn : L∞ (I) → L∞ (I) is proved to not be
bounded. However, all subsequences {na : a ∈ N} have been characterized for which
{Mna : L∞ (I) → L∞ (I)} is uniformly bounded. Moreover, given {na : a ∈ N} the
following

∥∥Mna

∥∥
L∞(I)→L∞(I)

∼ 1

|na |
|na |∑
k=1

|εk (na) − εk+1 (na)| k (9)

has been proved.
The results above have been provided as an aid as well as to gain an appreciation for

the the subject matter. Therefore this paper aims to explore the sequences of general
operators associated with the Walsh–Fourier series.

Let T := (tk,n
)
be an infinite triangular matrix satisfying the following conditions:

(a) tk,n ≥ 0, k, n ∈ N;
(b) tk,n = 0, k > n;

(c)
n∑

k=1
tk,n = 1.

Define the sequence of operators associated with Walsh–Fourier series as follows

Tn( f ; x) :=
n∑

k=1

tk,n Sk( f ; x) (n ∈ N). (10)

In what follows, always assume that

0 ≤ tk,n ≤ tk+1,n, k = 1, 2, . . . , n − 1, n > 1. (11)

Remark 1 It’s important to emphasize that, for each fixed n, the sequence {tk,n} is
non-increasing, then the sequence {Tn( f ; x)} is convergent almost everywhere for
all f ∈ L1 [8]. Hence, it becomes pertinent to explore the scenario where {tk,n} is
non-decreasing.
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In [8] the following estimation has been proved

‖Tn‖L∞(I)→L∞(I) ∼ V (n,T), (12)

where

V (n,T) :=
|n|∑

k=1

|εk(n) − εk+1(n)|τ (n(k))
n ,

τ (k)
n :=

n∑
l=k

tl,n, n(s) :=
∞∑
j=s

ε j (n) 2 j .

For each n ∈ N, the triangular matrix transform kernel is defined by

Fn(t) :=
n∑

k=1

tk,n Dk(t).

Then

Tn( f , x) = ( f ∗ Fn) (x) =
∫

I

f (x � t)Fn(t)d(t). (13)

Denote

T ∗ ( f ) := sup
n∈N

|Tn( f )| .

Remark 2 Emphasis and consideration is heavily put on thementioned operatorswhich
are particular cases of the sequence of operators {Tn ( f )}.
(I) Assume that

tk,n =
{

1
n , k ≤ n

0, k > n
(14)

then Tn ( f ) = σn ( f ) (Fejér means);
(II) Now, let

tk,n =
{

Aαn−1
n−k

Aαn
n

, k ≤ n

0, k > n
, αn → 0 as n → ∞, (15)

then Tn ( f ) = σ
αn
n ( f ) ((C, αn)-means);



24 Page 8 of 21 Journal of Fourier Analysis and Applications (2024) 30 :24

(III) Define

tk,n =
{ 1

ln
1

(n−k)
, k < n

0, k ≥ n
, (16)

then Tn ( f ) = Mn ( f ) (Nörlund logarithmic means).

Time and time again, the almost everywhere convergence of Fourier series have
been explored where authors proved the boundedness of maximal operators on Hardy
spaces and weak type inequalities for them. However they have left a gap which this
paper aims to fill. The main goal of this paper is a novel outlook at the almost every-
where convergence of Fourier series.Moreover, to consider more general sequences of
operators and for which to establish connections between their uniformly boundedness
on Hardy spaces and the weak type inequality for its maximal operator.

Henceforth, the following is the main move result that has achieved this aim.

