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Abstract
Let G be a compact group and G/H a homogeneous space where H is a closed sub-
group ofG. Define an operator TH : C(G) → C(G/H) by TH f (t H) = ∫

H f (th) dh
for each t H ∈ G/H . In this paper, we extend TH to a norm-decreasing operator
between L p-spaces with a vector measure for each 1 ≤ p < ∞. This extension will
be used to derive properties of invariant vector measures on G/H . Moreover, a defi-
nition of the Fourier transform for L p-functions with a vector measure is introduced
on G/H . We also prove the uniqueness theorem and the Riemann–Lebesgue lemma.

Keywords Vector measure · Homogeneous space · Compact group · Fourier
transform

Mathematics Subject Classification 46G10 · 43A15 · 43A85

1 Introduction

Let G be a topological group which is compact and Hausdorff. Consider a homoge-
neous space G/H where H is a closed subgroup of G. If we denote the normalized
Haar measures on G and H by m and dh respectively, then there is an induced left
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invariant Radon measure m̃ on G/H satisfying Weil’s formula:

∫

G/H

∫

H
f (th) dh dm̃(t H) =

∫

G
f dm ( f ∈ C(G)).

In this setting, Farashahi [5] introduced a method to obtain many of the well-known
results on G/H from the ones on G. This method relies unavoidably on an extension
of the operator TH : C(G) → C(G/H) given by TH f (t H) = ∫

H f (th) dh. The
extension is in fact a norm-decreasing operator from L p(G,m) onto L p(G/H , m̃)

where 1 ≤ p < ∞. The crucial property for this method is the surjectivity of the
extension as it provides a connection to all L p-functions on G/H to those on G.
The extension was used to study abstract Fourier analysis on homogeneous spaces in
various aspects such as convolutions, Fourier transform operators, Fourier series and
measure algebras, see [6–9].

A vector measure is a measure taking values in a Banach space. There are many
studies about functions in L p-spaces of a compact group associated to a vectormeasure
and invariant properties under the group operations of the vector measure itself. For
example, the Fourier transform and the convolution along with invariant properties
were studied in [1–3] under the condition that G is an abelian compact group. Then
they were generalized to a non-abelian case in [13, 14].

Let ν be a vector measure on G. In this paper, we initiate a study of an extension
of the operator TH : C(G) → C(G/H) to an operator with the domain L p(G, ν).
However, the codomain C(G/H) must be extended as well. For this purpose, we will
construct a corresponding vector measure ν̃ on G/H and show that the codomain of
the extended operator is L p(G/H , ν̃). We investigate whether the extended operator is
surjective and whether Weil’s formula is valid. It turns out that these are true for some
vector measure ν. Fortunately, it is sufficient for the study of functions in L p(G/H , μ)

for any vector measure μ on G/H . We will employ the extension to obtain properties
of invariant vector measures on G/H . Moreover, we introduce a new definition of a
Fourier transform of functions in L1(G, ν) which is a variant definition of [13]. In our
definition, ν is taking values in a Banach space while in [13] ν is taking values in an
operator space. The uniqueness theorem of the Fourier transform and the Riemann–
Lebesgue lemma are considered. Finally, we provide an analogous definition for a
Fourier transform of functions in L1(G/H , μ) and once more employ the extension
to obtain relations between the Fourier transforms of functions on G and G/H .

This paper is organized as follows. We give preliminary background in Sect. 2.
In Sect. 3, an extension of the operator TH to the space L p(G, ν) is studied along
with its properties. Then the obtained properties of the extension will be used to
derive properties of invariant vector measures on G/H in Sect. 4. There are three
types of invariant vector measures we consider in this paper: translation invariant,
norm integral invariant and semivariation invariant measures. Section5 concerns the
Fourier transforms of functions on G and G/H .
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2 Preliminaries

2.1 Fourier Analysis with Haar Measures

Let G be a compact group with the normalized Haar measure m. The dual space Ĝ
of G is the set of all unitary equivalence classes of irreducible unitary representations
of G. For each [π ] ∈ Ĝ, the representation space of π is denoted by Hπ with the
dimension dπ = dimHπ . For [π ] ∈ Ĝ and u, v ∈ Hπ , the function πu,v : G → C

given by πu,v(t) = 〈π(t)v, u〉 is called a matrix element of π . We write πi j for
πei ,e j . Denote by Trig(G) the set of all finite linear combinations of matrix elements
of irreducible representations. Note that Trig(G) is dense in C(G) in the uniform
norm. For f ∈ L1(G,m) and [π ] ∈ Ĝ, the Fourier transform of f is defined in the
weak sense as

FG( f )(π) = f̂ (π) =
∫

G
f (t)π(t)∗ dm(t) ∈ B(Hπ ).

Given any collection {Xi }i∈I of Banach spaces where each Xi is equipped with the
norm ‖ · ‖i . The space �∞(I ; Xi ) = {x ∈ ∏

i∈I Xi : supi∈I ‖xi‖i < ∞} is a Banach
space with the norm ‖x‖∞ = supi∈I ‖xi‖i . The set c0(I ; Xi ) of all x = (xi ) for which
{i ∈ I : ‖xi‖i > ε} is finite for any ε > 0 is a closed subspace of �∞(I ; Xi ). By [12,
Theorem 28.40], the Fourier transform operator FG is a bounded linear operator from
L1(G,m) into c0(Ĝ;B(Hπ )) with ‖ f̂ (π)‖ ≤ ‖ f ‖L1(G,m). For more details, see [11].

Let H be a closed subgroup of G and G/H the homogeneous space of left cosets
equipped with the quotient topology. We denote the quotient map by q : G → G/H .
For ϕ : G/H → C, we write ϕq : G → C for a function given by ϕq(t) = ϕ(t H).
Let dh be the normalized Haar measure on H . It is well-known that there is a unique
(up to scalar) invariant Radon measure m̃ on G/H satisfying Weil’s formula:

∫

G/H

∫

H
f (th) dh dm̃(t H) =

∫

G
f dm ( f ∈ C(G)).

In fact, m̃ is the pushforward measure of m by the quotient map q. Define a bounded
operator TH : C(G) → C(G/H) by

TH f (t H) =
∫

H
f (th) dh (t H ∈ G/H , f ∈ C(G)).

According to [5], for any 1 ≤ p < ∞, the operator TH can be extended to a norm-
decreasing operator from L p(G,m) onto L p(G/H , m̃) (still denoted by TH ) for which
the extended Weil’s formula holds:

∫

G/H
TH f dm̃ =

∫

G
f dm

(
f ∈ L1(G,m)

)
. (1)

For more details on Weil’s formula, see [16]. The dual space of G/H is given by
Ĝ/H := {[π ] ∈ Ĝ : T π

H 
= 0
}
where T π

H is defined in the weak sense as the operator
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T π
H := ∫

H π(h) dh ∈ B(Hπ ). For ϕ ∈ L1(G/H , m̃) and [π ] ∈ Ĝ/H , the Fourier
transform of ϕ is defined in the weak sense as

FG/H (ϕ)(π) = ϕ̂(π) =
∫

G/H
ϕ(t H)�π(t H)∗ dm̃(t H) ∈ B(Hπ ),

where�π(t H) = π(t)T π
H . Then the Fourier transformoperatorFG/H is a bounded lin-

ear operator from L1(G/H , m̃) into c0(Ĝ/H ;B(Hπ ))with ‖ϕ̂(π)‖ ≤ ‖ϕ‖L1(G/H ,m̃),
see [5, Theorem 5.5].

2.2 Vector Measures

Let (�,B(�)) be a Borel measurable space and X a Banach space. The closed unit
ball in the dual space X∗ is denoted by BX∗ . A (countably additive) vector measure
ν on (�,B(�)) is an X -valued function ν : B(�) → X such that ν(∪∞

n=1En) =∑∞
n=1 ν(En) in the norm topology for any sequence (En) of pairwise disjoint sets

in B(�). Given x∗ ∈ X∗, let 〈ν, x∗〉 : B(�) → C be the complex measure given
by 〈ν, x∗〉(E) = 〈ν(E), x∗〉 for E ∈ B(�). The semivariation ‖ν‖ of ν is the
set function defined by ‖ν‖(E) = supx∗∈BX∗ |〈ν, x∗〉|(E) for E ∈ B(�). A vector
measure ν is said to be regular if for each E ∈ B(�) and ε > 0 there exist a compact
set K and an open set O such that K ⊂ E ⊂ O and ‖ν‖(O \ K ) < ε. We denote by
M(�, X) the set of all regular X -valued measures on �.

