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Abstract
We construct trigonometric polynomials that fast decrease towards ±π . We apply
them to construct a trigonometric polynomial the derivative of which interpolates
the derivative of a given 2π -periodic function, at some prescribed distinct points in
[−π, π), and vanishes at some other prescribed points in that interval. The construction
requires that the function possesses derivatives where the interpolation is supposed
to take place. Still, we are able to apply the result to trigonometric approximation
of a 2π -periodic piecewise algebraic polynomial which is merely continuous, while
interpolating its derivative at some points (that, obviously, are not knots).
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1 Introduction and themain results

Let I := [−π, π ] and let C[a, b] and Cl [a, b] denote, respectively, the space of
continuous functions and of l times continuously differentiable functions, and denote
by C̃ the space of 2π -periodic continuous functions. As usual all spaces are equipped
with the sup-norm, i.e., ‖ f ‖[a,b] := maxx∈[a,b] | f (x)| and ‖ f ‖ := maxx∈R | f (x)|,
respectively.

For β ∈ N and n ∈ N, let

J (x) = Jn,β(x) = n

γn,β

(
sin(nx/2)

n sin(x/2)

)2β

, (1.1)

be a Jackson-type kernel, where C∗(β) ≤ γn,β ≤ C∗(β) is a normalizing factor, so
that J is a trigonometric polynomial of degree β(n − 1), and

1

π

∫ π

−π

J (x) dx = 1, (1.2)

(see, e.g., [1, p. 204]). For the asymptotic behavior of γn,β , see [3, Theorem 1].
Put h := π/n. Clearly,

J (x) ≥ C1(β)

h
, |x | ≤ h, (1.3)

and Bernstein’s inequality implies, for all ν ∈ N0,

‖J (ν)‖ ≤ C2(β, ν)

hν+1 . (1.4)

In addition, we will show that (see the end of Sect. 2) for 0 ≤ ν ≤ 2β,

|J (ν)(x)| ≤ C3(β)

hν+1

1

(n|x |)2β−ν
, 0 < |x | ≤ π, (1.5)

where C1(β) and C3(β) depend only on β, and C2(β, ν) may depend also on ν.
We wish to construct a trigonometric polynomial Ln , of degree β(n − 1), which

satisfies analogues of (1.3) through (1.5), not only for h ≈ π
n , but rather, for any

π
n ≤ h ≤ const.

Theorem 1.1 For each m ∈ N, β ∈ N and 0 < ε ≤ 1, there are constants K1 > 0 and
K2, depending only on m, β and ε, such that if π

n ≤ h ≤ π
m , then the trigonometric

polynomial

Ln(x) := 1

hm

∫ h/2

−h/2
. . .

∫ h/2

−h/2︸ ︷︷ ︸
m times

J (x + t1 + · · · + tm) dt1 · · · dtm

=: 1

hm
Wm(x, h, J ),
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of degree ≤ β(n − 1), satisfies

1

π

∫ π

−π

Ln(t) dt = 1, (1.6)

Ln(x) ≥ K1

h
, |x | ≤ (m − ε)h

2
, (1.7)

and for all 0 ≤ ν ≤ m − 1,

‖L(ν)
n ‖ ≤ 2νπh−(ν+1), (1.8)

and

|L(ν)
n (x)| ≤ K2

h−(ν+1)

(n|x |)2β−1 ,
(m + ε)h

2
≤ |x | ≤ π. (1.9)

Remark 1.2 The above constants may be replaced by K1 := C1ε
m−1 and K2 :=

C2ε
−2β , where C1 and C2 depend only on m and β.

We apply Theorem 1.1 to obtain an interpolation result. Namely,

Theorem 1.3 Given n, s, η ∈ N and 0 < ε ≤ 1/2. For π
n ≤ h ≤ π

s+2 , denote

Ȯ := [−(s+1/2−ε)h, (s+1/2−ε)h] and Ö := (−(s+1/2+ε)h, (s+1/2+ε)h).

Given a collection {zi }2si=1, of distinct points in [−π, π). Let l, 0 ≤ l ≤ 2s, be such
that

zq ∈ Ȯ, 1 ≤ q ≤ l, (no zq in Ȯ, if l = 0), (1.10)

and

zq ∈ [−π, π) \ Ö, l + 1 ≤ q ≤ 2s (no zq in [−π, π) \ Ö, if l = 2s). (1.11)

Assume that f is defined in Ȯ, and if l ≥ 1, assume that f ∈ Cl−1(Ȯ) and satisfies,

| f (ν)(x)| ≤ h−ν, x ∈ Ȯ, ν = 0 . . . l − 1. (1.12)

Then, there exists a constant c = c(s, η, ε) and a trigonometric polynomial Dl of
degree ≤ ([η/2] + 2s + 1)n, such that

‖Dl‖ ≤ ch, (1.13)

and its derivative dl := D′
l satisfies,
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dl(zq) = f (zq), 1 ≤ q ≤ l, (1.14)

dl(zq) = 0, l + 1 ≤ q ≤ 2s, (1.15)

and, for all ν = 0, . . . , 2s,

|d(ν)
l (x)| ≤ ch−νMη(x), x ∈ [−π, π ], (1.16)

where

M(x) :=
{
1 x ∈ Ö
1

n|x | x ∈ [−π, π ] \ Ö.
(1.17)

Finally, in Sect. 6, we apply Theorem 1.3 to obtain a trigonometric polynomial which
approximates a 2π -periodic continuous piecewise algebraic polynomial, and the
derivative of which, interpolates the derivative of the latter at a given collection of
points (obviously, not knots).

