

Fourier Transform for *Lp***-Functions with a Vector Measure on a Homogeneous Space of Compact Groups**

Sorravit Phonrakkhet¹ · Keng Wiboonton1

Received: 31 March 2023 / Revised: 22 November 2023 / Accepted: 30 November 2023 / Published online: 11 April 2024 © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Let *G* be a compact group and G/H a homogeneous space where *H* is a closed subgroup of *G*. Define an operator $T_H : C(G) \to C(G/H)$ by $T_H f(tH) = \int_H f(th) dh$ for each $tH \in G/H$. In this paper, we extend T_H to a norm-decreasing operator between L^p -spaces with a vector measure for each $1 \leq p \leq \infty$. This extension will be used to derive properties of invariant vector measures on *G*/*H*. Moreover, a definition of the Fourier transform for L^p -functions with a vector measure is introduced on *G*/*H*. We also prove the uniqueness theorem and the Riemann–Lebesgue lemma.

Keywords Vector measure · Homogeneous space · Compact group · Fourier transform

Mathematics Subject Classification 46G10 · 43A15 · 43A85

1 Introduction

Let *G* be a topological group which is compact and Hausdorff. Consider a homogeneous space *G*/*H* where *H* is a closed subgroup of *G*. If we denote the normalized Haar measures on *G* and *H* by *m* and *dh* respectively, then there is an induced left

Communicated by Oscar Blasco.

Sorravit Phonrakkhet sorravit.p@hotmail.com

 \boxtimes Keng Wiboonton keng.w@chula.ac.th

¹ Department of Mathematics and Computer Science, Chulalongkorn University, Bangkok 10330, Thailand

invariant Radon measure \widetilde{m} on G/H satisfying Weil's formula:

$$
\int_{G/H} \int_H f(th) \, dh \, d\widetilde{m}(tH) = \int_G f \, dm \qquad (f \in C(G)).
$$

In this setting, Farashahi [\[5](#page-23-0)] introduced a method to obtain many of the well-known results on *G*/*H* from the ones on *G*. This method relies unavoidably on an extension of the operator $T_H : C(G) \to C(G/H)$ given by $T_H f(tH) = \int_H f(th) dh$. The extension is in fact a norm-decreasing operator from $L^p(G, m)$ onto $L^p(G/H, \widetilde{m})$ where $1 \leq p < \infty$. The crucial property for this method is the surjectivity of the extension as it provides a connection to all L^p -functions on G/H to those on G . The extension was used to study abstract Fourier analysis on homogeneous spaces in various aspects such as convolutions, Fourier transform operators, Fourier series and measure algebras, see [\[6](#page-23-1)[–9](#page-23-2)].

A vector measure is a measure taking values in a Banach space. There are many studies about functions in L^p -spaces of a compact group associated to a vector measure and invariant properties under the group operations of the vector measure itself. For example, the Fourier transform and the convolution along with invariant properties were studied in $[1-3]$ $[1-3]$ under the condition that *G* is an abelian compact group. Then they were generalized to a non-abelian case in [\[13](#page-23-5), [14](#page-23-6)].

Let ν be a vector measure on *G*. In this paper, we initiate a study of an extension of the operator $T_H : C(G) \to C(G/H)$ to an operator with the domain $L^p(G, v)$. However, the codomain $C(G/H)$ must be extended as well. For this purpose, we will construct a corresponding vector measure \tilde{v} on G/H and show that the codomain of the extended operator is $L^p(G/H, \tilde{\nu})$. We investigate whether the extended operator is surjective and whether Weil's formula is valid. It turns out that these are true for some vector measure *ν*. Fortunately, it is sufficient for the study of functions in $L^p(G/H, \mu)$ for any vector measure μ on G/H . We will employ the extension to obtain properties of invariant vector measures on *G*/*H*. Moreover, we introduce a new definition of a Fourier transform of functions in $L^1(G, v)$ which is a variant definition of [\[13](#page-23-5)]. In our definition, *ν* is taking values in a Banach space while in [\[13\]](#page-23-5) *ν* is taking values in an operator space. The uniqueness theorem of the Fourier transform and the Riemann– Lebesgue lemma are considered. Finally, we provide an analogous definition for a Fourier transform of functions in $L^1(G/H, \mu)$ and once more employ the extension to obtain relations between the Fourier transforms of functions on *G* and *G*/*H*.

This paper is organized as follows. We give preliminary background in Sect. [2.](#page-2-0) In Sect. [3,](#page-6-0) an extension of the operator T_H to the space $L^p(G, v)$ is studied along with its properties. Then the obtained properties of the extension will be used to derive properties of invariant vector measures on *G*/*H* in Sect. [4.](#page-17-0) There are three types of invariant vector measures we consider in this paper: translation invariant, norm integral invariant and semivariation invariant measures. Section [5](#page-19-0) concerns the Fourier transforms of functions on *G* and *G*/*H*.

2 Preliminaries

2.1 Fourier Analysis with Haar Measures

Let *G* be a compact group with the normalized Haar measure *m*. The **dual space** \widehat{G} of *G* is the set of all unitary equivalence classes of irreducible unitary representations of *G*. For each $[\pi] \in G$, the representation space of π is denoted by \mathcal{H}_{π} with the dimension $d = \dim \mathcal{H}$. For $[\pi] \in \widehat{G}$ and $u, v \in \mathcal{H}$, the function $\pi \to G \to \mathbb{C}$ dimension $d_{\pi} = \dim \mathcal{H}_{\pi}$. For $[\pi] \in \widehat{G}$ and $u, v \in \mathcal{H}_{\pi}$, the function $\pi_{u, v} : G \to \mathbb{C}$
given by π (*t*) = π (*t*) with soulled a **matrix algorithment** of π . We write π for given by $\pi_{u,v}(t) = \langle \pi(t)v, u \rangle$ is called a **matrix element** of π . We write π_{ii} for π_{e_i,e_j} . Denote by Trig(*G*) the set of all finite linear combinations of matrix elements of irreducible representations. Note that $Trig(G)$ is dense in $C(G)$ in the uniform norm. For $f \in L^1(G, m)$ and $[\pi] \in \widehat{G}$, the **Fourier transform** of f is defined in the weak sense as

$$
\mathcal{F}_G(f)(\pi) = \widehat{f}(\pi) = \int_G f(t)\pi(t)^* dm(t) \in \mathcal{B}(\mathcal{H}_\pi).
$$

Given any collection $\{X_i\}_{i\in I}$ of Banach spaces where each X_i is equipped with the norm $\|\cdot\|_i$. The space $\ell^{\infty}(I; X_i) = \{x \in \prod_{i \in I} X_i : \sup_{i \in I} ||x_i||_i < \infty\}$ is a Banach space with the norm $||x||_{\infty} = \sup_{i \in I} ||x_i||_i$. The set $c_0(I; X_i)$ of all $x = (x_i)$ for which ${i \in I : ||x_i||_i > \varepsilon}$ is finite for any $\varepsilon > 0$ is a closed subspace of $\ell^{\infty}(I; X_i)$. By [\[12,](#page-23-7) Theorem 28.40], the Fourier transform operator \mathcal{F}_G is a bounded linear operator from $L^1(G, m)$ into $c_0(\widehat{G}; \mathcal{B}(\mathcal{H}_\pi))$ with $\|\widehat{f}(\pi)\| \leq \|f\|_{L^1(G, m)}$. For more details, see [\[11](#page-23-8)].

Let H be a closed subgroup of G and G/H the homogeneous space of left cosets equipped with the quotient topology. We denote the quotient map by $q : G \to G/H$. For φ : $G/H \to \mathbb{C}$, we write $\varphi_q : G \to \mathbb{C}$ for a function given by $\varphi_q(t) = \varphi(tH)$. Let *dh* be the normalized Haar measure on *H*. It is well-known that there is a unique (up to scalar) invariant Radon measure \widetilde{m} on G/H satisfying Weil's formula:

$$
\int_{G/H} \int_H f(th) \, dh \, d\widetilde{m}(t) = \int_G f \, dm \quad (f \in C(G)).
$$

In fact, \tilde{m} is the pushforward measure of *m* by the quotient map *q*. Define a bounded operator T_H : $C(G) \rightarrow C(G/H)$ by

$$
T_H f(tH) = \int_H f(th) \, dh \quad (tH \in G/H, \ f \in C(G)).
$$

According to [\[5\]](#page-23-0), for any $1 \leq p < \infty$, the operator T_H can be extended to a normdecreasing operator from $L^p(G, m)$ onto $L^p(G/H, \widetilde{m})$ (still denoted by T_H) for which the extended Weil's formula holds:

$$
\int_{G/H} T_H f d\widetilde{m} = \int_G f dm \quad (f \in L^1(G, m)).
$$
 (1)

For more details on Weil's formula, see [\[16](#page-23-9)]. The **dual space** of *G*/*H* is given by $\widehat{G/H} := \{ [\pi] \in \widehat{G} : T_H^{\pi} \neq 0 \}$ where T_H^{π} is defined in the weak sense as the operator

 $T_H^{\pi} := \int_H \pi(h) \, dh \in \mathcal{B}(\mathcal{H}_{\pi})$. For $\varphi \in L^1(G/H, \widetilde{m})$ and $[\pi] \in \widehat{G/H}$, the **Fourier transform** of φ is defined in the weak sense as **transform** of φ is defined in the weak sense as

$$
\mathcal{F}_{G/H}(\varphi)(\pi) = \widehat{\varphi}(\pi) = \int_{G/H} \varphi(tH) \Gamma_{\pi}(tH)^* d\widetilde{m}(tH) \in \mathcal{B}(\mathcal{H}_{\pi}),
$$

where $\Gamma_{\pi}(tH) = \pi(t)T_H^{\pi}$. Then the Fourier transform operator $\mathcal{F}_{G/H}$ is a bounded linear operator from $L^1(G/H, \widetilde{m})$ into $c_0(\widehat{G/H}; \mathcal{B}(\mathcal{H}_\pi))$ with $\|\widehat{\varphi}(\pi)\| \le \|\varphi\|_{L^1(G/H, \widetilde{m})}$, see [5] Theorem 5.5] see [\[5](#page-23-0), Theorem 5.5].

2.2 Vector Measures

Let $(\Omega, \mathfrak{B}(\Omega))$ be a Borel measurable space and *X* a Banach space. The closed unit ball in the dual space X^* is denoted by B_{X^*} . A **(countably additive) vector measure** *ν* on (Ω, $\mathfrak{B}(\Omega)$) is an *X*-valued function *ν* : $\mathfrak{B}(\Omega) \rightarrow X$ such that $ν(\bigcup_{n=1}^{\infty} E_n)$ = *v* on $(\Omega, \mathfrak{B}(\Omega))$ is an *X*-valued function $\nu : \mathfrak{B}(\Omega) \to X$ such that $\nu(\bigcup_{n=1}^{\infty} E_n) = \sum_{n=1}^{\infty} \nu(E_n)$ in the norm topology for any sequence (E_n) of pairwise disjoint sets in $\mathfrak{B}(\Omega)$. Given $x^* \in X^*$, let $\langle v, x^* \rangle : \mathfrak{B}(\Omega) \to \mathbb{C}$ be the complex measure given by $\langle v, x^* \rangle (E) = \langle v(E), x^* \rangle$ for $E \in \mathfrak{B}(\Omega)$. The **semivariation** $||v||$ of v is the set function defined by $\|\nu\|(E) = \sup_{x^* \in B_{Y^*}} |\langle \nu, x^* \rangle| (E)$ for $E \in \mathfrak{B}(\Omega)$. A vector measure *ν* is said to be **regular** if for each $E \in \mathcal{B}(\Omega)$ and $\varepsilon > 0$ there exist a compact set *K* and an open set *O* such that $K \subset E \subset O$ and $\|\nu\|(O \setminus K) < \varepsilon$. We denote by $M(\Omega, X)$ the set of all regular *X*-valued measures on Ω .