Theorem 1 Let {na : a ∈ N} be a subsequence of natural numbers. Then the following
statements are equivalent:

(i) The sequence of operators
{
Tna

}
is uniformly bounded from H1 (I) to L1 (I) ,

i. e. there exist a constant C > 0 such that

sup
a∈N

‖Tna ( f ) ‖1 ≤ C‖ f ‖H1 ( f ∈ H1) ;

(ii) The sequence of operators
{
Tna

}
is uniformly bounded from L∞ (I) to L∞ (I) , i.

e. there exist a constant C > 0 such that

sup
a∈N

‖Tna ( f ) ‖∞ ≤ C‖ f ‖∞ ( f ∈ L∞) ;

(iii) There are C1 and C2 positive constants, such that for any f ∈ L1(I) the fol-
lowing inequality is true

sup
a∈N

∣∣Tna ( f )
∣∣ ≤ C1E∗ (| f |) + C2σ

abc∗ (| f |) . (17)

(iv) sup
a∈N

V (na,T) < ∞.

Due to [15, Ch. 3]

∥∥E∗ (| f |)∥∥p ≤ C p ‖| f |‖Hp

(| f | ∈ Hp, p > 0
)
,
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by (see [6])

∥∥∥σ abc∗ ( f )

∥∥∥
p

≤ C p ‖| f |‖Hp

(| f | ∈ Hp, p > 0
)
,

and from Theorem 1, the following ensues

Theorem 2 Let {na : a ∈ N} be a subsequence of natural numbers for which the
sequence of operators

{
Tna

}
is uniformly boundend from H1 (I) to L1 (I). Then there

is a constant C p > 0 such that

∥∥∥∥ sup
a

|Tna ( f )|
∥∥∥∥

Hp

≤ C p‖| f |‖Hp

(| f | ∈ Hp (I) , p > 0
)
. (18)

From inequality (18), using the interpolation theorem (for details, see [19, 21]), the
following is obtained

∥∥∥∥sup
a

|Tna ( f )|
∥∥∥∥
1,∞

≤ C
∥∥E∗ (| f |)∥∥1,∞ ≤ C ‖ f ‖1 ( f ∈ L1 (I)) . (19)

Consequently, the next theorem follows from inequality (19) by the well-known
density argument due to Marcinkiewicz and Zygmund [11].

Theorem 3 Let {na : a ∈ N} be a subsequence of natural numbers for which the
sequence of operators

{
Tna

}
is uniformly bounded from H1 (I) to L1 (I). Then for

each f ∈ L1(I) we have

lim
a→∞ Tna ( f , x) = f (x) for a. e. x ∈ I.

Remark 3 In the section 3, as an application of this theorem, a description of points at
which the sequence of operators is pointwise convergent is also provided.

2 Proof of Theorem 1

In this section, a proof of Theorem 1 is provided.

Proof (i)⇒(ii). To prove it by indirect method assume that the sequence of operators
{Tna } is not uniformly bounded from L∞ (I) to L∞ (I). Due to (12) this implies

sup
a∈N

V (na,T) = ∞. (20)

From the last equality, without loss of generality, for the sake of simplicity the above
given sequence {na} satisfies

V (na,T) ≥ a4 (21)
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and

|na | > |na−1| + 1. (22)

Let us define

f :=
∞∑

a=1

λa fa, ,

where

λa := 1√
V (na,T)

and

fa := D2|na |+1 − D2|na | = w2|na | D2|na | .

Then, one can write

S2n ( f ) =
∑

{a:|na |<n}
λa S2n

(
D2|na |+1 − D2|na |

)

=
∑

{a:|na |<n}
λa fa .

Hence,

sup
n

|S2n ( f )| ≤
∑

a

λa | fa | =
∑

a

λa D2|na | .