A measurable function f : � → C is said to be ν-integrable if f ∈ L1(〈ν, x∗〉)
for every x∗ ∈ X∗ and for each E ∈ B(�) there is an xE ∈ X such that 〈xE , x∗〉 =∫
E f d〈ν, x∗〉 for every x∗ ∈ X∗.We denote xE by

∫
E f dν. For ameasurable function

f : � → C, define

‖ f ‖ν = sup
x∗∈BX∗

∫

�

| f | d|〈ν, x∗〉|

and‖ f ‖ν,p := ‖| f |p‖1/pν . The space L1(�, ν)of all ν-integrable functions is aBanach
space with the norm ‖ · ‖ν . We say that f = g ν-a.e. if ‖ f − g‖ν = 0. For each 1 ≤
p < ∞, the space L p(�, ν) := { f ∈ L1(�, ν) : | f |p ∈ L1(�, ν)} is a Banach space
with the norm ‖·‖L p(�,ν) := ‖·‖ν,p.We denote by S(�) the set of all simple functions
on �. The integral operator Iν : L1(�, ν) → X is defined by Iν( f ) = ∫

�
f dν for

f ∈ L1(�, ν). Then Iν is bounded with ‖Iν( f )‖X ≤ ‖ f ‖L1(�,ν).

Theorem 2.1 [15] Let f : � → C be a complex function. Then f is ν-integrable if
and only if there is a sequence ( fn) of simple functions which converges pointwise to
f and for which (

∫
E fn dν) is Cauchy for any E ∈ B(�).

Theorem 2.2 [13] Let ν ∈ M(G, X). Then C(G) is dense in L p(G, ν) for all 1 ≤
p < ∞.

For Banach spaces X and Y , a linear operator T : X → Y is said to be weakly
compact if T (B) is a relatively weakly compact subset of Y whenever B is a bounded
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subset of X . By [4, Corollary VI.2.14], we have that on a compact Hausdorff space
there is a one-to-one correspondence between the set of all regular vectormeasures and
the set of all weakly compact operators. To be precise, given a regular vector measure
ν : B(�) → X , there is a weakly compact operator T : C(�) → X representing ν,
that is, T ( f ) = ∫

�
f dν for all f ∈ C(�), and vice versa.

A vector measure ν is said to be absolutely continuous with respect to a positive
scalar measure λ, denoted by ν  λ, if ν(E) → 0 in norm as λ(E) → 0 where
E ∈ B(�). Note that ν  λ if and only if ν vanishes on all sets of λ-measure zero,
by [4, Theorem I.2.1]. Moreover, ν vanishes on all sets of λ-measure zero if and only
if ‖ν‖ vanishes on all sets of λ-measure zero. By Rybakov’s theorem [4], there is a
linear functional x∗ ∈ X∗ such that ν  |〈ν, x∗〉|. This functional is called aRybakov
functional. For k ∈ [0,∞), a vector measure ν is said to be k-scalarly bounded by
m if for any x∗ ∈ X∗ and E ∈ B(�), we have |〈ν, x∗〉|(E) ≤ km(E).

Let τ : G → G be a homeomorphism. For a measurable function f : G → C,
we denote f ◦ τ−1 by fτ . For a ∈ G, we define the left translation La and the right
translation Ra by La(t) = at and Ra(t) = ta−1 for t ∈ G. In the case that τ = La

or Ra , we shall write La f or Ra f instead of fτ . Hence (La f )(t) = f (a−1t) and
(Ra f )(t) = f (ta) for each t ∈ G.

Definition 1 Let τ : G → G be a homeomorphism and ν a vector measure on G. We
say that ν is τ -invariant if

Iν( fτ ) = Iν( f ) for all f ∈ S(G).

Given a collection T of homeomorphisms on G, ν is said to be T -invariant if it is
τ -invariant for all τ ∈ T . In particular, if T = {La : a ∈ G} (or T = {Ra : a ∈ G}),
we say that ν is left (or right) invariant.

Definition 2 Let τ : G → G be a homeomorphism and ν a vector measure on G. We
say that ν is norm integral τ -invariant if

‖Iν( fτ )‖ = ‖Iν( f )‖ for all f ∈ S(G).

Given a collection T of homeomorphisms on G, ν is said to be norm integral T -
invariant if it is norm integral τ -invariant for all τ ∈ T . In particular, if T = {La :
a ∈ G} (or T = {Ra : a ∈ G}), we say that ν is norm integral left (or right)
invariant.

Definition 3 Let τ : G → G be a homeomorphism and ν a vector measure on G. We
say that ν is semivariation τ -invariant if

‖ fτ‖L1(G,ν) = ‖ f ‖L1(G,ν) for all f ∈ S(G).

Given a collection T of homeomorphisms on G, ν is said to be semivariation T -
invariant if it is semivariation τ -invariant for all τ ∈ T . In particular, if T = {La :
a ∈ G} (or T = {Ra : a ∈ G}), we say that ν is semivariation left (or right)
invariant.
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2.3 Tensor Integration

Let X and Y be any Banach spaces. Recall that the space B(Y ∗ × X∗) of bounded
bilinear forms on Y ∗ × X∗ is a Banach space equipped with the norm

‖b‖ = sup{|b(y∗, x∗)| : y∗ ∈ BY ∗ , x∗ ∈ BX∗}.

Note that we can realize Y ⊗ X as a subspace of B(Y ∗ × X∗) by considering u =∑n
i=1 yi ⊗ xi ∈ Y ⊗ X as a bilinear form given by bu(y∗, x∗) = ∑

y∗(yi )x∗(xi ) =
(y∗ ⊗ x∗)(u) for y∗ ∈ Y ∗ and x∗ ∈ X∗. The injective norm ‖ · ‖∨ on Y ⊗ X is the
norm induced by this embedding, i.e.,

‖u‖∨ = sup
y∗∈BY∗ ,x∗∈BX∗

|(y∗ ⊗ x∗)(u)|.

Moreover, we have alternative formulas for the injective norm

‖u‖∨ = sup
y∗∈BY∗

∥
∥
∥
∑

y∗(yi )xi
∥
∥
∥
X

= sup
x∗∈BX∗

∥
∥
∥
∑

x∗(xi )yi
∥
∥
∥
Y

.

The completion of the tensor product space Y ⊗ X with the injective norm is called the
injective tensor product of Y and X , denoted by Y ⊗̌X . For more details, see [17].

Now we summarize the concept of tensor integration introduced by [18]. Let ν be
an X -valued vector measure. A function f : � → Y is said to be ν-measurable if
there is a sequence of Y -valued simple functions ( fn) with limn→∞ ‖ fn − f ‖Y = 0
ν-a.e. We say that a function f : � → Y isweakly ν-measurable if for each y∗ ∈ Y ∗
the function y∗ f is ν-measurable. Note that a function f : � → Y is ν-measurable if
and only if f is |〈ν, x∗〉|-measurable for some Rybakov functional x∗ ∈ X∗.

Theorem 2.3 (Pettis’s measurability theorem [4]) Let λ be a finite positive measure.
A function f : � → Y is λ-measurable if and only if f is weakly λ-measurable and
λ-essentially separably valued.

Let E ∈ B(�) and φ = ∑n
i=1 yiχAi be a Y -valued simple function on �, where

yi ∈ Y and Ai ∈ B(�). We define
∫
E φ dν = ∑

yi ⊗ν(E∩ Ai ) ∈ Y ⊗ X . Then it can
be shown that (y∗ ⊗x∗)(

∫
E φ dν) = ∫

E y∗φ d〈ν, x∗〉 for y∗ ∈ Y ∗ and x∗ ∈ X∗, hence∥
∥
∫
E φ dν

∥
∥∨ ≤ supx∗∈BX∗

∫
E ‖φ‖ d|〈ν, x∗〉|.For a ν-measurable function f : � → Y ,

we let

N( f ) = sup
x∗∈BX∗

∫

�

‖ f ‖ d|〈ν, x∗〉|.

Definition 4 A ν-measurable function f : � → Y is ⊗̌-integrable if there exists a
sequence ( fn) of simple functions such that

lim
n→∞N( f − φn) = 0.



Journal of Fourier Analysis and Applications (2024) 30 :23 Page 7 of 25 23

In this case, the sequence (
∫
E φn dν) is a Cauchy sequence in Y ⊗̌X for each E ∈

B(�). By the completeness of Y ⊗̌X , the limit of (
∫
E φn dν) is denoted by

∫
E f dν

and is called the ⊗̌-integral of f over E with respect to ν.