Throughout the paper we will have positive constants c and C that may differ from
one another on different occurrences even if they appear in the same line.

2 Pointwise Bernstein Inequality

We extend the well known Bernstein inequality

‖(T r
n )(ν)‖ ≤ (rn)ν‖T r

n ‖,

which is valid for all trigonometric polynomials Tn , of degree ≤ n, and for all r ∈ N

and ν ∈ N, into a pointwise version. Namely,

Lemma 2.1 For arbitrary trigonometric polynomial Tn of degree ≤ n, any r ∈ N and
each natural ν ≤ r the inequality

|(T r
n )(ν)(x)| ≤ (rn)ν‖Tn‖ν |T r−ν

n (x)|, x ∈ R, (2.1)

holds.

Proof Without loss of generality assume that ‖Tn‖ = 1, so we have to prove the
inequality

|(T r
n )(ν)(x)| ≤ (rn)ν |T r−ν

n (x)|, x ∈ R. (2.2)

Then Bernstein inequality implies ‖T (ν)
n ‖ ≤ nν and

|(T r
n )′(x)| = r |T r−1

n (x)T ′
n(x)| ≤ rn|T r−1

n (x)|, r ∈ N.
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Assuming by induction, that for some ν − 1 < r the inequality (2.1) holds for all
r ∈ N, we get

|(T r
n )(ν)(x)| = r

∣∣∣∣
(
T r−1
n (x)T ′

n(x)
)(ν−1)

∣∣∣∣

= r

∣∣∣∣∣∣
ν−1∑
j=0

(
ν − 1

j

)
(T r−1

n )(ν−1− j)(x)(Tn)
( j+1)(x)

∣∣∣∣∣∣
≤ r

ν−1∑
j=0

(
ν − 1

j

)
((r − 1)n)ν−1− j |T r−ν+ j

n (x)|n j+1

≤ rnν |T r−ν
n (x)|

ν−1∑
j=0

(
ν − 1

j

)
(r − 1)ν−1− j = (rn)ν |T r−ν

n (x)|,

which is (2.2). 	


Applying Lemma 2.1 to the polynomial Tn(u) = sin nu
n sin u , we readily obtain (1.5).

3 Fast Decreasing Trigonometric Polynomials

Proof of Theorem 1.1 Since J is a trigonometric polynomial of degree < βn, Ln is
also a trigonometric polynomial of degree < βn.

First, we have

∫ π

−π

Ln(x) dx = 1

hm

∫ π

−π

⎛
⎜⎜⎜⎝

∫ h/2

−h/2
. . .

∫ h/2

−h/2︸ ︷︷ ︸
m times

J (x + t1 + · · · + tm) dt1 · · · dtm

⎞
⎟⎟⎟⎠ dx

= 1

hm

∫ h/2

−h/2
. . .

∫ h/2

−h/2︸ ︷︷ ︸
m times

(∫ π

−π

J (x + t1 + · · · + tm) dx

)
dt1 · · · dtm

= 1

hm

∫ h/2

−h/2
. . .

∫ h/2

−h/2︸ ︷︷ ︸
m times

π dt1 · · · dtm = π,

and (1.6) is proved.
Evidently, for every ν = 1, . . . ,m − 1, there is a θ = θν ∈ [x − νh/2, x + νh/2],

such that

|W (ν)
m (x, h, f )| ≤ 2ν |Wm−ν(θ, h, f )|. (3.1)
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Now, for any a ∈ R,

∫ h/2

−h/2
J (a + t) dt ≤

∫ π

−π

J (a + t) dt = π.

Thus, (3.1) implies,

|L(ν)
n (x)| ≤ 2ν

hm
Wm−ν(θ, h, J ) ≤ 2νπ

hm

∫ h/2

−h/2
. . .

∫ h/2

−h/2︸ ︷︷ ︸
m−ν−1 times

dt1 · · · dtm−ν−1 = 2νπh−(ν+1),

which is (1.8).
In order to prove (1.9), take (m+ε)h

2 ≤ |x | ≤ π and |θ − x | ≤ νh/2. If

|t j | ≤ h/2, 1 ≤ j ≤ m − ν, and 	 := θ + t1 + · · · + tm−ν ∈ I ,

then

|	| ≥ |x | − (m − ν + ν)
h

2
= |x | − mh

2
,

which implies,

J (	) ≤ 1

γn,β

n(
n sin	/2

)2β ≤ Cn(
n(|x | − mh

2 )
)2β . (3.2)

Here and in the rest of the proof C and C∗ depend only on β.
If, on the other hand, |	| > π , then π < |	| ≤ 3π

2 , which implies

| sin	/2| ≥ sin π/4 ≥ sin
|x | − mh

2

4
≥ |x | − mh

2

2π
,

so that (3.2) is valid in this case too.
Combined, (3.1) and (3.2) yield

|L(ν)
n (x)| ≤ 2ν

hm
Wm−ν(θ, h, J ) ≤ 2ν

hm
Cn(

n(|x | − mh
2 )

)2β
∫ h/2

−h/2
. . .