Now, applying (2) and (21) one finds

∥∥∥∥sup
n

|S2n ( f )|
∥∥∥∥
1

≤
∑

a

λa ≤
∑

a

1

a2 < ∞.

which yields that f ∈ H1 (I).
On the other hand, one has the following

Tna ( f ) = λaTna ( fa) +
a−1∑
j=0

λ j Tna

(
f j
)+

∞∑
j=a+1

λ j Tna

(
f j
)
. (23)

Now, consider each term one by one.
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If j > a, then

Tna

(
f j
) = f j ∗ Fna =

(
D2|n j |+1 − D2|n j |

)
∗ Fna

= S2|n j |+1
(
Fna

)− S2|n j |
(
Fna

) = 0. (24)

Firstly, notice that by [8, Theorem 3] one has

‖Tn( f ) − f ‖1 ≤ c1V (n,T)
∥∥E|na | ( f ) − f

∥∥
1

+c2
∥∥E|na |−1 ( f ) − f

∥∥
1

+c3

|n|−2∑
r=0

2r t2r+1−1,n ‖Er ( f ) − f ‖1 .

Therefore, if j < a, from the last inequality, one finds

∥∥Tna

(
f j
)∥∥

1 ≤ ∥∥Tna

(
f j
)− f j

∥∥
1 + 1 (25)

≤ c1V (na,T)
∥∥E|na |

(
f j
)− f j

∥∥
1

+c2
∥∥E|na |−1

(
f j
)− f j

∥∥
1

+c3

|na |∑
r=0

2r t2r+1−1,na

∥∥Er
(

f j
)− f j

∥∥
1 + 1.

According to

Er
(

f j
) =

{
f j , if r >

∣∣n j
∣∣

0, if r ≤ ∣∣n j
∣∣ ,

from (25) it follows that

∥∥Tna

(
f j
)∥∥

1 ≤ c3

|n j |∑
r=0

2r t2r+1−1,na
+ c4 (26)

≤ c3

|n j |−2∑
r=0

2r+2∑

l=2r+1−1

tl,na + c4

≤ c3

2|n j |∑
l=1

tl,na + c4 ≤ c < ∞, j < a.
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Now, let us estimate Tna ( fa). Assume that na = 2|na | + n′
a, n′

a < 2|na |. Then

Tna ( fa) =
na∑

k=1

tk,na Sk ( fa)

=
na∑

k=1

tk,na Sk
(
D2|na |+1 − D2|na |

)

=
na∑

k=2|na |
tk,na Sk

(
D2|na |+1 − D2|na |

)

=
na∑

k=2|na |
tk,na

(
S2|na |+1 (Dk) − Sk

(
D2|na |

))

=
na∑

k=2|na |
tk,na

(
Dk − D2|na |

)

=
n′

a∑
k=0

tk+2|na |,na

(
Dk+2|na | − D2|na |

)

= w2|na |

n′
a∑

k=0

tk+2|na |,na
Dk .

Now, keeping in mind the following estimation (see [8, Theorem 2])

∥∥∥∥∥
n∑

k=1

tk,n Dk

∥∥∥∥∥
1

∼
|n|∑

s=0

|εs (n) − εs+1 (n)| τ
(
n(s)
)

n .

one finds

∥∥Tna ( fa)
∥∥
1 =

∥∥∥∥∥∥

n′
a∑

k=1

tk+2|na |,na
Dk

∥∥∥∥∥∥
1

∼
|n′

a |∑
s=1

∣∣εs
(
n′

a

)− εs+1
(
n′

a

)∣∣ τ̃
(
(n′

a)
(s)
)

n′
a

,

where

τ̃

(
(n′

a)
(s)
)

n′
a

=
n′

a∑

k=(n′
a)

(s)

tk+2|na |,na
=

na∑

k=(na)(s)

tk,na = τ

(
n(s)

a

)

na .
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Consequently,

∥∥Tna ( fa)
∥∥
1 ∼

|n′
a |∑

s=1

∣∣εs
(
n′

a

)− εs+1
(
n′

a

)∣∣ τ
(

n(s)
a

)

na (27)

∼
|na |∑
s=1

|εs (na) − εs+1 (na)| τ
(

n(s)
a

)

na

∼ V (na,T) .

From (24) and (26) we infer that the second and the third terms of (23) are bounded
(here we have used λa ≤ 1

a2
). On the other hand, the first term of (23) is not bounded

due to (20) and (27). Therefore, one finds

sup
a∈N

∥∥Tna ( f )
∥∥
1 = ∞.