Note that if f is ⊗̌-integrable, then (y∗ ⊗ x∗)(
∫
E f dν) = ∫

E y∗ f d〈ν, x∗〉 for
E ∈ B(�), y∗ ∈ Y ∗ and x∗ ∈ X∗ and ‖ ∫

�
f dν‖∨ ≤ N ( f ).

Theorem 2.4 [18] A ν-measurable function f is ⊗̌-integrable if and only if ‖ f ‖ is
ν-integrable.

3 Extensions of the Operator TH

In this section, we study extensions of the operator TH : C(G) → C(G/H). Given a
vector measure ν ∈ M(G, X), we can naturally construct a vector measure on G/H
as follows. Let Tν : C(G) → X be the corresponding weakly compact operator for ν,
i.e.,

Tν( f ) =
∫

G
f dν ( f ∈ C(G)).

Define Tν̃ : C(G/H) → X by

Tν̃ (ϕ) = Tν(ϕq) =
∫

G
ϕq dν (ϕ ∈ C(G/H)).

Then Tν̃ is weakly compact since ‖ϕ‖sup = ‖ϕq‖sup for all ϕ ∈ C(G/H). Hence there
is a representing vector measure ν̃ ∈ M(G/H , X). Moreover, we immediately have
that ∫

G/H
ϕ d ν̃ =

∫

G
ϕq dν (ϕ ∈ C(G/H)). (2)

We shall begin with some basic properties of ν̃.

Proposition 3.1 Let ν ∈ M(G, X).

1. The vector measure ν̃ is the pushforward (vector) measure of ν by the quotient
map q, i.e., ν̃(E) = ν(q−1(E)) for all E ∈ B(G/H). Moreover, the Eq. (2) holds
for all ϕ ∈ L1(G/H , ν̃) provided that ϕq ∈ L1(G, ν).

2. For any x∗ ∈ X∗ and E ∈ B(G/H), |〈ν̃, x∗〉|(E) ≤ |〈ν, x∗〉|(q−1(E)). Then
‖ϕ‖L p(G/H ,ν̃) ≤ ‖ϕq‖ν,p for any 1 ≤ p < ∞ and ϕ ∈ L p(G/H , ν̃).

Proof 1. Let λ be the pushforward measure of ν by the quotient map q. It follows
from Eq. (2) that

∫

G/H
ϕ dλ =

∫

G
ϕq dν =

∫

G/H
ϕ d ν̃

for all ϕ ∈ C(G/H). Hence ν̃ = λ. Next observe that Eq. (2) holds for all
ϕ ∈ S(G/H). Let 0 ≤ ϕ ∈ L1(G/H , ν̃). Then there is a sequence of positive
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simple functions ϕn ↑ ϕ pointwise. By the monotone convergence theorem, for
each x∗ ∈ X∗

∫

G/H
ϕ d〈ν̃, x∗〉 = lim

n→∞

∫

G/H
ϕn d〈ν̃, x∗〉

= lim
n→∞

∫

G
(ϕn)q d〈ν, x∗〉

=
∫

G
ϕq d〈ν, x∗〉.

This identity easily extends to ϕ ∈ L1(G/H , ν̃). If we assume that ϕq ∈ L1(G, ν),
then

〈∫

G/H
ϕ d ν̃, x∗

〉

=
∫

G/H
ϕ d〈ν̃, x∗〉 =

∫

G
ϕq d〈ν, x∗〉 =

〈∫

G
ϕq dν, x∗

〉

for all x∗ ∈ X∗, which proves the Eq. (2).
2. Let E ∈ B(G/H). Consider any disjoint partition {En}kn=1 of E where En ∈

B(G/H). Since {q−1(En)}kn=1 forms a disjoint partition of q−1(E),

k∑

n=1

|〈ν̃, x∗〉(En)| =
k∑

n=1

|〈ν, x∗〉(q−1(En))| ≤ |〈ν, x∗〉|(q−1(E)).

Hence |〈ν̃, x∗〉|(E) ≤ |〈ν, x∗〉|(q−1(E)). Consequently,

∫

G/H
ϕ d|〈ν̃, x∗〉| ≤

∫

G
ϕq d|〈ν, x∗〉|

holds for any simple function ϕ ≥ 0 on G/H . Then for any ϕ ∈ L1(G/H , μ), the
monotone convergence theorem implies that

∫

G/H
|ϕ| d|〈ν̃, x∗〉| ≤

∫

G
|ϕq | d|〈ν, x∗〉|.

Therefore, ‖ϕ‖L p(G/H ,ν̃) ≤ ‖ϕq‖ν,p for any 1 ≤ p < ∞ and ϕ ∈ L p(G/H , ν̃).
��

Example 1 Let 1 ≤ p < ∞ and S : L p(G,m) → X be anybounded linearmap,where
m is the normalized Haar measure on G. Define a vector measure ν : B(G) → X
corresponding to S by ν(E) = S(χE ) for E ∈ B(G). Then by Proposition 3.1.1. the
vector measure ν̃ is given by ν̃(F) = S(χq−1(F)) for F ∈ B(G/H).

1. Let X = C and S : L1(G,m) → C be given by S( f ) = ∫
G f dm for any f ∈

L1(G,m). In this case, ν = m. Moreover, ν̃ = m̃ since ν̃(F) = ∫
G χq−1(F) dm =∫

G/H χF dm̃ = m̃(F) for all F ∈ B(G/H), where m̃ is the pushforward measure
of m.
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2. Let X = L1(G,m) and S = IdL1(G,m). Then ν̃(F) = χq−1(F) for F ∈ B(G/H).
3. Let λ be a complex regular measure on G and 1 ≤ p < ∞. We define S :

L p(G,m) → L p(G,m) by S( f ) = f ∗ λ where ( f ∗ λ)(t) = ∫
G f (ts−1) dλ(s)

for t ∈ G. Then ν̃(F) = χq−1(F) ∗ λ for F ∈ B(G/H).

4. Let 1 ≤ p ≤ 2 and S : L p(G,m) → �p
′
(Ĝ;B(Hπ )) be defined by S( f ) =

FG( f ). Then ν̃(F) = FG(χq−1(F)) = FG/H (χF ) for F ∈ B(G/H).

Let τ : G/H → G/H be a homeomorphism. For example, one can consider a
left translation La : G/H → G/H by a ∈ G given by La(t H) = atH for each
t H ∈ G/H . For a measurable function ϕ : G/H → C, we denote ϕ ◦ τ−1 by ϕτ .
In the case that τ = La where a ∈ G, we shall denote ϕ ◦ (La)

−1 by Laϕ and by
definition we have (Laϕ)(t H) = ϕ(a−1t H) for all t H ∈ G/H .

Definition 5 Let τ : G/H → G/H be a homeomorphism. For any vector measure μ

on G/H , we say that μ is norm integral τ -invariant if

‖Iμ(ϕτ )‖ = ‖Iμ(ϕ)‖ for all ϕ ∈ S(G/H).

Given a collection T of homeomorphisms on G/H , μ is said to be norm integral
T -invariant if it is norm integral τ -invariant for all τ ∈ T . In particular, if T = {La :
a ∈ G}, we say that μ is norm integral left invariant.

This proposition is merely a consequence of Proposition 3.1.

Proposition 3.2 Let ν ∈ M(G, X).

1. For a ∈ G, if ν is norm integral La-invariant, then so is ν̃.
2. If ν  m, then ν̃  m̃.
3. If ν is k-scalarly bounded by m, then ν̃ is k-scalarly bounded by m̃.

Proof 1. For ϕ ∈ S(G/H), by Proposition 3.1.1., Eq. (2) holds for simple functions,
we have

‖Iν̃ (Laϕ)‖ = ‖Iν((Laϕ)q)‖ = ‖Iν(La(ϕq))‖ = ‖Iν(ϕq)‖ = ‖Iν̃ (ϕ)‖.

2. For any F ∈ B(G/H), m̃(F) = m(q−1(F)) and ν̃(F) = ν(q−1(F)). If m̃(F) →
0, then also m(q−1(F)) → 0, and hence ν̃(F) = ν(q−1(F)) → 0 since ν  m.

3. It follows immediately from the fact that

|〈ν̃, x∗〉|(E) ≤ |〈ν, x∗〉|(q−1(E)) ≤ km(q−1(E)) = km̃(E)

for any E ∈ B(G/H).
��

Now we prove an existence of an extension of TH to an operator from L p(G, ν)

into L p(G/H , ν̃) for each 1 ≤ p < ∞. This is a generalization of Theorem 3.2 in
[5].
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Theorem 3.3 Let 1 ≤ p < ∞ andR = {Rh : h ∈ H}. Suppose that ν is semivariation
R-invariant. Then the operator TH : C(G) → C(G/H) satisfies

‖TH f ‖L p(G/H ,ν̃) ≤ ‖ f ‖L p(G,ν) for all f ∈ C(G),

hence it has a unique extension to a norm-decreasing operator TH ,ν : L p(G, ν) →
L p(G/H , ν̃).