∫ h/2

−h/2︸ ︷︷ ︸
m−ν times

dt1 · · · dtm−ν

= C
2νh−ν

(
n(|x | − mh

2 )
)2β−1

1

|x | − mh
2

≤ C
2νh−ν(m + 1)2β−1

(εn|x |)2β−1

2

εh

≤ K2
h−(ν+1)

(n|x |)2β−1 ,

where, for |x | ≥ (m+ε)h
2 , we applied the inequalities |x | − mh

2 ≥ ε|x |
m+1 and |x | − mh

2 ≥
εh
2 . Thus, we obtain (1.9).
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In order to prove (1.7), we observe that if |a| ≤ h/2, then

∫ h/2

−h/2
J (t + a) dt ≥

∫ h/2

0
J (t) dt ≥

∫ π/(2n)

0
J (t) dt > C∗. (3.3)

For m = 1, this readily yields (1.7). Thus, let m > 1 and denote

H :=
[
−h

2
,
h

2

]⋂ [ −x

m − 1
− h

2(m − 1)
,

−x

m − 1
+ h

2(m − 1)

]
.

Note that if t j ∈ H , 1 ≤ j ≤ m − 1, then −h/2 ≤ a := x + t1 + · · · + tm−1 ≤ h/2.
Hence, for |x | ≤ (m−1)h

2 ,

Ln(x) ≥ 1

hm

∫
H

. . .

∫
H︸ ︷︷ ︸

m−1 times

(∫ h/2

−h/2
J (x + t1 + · · · + tm) dtm

)
dt1 · · · dtm−1 (3.4)

≥ 1

hm

∫
H

. . .

∫
H︸ ︷︷ ︸

m−1 times

C∗ dt1 · · · dtm−1 = 1

hm
C∗|H |m−1 ≥ C

h
,

where we used the fact that |H | ≥ h
2(m−1) .

Finally, if (m−1)h
2 < |x | ≤ (m−ε)h

2 , then

|H | = h

2
−

( |x |
m − 1

− h

2(m − 1)

)
≥ h

2
−

(
(m − ε)h

2(m − 1)
− h

2(m − 1)

)
= εh

2(m − 1)
.

Substituting in (3.4), completes the proof. 	


4 Interpolating Trigonometric Polynomials

Proof of Theorem 1.3 If l = 0, then (1.14) is empty, so we may take D0(x) ≡ 0.
We proceed by induction. By the induction assumption, there is a polynomial Dl−1,

1 ≤ l ≤ 2s, satisfying (1.14) through (1.16)with l−1 instead of l, andwith any z̃l ∈ Ö ,
z̃l /∈ {zi }2si=l+1, instead of the given zl ∈ Ȯ .

We will construct the derivative dl and then put Dl(x) := ∫ x
−π

dl(t) dt .
To construct dl we first note that for the polynomial Ln , defined by Theorem 1.1

with β = [η/2] + 2s + 1 and m = 2s + 1, we have for x ∈ [−π, π ],

|L(ν)
n (x)| ≤ ch−(ν+1)M2β−1(x), 0 ≤ ν ≤ 2s. (4.1)

Here and in the rest of the proof c = c(s, η, ε).
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We will show that the desired polynomial dl may be taken in the form

dl = dl−1 + d̂l − B̂l

B̆l
d̆l ,

where

d̂l (x) := f (zl ) − dl−1(zl )∏l−1
q=1 sin

(
(zl − zq )/2

)
︸ ︷︷ ︸

=:Fl

l−1∏
q=1

sin
(
(x − zq )/2

) sin((x − z̃l)/2
)

sin
(
(zl − z̃l )/2

)
2s∏

q=l+1

sin
(
(x − zq )/2

)
sin

(
(zl − zq )/2

)
︸ ︷︷ ︸

=: Î (x)

× Ln(x)

Ln(zl )
= Fl Î (x)

Ln(x)

Ln(zl)
,

d̆l(x) := h1−2 l Ln(x)
l∏

q=1

sin2
(
(x − zq )/2

) 2 s∏
q=l+1

sin2
(
(x − zq )/2

)
sin2

(
(zl − zq )/2

)
︸ ︷︷ ︸

=: Ĭ (x)

= h1−2 l Ln(x) Ĭ (x),

B̂l :=
∫ π

−π

d̂l(x) dx and B̆l :=
∫ π

−π

d̆l(x) dx .

If l = 1, we mean
∏0

q=1 = 1, and recall that dl−1 = d0 ≡ 0. Similarly,
∏2s

q=2s+1 = 1.
Evidently, dl is a trigonometric polynomial of degree ≤ β(n − 1) + 2s, and (1.14)

and (1.15) hold.
We first estimate the polynomials d̂l and d̆l , and their derivatives.
By the induction assumption, (1.12) and (1.16) imply,

| f (l−1)(x) − d(l−1)
l−1 (x)| ≤ ch1−l , x ∈ Ȯ,

while (1.14) yields,
f (zq) − dl−1(zq) = 0, q < l.

Thus, we have

|Fl | =
∣∣∣∣∣
f (zl) − dl−1(zl)∏l−1

q=1(zl − zq)

∣∣∣∣∣ = ∣∣[z1, . . . , zl; f − dl−1]| (4.2)

=
∣∣∣∣∣
f (l−1)(θ) − d(l−1)

k−1 (θ)

(l − 1)!

∣∣∣∣∣ ≤ ch1−l ,

where the middle term is the divided difference of f − dl−1, and in the last inequality
we used the fact that θ ∈ Ȯ .

In order to estimate Î (x) and Ĭ (x), and their derivatives, we observe that

|z| < (s + 1)h, z ∈ Ȯ,
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and
|z − zl | ≥ 2hε, z ∈ I\Ö.

Also
|x |M(x) ≤ (s + 1)h, x ∈ I .