A measurable function $f : \Omega \to \mathbb{C}$ is said to be *v*-integrable if $f \in L^1(\langle v, x^* \rangle)$ for every $x^* \in X^*$ and for each $E \in \mathfrak{B}(\Omega)$ there is an $x_E \in X$ such that $\langle x_E, x^* \rangle =$ $\int_E f d\langle v, x^* \rangle$ for every $x^* \in X^*$. We denote x_E by $\int_E f dv$. For a measurable function $f : \Omega \to \mathbb{C}$, define

$$
||f||_{\nu} = \sup_{x^* \in B_{X^*}} \int_{\Omega} |f| d |\langle \nu, x^* \rangle|
$$

and $|| f ||_{v,p} := ||| f |^{p} ||_{v}^{1/p}$. The space $L^{1}(\Omega, v)$ of all v-integrable functions is a Banach space with the norm $\|\cdot\|_v$. We say that $f = g v$ -a.e. if $\|f - g\|_v = 0$. For each $1 \le$ $p < \infty$, the space $L^p(\Omega, \nu) := \{ f \in L^1(\Omega, \nu) : |f|^p \in L^1(\Omega, \nu) \}$ is a Banach space with the norm $\|\cdot\|_{L^p(\Omega,\nu)} := \|\cdot\|_{\nu,p}$. We denote by $S(\Omega)$ the set of all simple functions on Ω . The **integral operator** $I_v: L^1(\Omega, v) \to X$ is defined by $I_v(f) = \int_{\Omega} f dv$ for $f \in L^1(\Omega, \nu)$. Then I_ν is bounded with $\|I_\nu(f)\|_X \le \|f\|_{L^1(\Omega, \nu)}$.

Theorem 2.1 [\[15](#page-23-10)] *Let* $f : \Omega \to \mathbb{C}$ *be a complex function. Then* f *is v*-*integrable if and only if there is a sequence* (*fn*) *of simple functions which converges pointwise to f* and for which $(\int_E f_n \, d\nu)$ is Cauchy for any $E \in \mathfrak{B}(\Omega)$.

Theorem 2.2 [\[13](#page-23-5)] *Let* $v \in \mathcal{M}(G, X)$ *. Then* $C(G)$ *is dense in* $L^p(G, v)$ *for all* 1 < $p < \infty$.

For Banach spaces *X* and *Y*, a linear operator $T : X \rightarrow Y$ is said to be **weakly compact** if *T* (*B*) is a relatively weakly compact subset of *Y* whenever *B* is a bounded

subset of *X*. By [\[4](#page-23-11), Corollary VI.2.14], we have that on a compact Hausdorff space there is a one-to-one correspondence between the set of all regular vector measures and the set of all weakly compact operators. To be precise, given a regular vector measure $\nu : \mathfrak{B}(\Omega) \to X$, there is a weakly compact operator $T : C(\Omega) \to X$ representing ν , that is, $T(f) = \int_{\Omega} f \, dv$ for all $f \in C(\Omega)$, and vice versa.

A vector measure ν is said to be **absolutely continuous** with respect to a positive scalar measure λ , denoted by $\nu \ll \lambda$, if $\nu(E) \rightarrow 0$ in norm as $\lambda(E) \rightarrow 0$ where $E \in \mathfrak{B}(\Omega)$. Note that $\nu \ll \lambda$ if and only if ν vanishes on all sets of λ -measure zero, by [\[4](#page-23-11), Theorem I.2.1]. Moreover, ν vanishes on all sets of λ -measure zero if and only if $\|v\|$ vanishes on all sets of λ -measure zero. By Rybakov's theorem [\[4](#page-23-11)], there is a linear functional $x^* \in X^*$ such that $v \ll |\langle v, x^* \rangle|$. This functional is called a **Rybakov functional**. For $k \in [0, \infty)$, a vector measure v is said to be k-**scalarly bounded** by *m* if for any $x^* \in X^*$ and $E \in \mathfrak{B}(\Omega)$, we have $|\langle v, x^* \rangle| (E) \leq km(E)$.

Let $\tau : G \to G$ be a homeomorphism. For a measurable function $f : G \to \mathbb{C}$, we denote $f \circ \tau^{-1}$ by f_{τ} . For $a \in G$, we define the left translation L_a and the right translation R_a by $L_a(t) = at$ and $R_a(t) = ta^{-1}$ for $t \in G$. In the case that $\tau = L_a$ or R_a , we shall write $L_a f$ or $R_a f$ instead of f_{τ} . Hence $(L_a f)(t) = f(a^{-1}t)$ and $(R_a f)(t) = f(ta)$ for each $t \in G$.

Definition 1 Let τ : $G \rightarrow G$ be a homeomorphism and v a vector measure on G. We say that ν is τ -**invariant** if

$$
I_{\nu}(f_{\tau}) = I_{\nu}(f) \quad \text{for all } f \in S(G).
$$

Given a collection $\mathcal T$ of homeomorphisms on G , ν is said to be $\mathcal T$ -**invariant** if it is τ -invariant for all τ ∈ *T* . In particular, if *T* = {*La* : *a* ∈ *G*} (or *T* = {*Ra* : *a* ∈ *G*}), we say that ν is **left** (or **right**) **invariant**.

Definition 2 Let τ : $G \rightarrow G$ be a homeomorphism and v a vector measure on G. We say that ν is **norm integral** τ -**invariant** if

$$
||I_{\nu}(f_{\tau})|| = ||I_{\nu}(f)|| \quad \text{for all } f \in S(G).
$$

Given a collection T of homeomorphisms on G , ν is said to be **norm integral** T **invariant** if it is norm integral τ -invariant for all $\tau \in \mathcal{T}$. In particular, if $\mathcal{T} = \{L_a :$ $a \in G$ (or $\mathcal{T} = \{R_a : a \in G\}$), we say that ν is **norm integral left** (or **right**) **invariant**.

Definition 3 Let τ : $G \rightarrow G$ be a homeomorphism and v a vector measure on G. We say that ν is **semivariation** τ -**invariant** if

$$
||f_{\tau}||_{L^1(G,\nu)} = ||f||_{L^1(G,\nu)} \text{ for all } f \in S(G).
$$

Given a collection T of homeomorphisms on G , ν is said to be **semivariation** T **invariant** if it is semivariation τ -invariant for all $\tau \in \mathcal{T}$. In particular, if $\mathcal{T} = \{L_a :$ $a \in G$ (or $\mathcal{T} = \{R_a : a \in G\}$), we say that v is **semivariation left** (or **right**) **invariant**.

2.3 Tensor Integration

Let *X* and *Y* be any Banach spaces. Recall that the space $\mathcal{B}(Y^* \times X^*)$ of bounded bilinear forms on $Y^* \times X^*$ is a Banach space equipped with the norm

$$
||b|| = \sup\{|b(y^*, x^*)| : y^* \in B_{Y^*}, x^* \in B_{X^*}\}.
$$

Note that we can realize *Y* ⊗ *X* as a subspace of $\mathcal{B}(Y^* \times X^*)$ by considering *u* = $\sum_{y} n_{y} \otimes x_{y} \in Y \otimes X$ as a bilinear form given by *b* $(y^* \cdot x^*) = \sum_{y} y^* (y_{y}) x^* (y_{y}) = 0$ $\sum_{i=1}^{n} y_i \otimes x_i \in Y \otimes X$ as a bilinear form given by $b_u(y^*, x^*) = \sum y^*(y_i)x^*(x_i) =$ $(y^* \otimes x^*)(u)$ for $y^* \in Y^*$ and $x^* \in X^*$. The **injective norm** $\|\cdot\|_{\vee}$ on $Y \otimes X$ is the norm induced by this embedding, i.e.,

$$
||u||_{\vee} = \sup_{y^* \in B_{Y^*}, x^* \in B_{X^*}} |(y^* \otimes x^*)(u)|.
$$

Moreover, we have alternative formulas for the injective norm

$$
||u||_{\vee} = \sup_{y^* \in B_{Y^*}} \left\| \sum y^*(y_i) x_i \right\|_X = \sup_{x^* \in B_{X^*}} \left\| \sum x^*(x_i) y_i \right\|_Y.
$$

The completion of the tensor product space $Y \otimes X$ with the injective norm is called the **injective tensor product** of *Y* and *X*, denoted by $Y \& X$. For more details, see [\[17](#page-23-12)].

Now we summarize the concept of tensor integration introduced by [\[18\]](#page-23-13). Let ν be an *X*-valued vector measure. A function $f : \Omega \to Y$ is said to be *v*-measurable if there is a sequence of *Y*-valued simple functions (f_n) with $\lim_{n\to\infty} ||f_n - f||_Y = 0$ *v*-a.e. We say that a function $f : \Omega \to Y$ is **weakly** *v*-measurable if for each $y^* \in Y^*$ the function $y * f$ is v-measurable. Note that a function $f : \Omega \to Y$ is v-measurable if and only if *f* is $|\langle v, x^* \rangle|$ -measurable for some Rybakov functional $x^* \in X^*$.

Theorem 2.3 (Pettis's measurability theorem [\[4\]](#page-23-11)) Let λ be a finite positive measure. *A function f* : $\Omega \rightarrow Y$ *is* λ *-measurable if and only if f is weakly* λ *-measurable and* λ*-essentially separably valued.*

Let $E \in \mathfrak{B}(\Omega)$ and $\phi = \sum_{i=1}^{n} y_i \chi_{A_i}$ be a *Y*-valued simple function on Ω , where $y_i \in Y$ and $A_i \in \mathfrak{B}(\Omega)$. We define $\int_E \phi \, d\nu = \sum y_i \otimes \nu(E \cap A_i) \in Y \otimes X$. Then it can be shown that $(y^* \otimes x^*)(\int_E \phi \, d\nu) = \int_E y^* \phi \, d\langle \nu, x^* \rangle$ for $y^* \in Y^*$ and $x^* \in X^*$, hence $\left\| \int_E \phi \, dv \right\|_{\vee} \leq \sup_{x^* \in B_{X^*}} \int_E \|\phi\| \, d |\langle v, x^* \rangle|.$ For a *v*-measurable function $f: \Omega \to Y$, we let

$$
N(f) = \sup_{x^* \in B_{X^*}} \int_{\Omega} ||f|| d |\langle v, x^* \rangle|.
$$

Definition 4 A *v*-measurable function $f : \Omega \to Y$ is $\check{\otimes}$ -integrable if there exists a sequence (f_n) of simple functions such that

$$
\lim_{n \to \infty} \mathcal{N}(f - \phi_n) = 0.
$$

In this case, the sequence $(\int_E \phi_n \, d\nu)$ is a Cauchy sequence in $Y \otimes X$ for each $E \in$ $\mathfrak{B}(\Omega)$. By the completeness of *Y*⊗*X*, the limit of ($\int_E \phi_n dν$) is denoted by $\int_E f dν$ and is called the $\check{\otimes}$ -**integral** of *f* over *E* with respect to *v*.