Proof Let f ∈ C(G). By Proposition 3.1.2. and ν being semivariation R-invariant,

‖TH f ‖p
L p(G/H ,ν̃)

≤ ‖(TH f )q‖p
L p(G,ν)

= sup
x∗∈BX∗

∫

G
|(TH f )(t H)|p d|〈ν, x∗〉|(t)

≤ sup
x∗∈BX∗

∫

G

∫

H
| f (th)|p dh d|〈ν, x∗〉|(t)

= sup
x∗∈BX∗

∫

H

∫

G
| f (th)|p d|〈ν, x∗〉|(t) dh

≤
∫

H

(

sup
x∗∈BX∗

∫

G
| f (th)|p d|〈ν, x∗〉|(t)

)

dh

=
∫

H
‖Rh f ‖p

L p(G,ν) dh

=
∫

H
‖ f ‖p

L p(G,ν) dh

= ‖ f ‖p
L p(G,ν).

By the density of C(G) in L p(G, ν), the operator TH can be extended uniquely to
a bounded linear map from L p(G, ν) to L p(G/H , ν̃). To verify that TH ,ν is norm-
decreasing, let f ∈ L p(G, ν) with fn → f in L p(G, ν) where fn ∈ C(G). Then

‖TH ,ν f ‖L p(G/H ,ν̃) = lim
n→∞ ‖TH fn‖L p(G/H ,ν̃) ≤ lim

n→∞ ‖ fn‖L p(G,ν) = ‖ f ‖L p(G,ν)

as desired. ��
Remark 1 If there is no ambiguity, we shall denote TH ,ν by TH . Secondly, it is worth
noting that even though the extensions of TH : C(G) → C(G/H) to L p(G, ν) and
Lq(G, ν)might be different operators if p 
= q, they coincide on the intersection of the
domains. Suppose thatwedenote the extension of TH to L p(G, ν)by TH ,p for 1 ≤ p <

∞. Consider 1 ≤ p < q < ∞. Note that it follows from [15, Proposition 3.31(ii)]
that for any vector measure μ on �, Lq(�,μ) ⊂ L p(�,μ) with ‖ f ‖L p(�,μ) ≤
K‖ f ‖Lq (�,μ) for some constant K > 0. Now we show that the extensions TH ,p and
TH ,q coincide on Lq(G, ν) ⊂ L p(G, ν). Let fn → f in Lq(G, ν) where fn ∈ C(G).
Then TH ,p fn → TH ,p f in L p(G/H , ν̃) and also TH ,q fn → TH ,q f in L p(G/H , ν̃).
Since TH ,p and TH ,q agree on C(G), we have that TH ,p f = TH ,q f in L p(G/H , ν̃)
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which implies TH ,p f = TH ,q f ν̃-a.e. Thus there is no ambiguity to denote any
extension TH ,p for any 1 ≤ p < ∞ by TH .

Now we prove that the extension TH is norm-decreasing in the sense of the norm
in X .

Theorem 3.4 Let ν be norm integral R-invariant where R = {Rh : h ∈ H}. Then
∥
∥
∥
∥

∫

G/H
TH f d ν̃

∥
∥
∥
∥
X

≤
∥
∥
∥
∥

∫

G
f dν

∥
∥
∥
∥
X

(
f ∈ L1(G, ν)

)
.

Proof Let f ∈ C(G). For x∗ ∈ BX∗ , by Eq. (2)

∫

G/H
TH f d〈ν̃, x∗〉 =

∫

G
(TH f )q d〈ν, x∗〉

=
∫

G

∫

H
f (th) dh d〈ν, x∗〉(t)

=
∫

H

∫

G
(Rh f )(t) d〈ν, x∗〉(t) dh.

Hence
∥
∥
∥
∥

∫

G/H
TH f d ν̃

∥
∥
∥
∥
X

= sup
x∗∈BX∗

∣
∣
∣
∣

∫

G/H
TH f d〈ν̃, x∗〉

∣
∣
∣
∣

= sup
x∗∈BX∗

∣
∣
∣
∣

∫

H

∫

G
(Rh f )(t) d〈ν, x∗〉(t) dh

∣
∣
∣
∣

≤
∫

H

(

sup
x∗∈BX∗

∣
∣
∣
∣

∫

G
(Rh f )(t) d〈ν, x∗〉(t)

∣
∣
∣
∣

)

dh

=
∫

H

∥
∥
∥
∥

∫

G
Rh f dν

∥
∥
∥
∥
X
dh

=
∥
∥
∥
∥

∫

G
f dν

∥
∥
∥
∥
X

.

For any f ∈ L1(G, ν), let fn be a sequence of continuous functions converging to f
in L1(G, ν). Then

‖Iν̃ (TH f )‖X = lim
n→∞ ‖Iν̃ (TH fn)‖X ≤ lim

n→∞ ‖Iν( fn)‖X = ‖Iν( f )‖X

that is ‖ ∫
G/H TH f d ν̃‖X ≤ ‖ ∫

G f dν‖X as desired. ��
We have investigated the properties of the extension TH : L p(G, ν) →

L p(G/H , ν̃) for a given vector measure ν ∈ M(G, X). However, in general, to
study Fourier analysis on homogeneous spaces, it is essential to consider the space
L p(G/H , μ) for a given vector measureμ onG/H instead of the space L p(G/H , ν̃).
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To deal with this situation, we will define a corresponding measure μ̆ on G and study
the extension TH : L p(G, μ̆) → L p(G/H , μ).

Let μ ∈ M(G/H , X) and Tμ : C(G/H) → X be the corresponding weakly
compact operator given by

Tμ(ϕ) =
∫

G/H
ϕ dμ (ϕ ∈ C(G/H)).

Observe that the operator Tμ◦TH : C(G) → X isweakly compact since TH is bounded
and Tμ is weakly compact. Then there is a representing regular vector measure on G.
Denote the representing vector measure by μ̆ ∈ M(G, X) and Tμ ◦ TH by Tμ̆. Hence
we immediately have that

∫

G
f dμ̆ =

∫

G/H
TH f dμ ( f ∈ C(G)). (3)

Remark 2 Let  : M(G, X) → M(G/H , X) be defined by (ν) = ν̃ for ν ∈
M(G, X) and � : M(G/H , X) → M(G, X) by �(μ) = μ̆ for μ ∈ M(G/H , X).
Then the following diagram commutes:

M(G/H , X) M(G/H , X)

M(G, X)

Id

� 

In other words,  ◦ � = IdM(G/H ,X) or equivalently ˜̆μ = μ for any μ ∈
M(G/H , X). This can be proved by observing that

∫

G/H
ϕ d ˜̆μ =

∫

G
ϕq dμ̆ =

∫

G/H
TH (ϕq) dμ =

∫

G/H
ϕ dμ

for all ϕ ∈ C(G/H). Note that the commutativity of the diagram also implies that 
is surjective and � is injective.

Proposition 3.5 Let R = {Rh : h ∈ H} and x∗ ∈ BX∗ . Then μ̆ and |〈μ̆, x∗〉| are
R-invariant.

Proof To show that μ̆ isR-invariant, let h ∈ H and f ∈ C(G). Observe that

TH (Rh f )(t H) =
∫

H
(Rh f )(th

′) dh′ =
∫

H
f (th′) dh′ = TH ( f )(t H).

Hence

Tμ̆Rh
( f ) = Tμ̆(Rh f ) = Tμ(TH (Rh f )) = Tμ(TH f ) = Tμ̆( f ).

Hence μ̆Rh = μ̆, that is, μ̆ is Rh-invariant.
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Now let x∗ ∈ BX∗ , E ∈ B(G) and h ∈ H . For any disjoint partition {En}kn=1 of E
where En ∈ B(G), note that {RhEn}kn=1 forms a disjoint partition of RhE and

k∑

n=1

|〈μ̆, x∗〉(En)| =
k∑

n=1

|〈μ̆, x∗〉(RhEn)| ≤ |〈μ̆, x∗〉|(RhE).