Hence, for x ∈ I and z ∈ Ȯ , we have

| sin((x − z)/2
)|

h
M(x) ≤ |x |

2 h
M(x) + |z|

2 h
M(x) ≤ |x |

2 h
M(x) + s + 1

2
≤ s + 1 ≤ c,

and for x ∈ I and z ∈ I \ Ö , we have

2

π

∣∣∣∣∣
sin

(
(x − z)/2

)
sin

(
(zl − z)/2

)
∣∣∣∣∣ M(x) ≤ |x − z|

|zl − z|M(x) ≤ 1 + |x | + |zl |
|zl − z| M(x)

≤ 1 + |x | + |zl |
2hε

M(x) ≤ c.

Therefore, we write Î (x) = hl−1 ∏2s
q=1 αq(x), x ∈ I , where for each 1 ≤ q ≤ 2s,

|αq(x)| ≤ c

M(x)
and |α(ν)

q (x)| ≤ c

h
, ν ∈ N, x ∈ I , .

This, in turn, yields for each 0 ≤ ν ≤ 2s,

| Î (ν)(x)| ≤ chl−1 h−ν

M2 s(x)
, x ∈ I .

Combining with (4.2), (1.7) and (4.1), we obtain for each 0 ≤ ν ≤ 2s,

|d̂(ν)
l (x)| ≤ 2ν |Fl |

|Ln(zl)|
ν∑

μ=0

|L(μ)
n (x) Î (ν−μ)(x)| (4.3)

≤ c
h1−l

1/h
hl−1

ν∑
μ=0

M2β−1(x)

hμ+1

hμ−ν

M2s(x)

= c(ν + 1)h−νM2β−2s−1(x) ≤ ch−νMη(x), x ∈ I .

Similarly,

| Ĭ (ν)(x)| ≤ ch2 l−ν 1

M4 s(x)
, x ∈ I ,

whence,

|d̆(ν)
l (x)| ≤ c(ν + 1)h−νM2β−4s−1(x) ≤ ch−νMη(x), x ∈ I . (4.4)
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It follows by (1.13) with l − 1, that

∫ π

−π

dl(x) dx = 0.

By virtue of (4.3) and (4.4), we obtain

∫ x

−π

|d̂l(t)| dt ≤ ch and
∫ x

−π

d̆l(t) dt ≤ ch, x ∈ I ,

and, in particular,
|B̂l | ≤ ch and B̆l ≤ ch.

So, in order to complete the proof of (1.13) and (1.16), we will prove that

B̆l ≥ ch. (4.5)

To this end, we note that if x ∈ [−sh, sh] ⊂ Ȯ , then

Ln(x) >
c

h
,

and ∣∣∣∣∣
sin

(
(x − z)/2

)
sin

(
(zl − z)/2

)
∣∣∣∣∣ > c, z ∈ I\Ö.

Hence,

B̆l ≥
∫ sh

−sh
d̆l(x) dx ≥ c

h2 l

∫ sh

−sh

l∏
q=1

(x − zq)
2 dx .

Now, the algebraic polynomial,

Q(t) :=
∫ t

−sh

l∏
q=1

(x − zq)
2 dx, −sh ≤ t ≤ sh,

of degree 2l + 1, satisfies, by Markov’s inequality,

‖Q‖[−sh,sh] ≥ (sh)2 l+1c‖Q(2 l+1)‖[−sh,sh] = c(2 l)!(sh)2 l+1 = ch2 l+1,

and (4.5) is proved. Thus, the proofs of (1.13) and (1.16) are complete. 	


5 An Auxiliary Lemma

For j ∈ Z, let

x j := jπ

n
, I j := [x j , x j+1], and |I j | = π

n
.
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Denote by Pk , the space of algebraic polynomials of degree < k, and by �̃k,n , the
space of 2π -periodic continuous piecewise algebraic polynomials S, of degree < k,
with knots x j , that is,

S
∣∣I j = p j , p j ∈ Pk, j ∈ Z.

Given S ∈ �̃k,n , n1, β ∈ N and Jn1 := Jn1,β , let ν ∈ N0 and denote

Bν,n1(x) := dν

dxν

∫ π

−π

S(x + σ t)Jn1(t) dt −
∫ π

−π

S(ν)(x + σ t)Jn1(t) dt . (5.1)

Lemma 5.1 Let S ∈ �̃k,nand let σ ∈ N. For each ν ∈ N we have

Bν,n1(x) = 1

σ

ν∑
l=1

nσ∑
j=−nσ+1

(
p(l−1)
j (x j ) − p(l−1)

j−1 (x j )
) dν−l

dxν−l
Jn1

(
x − x j

σ

)
.

(5.2)

Proof We first prove that for each ν ∈ N,

Bν,n1(x) = 1

σ

nσ∑
j=−nσ+1

(
p(ν−1)
j (x j ) − p(ν−1)

j−1 (x j )
)
Jn1

(
x − x j

σ

)
+ d

dx
Bν−1,n1(x).

(5.3)

To this end, we observe that since S is differentiable of any degree l ∈ N, except at
a final number of points in any compact interval, the following integrals exist, for all
l ∈ N0, and are equal.

