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Abstract
Let V be a variety in F

d
q and E ⊂ V . It is known that if any line passing through the

origin contains a bounded number of points from E , then
∣
∣
∏

(E)
∣
∣ = |{x · y : x, y ∈

E}| � q whenever |E | � q
d
2 . In this paper, we show that the barrier d

2 can be broken
when V is a paraboloid in some specific dimensions. Themain novelty in our approach
is to link this question to the distance problem in one lower dimensional vector space,
allowing us to use recent developments in this area to obtain improvements.

Keywords Product of sets · Finite fields · Extension estimates

Mathematics Subject Classification 52C10 · 11T23

1 Introduction

Let Fq be a finite field of order q, where q is a prime power. For E, F ⊂ F
d
q , the set

of dot products between E and F is defined by
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∏

(E, F) := {x · y : x ∈ E, y ∈ F} ⊂ Fq .

When E = F , we write
∏

(E) instead of
∏

(E, F). In [3], Hart et al. studied the ques-
tion of finding the smallest exponentα such that if |E ||F | � qα , then | ∏(E, F)| � q.
Here and throughout the paper, we use the notation X � Y if there exists an absolute
constant c > 0 such that X ≥ cY .

By using discrete Fourier analysis, they proved the following result.

Theorem 1.1 (Hart–Iosevich–Koh–Rudnev [3]) Let E be a set in F
d
q . Suppose that

|E | > q
d+1
2 , then

Fq \ {0} ⊂
∏

(E).

Moreover, this result is sharp in the following sense:

1. If Fq is a quadratic extension, for any ε > 0, there exists E ⊂ F
d
q of size q

d+1
2 −ε

such that
∣
∣
∏

(E)
∣
∣ = o(q).

2. If d ≡ 3 mod 4 and q is large enough, then for any t �= 0, there exists E ⊂ F
d
q

of size about q
d+1
2 such that t /∈ ∏

(E).

This theorem says that the exponent d+1
2 cannot be improved if we want to have

all non-zero dot products. It is natural to ask under what additional conditions, the
exponent d+1

2 can be improved if we are only interested in a positive proportion of all
elements in the field. In the same paper, Hart et al. showed that when E is a subset
of the unit sphere, then the exponent d

2 is enough. This result can be extended for
general sets E ⊂ F

d
q whenever E does not contain many points on any lines through

the origin. We refer the reader to [3, Section 3.1] and [11, Theorem 1.3] for more
details and discussions. To the best of our knowledge, no improvement of d/2 has
been made in the literature for spheres or other varieties.

In this paper, we are interested in finding varieties V for which the threshold d
2 can

be further improved. It follows from our main theorem (Theorem 1.2) that paraboloids
in some specific dimensions provide the first model for this type question. The main
novelty in our approach is to link this question to the distance problem in one lower
dimensional vector space, allowing us to use recent developments in this area to obtain
improvements. To state our main theorems, we need to recall some notations from
Fourier restriction theory.

Let (Fd
q , dx) be the d-dimensional vector space over Fq endowed with the normal-

ized counting measure dx , and (Fd
q , dc) be the dual space with the counting measure

dc. For complex-valued functions f : (Fd
q , dx) → C and g : (Fd

q , dc) → C, we define

∫

f (x)dx := q−d
∑

x∈Fdq
f (x),

∫

g(c)dc :=
∑

c∈Fdq
g(c).
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Let V be an algebraic variety in (Fd
q , dx), we define the normalized surface measure

dσ on V by

dσ(x) := qd |V |−11V (x)dx .

So, for any function f : V → C,

∫

f (x)dσ(x) := |V |−1
∑

x∈V
f (x).

For a function f : (Fd
q , dx) → C, the Fourier transform f̂ is defined on the space

(Fd
q , dc) by

f̂ (c) :=
∫

χ(−x · c) f (x)dx = q−d
∑

x∈Fdq
χ(−x · c) f (x), c ∈ (Fd

q , dc).