Hence |〈μ̆, x∗〉|(E) ≤ |〈μ̆, x∗〉|(RhE). Taking E as RhE and h as h−1, we also get
|〈μ̆, x∗〉|(RhE) ≤ |〈μ̆, x∗〉|(E). ��

This proposition particularly implies that μ̆ is semivariation R-invariant. Hence
we can apply Theorem 3.3 to get that the operator TH has an extension to a norm-
decreasing operator from L p(G, μ̆) to L p(G/H , μ) for any 1 ≤ p < ∞. Moreover,
Eq. (3) extends to L1(G, μ̆)

∫

G
f dμ̆ =

∫

G/H
TH f dμ

(
f ∈ L1(G, μ̆)

)
. (4)

Indeed, if fn → f in L1(G, μ̆)where fn ∈ C(G), then Iμ(TH f ) = limn→∞ Tμ(TH ( fn)) =
limn→∞ Tμ̆( fn) = Iμ̆( f ). Now we prove that the Eq. (4) is also true for the total vari-
ation of the associated complex measures.

Lemma 3.6 For x∗ ∈ BX∗ and f ∈ L1(G, μ̆),

∫

G
f d|〈μ̆, x∗〉| =

∫

G/H
TH f d|〈μ, x∗〉|.

In particular, ‖TH | f |‖L1(G/H ,μ) = ‖ f ‖L1(G,μ̆) for any f ∈ L1(G, μ̆).

Proof It suffices to prove that for any f ∈ L1(G, μ̆) and x∗ ∈ BX∗

∫

G
| f | d|〈μ̆, x∗〉| =

∫

G/H
TH | f | d|〈μ, x∗〉|.

We first claim that for each E ∈ B(G), TH (χE ) ≥ 0 |〈μ, x∗〉|-a.e that is the set
F = {t H ∈ G/H : TH (χE ) < 0} is |〈μ, x∗〉|-null. Let fn → χE in L1(G, μ̆) where
fn ∈ C(G) is positive (which exists by using Urysohn’s lemma together with the
regularity of μ̆). Since TH ( fn) ≥ 0 for all n ∈ N,

∫

F
|TH (χE )| d|〈μ, x∗〉| ≤

∫

F
|TH (χE ) − TH ( fn)| d|〈μ, x∗〉|

≤ ‖TH (χE − fn)‖L1(G/H ,μ)
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which implies that |〈μ, x∗〉|(F) = 0 as desired. Now fix E ∈ B(G) and consider any
disjoint partition {En}kn=1 of E where En ∈ B(G). By Eq. (4) and the claim,

k∑

n=1

|〈μ̆, x∗〉(En)| =
k∑

n=1

∣
∣
∣
∣

∫

G/H
TH (χEn ) d〈μ, x∗〉

∣
∣
∣
∣

≤
k∑

n=1

∫

G/H
TH (χEn ) d|〈μ, x∗〉|

=
∫

G/H
TH (χE ) d|〈μ, x∗〉|.

Hence
∫
G χE d|〈μ̆, x∗〉| ≤ ∫

G/H TH (χE ) d|〈μ, x∗〉|. It follows immediately that for
any f ∈ S(G),

∫

G
| f | d|〈μ̆, x∗〉| ≤

∫

G/H
TH | f | d|〈μ, x∗〉|

which can be extended to any f ∈ L1(G, μ̆) by using the density of S(G) in L1(G, μ̆).
Conversely, by Propositions 3.1.2. and 3.5, for f ∈ C(G)

∫

G/H
TH | f | d|〈μ, x∗〉| ≤

∫

G
(TH | f |)q d|〈μ̆, x∗〉|

=
∫

G

∫

H
| f (th)| dh d|〈μ̆, x∗〉|(t)

=
∫

H

∫

G
| f (th)| d|〈μ̆, x∗〉|(t) dh

=
∫

H

∫

G
| f (t)| d|〈μ̆, x∗〉|(t) dh

=
∫

G
| f (t)| d|〈μ̆, x∗〉|(t).

Hence by the density of C(G) in L1(G, μ̆), for any f ∈ L1(G, μ̆)

∫

G/H
TH | f | d|〈μ, x∗〉| ≤

∫

G
| f | d|〈μ̆, x∗〉|.

��
For any ν ∈ M(G, X), we cannot find an example of an operator TH ,ν constructed

in the manner of Theorem 3.3 which is not surjective. However, we know that if ν is in
the form of μ̆, where μ ∈ M(G/H , X), then the operator TH ,μ̆ is certainly surjective
as shown in the following theorem.
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Theorem 3.7 Let 1 ≤ p < ∞. The extension TH : L p(G, μ̆) → L p(G/H , μ) sat-
isfies the formula TH f (t H) = ∫

H f (th) dh μ-a.e. for all f ∈ L p(G, μ̆). Moreover,
the extension TH : L p(G, μ̆) → L p(G/H , μ) is surjective.

Proof Claim that for a lower semicontinuous function φ ≥ 0 and x∗ ∈ BX∗ ,

∫

G
φ d|〈μ̆, x∗〉| =

∫

G/H

∫

H
φ(th) dh d|〈μ, x∗〉|(t H).

Let  = {g ∈ C(G) : 0 ≤ g ≤ φ}. By [10, Proposition 7.12] and Lemma 3.6,

∫

G
φ d|〈μ̆, x∗〉| = sup

g∈

∫

G
g d|〈μ̆, x∗〉|

= sup
g∈

∫

G/H
THg d|〈μ, x∗〉|

=
∫

G/H

(

sup
g∈

THg

)

d|〈μ, x∗〉|

=
∫

G/H

(

sup
g∈

∫

H
g(th) dh

)

d|〈μ, x∗〉|(t H)

=
∫

G/H

(

sup
g̃∈(t H)

∫

H
g̃(h) dh

)

d|〈μ, x∗〉|(t H)

=
∫

G/H

∫

H
φ(th) dh d|〈μ, x∗〉|(t H)

where (t H) := {g̃ ∈ C(H) : 0 ≤ g̃(h) ≤ φ(th) for h ∈ H}. Hence for any
measurable function F and any lower semicontinuous function φ ≥ |F |,

∫

G/H

∫

H
|F(th)| dh d|〈μ, x∗〉|(t H) ≤

∫

G/H

∫

H
φ(th) dh d|〈μ, x∗〉|(t H)

=
∫

G
φ d|〈μ̆, x∗〉|.

Hence by [10, Proposition 7.14]

∫

G/H

∫

H
|F(th)| dh d|〈μ, x∗〉|(t H) ≤

∫

G
|F | d|〈μ̆, x∗〉|. (5)

Let f ∈ L p(G, μ̆) and fn → f in L p(G, μ̆) where fn ∈ C(G). Define a function
f̃ : G/H → C by f̃ (t H) = ∫

H f (th) dh for t H ∈ G/H . By taking F = | f − fn|p
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in (5), we have

‖ f̃ − TH fn‖p
L p(G/H ,μ) = sup

x∗∈BX∗

∫

G/H

∣
∣ f̃ − TH fn

∣
∣p d|〈μ, x∗〉|

≤ sup
x∗∈BX∗

∫

G/H

∫

H
| f − fn|p(th) dh d|〈μ, x∗〉|(t H)

≤ sup
x∗∈BX∗

∫

G
| f − fn|p d|〈μ̆, x∗〉|

= ‖ f − fn‖p
L p(G,μ̆)

which shows that f̃ is well-defined and f̃ = TH f μ-a.e.
To show that TH is surjective, we first claim that ‖φq‖L p(G,μ̆) = ‖φ‖L p(G/H ,μ) for

φ ∈ L p(G/H , μ). Let φn ↑ |φ| pointwise where φn ∈ S(G/H). Then (φn)q ↑ |φ|q
pointwise. Applying the monotone convergence theorem and Lemma 3.6 to each
x∗ ∈ BX∗ , we get

∫

G
|φq |p d|〈μ̆, x∗〉| = lim

n→∞

∫

G
|(φn)q |p d|〈μ̆, x∗〉|

= lim
n→∞

∫

G/H
|φn|p d|〈μ, x∗〉|

=
∫

G
|φ|p d|〈μ, x∗〉|

which proves the claim. Now let ϕ ∈ L p(G/H , μ). If we can show that ϕq ∈
L p(G, μ̆), then by the formula of TH we have TH (ϕq) = ϕ. Let ϕn → ϕ in
L p(G/H , μ) where ϕn ∈ S(G/H). Then it follows by the claim that ‖ϕq −
(ϕn)q‖L p(G,μ̆) = ‖ϕ − ϕn‖L p(G/H ,μ) → 0. Hence ϕq ∈ L p(G, μ̆) by the com-
pleteness of L p(G, μ̆). ��
Corollary 3.8 1. Weil’s formula holds for all f ∈ L1(G, μ̆)

∫

G/H

∫

H
f (th) dh dμ(t H) =

∫

G
f dμ̆.