∫ π

−π

S(l)(x + σ t)Jn1(t) dt = 1

σ

∫ x+σπ

x−σπ

S(l)(u)Jn1

(
u − x

σ

)
du (5.4)

= 1

σ

∫ σπ

−σπ

S(l)(u)Jn1

(
u − x

σ

)
du

= 1

σ

nσ−1∑
j=−nσ

∫ x j+1

x j
p(l)
j (u)Jn1

(
u − x

σ

)
du,

where for the second equation we used the fact that the integrand is 2πσ -periodic.
Now,

∫ x j+1

x j
p(l)
j (u)Jn1

(
u − x

σ

)
du − d

dx

∫ x j+1

x j
p(l−1)
j (u)Jn1

(
u − x

σ

)
du

=
∫ x j+1

x j

∂

∂u

(
p(l−1)
j (u)Jn1

(
u − x

σ

))
du

= p(l−1)
j (x j+1)Jn1

(
x − x j+1

σ

)
− p(l−1)

j (x j )Jn1

(
x − x j

σ

)
.
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Hence,

Bν,n1(x) − d

dx
Bν−1,n1(x)

= −
∫ π

−π

S(ν)(x + σ t)Jn1(t) dt + d

dx

∫ π

−π

S(ν−1)(x + σ t)Jn1(t) dt

= 1

σ

nσ−1∑
j=−nσ

(
p(ν−1)
j (x j )Jn1

(
x − x j

σ

)
− p(ν−1)

j (x j+1)Jn1

(
x − x j+1

σ

))

= 1

σ

nσ∑
j=−nσ+1

(
p(ν−1)
j (x j ) − p(ν−1)

j−1 (x j )
)
Jn1

(
x − x j

σ

)
,

where for the last equation we used the fact that p(l)
−nσ (x−nσ ) = p(l)

nσ (xnσ ).
Thus (5.3) is proved.
Since B0,n1(x) ≡ 0, the lemma follows by induction. 	


Remark 5.2 Since S is a continuous function, the (l = 1)-term of (5.2) vanishes, so
that the sum begins with l = 2.

6 Approximating a Piecewise Polynomial

For f ∈ C[a, b], let

�h( f , x) = �1
h( f , x) :=

{
f (x + h) − f (x), x, x + h ∈ [a, b]
0, otherwise,

and, for k > 1, let
�k

h( f , x) := �h

(
�k−1

h ( f , ·), x
)

.

Denote by

ωk( f , t; [a, b]) := sup
0≤h≤t
x∈[a,b]

∣∣∣�k
h( f , x)

∣∣∣ , k ≥ 1,

the kth modulus of smoothness of f . (See [1, Chapter 2, Section 7] for properties of
moduli of smoothness.)

Similarly, for f ∈ C̃ , the space of 2π -periodic functions on R, let �h( f , x) =
�1

h( f , x) := f (x + h) − f (x), and for k > 1, let �k
h( f , x) := �h

(
�k−1

h ( f , ·), x
)
.

Finally, denote by

ωk( f , t) := sup
0≤h≤t
x∈R

∣∣∣�k
h( f , x)

∣∣∣ , k ≥ 1,

the kth modulus of smoothness of f . Note that for such f ,ωk( f , t) = ωk( f , t; [−2π,

2π ]) for 0 < t < 2π/k.
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We call a closed interval E a proper interval, if E = [x j∗ , x j∗ ] for some indices j∗
and j∗, and x j∗ − x j∗ < 2π .

Let Ys := {yi }i∈Z, s ≥ 1, be a set of points, such that yi < yi+1 and yi+2s =
yi + 2π, i ∈ Z.

For each i ∈ Z, let ji be the index such that yi ∈ [x ji , x ji+1). We denote by O the
interior of the union

∪i∈Z[x ji−1, x ji+2].
We will write S ∈ �̃k,n(Ys), if S ∈ �̃k,n and p j±1 ≡ p j for x j ∈ O .

For x ∈ E and η ∈ N, denote

A(x, E) := ωk(S, 1/n; E) + ωk(S, 1/n)

(
1

n1 dist(x, R \ E)

)η

, (6.1)

and, finally, let

π(t) :=
2s∏
i=1

| sin 1
2 (t − yi )|

| sin 1
2 (t − yi )| + 1/n

. (6.2)

We devote this section to proving,

Theorem 6.1 Let n1 ≥ n and S ∈ �̃k,n(Ys). Then there is a trigonometric polynomial
T of degree < cn1, such that

‖S − T ‖ ≤ cωk(S, 1/n), (6.3)

and if E is a proper interval, then

|S′(x) − T ′(x)| ≤ cnπ(x)A(x, E), x ∈ E . (6.4)

Here and in the sequel c and C denote constants which depend only on some or all
the parameters k, s and η.

Let

Oν = (xν− , xν+), ν ∈ Z, (6.5)

be the connected components of the set O , enumerated from right to left, and set

Õν = (xν− + π/(2n), xν+ − π/(2n)). (6.6)

We need a few lemmas.

Lemma 6.2 Let n1 ≥ n, 1 ≤ ν ≤ 2s + 1, 1 ≤ σ ≤ k, S ∈ �̃k,n(Ys) η ≥ 2s and
Jn1 := Jn1,η. If E is a proper interval and Oμ ⊂ E, then for all x ∈ Õμ,

|Bν,n1(x)| ≤ Cnν A(x, E). (6.7)
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Proof Clearly, for any j0 ∈ Z, we may rewrite (5.2) as

Bν,n1(x) = 1

σ

ν∑
l=2

nσ+ j0∑
j=−nσ+ j0+1

x j /∈O

(
p(l−1)
j (x j ) − p(l−1)

j−1 (x j )
) dν−l

dxν−l
Jn1

(
x − x j

σ

)
,

wherewe use the fact that S is continuous and 2π -periodic, so that p j (x j ) = p j−1(x j ),
j ∈ Z, and p j ≡ p j−1 for all j such that x j ∈ O , and that Jn1(t/σ) is 2πσ -periodic.
In particular we may take j0 where x ∈ I j0 . Thus, without loss of generality, we

may assume that x ∈ I0 and j0 = 0. Then, for each j , −nσ + 1 ≤ j ≤ nσ , we have
|x−x j |

σ
≤ π .