The obtained contradiction proves the assertion.

(ii) ⇒(i). Indeed, due to V (na,T) ∼ ∥∥Fna

∥∥
1 (see [8]), the estimate from (12) can

be obtained that the sequence of operators
{
Tna

}
is bounded from L1 (I) to L1 (I).

On the other hand, the following inequality ‖ f ‖1 ≤ ‖ f ‖H1
holds [15]. Therefore, the

sequence of operators
{
Tna

}
also bounded from H1 (I) to L1 (I).

(ii)⇒(iii). At present, (17) will be established. Indeed, the following is proved in
[8]

Tna ( f ) = f ∗ Fna ,1 + f ∗ Fna ,2, (28)

where

Fna ,1 := wna

|na |∑
s=0

εs (na) τ

(
n(s)

a

)

na

(
D2s+1 − D2s

)
, (29)

∣∣Fna ,2
∣∣ ≤

|na |∑
s=0

εs (na) D2s

2s−1∑
l=1

t
n(s)

a −l,na

+
|n|∑

s=0

εs (na)

2s−2∑
l=1

(t
n(s)

a −l,na
− t

n(s)
a −l−1,na

)l |Kl |

+
|na |∑
s=0

εs (na) t
n(s)

a −2s+1,na
(2s − 1) |K2s−1| (30)

and

sup
a∈N

(| f | ∗ ∣∣Fna ,2
∣∣) ≤ c

(
sup
k∈N

(| f | ∗ |Kk |) + E∗ ( f ; x)

)
. (31)
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Then

f ∗ Fna ,1 =
|na |∑
s=0

εs (na) τ

(
n(s)

a

)

na

(
S2s+1

(
f wna

)− S2s
(

f wna

))

=
|na |−1∑

s=0

(εs (na) − εs+1 (na)) τ

(
n(s)

a

)

na S2s+1
(

f wna

)

+
|na |−1∑

s=0

εs+1 (na)

(
τ

(
n(s)

a

)

na − τ

(
n(s+1)

a

)

na

)
S2s+1

(
f wna

)

−ε0 (na) τ

(
n(0)

a

)

na S20
(

f wna

)+ ε|na | (na) τ

(
n(|na |)

a

)

na S2|na |+1
(

f wna

)
.

Consequently,

sup
a∈N

∣∣ f ∗ Fna ,1
∣∣ ≤ c

(
V (na,T)E∗(| f |)

+E∗(| f |)
|na |−1∑

s=0

εs+1(na)

(
τ

(
n(s)

a

)

na − τ

(
n(s+1)

a

)

na

)

+
(

τ

(
n(0)

a

)

na + τ

(
n(|na |)

a

)

na

)
E∗(| f |)

)
.

According to the assumption Tna is uniformly bounded from L∞ (I) to L∞ (I). There-
fore by (12)

sup
a∈N

V (na,T) < ∞.

On the other hand,

sup
a∈N

|na |−1∑
s=0

εs+1 (na)

(
τ

(
n(s)

a

)

na − τ

(
n(s+1)

a

)

na

)
< ∞.

Hence,

sup
a∈N

∣∣ f ∗ Fna ,1
∣∣ ≤ c1E∗ (| f |) . (32)

Consequently, combining (28), (31) and (32) one arrives at the required assertion
(iii).

(iii)⇒(ii). According to ‖E∗ (| f |)‖∞ ≤ C ‖ f ‖∞ and
∥∥σ abc∗ (| f |)∥∥∞ ≤ C ‖ f ‖∞

(see [6]) the boundedness of the operator supa |Tna ( f )| from L∞ (I) to L∞ (I) follows
immediately from (17).

Note that the equivalence of items (ii) and (iv) follows directly from (12).
This completes the proof of Theorem 1. ��
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3 Walsh–Lebesgue Points and Pointwise Convergence

In this section a characterization of points is given in which the sequence of operators
associated with Walsh system is pointwise convergent.