Moreover, for all x∗ ∈ X∗ and f ∈ L1(G, μ̆)

∫

G/H

∫

H
f (th) dh d|〈μ, x∗〉|(t H) =

∫

G
f d|〈μ̆, x∗〉|.

2. For 1 ≤ p < ∞, if ϕ ∈ L p(G/H , μ), then ϕq ∈ L p(G, μ̆) with ‖ϕq‖L p(G,μ̆) =
‖ϕ‖L p(G/H ,μ).

Proof The first two equations follow by applying the formula of TH to Eq. (4) and
Lemma 3.6 while the last assertion is in the proof of the theorem. ��
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Corollary 3.9 For 1 ≤ p < ∞, C(G/H) is dense in L p(G/H , μ).

Proof Let ϕ ∈ L p(G/H , μ). Then ϕq ∈ L p(G, μ̆). By the density of C(G) in
L p(G, μ̆), there is a sequence fn → ϕq in L p(G, μ̆) with fn ∈ C(G). Hence
TH fn → TH (ϕq) = ϕ in L p(G/H , μ). ��

It is straightforward to see that ˘̃m = m. Hence TH ,m = TH , ˘̃m is the same operator
TH given by Farashahi in [5]. Now we provide a relation between the extensions TH ,m

and TH ,μ̆.

Proposition 3.10 If μ  m̃, then TH ,m f = TH ,μ̆ f μ-a.e. for all f ∈ L1(G,m) ∩
L1(G, μ̆), and hence μ̆  m.

Proof Let f ∈ L1(G,m) ∩ L1(G, μ̆). Then TH ,m f (t H) = ∫
H f (th) dh m̃-a.e.; in

particular, TH ,m f (t H) = ∫
H f (th) dh μ-a.e. sinceμ  m̃. By Theorem 3.7, we also

have TH ,μ̆ f (t H) = ∫
H f (th) dh μ-a.e., so TH ,m f = TH ,μ̆ f μ-a.e.

Given E ∈ B(G) withm(E) = 0. Then TH ,mχE = 0 m̃-a.e. and hence TH ,μ̆χE =
0 μ-a.e. By Lemma 3.6, we get ‖μ̆‖(E) = 0. We conclude that μ̆  m. ��
Example 2 Let 1 ≤ p < ∞ and S : L p(G/H , m̃) → X be any bounded linear map.
Define a vector measure μ : B(G/H) → X corresponding to S by μ(E) = S(χE )

for E ∈ B(G/H). Then the vector measure μ̆ is given by μ̆(F) = ∫
G/H TH ,μ̆χF dμ

for F ∈ B(G). Note that for ϕ ∈ L p(G/H , m̃), ϕ is μ-integrable and
∫
G/H ϕ dμ =

S(ϕ), see [15, Proposition 4.4]. Hence it follows from Proposition 3.10 that μ̆(F) =∫
G/H TH ,mχF dμ = S(TH ,mχF ).

1. Let X = C and S : L1(G/H , m̃) → C be given by S(ϕ) = ∫
G/H ϕ dm̃ for

any ϕ ∈ L1(G/H , m̃). In this case, μ = m̃. Moreover, μ̆ = m since μ̆(F) =∫
G/H TH ,mχF dm̃ = ∫

G χF dm = m(F) for all F ∈ B(G).

2. If X = L1(G/H , m̃) and S = I dL1(G/H ,m̃), then μ̆(F) = TH ,mχF for F ∈ B(G).

3. If we let 1 ≤ p ≤ 2 and define S : L p(G/H , m̃) → �p
′
(Ĝ/H ;B(Hπ )) by

S(ϕ) = FG/H (ϕ), then μ̆(F)(π) = FG/H (TH ,mχF )(π) = T π
H χ̂F (π) for F ∈

B(G) and [π ] ∈ Ĝ/H , by [5, Proposition 5.3].

Finally, we give relations between μ and μ̆ in terms of invariant properties.

Definition 6 Let μ be a vector measure on G/H . For each a ∈ G, μ is said to be
La-invariant if μ(aE) = μ(E) for all E ∈ B(G/H). We say that μ is left invariant
if it is La-invariant for all a ∈ G.

Definition 7 Let τ : G/H → G/H be a homeomorphism. For any vector measure μ

on G/H , we say that μ is semivariation τ -invariant if

‖ϕτ‖L1(G/H ,μ) = ‖ϕ‖L1(G/H ,μ) for all ϕ ∈ S(G/H).

Given a collection T of homeomorphisms on G/H , μ is said to be semivariation
T -invariant if it is semivariation τ -invariant for all τ ∈ T . In particular, if T = {La :
a ∈ G}, we say that μ is semivariation left invariant.
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Proposition 3.11 Let a ∈ G.

1. μ is La-invariant if and only if μ̆ is La-invariant.
2. μ is norm integral La-invariant if and only if μ̆ is norm integral La-invariant.
3. μ is semivariation La-invariant if and only if μ̆ is semivariation La-invariant.

Proof 1. Suppose that μ is La-invariant. Then by the Weil formula (4), for any f ∈
C(G),

∫

G
La f dμ̆ =

∫

G/H
TH (La f ) dμ =

∫

G/H
La(TH f ) dμ

=
∫

G/H
TH f dμ =

∫

G
f dμ̆.

Hence μ̆ is La-invariant. Conversely, suppose that μ̆ is La-invariant. Then for any
ϕ ∈ S(G/H)

∫

G/H
Laϕ dμ =

∫

G
Laϕq dμ̆ =

∫

G
ϕq dμ̆ =

∫

G/H
ϕ dμ

Hence μ is La-invariant.
2. Suppose that μ is norm integral La-invariant. Then by [2, Theorem 3.3], we have

‖Iμ(Laϕ)‖ = ‖Iμ(ϕ)‖ for all ϕ ∈ L1(G/H , μ). Hence by the Weil formula (4)

‖Iμ̆(La f )‖ = ‖Iμ(TH (La f ))‖ = ‖Iμ(LaTH f )‖ = ‖Iμ(TH f )‖ = ‖Iμ̆ f ‖

for any f ∈ S(G). Hence μ̆ is norm integral left invariant. The converse is proved
in Proposition 3.2.

3. Suppose that μ is semivariation La-invariant. It is routine to check that
‖Laϕ‖L1(G/H ,μ) = ‖ϕ‖L1(G/H ,μ) for all ϕ ∈ L1(G/H , μ). So

‖La f ‖L1(G,μ̆) = ‖TH |La f |‖L1(G/H ,μ) = ‖TH | f |‖L1(G/H ,μ) = ‖ f ‖L1(G,μ̆)

for any f ∈ S(G). Conversely, if μ̆ is semivariation La-invariant then

‖Laϕ‖L1(G/H ,μ) = ‖Laϕq‖L1(G,μ̆) = ‖ϕq‖L1(G,μ̆) = ‖ϕ‖L1(G/H ,μ)

for any ϕ ∈ S(G/H).
��

4 Invariant Measures

In this section, we provide properties of invariant measures on G and their analogies
on G/H . The following proposition generalizes Proposition 5.2 in [1].

Proposition 4.1 Let ν ∈ M(G, X). The following are equivalent:
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1. ν is left (or right) invariant
2. 〈ν, x∗〉 is left (or right) invariant for all x∗ ∈ X∗
3. ν = ν(G)m.

Proof We only show that 2 implies 3; the other directions are trivial. Assume that
〈ν, x∗〉 is left invariant for all x∗ ∈ X∗. Then the real part 〈ν, x∗〉r is left invariant. Let
G = P∪N be aHahndecomposition for 〈ν, x∗〉r where P is positive and N is negative.
Note that G = aP ∪ aN is also a Hahn decomposition for 〈ν, x∗〉r for any a ∈ G.
Hence 〈ν, x∗〉+r (aE) = 〈ν, x∗〉r (aE ∩aP) = 〈ν, x∗〉r (E ∩ P) = 〈ν, x∗〉+r (E) for any
a ∈ G and E ∈ B(G). This shows that 〈ν, x∗〉+r is left invariant. By the uniqueness of
the left Haar measure, 〈ν, x∗〉+r = α+

r (x∗)m for some α+
r (x∗) ≥ 0. Applying the same

argument to all parts of 〈ν, x∗〉, we obtain that 〈ν, x∗〉 = α(x∗)m for some α(x∗) ∈ C.
Hence 〈ν(E), x∗〉 = α(x∗)m(E) = 〈ν(G), x∗〉m(E) = 〈ν(G)m(E), x∗〉 for any
E ∈ B(G). Since this equation holds for all x∗ ∈ X∗, we have that ν = ν(G)m. A
similar argument can be applied to the case of right invariance. ��
Proposition 4.2 Let μ ∈ M(G/H , X). The following are equivalent:

1. μ is left invariant
2. 〈μ, x∗〉 is left invariant for all x∗ ∈ X∗
3. μ = μ(G/H)m̃.