Note that if *f* is $\hat{\otimes}$ -integrable, then $(y^* \otimes x^*)(\int_E f dv) = \int_E y^* f d\langle v, x^* \rangle$ for $E \in \mathfrak{B}(\Omega), y^* \in Y^*$ and $x^* \in X^*$ and $\| \int_{\Omega} f \, d\nu \|_{\vee} \le N(f).$

Theorem 2.4 [\[18](#page-23-13)] *A v*-measurable function f is $\&$ -integrable if and only if $||f||$ is ν*-integrable.*

3 Extensions of the Operator *TH*

In this section, we study extensions of the operator T_H : $C(G) \rightarrow C(G/H)$. Given a vector measure $v \in \mathcal{M}(G, X)$, we can naturally construct a vector measure on G/H as follows. Let $T_v : C(G) \to X$ be the corresponding weakly compact operator for v , i.e.,

$$
T_{\nu}(f) = \int_G f \, d\nu \quad (f \in C(G)).
$$

Define $T_{\tilde{\nu}}$: $C(G/H) \rightarrow X$ by

$$
T_{\tilde{\nu}}(\varphi) = T_{\nu}(\varphi_q) = \int_G \varphi_q \, d\nu \quad (\varphi \in C(G/H)).
$$

Then $T_{\tilde{\nu}}$ is weakly compact since $\|\varphi\|_{\text{sup}} = \|\varphi_q\|_{\text{sup}}$ for all $\varphi \in C(G/H)$. Hence there is a representing vector measure $\tilde{\nu} \in \mathcal{M}(G/H, X)$. Moreover, we immediately have that

$$
\int_{G/H} \varphi \, d\tilde{\nu} = \int_G \varphi_q \, d\nu \quad (\varphi \in C(G/H)). \tag{2}
$$

We shall begin with some basic properties of $\tilde{\nu}$.

Proposition 3.1 *Let* $v \in \mathcal{M}(G, X)$ *.*

- *1. The vector measure* \tilde{v} *is the pushforward (vector) measure of v by the quotient map q, i.e.,* $\tilde{v}(E) = v(q^{-1}(E))$ *for all* $E \in \mathfrak{B}(G/H)$ *. Moreover, the Eq.* [\(2\)](#page-6-1) *holds for all* $\varphi \in L^1(G/H, \tilde{\nu})$ *provided that* $\varphi_q \in L^1(G, \nu)$ *.*
- *2. For any* $x^* \in X^*$ *and* $E \in \mathfrak{B}(G/H)$, $|\langle \tilde{v}, x^* \rangle| (E) \leq |\langle v, x^* \rangle| (q^{-1}(E))$ *. Then* $\|\varphi\|_{L^p(G/H, \tilde{\nu})} \leq \|\varphi_q\|_{\nu, p}$ *for any* $1 \leq p < \infty$ *and* $\varphi \in L^p(G/H, \tilde{\nu})$ *.*
- *Proof* 1. Let λ be the pushforward measure of v by the quotient map q. It follows from Eq. [\(2\)](#page-6-1) that

$$
\int_{G/H} \varphi \, d\lambda = \int_G \varphi_q \, dv = \int_{G/H} \varphi \, d\tilde{\nu}
$$

for all $\varphi \in C(G/H)$. Hence $\tilde{\nu} = \lambda$. Next observe that Eq. [\(2\)](#page-6-1) holds for all $\varphi \in S(G/H)$. Let $0 \leq \varphi \in L^1(G/H, \tilde{\nu})$. Then there is a sequence of positive

simple functions $\varphi_n \uparrow \varphi$ pointwise. By the monotone convergence theorem, for each *x*[∗] ∈ *X*[∗]

$$
\int_{G/H} \varphi \, d\langle \tilde{\nu}, x^* \rangle = \lim_{n \to \infty} \int_{G/H} \varphi_n \, d\langle \tilde{\nu}, x^* \rangle
$$
\n
$$
= \lim_{n \to \infty} \int_G (\varphi_n)_q \, d\langle \nu, x^* \rangle
$$
\n
$$
= \int_G \varphi_q \, d\langle \nu, x^* \rangle.
$$

This identity easily extends to $\varphi \in L^1(G/H, \tilde{\nu})$. If we assume that $\varphi_q \in L^1(G, \nu)$, then

$$
\left\langle \int_{G/H} \varphi \, d\tilde{\nu}, x^* \right\rangle = \int_{G/H} \varphi \, d\langle \tilde{\nu}, x^* \rangle = \int_G \varphi_q \, d\langle \nu, x^* \rangle = \left\langle \int_G \varphi_q \, d\nu, x^* \right\rangle
$$

for all $x^* \in X^*$, which proves the Eq. [\(2\)](#page-6-1).

2. Let $E \in \mathfrak{B}(G/H)$. Consider any disjoint partition $\{E_n\}_{n=1}^k$ of *E* where $E_n \in \mathfrak{B}(G/H)$. $\mathfrak{B}(G/H)$. Since $\{q^{-1}(E_n)\}_{n=1}^k$ forms a disjoint partition of $q^{-1}(E)$,

$$
\sum_{n=1}^k |\langle \tilde{\nu}, x^* \rangle(E_n)| = \sum_{n=1}^k |\langle \nu, x^* \rangle (q^{-1}(E_n))| \leq |\langle \nu, x^* \rangle| (q^{-1}(E)).
$$

Hence $|\langle \tilde{\nu}, x^* \rangle| (E) \le |\langle \nu, x^* \rangle| (q^{-1}(E))$. Consequently,

$$
\int_{G/H}\varphi\,d|\langle\tilde{v},x^*\rangle|\leq \int_G\varphi_q\,d|\langle v,x^*\rangle|
$$

holds for any simple function $\varphi \geq 0$ on G/H . Then for any $\varphi \in L^1(G/H, \mu)$, the monotone convergence theorem implies that

$$
\int_{G/H} |\varphi| d |\langle \tilde{\nu}, x^* \rangle| \leq \int_G |\varphi_q| d |\langle \nu, x^* \rangle|.
$$

Therefore, $\|\varphi\|_{L^p(G/H,\tilde{\nu})} \le \|\varphi_q\|_{\nu,p}$ for any $1 \le p < \infty$ and $\varphi \in L^p(G/H,\tilde{\nu})$. \Box

Example 1 Let $1 \leq p < \infty$ and $S: L^p(G, m) \to X$ be any bounded linear map, where *m* is the normalized Haar measure on *G*. Define a vector measure $v : \mathfrak{B}(G) \to X$ corresponding to *S* by $v(E) = S(\chi_E)$ for $E \in \mathfrak{B}(G)$. Then by Proposition [3.1](#page-6-2)[.1.](#page-6-3) the vector measure $\tilde{\nu}$ is given by $\tilde{\nu}(F) = S(\chi_{q^{-1}(F)})$ for $F \in \mathcal{B}(G/H)$.

1. Let $X = \mathbb{C}$ and $S : L^1(G, m) \to \mathbb{C}$ be given by $S(f) = \int_G f dm$ for any $f \in$ $L^1(G, m)$. In this case, $v = m$. Moreover, $\tilde{v} = \tilde{m}$ since $\tilde{v}(F) = f$
 $\int_{\mathbb{R}^d} v_{\mathcal{F}} d\tilde{w} = \tilde{w}(F)$ for all $F \in \mathfrak{B}(G/H)$, where \tilde{w} is the puch *L*¹(*G*, *m*). In this case, $\nu = m$. Moreover, $\tilde{\nu} = \tilde{m}$ since $\tilde{\nu}(F) = \int_G \chi_{q^{-1}(F)} dm =$
 $\int_{G/H} \chi_F d\tilde{m} = \tilde{m}(F)$ for all $F \in \mathfrak{B}(G/H)$, where \tilde{m} is the pushforward measure $\int_{G/H} \chi_F d\tilde{m} = \tilde{m}(F)$ for all $F \in \mathfrak{B}(G/H)$, where \tilde{m} is the pushforward measure of *m*.

- 2. Let $X = L^1(G, m)$ and $S = Id_{L^1(G, m)}$. Then $\tilde{\nu}(F) = \chi_{q^{-1}(F)}$ for $F \in \mathfrak{B}(G/H)$.
- 3. Let λ be a complex regular measure on *G* and $1 \leq p \leq \infty$. We define *S* : $L^p(G, m) \to L^p(G, m)$ by $S(f) = f * \lambda$ where $(f * \lambda)(t) = \int_G f(ts^{-1}) d\lambda(s)$ for $t \in G$. Then $\tilde{\nu}(F) = \chi_{q^{-1}(F)} * \lambda$ for $F \in \mathfrak{B}(G/H)$.
- 4. Let $1 \leq p \leq 2$ and $S : L^p(G, m) \to \ell^{p'}(\widehat{G}; \mathcal{B}(\mathcal{H}_\pi))$ be defined by $S(f) = \mathcal{F}_p(f)$. Then $\widetilde{p}(F) = \mathcal{F}_p(g) =$ $\mathcal{F}_G(f)$. Then $\tilde{\nu}(F) = \mathcal{F}_G(\chi_{g^{-1}(F)}) = \mathcal{F}_{G/H}(\chi_F)$ for $F \in \mathfrak{B}(G/H)$.

Let τ : $G/H \rightarrow G/H$ be a homeomorphism. For example, one can consider a left translation L_a : $G/H \rightarrow G/H$ by $a \in G$ given by $L_a(tH) = atH$ for each *tH* $\in G/H$. For a measurable function $\varphi : G/H \to \mathbb{C}$, we denote $\varphi \circ \tau^{-1}$ by φ_{τ} . In the case that $\tau = L_a$ where $a \in G$, we shall denote $\varphi \circ (L_a)^{-1}$ by $L_a \varphi$ and by definition we have $(L_a\varphi)(tH) = \varphi(a^{-1}tH)$ for all $tH \in G/H$.

Definition 5 Let τ : $G/H \rightarrow G/H$ be a homeomorphism. For any vector measure μ on G/H , we say that μ is **norm integral** τ **-invariant** if

$$
||I_{\mu}(\varphi_{\tau})|| = ||I_{\mu}(\varphi)|| \quad \text{for all } \varphi \in S(G/H).
$$

Given a collection T of homeomorphisms on G/H , μ is said to be **norm integral** *T* **-invariant** if it is norm integral τ -invariant for all $\tau \in \mathcal{T}$. In particular, if $\mathcal{T} = \{L_a :$ $a \in G$, we say that μ is **norm integral left invariant**.