Recall that [18] an element x ∈ I is a Walsh–Lebesgue point of an integrable
function f ∈ L1 (I) if

lim
n→∞

n∑
k=0

2k
∫

In(x�ek)

| f (t) − f (x)| dt = 0,

where ek := 2−k−1.
Weisz in [22] proved that for every integrable function almost every point is a

Walsh–Lebesgue point. Moreover, the following estimation was established as well

∫

I

| f (t) − f (x)| |Kl (x � t)| dt ≤ c

l

|l|∑
k=0

2k Wk (x) , (33)

here

Wn f (x) :=
n∑

k=0

2k
∫

In(x�ek)

| f (t) − f (x)| dt .

Notice that the estimation (33) implies the convergence of the Fejérmeans atWalsh–
Lebesgue points. This result gives where a.e. convergence occurs. Inspiring from this
result, aim of this section is to establish an analogous result for more general sequence
of operators.

Theorem 4 Let {na : a ∈ N} be a subsequence of natural numbers with tna ,na = o (1)
as a → ∞. Assume that one of the statments of Theorem 1 is fulfilled.

Then for each f ∈ L1 (I) the sequence
{
Tna ( f )

}
converges to f at every Walsh–

Lebesgue point.

Proof From (29), one can write∫

I

| f (t) − f (x)| ∣∣Fna ,1 (x � t)
∣∣ dt (34)

≤
|na |∑
s=1

(
τ

(
n(s)

a

)

na − τ

(
n(s−1)

a

)

na

)∫

I

| f (t) − f (x)| D2s (x � t) dt

+
|na |∑
s=1

∣∣εs−1 (na) − εs (na)
∣∣ τ
(

n(s−1)
a

)

na

∫

I

| f (t) − f (x)| D2s (x � t) dt

+τ

(
n(|na |)

a

)

na

∫

I

| f (t) − f (x)| D2|na |+1 (x � t) dt

+τ

(
n(0)

a

)

na

∫

I

| f (t) − f (x)| D20 (x � t) dt .
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One can check that

∫

I

| f (t) − f (x)| D2s (x � t) dt ≤ Ws f (x) s ∈ N.

It then follows from (34) that

∫

I

| f (t) − f (x)| ∣∣Fn,1 (x � t)
∣∣ dt ≤

|na |∑
s=1

(
τ

(
n(s)

a

)

na − τ

(
n(s−1)

a

)

na

)
Ws f (x)

+
|na |∑
s=1

|εs−1 (na) − εs (na)| τ
(

n(s−1)
a

)

na Ws f (x)

+τ

(
n(|na |)

a

)

na W|na |+1 f (x)

+τ

(
n(0)

a

)

na W0 f (x)

= : J1 (na) + J2 (na) + J3 (na) + J4 (na) .

Set

η (na) :=
[
1

2
log2

(
1

tna ,na

)]
.

Due to

τ

(
n(0)

a

)

na = τ (na)
na

= tna ,na ,

one can write (x is fixed)

J1 (na) =
|na |∑
s=1

⎛
⎜⎝

n(s−1)
a −1∑

l=n(s)
a

tl,na

⎞
⎟⎠Ws f (x)

=
η(na)∑
s=1

⎛
⎜⎝

n(s−1)
a −1∑

l=n(s)
a

tl,na

⎞
⎟⎠Ws f (x) +

|na |∑
s=η(na)+1

⎛
⎜⎝

n(s−1)
a −1∑

l=n(s)
a

tl,na

⎞
⎟⎠Ws f (x)

≤ c ( f , x) tna ,na

η(na)∑
s=1

(
n(s−1)

a − n(s)
a

)
+ sup

s>η(na)

Ws f (x)

( na∑
l=0

tl,na

)

≤ c ( f , x) tna ,na

(
na − n(η(na))

a

)
+ sup

s>η(na)

Ws f (x) .
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From the condition of the theorem, we find

tna ,na

(
na − n(η(na))

a

)
≤ tna ,na2

η(na) ≤ c
√

tna ,na → 0

and

sup
s>η(na)

Ws f (x) → 0 as a → ∞.