Proof The first two assertions follow from the fact that 〈μ̆, x∗〉 = 〈μ, x∗〉� for all
x∗ ∈ X∗. Next, assume that μ is left invariant. Then μ̆ is left invariant. By Proposition
4.1, μ̆ = μ̆(G)m. Since μ and m̃ are the pushforward measures of μ̆ and m, we have
μ = μ̆(G)m̃ = μ(G/H)m̃. This finishes the proof. ��

The following proposition improves Lemma 3.4 in [3].

Proposition 4.3 Let ν be a vector measure on G. The following are equivalent.

1. ν is norm integral left (or right) invariant.
2. For each x∗ ∈ X∗ and a ∈ G, there exists x∗

a ∈ X∗ such that ‖x∗
a‖ ≤ ‖x∗‖ and

〈ν, x∗〉(aE) = 〈ν, x∗
a 〉(E) (or 〈ν, x∗〉(Ea) = 〈ν, x∗

a 〉(E)) for all E ∈ B(G).

Moreover, x∗
a ∈ X∗ is unique in the sense that if there is another such functional then

they must agree on Iν(S(G)).

Proof We shall prove only for the case of norm integral left invariance as the other
case is similar. The proof of 1. implies 2. follows by the same argument of [3, Lemma
3.4]. For the converse, let f ∈ S(G) and a ∈ G. Then

‖Iν(La f )‖ = sup
x∗∈BX∗

|x∗ Iν(La f )| = sup
x∗∈BX∗

|x∗
a Iν( f )| ≤ ‖Iν( f )‖.

This also implies ‖Iν( f )‖ = ‖Iν(La−1(La f ))‖ ≤ ‖Iν(La f )‖.
For the uniqueness, suppose there is another functional y∗ ∈ X∗ such that

‖y∗‖ ≤ ‖x∗‖ and 〈ν, x∗〉(aE) = 〈ν, y∗〉(E) for all E ∈ B(G). Then x∗
a (ν(E)) =

〈ν, x∗
a 〉(E) = 〈ν, y∗〉(E) = y∗(ν(E)) for all E ∈ B(G). By the linearity of x∗

a and
y∗, we have that x∗

a = y∗ on Iν(S(G)). ��
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Proposition 4.4 Let μ be a vector measure on G/H. The following are equivalent.

1. μ is norm integral left invariant.
2. For each x∗ ∈ X∗ and a ∈ G, there exists x∗

a ∈ X∗ such that ‖x∗
a‖ ≤ ‖x∗‖ and

〈μ, x∗〉(aE) = 〈μ, x∗
a 〉(E) for all E ∈ B(G/H).

Moreover, x∗
a ∈ X∗ is unique in the sense that if there is another such functional then

they must agree on Iμ(S(G/H)).

Proof It can be proven by the same argument as in Proposition 4.3. However, if μ

is also assumed to be regular, we can employ Proposition 4.3 with μ̆ and obtain the
result immediately. ��

The following result can be proved by the same argument as in [13, Theorem 5.6]
and [1, Theorem 5.10]. Hence the proof is omitted.

Proposition 4.5 Let 1 ≤ p < ∞. Suppose that ν ∈ M(G, X) is semivariation left
(or right) invariant with ν(G) 
= 0. Then L p(G, ν) ⊂ L p(G,m) with ‖ f ‖L p(G,m) ≤
‖ν(G)‖−1/p‖ f ‖L p(G,ν) for f ∈ L p(G, ν).

Proposition 4.6 Let 1 ≤ p < ∞. Suppose that μ ∈ M(G/H , X) is semivaria-
tion left invariant with μ(G/H) 
= 0. Then L p(G/H , μ) ⊂ L p(G/H , m̃) with
‖ϕ‖L p(G/H ,m̃) ≤ ‖μ(G/H)‖−1/p‖ϕ‖L p(G/H ,μ) for ϕ ∈ L p(G/H , μ).

Proof Since μ̆ is semivariation left invariant, by Proposition 4.5, L p(G, μ̆) ⊂
L p(G,m) with ‖ f ‖p

L p(G,m) ≤ ‖μ̆(G)‖−1‖ f ‖p
L p(G,μ̆)

for f ∈ L p(G, μ̆). Hence

‖ϕ‖p
L p(G/H ,m̃) = ‖ϕq‖p

L p(G,m) ≤ ‖μ̆(G)‖−1‖ϕq‖p
L p(G,μ̆)

= ‖μ(G/H)‖−1‖ϕ‖p
L p(G/H ,μ)

for ϕ ∈ L p(G/H , μ). ��

5 Fourier Transforms

In this section, we define a Fourier transform of functions in L1(G, ν) and
L1(G/H , μ). Our definition is motivated by Definition 4.1 in [13]; however, X is
not considered as an operator space. Let ν be a vector measure on G.

Definition 8 For f ∈ L1(G, ν) and [π ] ∈ Ĝ, we define the Fourier transform of f
as

f̂ ν(π) =
∫

G
f (t)π(t)∗ dν ∈ B(Hπ )⊗̌X .

To see that the definition is well-defined, we have to show that the function g :
G → B(Hπ ) given by g(t) = f (t)π(t)∗ is ν-measurable and ⊗̌-integrable. Let
x∗ ∈ X∗ be a Rybakov functional. Clearly, g is weakly |〈ν, x∗〉|-measurable since
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y∗g(·) = f (·)y∗π(·)∗ is a product of |〈ν, x∗〉|-measurable functions for all y∗ ∈
B(Hπ )∗. Moreover, B(Hπ ) is separable. Thus, by Pettis’s measurability theorem, g
is |〈ν, x∗〉|-measurable and hence is ν-measurable. Since the function ‖g‖ = | f | is
ν-integrable, g is ⊗̌-integrable. This immediately implies the following proposition.

Proposition 5.1 Define the operator Fν
G : L1(G, ν) → �∞(Ĝ;B(Hπ )⊗̌X) by

Fν
G( f )(π) = f̂ ν(π) for f ∈ L1(G, ν) and [π ] ∈ Ĝ. Then the Fourier transform

operator Fν
G is bounded with ‖ f̂ ν(π)‖∨ ≤ ‖ f ‖L1(G,ν).

Remark 3 If we take ν to be 〈ν, x∗〉, then

f̂ 〈ν,x∗〉(π) =
∫

G
f (t)π(t)∗ d〈ν, x∗〉 = (I dB(Hπ ) ⊗ x∗)

(
f̂ ν(π)

)
.

This can be considered as a generalization of Definition 4.6 in [13].

Remark 4 If G is abelian, then B(Hπ ) ∼= C for any [π ] ∈ Ĝ. In this case, note that
C⊗̌X ∼= X isometrically via the map α ⊗ x �→ αx and N(·) = ‖ · ‖L1(G,ν). Hence
our definition generalizes Definition 2.1 in [2].

Definition 9 We say that the Fourier transform Fν
G satisfies the Riemann–Lebesgue

lemma if Fν
G( f ) ∈ c0(Ĝ;B(Hπ )⊗̌X) for all f ∈ L1(G, ν).

The Fourier transform Fν
G need not satisfy the Riemann–Lebesgue lemma even if

G is abelian as shown in [2, Example 2.4]. Now we give a necessary condition for
Fν
G to satisfy the Riemann–Lebesgue lemma and also a stronger condition for the

sufficiency.

Theorem 5.2 Let M = {πi j : [π ] ∈ Ĝ, 1 ≤ i, j ≤ dπ }.
1. If Fν

G satisfies the Riemann–Lebesgue lemma, then the set {ψ ∈ M :
‖ ∫

G φ(t)ψ(t) dν‖X > ε} is finite for any ε > 0 and φ ∈ M.
2. Moreover, if ν is regular and {ψ = πi j ∈ M : d2π‖ ∫

G φ(t)ψ(t) dν‖X > ε} is
finite for any ε > 0 and φ ∈ M, then Fν

G satisfies the Riemann–Lebesgue lemma.

Proof Observe that for F : G → Y = B(Hπ )

∥
∥
∥
∥

∫

G
F dν

∥
∥
∥
∥∨

= sup
y∗∈BY∗

∥
∥
∥
∥

∫

G
y∗F dν

∥
∥
∥
∥
X

.