Similarly, for a function g : (Fd
q , dc) → C, its Fourier transform is defined on the

space (Fd
q , dx) by

ĝ(x) :=
∫

χ(−x · c)g(c)dc =
∑

c∈Fdq
χ(−x · c)g(c).

With the normalized surface measure dσ on V and a function f : (Fd
q , dx) → C,

we define the inverse Fourier transform ( f dσ)∨ of the measure f dσ by

( f dσ)∨(c) :=
∫

χ(c · x) f dσ(x) = |V |−1
∑

x∈V
χ(c · x) f (x),

for c ∈ (Fd
q , dc).

The L2 → Lr extension problem for the variety V is to determine all ranges of r
such that the following inequality

|| f dσ∨||Lr (Fdq ,dc) ≤ C || f ||L2(V ,dσ) (1)

holds for any function f on V . We note that in the above inequality, the constant C is
independent of q (the size of Fq ). We use the notation R∗

V (2 → r) � 1 to indicate
that the estimate (1) holds.

There is a series of papers studying L2 → Lr estimates for various varieties in the
literature, for instance, see [5, 8, 9, 12] and the references therein. In this paper, we
require estimates associated to spheres of non-zero radius.

For a positive integer d ≥ 3 and a non-zero element r ∈ Fq , the paraboloid Pd
and the sphere Sr centered at origin of radius r in F

d
q are defined by the following
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formulas:

Pd :=
{

x = (x1, . . . , xd) : xd = x21 + · · · + x2d−1

}

,

and

Sr :=
{

x = (x1, . . . , xd) : x21 + · · · + x2d = r
}

.

Our main result is as follows.

Theorem 1.2 Let E be a set in Pd with d ≡ 3 mod 4 and q ≡ 3 mod 4. Assume
that the extension conjecture

|| f dσ∨||
L

2d+2
d−1 (Fd−1

q ,dc)
� || f ||L2(Sr ,dσ),

holds for any Sr ⊂ F
d−1
q and r �= 0, then we have

∣
∣
∣

∏

(E)

∣
∣
∣ � q,

whenever |E | � q
(d−1)2+2(d−1)

2(d−1)+2 = q
d
2 − 1

2d .

It is worth noting that the same conclusion does not hold when d is even. When
d ≡ 3 mod 4 and q ≡ 3 mod 4, we conjecture that the sharp exponent should be
(d − 1)/2. To support these claims, we provide constructions in the last section. Note
that the extension conjecture was proved in [1] to be true in F

2
q . As a result, we have

the following corollary.

Corollary 1.3 Let E be a set in P3 ⊂ F
3
q with q ≡ 3 mod 4. Suppose |E | � q

3
2− 1

6 ,
then we have

∣
∣
∣

∏

(E)

∣
∣
∣ � q,

If we assume q is an odd prime number, then by using a recent theorem on bisector
line energy due to Murphy et al. [10], we can get a better exponent, namely, 54 instead
of 4

3 .

Theorem 1.4 Let Fp be a prime field, and E be a set in P3 in F3
p with p ≡ 3 mod 4.

Suppose that |E | � p
3
2− 1

4 , then

∣
∣
∣

∏

(E)

∣
∣
∣ � p.

Moreover, if |E | � p5/4 and |E\{(x1, x2, 0) : (x1, x2) ∈ F
2
p}| � |E |, then we also

have
∣
∣
∣

∏

(E)

∣
∣
∣ � |E | 23 .
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It is not clear to us how the method of this paper can be adapted for other varieties,
say spheres, we hope to address this question in a sequel paper. We also note that for
spheres, the dot product set

∏
(E) is of the same size as the distance set �(E), where

�(E) := {||x − y|| : x, y ∈ E}. The exponent d/2 has been obtained in [3, Theorem
2.8].

2 Preliminary: Extension Estimates

As mentioned in the introduction, the L2 → Lr extension problem for the variety V
is to determine all ranges of r such that the following inequality

∣
∣
∣
∣ f dσ∨∣

∣
∣
∣
Lr (Fdq ,dc) ≤ C || f ||L2(V ,dσ) (2)

holds for any function f on V . The notation R∗
V (2 → r) � 1 means the above

estimate holds.
In this paper, we only need extension results for spheres. The following is the well-

known L2 → Lr extension conjecture in F
n
q . We refer the reader to [7] for more

discussions.