This proposition is merely a consequence of Proposition [3.1.](#page-6-2)

Proposition 3.2 *Let* $v \in \mathcal{M}(G, X)$ *.*

- *1. For a* \in *G, if v is norm integral* L_a -*invariant, then so is* $\tilde{\nu}$ *.*
- 2. If $\nu \ll m$, then $\tilde{\nu} \ll \tilde{m}$.
- *3. If ν is k-scalarly bounded by m, then* \tilde{v} *is k-scalarly bounded by* \tilde{m} *.*
- *Proof* 1. For $\varphi \in S(G/H)$, by Proposition [3.1](#page-6-2)[.1.,](#page-6-3) Eq. [\(2\)](#page-6-1) holds for simple functions, we have

$$
||I_{\tilde{\nu}}(L_a \varphi)|| = ||I_{\nu}((L_a \varphi)_q)|| = ||I_{\nu}(L_a(\varphi_q))|| = ||I_{\nu}(\varphi_q)|| = ||I_{\tilde{\nu}}(\varphi)||.
$$

- 2. For any $F \in \mathfrak{B}(G/H), \widetilde{m}(F) = m(q^{-1}(F))$ and $\widetilde{\nu}(F) = \nu(q^{-1}(F))$. If $\widetilde{m}(F) \to$ 0, then also $m(q^{-1}(F)) \to 0$, and hence $\tilde{\nu}(F) = \nu(q^{-1}(F)) \to 0$ since $\nu \ll m$.
- 3. It follows immediately from the fact that

$$
|\langle \tilde{v}, x^* \rangle| (E) \le |\langle v, x^* \rangle| (q^{-1}(E)) \le km(q^{-1}(E)) = k\tilde{m}(E)
$$

for any $E \in \mathfrak{B}(G/H)$.

Now we prove an existence of an extension of T_H to an operator from $L^p(G, v)$ into $L^p(G/H, \tilde{\nu})$ for each $1 \leq p < \infty$. This is a generalization of Theorem 3.2 in [\[5](#page-23-0)].

 \Box

$$
||T_Hf||_{L^p(G/H,\tilde{\nu})} \le ||f||_{L^p(G,\nu)} \quad \text{for all } f \in C(G),
$$

hence it has a unique extension to a norm-decreasing operator $T_{H,\nu}: L^p(G,\nu) \to$ $L^p(G/H, \tilde{\nu})$.

Proof Let $f \in C(G)$. By Proposition [3.1.](#page-6-2)[2.](#page-6-4) and ν being semivariation \mathcal{R} -invariant,

$$
||T_H f||_{L^p(G/H, \tilde{\nu})}^p \le ||(T_H f)_{q}||_{L^p(G, \nu)}^p
$$

\n
$$
= \sup_{x^* \in B_{X^*}} \int_G |(T_H f)(tH)|^p d|\langle \nu, x^* \rangle|(t)
$$

\n
$$
\le \sup_{x^* \in B_{X^*}} \int_G \int_H |f(th)|^p dh d|\langle \nu, x^* \rangle|(t)
$$

\n
$$
= \sup_{x^* \in B_{X^*}} \int_H \int_G |f(th)|^p d|\langle \nu, x^* \rangle|(t) dh
$$

\n
$$
\le \int_H \left(\sup_{x^* \in B_{X^*}} \int_G |f(th)|^p d|\langle \nu, x^* \rangle|(t) dh \right)
$$

\n
$$
= \int_H ||R_h f||_{L^p(G, \nu)}^p dh
$$

\n
$$
= \int_H ||f||_{L^p(G, \nu)}^p dh
$$

\n
$$
= ||f||_{L^p(G, \nu)}^p.
$$

By the density of $C(G)$ in $L^p(G, v)$, the operator T_H can be extended uniquely to a bounded linear map from $L^p(G, v)$ to $L^p(G/H, \tilde{v})$. To verify that $T_{H, v}$ is normdecreasing, let $f \in L^p(G, v)$ with $f_n \to f$ in $L^p(G, v)$ where $f_n \in C(G)$. Then

$$
||T_{H,\nu}f||_{L^p(G/H,\tilde{\nu})} = \lim_{n \to \infty} ||T_Hf_n||_{L^p(G/H,\tilde{\nu})} \le \lim_{n \to \infty} ||f_n||_{L^p(G,\nu)} = ||f||_{L^p(G,\nu)}
$$

as desired. \Box

Remark 1 If there is no ambiguity, we shall denote $T_{H, \nu}$ by T_H . Secondly, it is worth noting that even though the extensions of T_H : $C(G) \rightarrow C(G/H)$ to $L^p(G, \nu)$ and $L^q(G, v)$ might be different operators if $p \neq q$, they coincide on the intersection of the domains. Suppose that we denote the extension of T_H to $L^p(G, v)$ by $T_{H, p}$ for $1 \leq p <$ ∞ . Consider 1 ≤ *p* < *q* < ∞ . Note that it follows from [\[15,](#page-23-10) Proposition 3.31(ii)] that for any vector measure μ on Ω , $L^q(\Omega, \mu) \subset L^p(\Omega, \mu)$ with $||f||_{L^p(\Omega, \mu)} \le$ K $\|f\|_{L^q(\Omega,\mu)}$ for some constant $K > 0$. Now we show that the extensions $T_{H,p}$ and *T*_{*H*},*q* coincide on *L*^{*q*}(*G*, *v*) \subset *L*^{*p*}(*G*, *v*). Let *f_n* \rightarrow *f* in *L*^{*q*(*G*, *v*) where *f_n* \in *C*(*G*).} Then $T_{H,p} f_n \to T_{H,p} f$ in $L^p(G/H, \tilde{\nu})$ and also $T_{H,q} f_n \to T_{H,q} f$ in $L^p(G/H, \tilde{\nu})$. Since $T_{H,p}$ and $T_{H,q}$ agree on $C(G)$, we have that $T_{H,p} f = T_{H,q} f$ in $L^p(G/H, \tilde{\nu})$

which implies $T_{H,p} f = T_{H,q} f \tilde{\nu}$ -a.e. Thus there is no ambiguity to denote any extension $T_{H,p}$ for any $1 \leq p < \infty$ by T_H .

Now we prove that the extension T_H is norm-decreasing in the sense of the norm in *X*.

Theorem 3.4 *Let v be norm integral* \mathcal{R} *-invariant where* $\mathcal{R} = \{R_h : h \in H\}$ *. Then*

$$
\left\| \int_{G/H} T_H f \, d\tilde{\nu} \right\|_X \le \left\| \int_G f \, d\nu \right\|_X \quad (f \in L^1(G, \nu)).
$$

Proof Let $f \in C(G)$. For $x^* \in B_{X^*}$, by Eq. [\(2\)](#page-6-1)

$$
\int_{G/H} T_H f d\langle \tilde{\nu}, x^* \rangle = \int_G (T_H f)_q d\langle \nu, x^* \rangle
$$

=
$$
\int_G \int_H f(th) dh d\langle \nu, x^* \rangle(t)
$$

=
$$
\int_H \int_G (R_h f)(t) d\langle \nu, x^* \rangle(t) dh.
$$

Hence

$$
\left\| \int_{G/H} T_H f \, d\tilde{\nu} \right\|_X = \sup_{x^* \in B_{X^*}} \left| \int_{G/H} T_H f \, d\langle \tilde{\nu}, x^* \rangle \right|
$$

\n
$$
= \sup_{x^* \in B_{X^*}} \left| \int_H \int_G (R_h f)(t) \, d\langle \nu, x^* \rangle(t) \, dh \right|
$$

\n
$$
\leq \int_H \left(\sup_{x^* \in B_{X^*}} \left| \int_G (R_h f)(t) \, d\langle \nu, x^* \rangle(t) \right| \right) dh
$$

\n
$$
= \int_H \left\| \int_G R_h f \, d\nu \right\|_X dh
$$

\n
$$
= \left\| \int_G f \, d\nu \right\|_X.
$$

For any $f \in L^1(G, v)$, let f_n be a sequence of continuous functions converging to f in $L^1(G, \nu)$. Then

$$
||I_{\tilde{\nu}}(T_H f)||_X = \lim_{n \to \infty} ||I_{\tilde{\nu}}(T_H f_n)||_X \le \lim_{n \to \infty} ||I_{\nu}(f_n)||_X = ||I_{\nu}(f)||_X
$$

that is $\|\int_{G/H} T_H f d\tilde{v}\|_X \le \|\int_G f d\nu\|_X$ as desired.

We have investigated the properties of the extension $T_H : L^p(G, v) \rightarrow$ $L^p(G/H, \tilde{\nu})$ for a given vector measure $\nu \in \mathcal{M}(G, X)$. However, in general, to study Fourier analysis on homogeneous spaces, it is essential to consider the space $L^p(G/H, \mu)$ for a given vector measure μ on G/H instead of the space $L^p(G/H, \tilde{\nu})$.

To deal with this situation, we will define a corresponding measure μ on *G* and study the extension $T_H: L^p(G, \check{\mu}) \to L^p(G/H, \mu)$.

Let $\mu \in \mathcal{M}(G/H, X)$ and $T_{\mu}: C(G/H) \to X$ be the corresponding weakly compact operator given by

$$
T_{\mu}(\varphi) = \int_{G/H} \varphi \, d\mu \quad (\varphi \in C(G/H)).
$$

Observe that the operator $T_\mu \circ T_H : C(G) \to X$ is weakly compact since T_H is bounded and T_{μ} is weakly compact. Then there is a representing regular vector measure on G . Denote the representing vector measure by $\mu \in \mathcal{M}(G, X)$ and $T_{\mu} \circ T_H$ by T_{μ} . Hence we immediately have that

$$
\int_G f d\breve{\mu} = \int_{G/H} T_H f d\mu \quad (f \in C(G)).
$$
\n(3)

Remark 2 Let Φ : $\mathcal{M}(G, X) \to \mathcal{M}(G/H, X)$ be defined by $\Phi(\nu) = \tilde{\nu}$ for $\nu \in$ $\mathcal{M}(G, X)$ and $\Psi : \mathcal{M}(G/H, X) \to \mathcal{M}(G, X)$ by $\Psi(\mu) = \tilde{\mu}$ for $\mu \in \mathcal{M}(G/H, X)$. Then the following diagram commutes:

In other words, $\Phi \circ \Psi = \text{Id}_{\mathcal{M}(G/H,X)}$ or equivalently $\mu \in \mathcal{M}(G/H,X)$ $M(G/H, X)$. This can be proved by observing that

$$
\int_{G/H} \varphi \, d\tilde{\mu} = \int_G \varphi_q \, d\tilde{\mu} = \int_{G/H} T_H(\varphi_q) \, d\mu = \int_{G/H} \varphi \, d\mu
$$

for all $\varphi \in C(G/H)$. Note that the commutativity of the diagram also implies that Φ is surjective and Ψ is injective.

Proposition 3.5 *Let* $\mathcal{R} = \{R_h : h \in H\}$ *and* $x^* \in B_{X^*}$ *. Then* μ *and* $|\langle \mu, x^* \rangle|$ *are R-invariant.*

Proof To show that μ is \mathcal{R} -invariant, let $h \in H$ and $f \in C(G)$. Observe that

$$
T_H(R_h f)(tH) = \int_H (R_h f)(th') \, dh' = \int_H f(th') \, dh' = T_H(f)(tH).
$$

Hence

$$
T_{\check{\mu}_{R_h}}(f) = T_{\check{\mu}}(R_h f) = T_{\mu}(T_H(R_h f)) = T_{\mu}(T_H f) = T_{\check{\mu}}(f).
$$

Hence $\mu_{R_h} = \mu$, that is, μ is R_h -invariant.