By virtue of (1.5) we obtain for each ĵ , −nσ + 1 ≤ ĵ ≤ μ−,

ĵ∑
j=−nσ+1

∣∣∣∣J (ν−l)
n1

(
x − x j

σ

)∣∣∣∣ ≤ C
ĵ∑

j=−nσ+1

nν−l+1
1

(n1(x − x j ))2η−ν+l

≤ C
ĵ∑

j=−nσ+1

n1nν−l

(n1(x − x j ))η+1 ≤ C
nν−l

n1(n1(x − x ĵ )
η−1

ĵ∑
j=−nσ+1

1

(x − x j )2

≤ C
nν−l+1

(n1(x − x ĵ ))
η
.

Similarly, (1.5) implies for each j̆ , μ+ ≤ j̆ ≤ nσ ,

nσ∑
j= j̆

∣∣∣∣J (ν−l)
n1

(
x − x j

σ

)∣∣∣∣ ≤ C
nν−l+1

(n1(x j̆ − x))η
.

Let E = [x j∗ , x j∗ ]. ByMarkov’s inequality |p(l)
j (x j )−p(l)

j−1(x j )| ≤ cnlωk(S, 1/n; E),

if either j∗ < j ≤ μ−, orμ+ ≤ j < j∗. Also |p(l)
j (x j )− p(l)

j−1(x j )| ≤ cnlωk(S, 1/n)

for all j ∈ Z.
We have to separate the proof for σ = 1 and σ ≥ 2. We begin with the latter, so

that
−nσ + 1 ≤ j∗ ≤ μ− < μ+ ≤ j∗ ≤ nσ.

Hence,

j∗∑
j=−nσ+1

∣∣∣∣
(
p(l−1)
j−1 (x j ) − p(l−1)

j (x j )
)
J (ν−l)
n1

(
x − x j

σ

)∣∣∣∣ (6.8)

≤ Cωk(S, 1/n)
nl−1nν−l+1

(n1(x − x j∗))η
≤ Cωk(S, 1/n)nν

(
1

n1 dist(x, R \ E)

)η

,
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and

μ−∑
j= j∗+1

∣∣∣∣
(
p(l−1)
j−1 (x j ) − p(l−1)

j (x j )
)
J (ν−l)
n1

(
x − x j

σ

)∣∣∣∣ (6.9)

≤ Cωk(S, 1/n; E)
nl−1nν−l+1

(n1(x − x jμ− ))η
≤ Cωk(S, 1/n; E)nν .

Similarly,

nσ∑
j=μ+

∣∣∣∣
(
p(l−1)
j (x j ) − p(l−1)

j−1 (x j )
)
J (ν−l)
n1

(
x − x j

σ

)∣∣∣∣ ≤ Cnν A(x, E).

If σ = 1, then we may have −n + 1 ≤ j∗ < j∗ ≤ n, and the proof follows verbatim
as above. Otherwise, we may have that j∗ ≤ −n, so that (6.8) is irrelevant, while in
the summation in (6.9) we replace j = − j∗ + 1 by j = −n + 1, where we note that
μ− > −n; or we may have j∗ > n, so that we replace the upper end of the summation
j∗ with n, where we note that μ+ < n. This completes the proof. 	

Lemma 6.3 Let n1 ≥ n, 1 ≤ ν ≤ 2s + 1, S ∈ �̃k,n(Ys) η ≥ 2s and Jn1 := Jn1,η, and
let

T (x) := 1

π

∫ π

−π

(S(x) − (−1)k�k
t (S, x))Jn1(t) dt,

be the trigonometric polynomial of degree < ηn1. Then

‖S − T ‖ ≤ cωk(S, 1/n). (6.10)

If E is a proper interval, then

|S′(x) − T ′(x)| ≤ cnA(x, E), x ∈ E, (6.11)

where A(x, E) was defined in (6.1).
Moreover, if Oμ ⊂ E, then for all x ∈ Õμ and 1 ≤ ν ≤ 2s + 1,

|S(ν)(x) − T (ν)(x)| ≤ cnν A(x, E), x ∈ Õμ. (6.12)

Proof The inequality ‖S − T ‖ ≤ cωk(S, 1/n1) ≤ cωk(S, 1/n) is well-known.
Since S is a piecewise algebraic polynomial, it possesses all left- and right-hand

derivatives at each x j , j ∈ Z. Thus, if it happens that x + νt = x j for some j ∈ Z,
then �k

t (S
(ν), x) may not be well defined. But, for each fixed x , this may happen

only for finitely many values of t , and would not influence the integration below.
However, when we wish to estimate �k

t (S
(ν), x) we must consider the collection of

all (finitely many) possible values we may have by assigning the various appropriate
left- or right-hand values that may occur.
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Recall that in [2, Lemma5.5], it was proved for a proper interval E , that if x, x+kt ∈
E and (x + �t) /∈ {x j }∞j=−∞, 0 ≤ � ≤ k, then

|�k
t (S

(ν), x)| ≤ cnν(1 + n|t |)kωk(S, 1/n; E). (6.13)