Conjecture 2.1 For even n ≥ 2, let Sr be the sphere centered at the origin of radius r
with r �= 0 in Fn

q . We have the following L2 → Lr extension estimate

R∗
Sr

(

2 → 2n + 4

n

)

� 1.

It was proved in [1] that this conjecture is true for n = 2, namely,

Theorem 2.2 Let Cr be the circle centered at the origin of radius r with r �= 0 in F2
q .

We have the following L2 → Lr extension estimate

R∗
Cr

(2 → 4) � 1.

In higher dimensions, the best current result is

R∗
Sr

(

2 → 2n + 2

n − 1

)

� 1, (3)

which is known to be sharp in odd dimensions. A proof of this estimate can be found
in [4].

Although Conjecture 2.1 is still wide open in dimensions n ≥ 4, for the sphere of
radius 0, denoted by S0, it has been shown in [6] that the conjecture holds true for
particular n and q below.
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Theorem 2.3 Let S0 be the sphere centered at the origin of radius 0. Assume n ≡ 2
mod 4 and q ≡ 3 mod 4, then the following L2 → Lr extension estimate holds:

R∗
S0

(

2 → 2n + 4

n

)

� 1.

With these results in hand, we are ready to prove Theorem 1.2 in the next section.

3 Proof of Theorem 1.2

The proof of Theorem 1.2 contains two main steps: reducing to the triangle problem
and bounding the number of isosceles triangles.

3.1 Reducing to the Isosceles Triangles Problem

By the Cauchy–Schwarz inequality, we observe that

∣
∣
∣

∏

(E)

∣
∣
∣ � |E |3

|D(E)| , (4)

where D(E) is the number of triples (x, y, z) ∈ E3 such that x · y = x · z. To see this,
first, by Cauchy–Schwarz inequality, we have

∣
∣
∣

∏

(E)

∣
∣
∣ ≥ |E |4

|M(E)| , (5)

where M(E) = {(x, y, w, z) ∈ E4 : x · y = w · z}. Thus it suffices to show |M(E)| ≤
|E ||D(E)|. Now for a given t and x ∈ E , write π t

x (E) = {y ∈ E, x · y = t}. Then,
we observe that

|M(E)| =
∑

t

(
∑

x

|π t
x (E)|

)2

.

By Cauchy–Schwarz inequality, we have

∑

t

(
∑

x

|π t
x (E)|

)2

≤
∑

t

|E |
∑

x

|{(y, z) ∈ E2, x · y = x · z = t}| = |E ||D(E)|.

For any point x = (x1, . . . , xd) ∈ E ⊂ Pd , we define x := (x1, . . . , xd−1), and let
E := {x : x ∈ E} ⊂ F

d−1
q .

Under our assumptions on the set E , without loss of generality, we may assume
that ||x || �= 0 for all x ∈ E .
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For x, y, z ∈ Pd , the identity x · y = x · z can be rewritten as

(x, ||x ||) · (y − z, ||y|| − ||z||) = 0.

This implies that

(
x

||x || , 1
)

· (y − z, ||y|| − ||z||) = 0,

which gives

(
x

||x || , 1
)

· (y, ||y||) =
(

x

||x || , 1
)

· (z, ||z||) .

So ∥
∥
∥
∥

−x

2||x || − y

∥
∥
∥
∥

=
∥
∥
∥
∥

−x

2||x || − z

∥
∥
∥
∥

. (6)

Set F ′ :=
{ −x
2||x || : x ∈ E

}

⊂ F
d−1
q .

The Eq. (6) counts the number of isosceles triangles with one vertex from F ′ and
the two other vertices (base) from E .

In other words, to bound the size of D(E) from above, it is enough to count the
number of isosceles triangles with vertices in F ′ and E satisfying the relation (6).