B Birkhäuser

Now let $x^* \in B_{X^*}$, $E \in \mathfrak{B}(G)$ and $h \in H$. For any disjoint partition $\{E_n\}_{n=1}^k$ of *E* where $E_n \in \mathfrak{B}(G)$, note that $\{R_h E_n\}_{n=1}^k$ forms a disjoint partition of $R_h E$ and

$$
\sum_{n=1}^k |\langle \check{\mu}, x^* \rangle(E_n)| = \sum_{n=1}^k |\langle \check{\mu}, x^* \rangle(R_h E_n)| \leq |\langle \check{\mu}, x^* \rangle|(R_h E).
$$

Hence $|\langle \mu, x^* \rangle| (E) \leq |\langle \mu, x^* \rangle| (R_h E)$. Taking *E* as $R_h E$ and *h* as h^{-1} , we also get $|\langle \check{\mu}, x^* \rangle| (R_h E) \leq |\langle \check{\mu}, x^* \rangle| (E).$

This proposition particularly implies that $\tilde{\mu}$ is semivariation \mathcal{R} -invariant. Hence we can apply Theorem 3.3 to get that the operator T_H has an extension to a normdecreasing operator from $L^p(G, \mu)$ to $L^p(G/H, \mu)$ for any $1 \leq p < \infty$. Moreover, Eq. [\(3\)](#page-11-0) extends to $L^1(G, \breve{\mu})$

$$
\int_G f d\breve{\mu} = \int_{G/H} T_H f d\mu \quad (f \in L^1(G, \breve{\mu})).
$$
\n(4)

Indeed, if $f_n \to f$ in $L^1(G, \mu)$ where $f_n \in C(G)$, then $I_\mu(T_H f) = \lim_{n \to \infty} T_\mu(T_H(f_n)) =$ $\lim_{n\to\infty} T_{\mu}(f_n) = I_{\mu}(f)$. Now we prove that the Eq. [\(4\)](#page-12-0) is also true for the total variation of the associated complex measures.

Lemma 3.6 *For* $x^* \in B_{X^*}$ *and* $f \in L^1(G, \mathcal{U})$ *,*

$$
\int_G f \, d|\langle \check{\mu}, x^* \rangle| = \int_{G/H} T_H f \, d|\langle \mu, x^* \rangle|.
$$

In particular, $||T_H|f||_{L^1(G/H,\mu)} = ||f||_{L^1(G,\check{\mu})}$ *for any* $f \in L^1(G,\check{\mu})$ *.*

Proof It suffices to prove that for any $f \in L^1(G, \mu)$ and $x^* \in B_{X^*}$

$$
\int_G |f| d|\langle \check{\mu}, x^* \rangle| = \int_{G/H} T_H |f| d|\langle \mu, x^* \rangle|.
$$

We first claim that for each $E \in \mathfrak{B}(G)$, $T_H(\chi_E) \geq 0$ $|\langle \mu, x^* \rangle|$ -a.e that is the set $F = \{t H \in G/H : T_H(\chi_E) < 0\}$ is $|\langle \mu, x^* \rangle|$ -null. Let $f_n \to \chi_E$ in $L^1(G, \check{\mu})$ where $f_n \in C(G)$ is positive (which exists by using Urysohn's lemma together with the regularity of $\tilde{\mu}$). Since $T_H(f_n) \geq 0$ for all $n \in \mathbb{N}$,

$$
\int_{F} |T_H(\chi_E)| d|\langle \mu, x^* \rangle| \leq \int_{F} |T_H(\chi_E) - T_H(f_n)| d|\langle \mu, x^* \rangle|
$$

$$
\leq \|T_H(\chi_E - f_n)\|_{L^1(G/H, \mu)}
$$

which implies that $|\langle \mu, x^* \rangle| (F) = 0$ as desired. Now fix $E \in \mathfrak{B}(G)$ and consider any disjoint partition ${E_n}_{n=1}^k$ of *E* where $E_n \in \mathfrak{B}(G)$. By Eq. [\(4\)](#page-12-0) and the claim,

$$
\sum_{n=1}^{k} |\langle \check{\mu}, x^* \rangle (E_n)| = \sum_{n=1}^{k} \left| \int_{G/H} T_H(\chi_{E_n}) d \langle \mu, x^* \rangle \right|
$$

$$
\leq \sum_{n=1}^{k} \int_{G/H} T_H(\chi_{E_n}) d |\langle \mu, x^* \rangle|
$$

$$
= \int_{G/H} T_H(\chi_E) d |\langle \mu, x^* \rangle|.
$$

Hence $\int_G \chi_E d|\langle \mu, x^* \rangle| \leq \int_{G/H} T_H(\chi_E) d|\langle \mu, x^* \rangle|$. It follows immediately that for any $f \in S(G)$,

$$
\int_G |f| d |\langle \check{\mu}, x^* \rangle| \le \int_{G/H} T_H |f| d |\langle \mu, x^* \rangle|
$$

which can be extended to any $f \in L^1(G, \tilde{\mu})$ by using the density of $S(G)$ in $L^1(G, \tilde{\mu})$.

Conversely, by Propositions [3.1](#page-6-2)[.2.](#page-6-4) and [3.5,](#page-11-1) for $f \in C(G)$

$$
\int_{G/H} T_H |f| d |\langle \mu, x^* \rangle| \leq \int_G (T_H |f|)_{q} d |\langle \check{\mu}, x^* \rangle|
$$

\n
$$
= \int_G \int_H |f(th)| dh d |\langle \check{\mu}, x^* \rangle| (t)
$$

\n
$$
= \int_H \int_G |f(th)| d |\langle \check{\mu}, x^* \rangle| (t) dh
$$

\n
$$
= \int_H \int_G |f(t)| d |\langle \check{\mu}, x^* \rangle| (t) dh
$$

\n
$$
= \int_G |f(t)| d |\langle \check{\mu}, x^* \rangle| (t).
$$

Hence by the density of $C(G)$ in $L^1(G, \check{\mu})$, for any $f \in L^1(G, \check{\mu})$

$$
\int_{G/H} T_H |f| d |\langle \mu, x^* \rangle| \leq \int_G |f| d |\langle \check{\mu}, x^* \rangle|.
$$

 \Box

For any $v \in \mathcal{M}(G, X)$, we cannot find an example of an operator $T_{H, v}$ constructed in the manner of Theorem 3.3 which is not surjective. However, we know that if ν is in the form of μ , where $\mu \in \mathcal{M}(G/H, X)$, then the operator $T_{H,\mu}$ is certainly surjective as shown in the following theorem.

Theorem 3.7 *Let* $1 \leq p < \infty$ *. The extension* $T_H : L^p(G, \mu) \to L^p(G/H, \mu)$ *satisfies the formula* $T_H f(tH) = \int_H f(th) dh \mu$ -a.e. for all $f \in L^p(G, \breve{\mu})$. Moreover, *the extension* $T_H: L^p(G, \breve{\mu}) \to L^p(G/H, \mu)$ *is surjective.*

Proof Claim that for a lower semicontinuous function $\phi \ge 0$ and $x^* \in B_{X^*}$,

$$
\int_G \phi \, d|\langle \check{\mu}, x^* \rangle| = \int_{G/H} \int_H \phi(th) \, dh \, d|\langle \mu, x^* \rangle|(tH).
$$

Let $\Phi = \{ g \in C(G) : 0 \le g \le \phi \}$. By [\[10](#page-23-14), Proposition 7.12] and Lemma [3.6,](#page-12-1)

$$
\int_{G} \phi \, d|\langle \tilde{\mu}, x^* \rangle| = \sup_{g \in \Phi} \int_{G} g \, d|\langle \tilde{\mu}, x^* \rangle|
$$
\n
$$
= \sup_{g \in \Phi} \int_{G/H} T_H g \, d|\langle \mu, x^* \rangle|
$$
\n
$$
= \int_{G/H} \left(\sup_{g \in \Phi} T_H g \right) d|\langle \mu, x^* \rangle|
$$
\n
$$
= \int_{G/H} \left(\sup_{g \in \Phi} \int_H g(th) \, dh \right) d|\langle \mu, x^* \rangle|(tH)
$$
\n
$$
= \int_{G/H} \left(\sup_{\tilde{g} \in \Phi(tH)} \int_H \tilde{g}(h) \, dh \right) d|\langle \mu, x^* \rangle|(tH)
$$
\n
$$
= \int_{G/H} \int_H \phi(th) \, dh \, d|\langle \mu, x^* \rangle|(tH)
$$

where $\Phi(tH) := {\{\tilde{g} \in C(H) : 0 \le \tilde{g}(h) \le \phi(th) \text{ for } h \in H\}}$. Hence for any measurable function *F* and any lower semicontinuous function $\phi \geq |F|$,

$$
\int_{G/H} \int_H |F(th)| \, dh \, d|\langle \mu, x^* \rangle| (tH) \le \int_{G/H} \int_H \phi(th) \, dh \, d|\langle \mu, x^* \rangle| (tH)
$$
\n
$$
= \int_G \phi \, d|\langle \mu, x^* \rangle|.
$$

Hence by [\[10](#page-23-14), Proposition 7.14]

$$
\int_{G/H} \int_H |F(th)| \, dh \, d|\langle \mu, x^* \rangle| (tH) \le \int_G |F| \, d|\langle \check{\mu}, x^* \rangle|.
$$
 (5)

Let $f \in L^p(G, \mu)$ and $f_n \to f$ in $L^p(G, \mu)$ where $f_n \in C(G)$. Define a function $\tilde{f}: G/H \to \mathbb{C}$ by $\tilde{f}(tH) = \int_H f(th) dh$ for $tH \in G/H$. By taking $F = |f - f_n|^p$ $\int_H f(th) \, dh$ for $tH \in G/H$. By taking $F = |f - f_n|^p$

B Birkhäuser

in (5) , we have

$$
\|\tilde{f} - T_H f_n\|_{L^p(G/H,\mu)}^p = \sup_{x^* \in B_{X^*}} \int_{G/H} |\tilde{f} - T_H f_n|^p d|\langle \mu, x^* \rangle|
$$

\n
$$
\leq \sup_{x^* \in B_{X^*}} \int_{G/H} \int_H |f - f_n|^p (th) dh d|\langle \mu, x^* \rangle| (tH)
$$

\n
$$
\leq \sup_{x^* \in B_{X^*}} \int_G |f - f_n|^p d|\langle \tilde{\mu}, x^* \rangle|
$$

\n
$$
= \|f - f_n\|_{L^p(G,\tilde{\mu})}^p
$$

which shows that \tilde{f} is well-defined and $\tilde{f} = T_H f \mu$ -a.e.