Closely observing the proof of [2, Lemma 5.5], we see that (6.13) is valid also with
our above relaxation. In addition, the restriction on the length of E , is irrelevant for
the next inequality. Thus,we obtain,

|�k
t (S

(ν), x)| ≤ cnν(1 + n|t |)kωk(S, 1/n), |t | ≤ π. (6.14)

If x ∈ E , and d := dist(x, R \ E) ≥ π/(2n), then

∣∣∣∣
∫ π

π

�k
t (S

(ν), x)Jn1(t) dt

∣∣∣∣ (6.15)

≤
(∫

|t |≤ π
2kn

+
∫

π
2kn ≤|t |≤ d

k

+
∫

d
k ≤|t |≤π

)
|�k

t (S
(ν), x)|Jn1(t) dt

≤ cnνωk(S, 1/n; E)

∫
I
Jn1(t) dt + c

nν+k

n2β−1
1

ωk(S, 1/n; E)

∫ ∞
π
2kn

tk

t2β
dt

+ c
nν+k

n2β−1
1

ωk(S, 1/n)

∫ ∞
d
k

tk

t2β
dt

≤ cnν A(x, E).

In particular, this is the case when x ∈ Õμ.
Similarly, if 0 < d < π/(2n), then

|S′(x) − T ′
n(x)| = 1

π

∣∣∣∣
∫ π

−π

�k
t (S

′, x)Jn1(t) dt
∣∣∣∣ ≤ cnA(x, E).

Thus, (6.11) is proved.
Finally, if x ∈ Õμ ⊂ E , then by (6.15) and (6.7),

π |S(ν)(x) − T (ν)(x)| =
∣∣∣∣ dν

dxν

∫ π

π

�t (S, x)Jn1 (t) dt

∣∣∣∣
≤

∣∣∣∣
∫ π

π

�k
t (S

(ν), x)Jn1 (t) dt

∣∣∣∣
+

∣∣∣∣ dν

dxν

∫ π

π

�t (S, x)Jn1 (t) dt −
∫ π

π

�k
t (S

(ν), x)Jn1 (t) dt

∣∣∣∣
≤ cnν A(x, E) +

k∑
σ=1

(
k

σ

) ∣∣∣∣ dν

dxν

∫ π

π

S(x + σ t)Jn1 (t) dt −
∫ π

π

S(ν)(x + σ t)Jn1 (t) dt

∣∣∣∣
≤ cnν A(x, E),
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and (6.12) follows. 	

If a proper interval E is such that its endpoints are not in O , we will call it a Ys-proper
interval.

For each μ ∈ Z, let xμ◦ := 1
2 (xμ− + xμ−) be the midpoint of Oμ = (xμ− , xμ−),

and for each Ys-proper interval, such that Oμ ⊂ E , let

Aμ(E) := A(xμ◦ , E).

Since dist(xμ◦ , R \ E) ≤ C dist(x, R \ E), for all x ∈ Õμ, and dist(x, R \ E) ≤
C dist(xμ◦ , R \ E), for all x ∈ Oμ, it follows that

A(x, E) ≤ cAμ(E), x ∈ Õμ. (6.16)

and

Aμ(E) ≤ cA(x, E), x ∈ Oμ. (6.17)

Define

Aμ := min
E :Oμ⊂E

Aμ(E). (6.18)

Finally, denote Jμ := [xμ◦ − π, xμ◦ + π ], and let Mμ be the 2π -periodic function,
defined on Jμ by

Mμ(x) =
{
1, x ∈ Õμ,

1
n1|x−xμ◦ | x ∈ Jμ\Õμ.

Lemma 6.4 Let μ ∈ Z and n1 ≥ n. Then, for every Ys-proper interval E and each
x ∈ E, we have

AμM
η
μ(x) ≤ CA(x, E). (6.19)

Proof It is sufficient to prove (6.19) for x ∈ Jμ, and we let a Ys-proper interval E be
such that x ∈ E .

First, assume that Oμ � E . Thus, there is an endpoint of E , say γ , lying between
x and xμ◦ . Then dist(x, R \ E) ≤ |x − γ | ≤ |x − xμ◦ |.

Hence,

1

2
AμM

η
μ(x) ≤ ωk(S, 1/n)Mη

μ(x) = ωk(S, 1/n)

(
1

n1|x − xμ◦ |
)η

≤ ωk(S, 1/n)

(
1

n1 dist(x, R \ E)

)η

≤ A(x, E).

Otherwise, Oμ ⊂ E .
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If x ∈ Oμ, then (6.19) is trivial, since ‖Mμ‖ = 1, and by (6.17)

AμM
η
μ(x) ≤ Aμ ≤ Aμ(E) ≤ CA(x, E).

Similarly, if x ∈ E \ Oμ and |x − γ | ≤ |xμ◦ − γ |, where now γ is the endpoint of E ,
closest to xμ◦ , then

AμM
η
μ(x) ≤ Aμ ≤ Aμ(E) ≤ A(x, E),

that yields (6.19).
Finally, if x ∈ E \ Oμ and |x − γ | > |xμ◦ − γ |, then assume, without loss of

generality, that xμ◦ < γ . Then, it follows that x + 3π/(2n) ≤ xμ◦ ≤ γ − 3π/(2n).
Since g(u) := γ−u

xμ◦−u is an increasing function for u < xμ◦ , we have,

γ − x

xμ◦ − x
≤ γ − (xμ◦ − 3π/(2n)

xμ◦ − (xμ◦ − 3π/(2n)
= 2n

3π
(γ − (xμ◦ − 3π/(2n))

≤ 2n

3π
2(γ − xμ◦) < n(γ − xμ◦).