Consequently,

J1 (na) → 0 as a → ∞. (35)

Analogously, the condition of the theorem yields

J2 (na) ≤
η(na)∑
s=1

τ

(
n(s−1)

a

)

na Ws f (x)

+ sup
s>η(na)

Ws f (x)

⎛
⎝

|na |∑
s=1

|εs−1 (na) − εs (na)| τ
(

n(s−1)
a

)

na

⎞
⎠

≤ c ( f , x) η (na) tna ,na + c sup
s>η(na)

Ws f (x) → 0 (a → ∞) .

By the same argument, we obtain

J3 (na) , J4 (na) → 0 (a → ∞) . (36)

Combining (34)-(36), one concludes that

f ∗ Fna ,1 → 0 (a → ∞) . (37)

By

τ

(
n(s−1)

a

)

na =
na∑

l=n(s−1)
a

tl,na ≤ tna ,na

(
na − n(s−1)

a

)

≤ tna ,na2
s ≤ tna ,na2

η(na) ≤ c
√

tna ,na ,
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from (30) one gets

∫

I

| f (t) − f (x)| ∣∣Fna ,2 (x � t)
∣∣ dt (38)

≤
|na |∑
s=0

εs (na)

2s−1∑
l=1

t
n(s)

a −l,na

∫

I

| f (t) − f (x)| D2s (x � t) dt

+
|na |∑
s=0

εs (na)

2s−2∑
l=1

(t
n(s)

a −l,na
− t

n(s)
a −l−1,na

)

∫

I

| f (t) − f (x)| l |Kl (x � t)| dt

+
|na |∑
s=0

εs (na) t
n(s)

a −2s+1,na
(2s − 1)

∫

I

| f (t) − f (x)| K2s−1 (x � t) dt

= : M1 (na) + M2 (na) + M3 (na) .

The estimation of M1 (na) is similar to the estimation of J1 (na), therefore, one gets

M1 (na) → 0 as a → ∞ (39)

at every Walsh–Lebesgue points.
Since Wk (x) → 0 as k → ∞, it is easy to see that (see [22])

δl (x) := c

l

|l|∑
k=0

2k Wk (x) → 0 (l → ∞) .

Hence, by (33) we obtain

M2 (na) + M3 (na) ≤
|na |∑
s=0

εs (na)

2s−2∑
l=1

(t
n(s)

a −l,na
− t

n(s)
a −l−1,na

)lδl (x)

+
|na |∑
s=0

t
n(s)

a −2s+1,na
(2s − 1)δ2s−1 (x)

=
η(na)∑
s=0

εs (na)

2s−2∑
l=1

(t
n(s)

a −l,na
− t

n(s)
a −l−1,na

)lδl (x)

+
|na |∑

s=η(na)+1

εs (na)

2η(na )∑
l=1

(t
n(s)

a −l,na
− t

n(s)
a −l−1,na

)lδl (x)

+
|na |∑

s=η(na)+1

εs (na)

2s−2∑

l=2η(na )+1

(t
n(s)

a −l,na
− t

n(s)
a −l−1,na

)lδl (x)

+
η(na)∑
s=0

εs (na) t
n(s)

a −2s+1,na
(2s − 1)δ2s−1 (x)
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+
|na |∑

s=η(na)+1

εs (na) t
n(s)

a −2s+1,na
(2s − 1)δ2s−1 (x)

= : N1 (na) + N2 (na) + N3 (na) + N4 (na) + N5 (na) .