3.2 Bounding the Number of Isosceles Triangles

Given X ⊂ F
d
q and y ∈ F

d
q , we first count the number of isosceles triangles with a

given apex.

Lemma 3.1 Let X ⊂ F
n
q and y ∈ X . Then we have

∑

x,z∈X :||x−y||=||z−y||�=0

1 � |X |2
q

+ qn
∑

r∈F∗
q

∣
∣
∣
∣
∣
∣

∑

m∈Sr
X̂(m)χ(y · m)

∣
∣
∣
∣
∣
∣

2

+qn

∣
∣
∣
∣
∣
∣

∑

||m||=0,m �=0

X̂(m)χ(y · m)

∣
∣
∣
∣
∣
∣

2

.

Proof Let O(n) be the orthogonal group of n × n matrices in Fq . It is well-known

that |O(n)| = (1 + o(1))q
n2
2 , and the stabilizer of any non-zero vector in F

n
q is

of the size |O(n − 1)|. It is not hard to prove that |O(n)| = |S1||O(n − 1)| =
(1+ o(1))qn−1|O(n − 1)|. We note that O(d) acts transitively on the set of non-zero
vectors of any given norm.
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We first note that if there is an x ∈ X with y − x ∈ Sr , the sphere with radius r in
F
n
q , then writing y − x = x ′, we have a one-to-one correspondence between x ′ ∈ Sr

and y − x ′ ∈ X . Hence, we can write

∑

x,z∈X :||x−y||=||z−y||�=0

1 =
∑

r∈F∗
q

∑

x∈Sr
X(y − x)

∑

z∈Sr
X(y − z)

≤ 1

|O(n − 1)| ·
∑

θ∈O(n)

∑

r∈F∗
q

∑

x∈Sr
X(y − x)X(y − θx).

Applying the Fourier inversion theorem to functions X(y − x), X(y − θx), that is

X(y − x) =
∑

m∈Fnq
X̂(m)χ(m(y − x))

and

X(y − θx) =
∑

m′∈Fnq
X̂(m′)χ(m′(y − θx)).

We have

∑

x,z∈X :||x−y||=||z−y||�=0

1 ≤ 1

|O(n − 1)| ·
∑

θ∈O(n)

∑

m,m′∈Fnq
X̂(m)X̂(m′)χ(y · (m + m′))

∑

x∈Fnq
χ(−m · x − m′ · θx).

By the orthogonality of χ , we compute the above sum in x ∈ F
d
q , then the size of the

right-hand side inequality becomes

qn

|O(n − 1)| ·
∑

θ∈O(n)

∑

m∈Fnq
X̂(m)X̂(−θm)χ(y · (m − θm)),

which can be decomposed as the sum of

qn

|O(n − 1)|
∑

θ∈O(n)

∑

m∈S0
X̂(m)X̂(−θm)χ(y · (m − θm))

and

qn

|O(n − 1)|
∑

θ∈O(n)

∑

r∈F∗
q

∑

m∈Sr
X̂(m)X̂(−θm)χ(y · (m − θm)),
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which is equal to

= qn

|O(n − 1)|
∑

θ∈O(n)

∑

m∈S0
X̂(m)X̂(−θm)χ(y · (m − θm)) + qn

∑

r∈F∗
q

∣
∣
∣
∣
∣
∣

∑

m∈Sr
X̂(m)χ(y · m)

∣
∣
∣
∣
∣
∣

2

� |X |2
q

+ qn
∑

r∈F∗
q

∣
∣
∣
∣
∣
∣

∑

m∈Sr
X̂(m)χ(y · m)

∣
∣
∣
∣
∣
∣

2

+ qn

∣
∣
∣
∣
∣
∣

∑

||m||=0,m �=0

X̂(m)χ(y · m)

∣
∣
∣
∣
∣
∣

2

.

��
Lemma3.1 shows that the number of isosceles triangles can be reduced to extension-

type estimates associated to spheres. Thus, we now can apply results in Sect. 2 to derive
the next theorem.