To show that T_H is surjective, we first claim that $\|\phi_q\|_{L^p(G,\check{u})} = \|\phi\|_{L^p(G/H,\mu)}$ for $\phi \in L^p(G/H, \mu)$. Let $\phi_n \uparrow |\phi|$ pointwise where $\phi_n \in S(G/H)$. Then $(\phi_n)_a \uparrow |\phi|_a$ pointwise. Applying the monotone convergence theorem and Lemma [3.6](#page-12-1) to each x^* ∈ B_{X^*} , we get

$$
\int_G |\phi_q|^p d|\langle \check{\mu}, x^* \rangle| = \lim_{n \to \infty} \int_G |(\phi_n)_q|^p d|\langle \check{\mu}, x^* \rangle|
$$

$$
= \lim_{n \to \infty} \int_{G/H} |\phi_n|^p d|\langle \mu, x^* \rangle|
$$

$$
= \int_G |\phi|^p d|\langle \mu, x^* \rangle|
$$

which proves the claim. Now let $\varphi \in L^p(G/H, \mu)$. If we can show that $\varphi_q \in L^p(G/H, \mu)$. $L^p(G, \breve{\mu})$, then by the formula of T_H we have $T_H(\varphi_q) = \varphi$. Let $\varphi_n \to \varphi$ in $L^p(G/H, \mu)$ where $\varphi_n \in S(G/H)$. Then it follows by the claim that $\|\varphi_a (\varphi_n)_q \Vert_{L^p(G, \check{\mu})} = \Vert \varphi - \varphi_n \Vert_{L^p(G/H, \mu)} \to 0$. Hence $\varphi_q \in L^p(G, \check{\mu})$ by the com-
pleteness of $L^p(G, \check{\mu})$. pleteness of $L^p(G, \breve{\mu})$.

Corollary 3.8 *1. Weil's formula holds for all* $f \in L^1(G, \mu)$

$$
\int_{G/H} \int_H f(th) \, dh \, d\mu(tH) = \int_G f \, d\,\check{\mu}.
$$

Moreover, for all $x^* \in X^*$ *and* $f \in L^1(G, \check{\mu})$

$$
\int_{G/H} \int_H f(th) \, dh \, d|\langle \mu, x^* \rangle| (tH) = \int_G f \, d|\langle \check{\mu}, x^* \rangle|.
$$

2. For $1 \leq p < \infty$ *, if* $\varphi \in L^p(G/H, \mu)$ *, then* $\varphi_q \in L^p(G, \breve{\mu})$ with $\|\varphi_q\|_{L^p(G, \breve{\mu})} =$ $\|\varphi\|_{L^p(G/H,\mu)}$.

Proof The first two equations follow by applying the formula of T_H to Eq. [\(4\)](#page-12-0) and Lemma [3.6](#page-12-1) while the last assertion is in the proof of the theorem. \Box **Corollary 3.9** *For* $1 \leq p < \infty$, $C(G/H)$ *is dense in* $L^p(G/H, \mu)$ *.*

Proof Let $\varphi \in L^p(G/H, \mu)$. Then $\varphi_q \in L^p(G, \mu)$. By the density of $C(G)$ in *L*^{*p*}(*G*, $\check{\mu}$), there is a sequence $f_n \to \varphi_q$ in $L^p(G, \check{\mu})$ with $f_n \in C(G)$. Hence $T_H f_n \to T_H(\varphi_q) = \varphi$ in $L^p(G/H, \mu)$. $T_H f_n \to T_H(\varphi_a) = \varphi$ in $L^p(G/H, \mu)$.

It is straightforward to see that $\tilde{m} = m$. Hence $T_{H,m} = T_{H,\tilde{m}}$ is the same operator T_H given by Farashahi in [\[5\]](#page-23-0). Now we provide a relation between the extensions $T_{H,m}$ and $T_{H,\mu}$.

Proposition 3.10 *If* $\mu \ll \tilde{m}$, then $T_{H,m} f = T_{H,\mu} f \mu$ -a.e. for all $f \in L^1(G,m)$ ∩ $L^1(G, \mu)$, and hence $\mu \ll m$.

Proof Let $f \in L^1(G, m) \cap L^1(G, \mu)$. Then $T_{H,m} f(tH) = \int_H f(th) dh \widetilde{m}$ -a.e.; in particular T_{H} , $f(tH) = \int f(th) dh \mu$ -a.e. since $\mu \ll \widetilde{m}$. By Theorem 3.7, we also particular, $T_{H,m} f(tH) = \int_H f(th) dh \mu$ -a.e. since $\mu \ll \tilde{m}$. By Theorem [3.7,](#page-13-0) we also
have $T_H \times f(tH) = \int_A f(th) dh \mu$ -a.e. so $T_H \times f = T_H \times f \mu$ -a.e. have $T_{H, \mu} f(tH) = \int_H f(th) dh \mu$ -a.e., so $T_{H,m} f = T_{H, \mu} f \mu$ -a.e.

Given $E \in \mathfrak{B}(G)$ with $m(E) = 0$. Then $T_{H,m}\chi_E = 0$ \tilde{m} -a.e. and hence $T_{H,\mu}\chi_E = u$ -a.e. By Lemma 3.6, we get $\|\tilde{\mu}\|(E) = 0$. We conclude that $\tilde{\mu} \ll m$. 0 μ -a.e. By Lemma [3.6,](#page-12-1) we get $\|\check{\mu}\|(E) = 0$. We conclude that $\check{\mu} \ll m$.

Example 2 Let $1 < p < \infty$ and $S: L^p(G/H, \widetilde{m}) \to X$ be any bounded linear map. Define a vector measure μ : $\mathfrak{B}(G/H) \to X$ corresponding to *S* by $\mu(E) = S(\chi_E)$ for $E \in \mathfrak{B}(G/H)$. Then the vector measure $\check{\mu}$ is given by $\check{\mu}(F) = \int_{G/H} T_{H, \check{\mu}} \chi_F d\mu$ for $F \in \mathcal{B}(G)$. Note that for $\varphi \in L^p(G/H, \widetilde{m})$, φ is μ -integrable and $\int_{G/H} \varphi d\mu = S(\varphi)$ see [15]. Proposition 4.41 Hence it follows from Proposition 3.10 that $\widetilde{\varphi}(F)$ *S*(φ), see [\[15,](#page-23-10) Proposition 4.4]. Hence it follows from Proposition [3.10](#page-16-0) that μ (F) = $\int_{G/H} T_{H,m} \chi_F d\mu = S(T_{H,m} \chi_F).$

- 1. Let $X = \mathbb{C}$ and $S : L^1(G/H, \widetilde{m}) \to \mathbb{C}$ be given by $S(\varphi) = \int_{G/H} \varphi d\widetilde{m}$ for any $\varphi \in L^1(G/H, \widetilde{m})$. In this case, $\mu = \widetilde{m}$. Moreover, $\widetilde{\mu} = m$ since $\widetilde{\mu}(F) =$ $\int_{G/H} T_{H,m} \chi_F d\tilde{m} = \int_G \chi_F dm = m(F)$ for all $F \in \mathfrak{B}(G)$.
- 2. If $X = L^1(G/H, \tilde{m})$ and $S = Id_{L^1(G/H, \tilde{m})}$, then $\mu(F) = T_{H,m} \chi_F$ for $F \in \mathfrak{B}(G)$.
- 3. If we let $1 \le p \le 2$ and define $S: L^p(G/H, \widetilde{m}) \to \ell^{p'}(\widehat{G/H}; \mathcal{B}(\mathcal{H}_\pi))$ by $S(\omega) = \mathcal{F}_{G/H}(\omega)$ then $\widetilde{\mu}(F)(\pi) = \mathcal{F}_{G/H}(T_H, \nu_F)(\pi) = T^{\pi} \widehat{\nu}_F(\pi)$ for $F \in$ $S(\varphi) = \mathcal{F}_{G/H}(\varphi)$, then $\check{\mu}(F)(\pi) = \mathcal{F}_{G/H}(T_{H,m}\chi_F)(\pi) = T_H^{\pi} \widehat{\chi}_F(\pi)$ for $F \in \mathfrak{M}(G)$ and $L \to \widehat{G/H}$, i. i. i. \widehat{G} , \widehat{H} $\mathfrak{B}(G)$ and $[\pi] \in \widehat{G/H}$, by [\[5](#page-23-0), Proposition 5.3].

Finally, we give relations between μ and $\tilde{\mu}$ in terms of invariant properties.

Definition 6 Let μ be a vector measure on G/H . For each $a \in G$, μ is said to be *L_a*-**invariant** if $\mu(aE) = \mu(E)$ for all $E \in \mathfrak{B}(G/H)$. We say that μ is **left invariant** if it is L_a -invariant for all $a \in G$.

Definition 7 Let τ : $G/H \rightarrow G/H$ be a homeomorphism. For any vector measure μ on G/H , we say that μ is **semivariation** τ **-invariant** if

$$
\|\varphi_{\tau}\|_{L^1(G/H,\mu)} = \|\varphi\|_{L^1(G/H,\mu)} \quad \text{for all } \varphi \in S(G/H).
$$

Given a collection $\mathcal T$ of homeomorphisms on G/H , μ is said to be **semivariation** *T* **-invariant** if it is semivariation τ -invariant for all $\tau \in \mathcal{T}$. In particular, if $\mathcal{T} = \{L_a :$ $a \in G$, we say that μ is **semivariation left invariant**.

Proposition 3.11 *Let* $a \in G$.

- *1.* μ *is L_a*-*invariant if and only if* μ *is L_a*-*invariant.*
- 2. μ *is norm integral* L_a -*invariant if and only if* μ *is norm integral* L_a -*invariant.*
- *3.* μ *is semivariation* L_a -*invariant if and only if* μ *is semivariation* L_a -*invariant.*

Proof 1. Suppose that μ is L_a -invariant. Then by the Weil formula [\(4\)](#page-12-0), for any $f \in$ *C*(*G*),

$$
\int_G L_a f d\breve{\mu} = \int_{G/H} T_H(L_a f) d\mu = \int_{G/H} L_a(T_H f) d\mu
$$

$$
= \int_{G/H} T_H f d\mu = \int_G f d\breve{\mu}.
$$

Hence μ is L_a -invariant. Conversely, suppose that μ is L_a -invariant. Then for any $\varphi \in S(G/H)$

$$
\int_{G/H} L_a \varphi \, d\mu = \int_G L_a \varphi_q \, d\breve{\mu} = \int_G \varphi_q \, d\breve{\mu} = \int_{G/H} \varphi \, d\mu
$$

Hence μ is L_a -invariant.