Hence,
1

n21|xμ◦ − γ ||x − xμ◦ | <
1

n1|x − γ | .

Therefore, AμM
η
μ(x) ≤ A(x, E). 	


We are ready to prove Theorem 6.1. It is easy to show that if an endpoint of
a proper interval E belongs to O , say, to its connected component Oμ, then
ωk(S, 1/n; E ∪ Oμ) ≤ cωk(S, 1/n; E), whence A(x, E ∪ Oμ) ≤ CA(x, E), x ∈ E .
Therefore, we prove Theorem 6.1 for Ys-proper intervals E and, without loss of gen-
erality, we assume that η ≥ 2s.

Proof of Theorem 6.1 We apply Theorem 1.3 for each fixed μ ∈ Z, with ε = 1/12,
and n1 instead of n and h such that,

Ȯμ := [xμ◦ − (s + 5/(12))h, xμ◦ + (s + 5/(12))h] := [xμ− + π/n, xμ+ − π/n].

Thus,
(2 s + 5/6)h = |Ȯμ| = |Oμ| − 2π/n.

Since 3π
n ≤ |Oμ| ≤ 6sπ

n , we conclude that

π

2(s + 1)n
< h <

6 sπ

2sn
= 3π/n,

and
(2 s + 7/6)h = |Oμ| − 2π/n + h/3 < |Oμ| − π/n.
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Hence,

Öμ := [xμ◦ − (s + 7/(12))h, xμ◦ + (s + 7/(12))h] ⊂ [xμ− + π/(2n), xμ+ − π/(2n)] = Õμ.

Note that all points yi ∈ Jμ lie either in Ȯμ or outside Öμ. Let l be the number of
points yi ∈ Ȯμ.

Let T be the polynomial, guaranteed by Lemma 6.3, and denote

Rμ := max
1≤i≤l

hi−1‖S(i) − T (i)‖Ȯμ
and f (x) := S′(x) − T ′(x)

Rμ

,

so that, for all 0 ≤ ν ≤ l − 1, we have

| f (ν)(x)| ≤ |S(ν+1)(x) − T (ν+1)(x)|
Rμ

≤
‖S(ν+1) − T (ν+1)|Ȯμ

hν‖S(ν+1) − T (ν+1)‖Ȯμ

= h−ν, x ∈ Ȯμ.

Thus, f satisfies (1.12). Hence, (1.14) through (1.17), imply the existence of a poly-
nomial dl , of degree < cn1, such that

dl (yi ) = f (yi ), yi ∈ Ȯμ, dl (yi ) = 0, yi ∈ Jμ\Öμ,

∣∣∣∣
∫ x

−π

dl (t) dt

∣∣∣∣ ≤ ch, x ∈ R,

and for all 0 ≤ ν ≤ 2s,

|d(ν)
l (x)| ≤ ch−νMη

μ(x), x ∈ R.

By (6.12), Rμ ≤ ch−1Aμ. Therefore, the polynomial

τμ := Rμ

∫ x

−π

dl(t) dt

satisfies

‖τμ‖ ≤ cωk(S, 1/n), (6.20)

τ ′
μ(yi ) = S′(yi ) − T ′(yi ), yi ∈ Oμ,

τ ′
μ(yi ) = 0, yi ∈ Jμ\Oμ,

and for all 1 ≤ ν ≤ 2s + 1,

|τ (ν)
μ (x)| ≤ cnν AμM

η
μ(x), x ∈ R,

where in the last inequality we used the fact that Ȯμ ⊂ Õμ.
Finally, Lemma 6.4 implies that for every Ys-proper interval E , we have

|τ (ν)
μ (x)| ≤ Cnν A(x, E) x ∈ E . (6.21)
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We will prove that the desired polynomial T may be taken in the form

T := T +
∑
μ s.t.

xμ◦∈[−π,π)

τμ.

Indeed, (6.3) readily follows by (6.10) and (6.20).
We observe that,

c ≤ π(t) ≤ 1, t /∈ Õ, where Õ := ∪μ∈Z Õμ,

where π(t) was defined in (6.2), and combined with (6.11) and (6.21) with ν = 1, we
obtain (6.4) for x ∈ E \ Õ .

On the other hand, if x ∈ Õμ∗ ⊂ E , for someμ∗ ∈ Z, then let yi� ∈ Oμ∗ , 1 ≤ � ≤ l,
and note that yi� ∈ Õμ∗ . Evidently, S′(yi� ) = T ′(yi� ), 1 ≤ � ≤ l.

Applying (6.12) and (6.21) for all μ, all with ν = l + 1, we obtain

|S(l+1)(x) − T (l+1)(x)| ≤ cnl+1A(x, E), x ∈ Õμ∗ .

Hence, for x ∈ Õμ∗ ,

|S′(x) − T ′(x)|∏l
�=1 |x − yi� |

= [x, yi1 , . . . , yil ; S′ − T ′] = | f (l+1)(θ)|
l! ≤ Cnl+1A(θ, E) ≤ Cnl+1Aμ∗ (E).

Thus, by (6.17), we conclude that

|S′(x) − T ′(x)| ≤ cnl+1Aμ∗ (E)

l∏
�=1

|x − yi� | ≤ cnπ(x)Aμ∗ (E) ≤ cnπ(x)A(x, E), x ∈ Õμ∗ .

This completes the proof. 	
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