Theorem 3.2 For n ≡ 2 mod 4 and X ⊂ F
n
q with q ≡ 3 mod 4. Assume that

Conjecture 2.1 holds, then the number of isosceles triangles is bounded by

� |X |3
q

+ qd−1|X | n+4
n+2 + q

n−2
2 |X |2.

Proof Let T nde(X)be the number of isosceles triangles in E of the form (x, y, z) ∈ X3

such that ||x − y|| = ||x − z|| �= 0. Let T de(X) be the number of triangles with at
least one side of zero length.

To bound T de(X), we will show that the number of pairs (x, y) ∈ X × X such that
||x − y|| = 0 is at most

|X |2
q

+ q
n−2
2 |X |.

Once we have the bound above, then

∑

x,y,z∈X :||x−y||=||z−y||=0

1 ≤
∑

z∈X

∑

x,y∈X :||x−y||=0

1 ≤ |X |3
q

+ q
n−2
2 |X |2.

Now write

∑

x,y∈X :||x−y||=0

1 =
∑

x,y∈Fnq
X(x)X(y)S0(x − y),

which, by the Fourier inversion formula, becomes

∑

x,y∈Fnq
X(x)X(y)

∑

m∈Fnq
Ŝ0(m)χ((x − y)m),
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which is
∑

m∈Fnq |X̂(m)|2 Ŝ0(m). In order to proceed further, we recall the following
lemma on the Fourier transform of the sphere of zero radius from [6].

Lemma 3.3 [6] Let S0 be the sphere with zero radius in F
n
q . Assume that n = 4k + 2

for k ∈ N and q ≡ 3 mod 4. Then we have

Ŝ0(m) := q−n
∑

y∈S0
χ(m · y) = q−1δ0(m) − q

−(n+2)
2

∑

r �=0

χ(r‖m‖),

where δ0(m) = 1 for m = (0, . . . , 0), and 0 otherwise.

We now continue the proof of Theorem 3.2 by inserting the formula for Ŝ0(m).
Thus we get

∑

m∈Fnq
|X̂(m)|2q−1δ0(m) − q

−(n+2)
2

∑

m∈Fnq
|X̂(m)|2

∑

r �=0

χ(r‖m‖).

Applying the orthogonality relation of χ to the sum over r �= 0, we obtain

|X̂(0, . . . , 0)|2q−1 − q
−(n+2)

2 (q − 1)
∑

‖m‖=0

|X̂(m)|2 + q
−(n+2)

2
∑

‖m‖�=0

|X̂(m)|2

= q−1|X |2 − q
−(n+2)

2 q
∑

‖m‖=0

|X̂(m)|2 + q
−(n+2)

2
∑

m∈Fnq
|X̂(m)|2.

Since
∑

m∈Fnq |X̂(m)|2 = qn|X | and the middle term above is negative, we get that

∑

m∈Fnq
|X̂(m)|2 Ŝ0(m) ≤ |X |2

q
+ q

n−2
2 |X |.

Hence,

T de(X) � |X |3
q

+ q
n−2
2 |X |2.

To bound T nde, we observe that

T nde(X) =
∑

y∈X

∑

x,z∈X :
||x−y||=||z−y||

1.

Thus, applying Lemma 3.1, it suffices to bound the following sums:

∑

y∈X

∣
∣
∣
∣
∣
∣

∑

m∈Sr
X̂(m)χ(y · m)

∣
∣
∣
∣
∣
∣

2

with r �= 0,
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and

∑

y∈X

∣
∣
∣
∣
∣
∣

∑

m∈S0
X̂(m)χ(y · m)

∣
∣
∣
∣
∣
∣

2

.

Set f = X̂ and use Fourier inversion formula, the first sum becomes

∑

y∈X

∣
∣
∣
∣
∣
∣

∑

m∈Sr
X̂(m)χ(y · m)

∣
∣
∣
∣
∣
∣

2

= |Sr |2
∑

y∈X
| f dσ∨(y)|2

≤ |Sr |2 · |X | 2
n+2 · || f dσ∨||2

L
2n+4
n (Fnq ,dc)

.