2. Suppose that μ is norm integral L_a -invariant. Then by [\[2,](#page-23-15) Theorem 3.3], we have $\|I_{\mu}(L_a\varphi)\| = \|I_{\mu}(\varphi)\|$ for all $\varphi \in L^1(G/H, \mu)$. Hence by the Weil formula [\(4\)](#page-12-0)

$$
||I_{\breve{\mu}}(L_a f)|| = ||I_{\mu}(T_H(L_a f))|| = ||I_{\mu}(L_a T_H f)|| = ||I_{\mu}(T_H f)|| = ||I_{\breve{\mu}} f||
$$

for any $f \in S(G)$. Hence μ is norm integral left invariant. The converse is proved in Proposition [3.2.](#page-8-1)

3. Suppose that μ is semivariation L_a -invariant. It is routine to check that $\|L_a\varphi\|_{L^1(G/H,\mu)} = \|\varphi\|_{L^1(G/H,\mu)}$ for all $\varphi \in L^1(G/H,\mu)$. So

$$
||L_a f||_{L^1(G, \breve{\mu})} = ||T_H| L_a f||_{L^1(G/H, \mu)} = ||T_H| f||_{L^1(G/H, \mu)} = ||f||_{L^1(G, \breve{\mu})}
$$

for any $f \in S(G)$. Conversely, if μ is semivariation L_a -invariant then

$$
||L_a \varphi||_{L^1(G/H,\mu)} = ||L_a \varphi_q||_{L^1(G,\check{\mu})} = ||\varphi_q||_{L^1(G,\check{\mu})} = ||\varphi||_{L^1(G/H,\mu)}
$$

for any $\varphi \in S(G/H)$.

 \Box

4 Invariant Measures

In this section, we provide properties of invariant measures on *G* and their analogies on *G*/*H*. The following proposition generalizes Proposition 5.2 in [\[1\]](#page-23-3).

Proposition 4.1 *Let* $v \in M(G, X)$ *. The following are equivalent:*

- *1.* ν *is left (or right) invariant*
- *2.* $\langle v, x^* \rangle$ *is left (or right) invariant for all* $x^* \in X^*$
- *3.* $ν = ν(G)m$.

Proof We only show that [2](#page-18-0) implies [3;](#page-18-1) the other directions are trivial. Assume that $\langle v, x^* \rangle$ is left invariant for all $x^* \in X^*$. Then the real part $\langle v, x^* \rangle_r$ is left invariant. Let $G = P \cup N$ be a Hahn decomposition for $\langle v, x^* \rangle_r$ where *P* is positive and *N* is negative. Note that $G = aP \cup aN$ is also a Hahn decomposition for $\langle v, x^* \rangle_r$ for any $a \in G$. Hence $\langle v, x^* \rangle_r^+(aE) = \langle v, x^* \rangle_r(aE \cap aP) = \langle v, x^* \rangle_r(E \cap P) = \langle v, x^* \rangle_r^+(E)$ for any $a \in G$ and $E \in \mathfrak{B}(G)$. This shows that $\langle v, x^* \rangle_r^+$ is left invariant. By the uniqueness of the left Haar measure, $\langle v, x^* \rangle_r^+ = \alpha_r^+ (x^*) m$ for some $\alpha_r^+ (x^*) \ge 0$. Applying the same argument to all parts of $\langle v, x^* \rangle$, we obtain that $\langle v, x^* \rangle = \alpha(x^*)m$ for some $\alpha(x^*) \in \mathbb{C}$. Hence $\langle \nu(E), x^* \rangle = \alpha(x^*)m(E) = \langle \nu(G), x^* \rangle m(E) = \langle \nu(G)m(E), x^* \rangle$ for any $E \in \mathfrak{B}(G)$. Since this equation holds for all $x^* \in X^*$, we have that $v = v(G)m$. A similar argument can be applied to the case of right invariance. similar argument can be applied to the case of right invariance.

Proposition 4.2 *Let* $\mu \in \mathcal{M}(G/H, X)$ *. The following are equivalent:*

- *1.* μ *is left invariant*
- *2.* $\langle \mu, x^* \rangle$ *is left invariant for all* $x^* \in X^*$
- *3.* $μ = μ(G/H)$ *m*.

Proof The first two assertions follow from the fact that $\langle \mu, x^* \rangle = \langle \mu, x^* \rangle$ for all $x^* \in X^*$. Next, assume that μ is left invariant. Then $\tilde{\mu}$ is left invariant. By Proposition $4.1, \tilde{\mu} = \tilde{\mu}(G)m$ $4.1, \tilde{\mu} = \tilde{\mu}(G)m$. Since μ and \tilde{m} are the pushforward measures of $\tilde{\mu}$ and m , we have $\mu = \tilde{\mu}(G)\tilde{m} = \mu(G/H)\tilde{m}$. This finishes the proof. $\mu = \mu(G)\tilde{m} = \mu(G/H)\tilde{m}$. This finishes the proof.

The following proposition improves Lemma 3.4 in [\[3\]](#page-23-4).

Proposition 4.3 *Let* ν *be a vector measure on G. The following are equivalent.*

- *1.* ν *is norm integral left (or right) invariant.*
- *2. For each* x^* ∈ X^* *and* $a \in G$ *, there exists* x^*_{a} ∈ X^* *such that* $||x^*_{a}|| \leq ||x^*||$ *and* $\langle v, x^* \rangle (aE) = \langle v, x_a^* \rangle (E)$ (or $\langle v, x^* \rangle (Ea) = \langle v, x_a^* \rangle (E)$) for all $E \in \mathcal{B}(G)$ *.*

Moreover, x_a^* ∈ X^* *is unique in the sense that if there is another such functional then they must agree on* $I_\nu(S(G))$ *.*

Proof We shall prove only for the case of norm integral left invariance as the other case is similar. The proof of [1.](#page-18-2) implies [2.](#page-18-3) follows by the same argument of [\[3,](#page-23-4) Lemma 3.4]. For the converse, let $f \in S(G)$ and $a \in G$. Then

$$
||I_{\nu}(L_{a}f)|| = \sup_{x^{*} \in B_{X^{*}}} |x^{*}I_{\nu}(L_{a}f)| = \sup_{x^{*} \in B_{X^{*}}} |x^{*}_{a}I_{\nu}(f)| \leq ||I_{\nu}(f)||.
$$

This also implies $||I_{\nu}(f)|| = ||I_{\nu}(L_{a^{-1}}(L_a f))|| \leq ||I_{\nu}(L_a f)||$.

For the uniqueness, suppose there is another functional $y^* \in X^*$ such that $||y^*|| \le ||x^*||$ and $\langle v, x^* \rangle (aE) = \langle v, y^* \rangle (E)$ for all $E \in \mathcal{B}(G)$. Then $x_a^* (v(E)) =$ $\langle v, x_a^* \rangle(E) = \langle v, y^* \rangle(E) = y^* (v(E))$ for all $E \in \mathcal{B}(G)$. By the linearity of x_a^* and *y*[∗], we have that $x_a^* = y^*$ on *I*_ν(*S*(*G*)). □

Proposition 4.4 *Let* μ *be a vector measure on G*/*H. The following are equivalent.*

- *1.* μ *is norm integral left invariant.*
- *2. For each* $x^* \in X^*$ *and* $a \in G$ *, there exists* $x_a^* \in X^*$ *such that* $||x_a^*|| \leq ||x^*||$ *and* $\langle \mu, x^* \rangle (aE) = \langle \mu, x_a^* \rangle (E)$ *for all* $E \in \mathcal{B}(G/H)$ *.*

Moreover, x_a^* ∈ X^* *is unique in the sense that if there is another such functional then they must agree on* $I_{\mu}(S(G/H))$ *.*

Proof It can be proven by the same argument as in Proposition [4.3.](#page-18-4) However, if μ is also assumed to be regular, we can employ Proposition [4.3](#page-18-4) with $\tilde{\mu}$ and obtain the result immediately. result immediately.

The following result can be proved by the same argument as in [\[13,](#page-23-5) Theorem 5.6] and [\[1,](#page-23-3) Theorem 5.10]. Hence the proof is omitted.

Proposition 4.5 *Let* $1 \leq p < \infty$ *. Suppose that* $v \in M(G, X)$ *is semivariation left (or right) invariant with* $\nu(G) \neq 0$ *. Then* $L^p(G, \nu) \subset L^p(G, m)$ *with* $||f||_{L^p(G, m)} \leq$ $||\nu(G)||^{-1/p}||f||_{L^p(G,\nu)}$ for $f \in L^p(G,\nu)$.

Proposition 4.6 *Let* $1 \leq p \leq \infty$ *. Suppose that* $\mu \in \mathcal{M}(G/H, X)$ *is semivariation left invariant with* $\mu(G/H) \neq 0$. Then $L^p(G/H, \mu) \subset L^p(G/H, \tilde{m})$ with $\|\varphi\|_{L^p(G/H, \mathcal{L})} \leq \|\mu(G/H)\|^{-1/p} \|\varphi\|_{L^p(G/H, \mathcal{L})}$ for $\varphi \in L^p(G/H, \mu)$ $\|\varphi\|_{L^p(G/H, \widetilde{m})} \le \|\mu(G/H)\|^{-1/p} \|\varphi\|_{L^p(G/H, \mu)}$ for $\varphi \in L^p(G/H, \mu)$.

Proof Since $\check{\mu}$ is semivariation left invariant, by Proposition [4.5,](#page-19-1) $L^p(G, \check{\mu}) \subset$ $L^p(G, m)$ with $||f||_{L^p(G, m)}^p \le ||\mu(G)||^{-1}||f||_{L^p(G, \mu)}^p$ for $f \in L^p(G, \mu)$. Hence

$$
\|\varphi\|_{L^p(G/H,\widetilde{m})}^p = \|\varphi_q\|_{L^p(G,m)}^p \le \|\check{\mu}(G)\|^{-1} \|\varphi_q\|_{L^p(G,\check{\mu})}^p
$$

=
$$
\|\mu(G/H)\|^{-1} \|\varphi\|_{L^p(G/H,\mu)}^p
$$

for $\varphi \in L^p(G/H, \mu)$.

5 Fourier Transforms

In this section, we define a Fourier transform of functions in $L^1(G, \nu)$ and $L^1(G/H, \mu)$. Our definition is motivated by Definition 4.1 in [\[13](#page-23-5)]; however, *X* is not considered as an operator space. Let ν be a vector measure on *G*.

Definition 8 For $f \in L^1(G, \nu)$ and $[\pi] \in \widehat{G}$, we define the **Fourier transform** of *f* as

$$
\widehat{f}^{\nu}(\pi) = \int_G f(t)\pi(t)^* dv \in \mathcal{B}(\mathcal{H}_\pi) \check{\otimes} X.
$$

To see that the definition is well-defined, we have to show that the function *g* : $G \rightarrow \mathcal{B}(\mathcal{H}_\pi)$ given by $g(t) = f(t)\pi(t)^*$ is *v*-measurable and $\check{\otimes}$ -integrable. Let $x^* \in X^*$ be a Rybakov functional. Clearly, *g* is weakly $|\langle v, x^* \rangle|$ -measurable since

 $y * g(.) = f(.)y * \pi(.) *$ is a product of $|\langle v, x^* \rangle|$ -measurable functions for all $y^* \in$ $B(H_\pi)^*$. Moreover, $B(H_\pi)$ is separable. Thus, by Pettis's measurability theorem, *g* is $|\langle v, x^* \rangle|$ -measurable and hence is *v*-measurable. Since the function $||g|| = |f|$ is *ν*-integrable, *g* is ⊗-integrable. This immediately implies the following proposition.