(40)

The following is readily visible

N1 (na) ≤ c ( f , x)

η(na)∑
s=0

εs (na)

2s−2∑
l=1

(t
n(s)

a −l,na
− t

n(s)
a −l−1,na

)l

≤ c ( f , x) 2η(na)

η(na)∑
s=0

εs (na) (t
n(s)

a ,na
− t

n(s+1)
a ,na

)

≤ c ( f , x) 2η(na)tna ,na ≤ c ( f , x)
√

tna ,na → 0 (a → ∞) .

Analogously, one can prove that

N2 (na) , N4 (na) → 0 (a → ∞) . (41)

On the other hand, the term N3 (na) can be estimated as follows

N3 (na) ≤ sup
l>2η(na )

δl (x)

|na |∑

s=η(na )+1

εs (na)

2s−2∑

l=2η(na )+1

(t
n(s)

a −l,na
− t

n(s)
a −l−1,na

)l.

Due to

sup
l>2η(na )

δl (x) → 0 (a → ∞)

and

|na |∑
s=η(na)+1

εs (na)

2s−2∑

l=2η(na )+1

(t
n(s)

a −l,na
− t

n(s)
a −l−1,na

)l ≤ c < ∞,

we get

N3 (na) → 0 (a → ∞) . (42)

The estimation of N5 (na) is analogous to the estimation of N3 (na), so

N5 (na) → 0 (a → ∞) . (43)

The estimations (38)-(43) yield

f ∗ Fna ,2 → 0 (a → ∞) . (44)
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Finally, by combining (28), (37) and (44) we complete the proof of Theorem 4. ��

Remark 4 Let us notice the followings:

(a) If one considers the Fejér means (see (14)), It follows from Theorem 4 that the
Walsh-Fejér means are convergent at everyWalsh–Lebesgue point. This result was
obtained by Weisz [18].

(b) If we look at the (C, αn)-means αn = α > 0 in case of constant, then their almost
everywhere convergence was proved by Fine [1]. Our Theorem 4 reveals that the
(C, α)-means of Walsh–Fourier series is convergent at every Walsh–Lebesgue
point.

(c) Now, let us consider (C, αn)-means in case when αn ∈ (0, 1) and αn → 0 as
n → ∞. According to the recently result [7] no matter how slowly the sequence
{αn} tends to zero, there exists an integrable function f , for which (C, αn)-means
of Walsh–Fourier series is almost everywhere divergent. On the other hand, by
Theorem 1 if sup

a∈N
V (na,T) < ∞ is fulfilled, then the sequence

{
Tna ( f )

}
is

convergent almost everywhere for any f ∈ L1 (I).Moreover, Theorem4provides a
characterization of points in which the sequence

{
Tna ( f )

}
is convergent.We point

out that a.e. converges of (C, αn)-means for certain subsequences was investigated
in [10].

(d) Let us now consider the Nörlund logarithmic means (16). The condition (9) pro-
vides that the Nörlund logarithmic means Tna ( f ) of Walsh–Fourier series is
convergent to the f at every Walsh–Lebesgue point. The almost everywhere con-
vergence of the Nörlund logarithmic means Tna ( f ) ofWalsh–Fourier series along
subsequences was studied in [5]. In general, the issues of the almost everywhere
divergence of Nörlund logarithmic means ofWalsh–Fourier series have been stud-
ied in [3].

Example 1 Let tk,n := qn−k
Qn

, where Qn :=∑n−1
k=0 qk (n ≥ 1). Then one has

Tn( f ) := 1

Qn

n∑
k=1

qn−k Sk( f ).

It is always assumed that q0 > 0, limn→∞ Qn = ∞ and the sequence {qk} is non-
increasing. In the literature, these averages are known as Nörlundmeans of theWalsh–
Fourier series. By Theorems 1 and 4, we infer that if sup

a∈N
V (na,T) < ∞, then the

subsequence
{
Tna ( f )

}
ofWalsh-Nörlundmean is convergent to the f at everyWalsh–

Lebesgue point.
We point out in [12, 13] it has been investigated the case when the sequence {qk}

is non-decreasing.
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