Assuming Conjecture 2.1 holds, i.e.

∣
∣
∣
∣ f dσ∨∣

∣
∣
∣

L
2n+4
n (Fnq ,dc)

� || f ||L2(Sr ,dσ),

then we get

∑

y∈X

∣
∣
∣
∣
∣
∣

∑

m∈Sr
X̂(m)χ(y · m)

∣
∣
∣
∣
∣
∣

2

= |Sr |2
∑

y∈X
| f dσ∨(y)|2

≤ |Sr |2 · |X | 2
n+2 · ∣

∣
∣
∣ f dσ∨∣

∣
∣
∣2

L
2n+4
n (Fnq ,dc)

≤ |Sr |2 · |X | 2
n+2 · || f ||2L2(Sr ,dσ)

= |Sr | · |X | 2
n+2

∑

m∈Sr
|X̂(m)|2.

Similarly, using Theorem 2.3, we have the same bound for the second sum. Using
the fact that |Sr | = (1 + o(1))qn−1, we have

T nde(X) � |X |3
q

+ qn−1
∑

r∈Fq
|X | 2

n+2
∑

m∈Sr
|X̂(m)|2

= |X |3
q

+ qn−1|X | n+4
n+2 .

Putting the bounds of T nde(X) and T de(X) together gives us the desired estimate. ��

3.3 Concluding the Proof

Setting X = E ′ ∪ F ′ ⊂ F
d−1
q . We have |X | ≤ 2|E |. It is not hard to see that D(E) is

bounded by the number of isosceles triangles in X . So applying Theorem 3.2 and (5)
concludes the proof.
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Remark 3.1 If we use the estimate (3) in place of Conjecture 2.1 in the above argument,

then we obtain the condition |E | � q
d
2 in the statement of Theorem 1.2.

4 Proof of Theorem 1.4

We follow the proof of Theorem 1.2 identically, except that we have a more effective
bound on the number of isosceles triangles in two dimensions due to Murphy et al.
[10].

Given a set X ⊂ F
2
p, we say that a triple (x, y, z) ∈ X3 forms a non-degenerate

isosceles triangle if ||x − y|| = ||x − z|| and ||y − z|| �= 0. If ||x − y|| = ||x − z||
and ||y − z|| = 0, we say the triangle is degenerate.

Theorem 4.1 (Non-degenerate isosceles triangles) Let X be a set in F
2
p with |X | ≤

p4/3. Let T ∗(X) be the number of non-degenerate isosceles triangles in X. We have

T ∗(X) − |X |3
p

� min
{

p2/3|X |5/3 + p1/4|X |2, |X |7/3
}

Hence,

1. if |X | � p5/4,

T ∗(X) � |X |3
p

.

2. if |X | � p5/4, then

T ∗(X) � |X |7/3.

Since we assumed that p ≡ 3 mod 4, the number of degenerate isosceles triangles
is at most � |E |2. Hence,
1. if |E | � p5/4,

|D(E)| � |E |3
p

+ |E |2

2. if |E | � p5/4, then

|D(E)| � |E |7/3.

These give us the desired bounds of Theorem 1.4. The first construction tells us
that it is impossible to break d

2 in even dimensions.
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5 Constructions and Remarks

We have the following constructions on the sharpness of Theorem 1.2.

Construction 5.1 Assume d is even, for any ε > 0, there exists a set E ⊂ Pd such that

|E | ∼ q
d
2 −ε such that |∏(E)| = o(q).

Proof We first consider the case d ≡ 2 mod 4. We know from Lemma 5.1 in [3] that
there exist d−2

2 nonzero vectors v1, . . . , v d−2
2

in Fd−2
q which are mutually orthogonal,

i.e. vi · v j = 0 for all 1 ≤ i ≤ j ≤ d−2
2 . Let S be the subspace spanned by these

(d−2)/2 vectors. Set E = S×{(x, x2) : x ∈ A},where A is amultiplicative subgroup
of F∗

q of size q1−ε . Then one can directly check that

∏

(E) ⊂ a + a2,

for a ∈ A. This shows that |∏(E)| ∼ q1−ε and |E | ∼ q
d
2 −ε .