Hence if we write y∗ ∈ BY ∗ as y∗ = ∑
1≤i, j≤dπ

αi j e∗
i j , we have

max
i, j

∥
∥
∥
∥

∫

G
e∗
i j F dν

∥
∥
∥
∥
X

≤
∥
∥
∥
∥

∫

G
F dν

∥
∥
∥
∥∨

≤ d2π max
i, j

∥
∥
∥
∥

∫

G
e∗
i j F dν

∥
∥
∥
∥
X

.

1. Let ε > 0 and φ ∈ M ⊂ L1(G, ν). Suppose that Fν
G satisfies the Riemann–

Lebesgue lemma. If πi j ∈ M satisfies ‖ ∫
G φ(t)πi j (t) dν‖X > ε, by the

observation above with F(t) = φ(t)π(t)∗, we have ‖φ̂ν(π)‖∨ > ε. Hence
if {ψ ∈ M : ‖ ∫

G φ(t)ψ(t) dν‖X > ε} is infinite, then so does the set
{[π ] ∈ Ĝ : ‖φ̂ν(π)‖∨ > ε}, which is a contradiction.
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2. Let φ ∈ M and ε > 0. Suppose that {ψ ∈ M : d2π‖ ∫
G φ(t)ψ(t) dν‖X > ε} is

finite. If [π ] ∈ Ĝ satisfies ‖φ̂ν(π)‖∨ > ε, then d2π‖ ∫
G φ(t)π j i (t) dν‖X > ε for

some i, j . Hence we must have that φ̂ν ∈ c0(Ĝ;B(Hπ )⊗̌X). Note that the linear
span of M is Trig(G) and Trig(G) is dense in L1(G, ν). By the continuity, Fν

G
satisfies the Riemann–Lebesgue lemma.

��
Remark 5 If G is abelian and ν is regular, then Fν

G satisfies the Riemann–Lebesgue
lemma if and only if the set {ψ ∈ M : ‖ ∫

G φ(t)ψ(t) dν‖X > ε} is finite for any
ε > 0 and φ ∈ M.

We now prove the uniqueness theorem for the Fourier transform Fν
G .

Theorem 5.3 Let ν ∈ M(G, X) and f ∈ L1(G, ν). If f̂ ν(π) = 0 for all [π ] ∈ Ĝ,
then f = 0 ν-a.e.

Proof Suppose that f̂ ν(π) = 0 for all [π ] ∈ Ĝ. Fix a Rybakov functional
x∗ ∈ X∗ and write d〈ν, x∗〉 = g d|〈ν, x∗〉| where g ∈ L1(G, |〈ν, x∗〉|). Then∫
G f (t)y∗π(t)∗ d〈ν, x∗〉 = 0 for any y∗ ∈ B(Hπ )∗ and [π ] ∈ Ĝ. In particular,

∫
G πi j (t)( f g)(t) d|〈ν, x∗〉| = 0 for any [π ] ∈ Ĝ and 1 ≤ i, j ≤ dπ . Since πi j is a
matrix element of the contragradient representation of π ,

∫
G φ( f g) d|〈ν, x∗〉| = 0

for any φ ∈ Trig(G). By the density of Trig(G) in C(G) in the uniform norm,
f g d|〈ν, x∗〉| = 0 as a measure. Hence f g = 0 |〈ν, x∗〉|-a.e. However |g| = 1
|〈ν, x∗〉|-a.e. Then it must be the case that f = 0 |〈ν, x∗〉|-a.e. Therefore f = 0 ν-a.e.
since ν  |〈ν, x∗〉|. ��

Now we give a definition of a Fourier transform of functions on G/H with a vector
measure. This definition is motivated by [5]. Let μ be a vector measure on G/H .

Definition 10 For ϕ ∈ L1(G/H , μ) and [π ] ∈ Ĝ/H , we define the Fourier trans-
form of ϕ at [π ] as

ϕ̂μ(π) =
∫

G/H
ϕ(t H)�π(t H)∗ dμ(t H) ∈ B(Hπ )⊗̌X ,

where �π(t H) = π(t)T π
H .

Let g : G/H → B(Hπ ) be defined by g(t H) = ϕ(t H)�π(t H)∗ for t H ∈ G/H .
Then the μ-measurability of g can be verified similarly to case of compact groups.
Moreover, ‖�π(t H)‖2 = ‖�π(t H)∗�π(t H)‖ = ‖(T π

H )∗T π
H ‖ = ‖T π

H ‖2 = 1, so ‖g‖
is μ-integrable. Hence the definition is well-defined.

Proposition 5.4 Define the operatorFμ
G/H : L1(G/H , μ) → �∞(Ĝ/H ;B(Hπ )⊗̌X)

by Fμ
G/H (ϕ)(π) = ϕ̂ν(π) for ϕ ∈ L1(G/H , μ) and [π ] ∈ Ĝ/H. Then the Fourier

transform operator Fμ
G/H is bounded with ‖Fμ

G/H (ϕ)(π)‖∨ ≤ ‖ϕ‖L1(G/H ,μ).
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Proposition 5.5 Letμ ∈ M(G/H , X), ϕ ∈ L1(G/H , μ). Then ϕ̂μ(π) = ϕ̂q
μ̆(π) for

each [π ] ∈ Ĝ/H.

Proof Recall that T π
H = ∫

H π(h) dh is a bounded linear operator onHπ defined in the
weak sense that is 〈T π

H u, v〉 = ∫
H 〈π(h)u, v〉 dh for u, v ∈ Hπ . For y∗ ∈ B(Hπ )∗,

write y∗ = ∑
i, j αi j e∗

i j . Since
∫
H e∗

i jπ(th)∗ dh = e∗
i j

∫
H π(th)∗ dh = e∗

i j (T
π
Hπ(t)∗)

for any i, j , we have

TH (y∗π(t)∗) =
∫

H
y∗π(th)∗ dh

=
∑

i, j

αi j

∫

H
e∗
i jπ(th)∗ dh

=
∑

i, j

αi j e
∗
i j (T

π
Hπ(t)∗)

= y∗(T π
Hπ(t)∗)

for any t ∈ G. Hence TH (y∗π(·)∗) = y∗(T π
Hπ(·)∗). Consider for x∗ ∈ X∗ and

y∗ ∈ B(Hπ )∗,

(y∗ ⊗ x∗)(ϕ̂μ(π)) =
∫

G/H
ϕ(t H)y∗(T π

Hπ(t)∗) d〈μ, x∗〉(t H)

=
∫

G/H
TH (ϕq(·)y∗π(·)∗) d〈μ, x∗〉(t H)

=
∫

G
ϕq(t)y

∗π(t)∗ d〈μ̆, x∗〉(t)
= (y∗ ⊗ x∗)(ϕ̂q

μ̆(π)).

Hence ϕ̂μ(π) = ϕ̂q
μ̆(π). ��

Definition 11 We say that the Fourier transform Fμ
G/H satisfies the Riemann–

Lebesgue lemma if Fμ
G/H (ϕ) ∈ c0(Ĝ/H ;B(Hπ )⊗̌X) for all ϕ ∈ L1(G/H , μ).

Corollary 5.6 If F μ̆
G satisfies the Riemann–Lebesgue lemma, then so does Fμ

G/H .

The Fourier transform Fμ
G/H also satisfies the uniqueness theorem.

Theorem 5.7 Let μ ∈ M(G/H , X) and ϕ ∈ L1(G/H , μ). If ϕ̂μ(π) = 0 for all
[π ] ∈ Ĝ/H, then ϕ = 0 μ-a.e.

Proof Suppose that ϕ̂μ(π) = 0 for all [π ] ∈ Ĝ/H . Then ϕ̂q
μ̆(π) = 0 for all [π ] ∈

Ĝ/H . Moreover, if [π ] ∈ Ĝ but [π ] /∈ Ĝ/H , then ϕ̂q
μ̆(π) = 0. Indeed, for any
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x∗ ∈ X∗ and y∗ ∈ B(Hπ )∗,

(y∗ ⊗ x∗)(ϕ̂q
μ̆(π)) =

∫

G
ϕq(t)y

∗π(t)∗ d〈μ̆, x∗〉(t)

=
∫

G/H
ϕ(t H)y∗(T π

Hπ(t)∗) d〈μ, x∗〉(t H) = 0

since TH (y∗π(·)∗) = y∗(T π
Hπ(·)∗) = 0. Then one can apply Theorem 5.3 and obtains

that ϕq = 0 μ̆-a.e. Hence ϕ = TH (ϕq) = 0 μ-a.e. ��
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