When d ≡ 0 mod 4, we use Lemma 5.1 from [3] again to obtain d
2 vectors

that are mutually orthogonal in F
d
q . We denote these vectors by u1, . . . , u d

2
. Let A

be a multiplicative subgroup of F∗
q of size q1−ε . We note that v d

2
is of the form

(0, . . . , 0, 1, i), where i2 = −1. Define

S := Fqv1 + · · · + Fqv d
2 −1 + Av d

2
.

Set

E = {(

x1, . . . , xd−1,−x2d
) : (x1, . . . , xd) ∈ S

}

.

Since |S| ∼ q
d
2 −ε , we have |E | ∼ q

d
2 −ε .

For (x1, . . . , xd−1,−x2d ) and (y1, . . . , yd−1,−y2d ) in E , we have their product is

x1y1 + · · · + xd−1yd−1 − x2d y
2
d = −xd yd − x2d y

2
d .

So the product value becomes x + x2 for x ∈ A. This implies |∏(E)| ∼ q1−ε . ��
The next construction provides the information that the best exponent of Theo-

rem 1.2 one can expect is d−1
2 .

Construction 5.2 Assume d ≡ 3 mod 4 and q ≡ 3 mod 4, for any ε > 0, there

exists a set E ⊂ Pd such that |E | ∼ q
d−1
2 −ε such that |∏(E)| = o(q).

Proof Following the first case of Construction 5.1, we may find a subspace S
′ ⊂ F

d−3
q

of size q
d−3
2 , with the property that any pair of its vectors are mutually orthogonal.

Let S ⊂ F
d−2
q be the set one gets by adjoining 0 as the last entry of elements of S

′
.

Then, by choosing E in the same way as the first case of Construction 5.1, we get

| ∏(E)| ∼ q1−ε while |E | ∼ q
d−1
2 −ε ��
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Remark 5.1 It is well-known that the L2-norm of the distance problem, i.e. the number
of quadruples (x, y, z, w) ∈ E4 such that ||x − y|| = ||z − w||, can be bounded by
using extension estimates, see [7, Theorem 1.7] for example. By using the Cauchy–
Schwarz inequality, the number of such quadruples is at most |E | times the number
of isosceles triangles in E . In other words, Theorem 3.2, provided in Sect. 3, offers a
stronger form of this problem.

Remark 5.2 In the statement of Corollary 1.3, if q ≡ 1 mod 4 then we find that
the exponent 4

3 is not good enough to guarantee that the number of isosceles triangles
(including both degenerate and non-degenerate) is at most� |E |3/q. Let i2 = −1 and
E be a set of points on |E |/M parallel lines of slope i , where each line contains exactly
M points. So, the number of degenerate isosceles triangles is at leastM3 · |E |

M = M2|E |,
which is bigger than |E |3/q if |E | ≤ q1/2M . For example, if |E | ∼ q4/3, one can

take M = q
5
6+ε for any ε > 0. The same happens for the case of Theorem 1.4. In

other words, if one wishes to remove the condition q ≡ 1 mod 4, then the best hope
with this approach is to show that the inequality (5) still holds when replace D(E) by
D∗(E), where D∗(E) is the set of triples (x, y, z) ∈ D(E) with ||y − z|| �= 0.

Remark 5.3 We note that by using a bisector line energy estimate due to Hanson et al.
[2, Theorem 3], the proof of Theorem 1.4 also implies Corollary 1.3. However, the
method in [2] is very difficult to extend to higher dimensions. This explains why we
need to employ techniques from Fourier extension/restriction theory to prove Theo-
rem 1.2.

Remark 5.3 leads us to the following question:
Question: Is it possible to use results from Fourier extension/restriction theory to

get a non-trivial result on bisector hyperplane energy in F
d
q?
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