Proposition 5.1 *Define the operator* \mathcal{F}_G^{ν} : $L^1(G, \nu) \rightarrow \ell^{\infty}(\widehat{G}; \mathcal{B}(\mathcal{H}_\pi) \check{\otimes} X)$ *by*
 $\mathcal{F}_{\nu}^{\nu}(G)$ $\widehat{G} = L^1(G, \nu)$ $\widehat{G} = T^1(G, \mathcal{F})$ $\mathcal{F}_G^v(f)(\pi) = \widehat{f}^v(\pi)$ *for* $f \in L^1(G, v)$ *and* $[\pi] \in \widehat{G}$. *Then the Fourier transform operator* \mathcal{F}_G^{ν} *is bounded with* $\|\widehat{f}^{\nu}(\pi)\|_{\vee} \leq \|f\|_{L^1(G,\nu)}$.

Remark 3 If we take *ν* to be $\langle v, x^* \rangle$, then

$$
\widehat{f}^{\langle v,x^* \rangle}(\pi) = \int_G f(t)\pi(t)^* d\langle v,x^* \rangle = (Id_{\mathcal{B}(\mathcal{H}_\pi)} \otimes x^*) \big(\widehat{f}^v(\pi)\big).
$$

This can be considered as a generalization of Definition 4.6 in [\[13\]](#page-23-5).

Remark 4 If *G* is abelian, then $\mathcal{B}(\mathcal{H}_\pi) \cong \mathbb{C}$ for any $[\pi] \in \widehat{G}$. In this case, note that $\mathbb{C} \stackrel{\sim}{\sim} Y$ isometrically via the map $\mathbb{C} \otimes \mathbb{C}$ is the map of $N(\cdot)$ $\mathbb{C}\check{\otimes}X \cong X$ isometrically via the map $\alpha \otimes x \mapsto \alpha x$ and $N(\cdot) = \|\cdot\|_{L^1(G,\nu)}$. Hence our definition generalizes Definition 2.1 in [\[2\]](#page-23-15).

Definition 9 We say that the Fourier transform \mathcal{F}_G^v satisfies the **Riemann–Lebesgue lemma** if $\mathcal{F}_G^{\nu}(f) \in c_0(\widehat{G}; \mathcal{B}(\mathcal{H}_\pi) \check{\otimes} X)$ for all $f \in L^1(G, \nu)$.

The Fourier transform \mathcal{F}_{G}^{ν} need not satisfy the Riemann–Lebesgue lemma even if *G* is abelian as shown in [\[2](#page-23-15), Example 2.4]. Now we give a necessary condition for \mathcal{F}_{G}^{ν} to satisfy the Riemann–Lebesgue lemma and also a stronger condition for the sufficiency.

Theorem 5.2 *Let* $\mathcal{M} = {\pi_{ij} : [\pi] \in G, 1 \le i, j \le d_{\pi}}$ *).*

- *1.* If \mathcal{F}_G^{ν} satisfies the Riemann–Lebesgue lemma, then the set $\{\psi \in \mathcal{M} :$ $\int_G \phi(t) \psi(t) \, dv \Vert_X > \varepsilon$ *is finite for any* $\varepsilon > 0$ *and* $\phi \in \mathcal{M}$.
- *2. Moreover, if v is regular and* $\{\psi = \pi_{ij} \in \mathcal{M} : d_{\pi}^2 \|\int_G \phi(t) \overline{\psi(t)} \, dv \|_X > \varepsilon\}$ *is finite for any* $\varepsilon > 0$ *and* $\phi \in \mathcal{M}$, then \mathcal{F}_G^v satisfies the Riemann–Lebesgue lemma.

Proof Observe that for $F: G \to Y = \mathcal{B}(\mathcal{H}_{\pi})$

$$
\left\| \int_G F \, dv \right\|_{\vee} = \sup_{y^* \in B_{Y^*}} \left\| \int_G y^* F \, dv \right\|_{X}.
$$

Hence if we write $y^* \in B_{Y^*}$ as $y^* = \sum_{1 \le i, j \le d_{\pi}} \alpha_{ij} e_{ij}^*$, we have

$$
\max_{i,j} \left\| \int_G e_{ij}^* F \, d\nu \right\|_X \le \left\| \int_G F \, d\nu \right\|_{\vee} \le d_\pi^2 \max_{i,j} \left\| \int_G e_{ij}^* F \, d\nu \right\|_X.
$$

1. Let $\varepsilon > 0$ and $\phi \in \mathcal{M} \subset L^1(G, v)$. Suppose that \mathcal{F}_G^v satisfies the Riemann– Lebesgue lemma. If $\pi_{ij} \in \mathcal{M}$ satisfies $\| \int_G \phi(t) \pi_{ij}(t) \, dv \|_X > \varepsilon$, by the observation above with $F(t) = \phi(t)\pi(t)^*$, we have $\|\widehat{\phi}^v(\pi)\|_{\vee} > \varepsilon$. Hence if $\{\psi \in M : \| \int_G \phi(t) \psi(t) \, dv \|_X > \varepsilon \}$ is infinite, then so does the set $\{[\pi] \in \widehat{G} : \|\widehat{\phi}^{\nu}(\pi)\|_{\vee} > \varepsilon\}$, which is a contradiction.

 \Box

2. Let $\phi \in \mathcal{M}$ and $\varepsilon > 0$. Suppose that $\{\psi \in \mathcal{M} : d_{\pi}^2 \| \int_G \phi(t) \overline{\psi(t)} \, dv \|_{X} > \varepsilon\}$ is finite. If $[\pi] \in \widehat{G}$ satisfies $\|\widehat{\phi}^{\nu}(\pi)\|_{\vee} > \varepsilon$, then $d_{\pi}^{2} \| \int_{G} \phi(t) \overline{\pi_{ji}(t)} \, dv \|_{X} > \varepsilon$ for some *i*, *j*. Hence we must have that $\widehat{\phi}^{\nu} \in c_0(\widehat{G}; \mathcal{B}(\mathcal{H}_{\pi}) \breve{\otimes} X)$. Note that the linear
span of A4 is Trig(*G*) and Trig(*G*) is dones in $L^1(G, y)$. By the continuity \mathcal{F}^{ν} span of *M* is Trig(*G*) and Trig(*G*) is dense in $L^1(G, v)$. By the continuity, \mathcal{F}_G^v satisfies the Riemann–Lebesgue lemma.

Remark 5 If *G* is abelian and *v* is regular, then \mathcal{F}_G^v satisfies the Riemann–Lebesgue lemma if and only if the set $\{\psi \in \mathcal{M} : \| \int_G \phi(t) \psi(t) \, dv \|_X > \varepsilon\}$ is finite for any $\varepsilon > 0$ and $\phi \in \mathcal{M}$.

We now prove the uniqueness theorem for the Fourier transform \mathcal{F}_G^v .

Theorem 5.3 *Let* $v \in \mathcal{M}(G, X)$ *and* $f \in L^1(G, v)$ *. If* $\widehat{f}^v(\pi) = 0$ *for all* $[\pi] \in \widehat{G}$ *, then* $f = 0$ *v*-*a.e.*

Proof Suppose that $\widehat{f}^{\nu}(\pi) = 0$ for all $[\pi] \in \widehat{G}$. Fix a Rybakov functional $\pi^* \in X^*$ and write $d(u, x^*)$ and $d(u, x^*)$ where $g \in L^1(G, (u, x^*))$. Then $x^* \in X^*$ and write $d\langle v, x^* \rangle = g d|\langle v, x^* \rangle|$ where $g \in L^1(G, |\langle v, x^* \rangle|)$. Then $\int_G f(t)y^*\pi(t)^* d\langle v, x^*\rangle = 0$ for any $y^* \in \mathcal{B}(\mathcal{H}_\pi)^*$ and $[\pi] \in G$. In particular, $\int_G \pi_{ij}(t) (fg)(t) d|\langle v, x^* \rangle| = 0$ for any $[\pi] \in G$ and $1 \le i, j \le d_\pi$. Since $\overline{\pi_{ij}}$ is a continuous of the continemation of π , $f \ne (f \circ \lambda) d|\langle v, x^* \rangle| = 0$ matrix element of the contragradient representation of π , $\int_G \phi(fg) d|\langle v, x^* \rangle| = 0$ for any $\phi \in Trig(G)$. By the density of $Trig(G)$ in $C(G)$ in the uniform norm, *fgd*| $\langle v, x^* \rangle$ | = 0 as a measure. Hence $fg = 0$ | $\langle v, x^* \rangle$ |-a.e. However $|g| = 1$ $|\langle v, x^* \rangle|$ -a.e. Then it must be the case that $f = 0 |\langle v, x^* \rangle|$ -a.e. Therefore $f = 0$ *v*-a.e. since $v \ll |\langle v, x^* \rangle|$. since $v \ll |\langle v, x^* \rangle|$.

Now we give a definition of a Fourier transform of functions on *G*/*H* with a vector measure. This definition is motivated by [\[5\]](#page-23-0). Let μ be a vector measure on G/H .

Definition 10 For $\varphi \in L^1(G/H, \mu)$ and $[\pi] \in \widehat{G/H}$, we define the **Fourier transform** of φ at $[\pi]$ as

$$
\widehat{\varphi}^{\mu}(\pi) = \int_{G/H} \varphi(tH) \Gamma_{\pi}(tH)^* d\mu(tH) \in \mathcal{B}(\mathcal{H}_{\pi}) \check{\otimes} X,
$$

where $\Gamma_{\pi}(tH) = \pi(t)T_H^{\pi}$.

Let $g: G/H \to \mathcal{B}(\mathcal{H}_\pi)$ be defined by $g(tH) = \varphi(tH)\Gamma_\pi(tH)^*$ for $tH \in G/H$. Then the μ -measurability of g can be verified similarly to case of compact groups. Moreover, $\|\Gamma_\pi(tH)\|^2 = \|\Gamma_\pi(tH)^*\Gamma_\pi(tH)\| = \|(T_H^\pi)^*T_H^\pi\| = \|T_H^\pi\|^2 = 1$, so $\|g\|$ is μ -integrable. Hence the definition is well-defined.

Proposition 5.4 *Define the operator* $\mathcal{F}_{G/H}^{\mu}: L^1(G/H, \mu) \to \ell^{\infty}(\widehat{G/H}; \mathcal{B}(\mathcal{H}_\pi)\check{\otimes}X)$ *by* $\mathcal{F}_{G/H}^{\mu}(\varphi)(\pi) = \widehat{\varphi}^{\nu}(\pi)$ *for* $\varphi \in L^1(G/H, \mu)$ *and* $[\pi] \in \widehat{G/H}$ *. Then the Fourier transform operator* $\mathcal{F}_{G/H}^{\mu}$ *is bounded with* $\|\mathcal{F}_{G/H}^{\mu}(\varphi)(\pi)\|_{\vee} \leq \|\varphi\|_{L^{1}(G/H,\mu)}$.

Proposition 5.5 *Let* $\mu \in \mathcal{M}(G/H, X)$, $\varphi \in L^1(G/H, \mu)$ *. Then* $\widehat{\varphi}^{\mu}(\pi) = \widehat{\varphi_q}^{\mu}(\pi)$ *for* $\operatorname{each}[\pi] \in \widehat{G/H}.$

Proof Recall that $T_H^{\pi} =$ $H_{\pi}^{\pi} = \int_H \pi(h) dh$ is a bounded linear operator on \mathcal{H}_{π} defined in the weak sense that is $\langle T_{H}^{\pi} u, v \rangle = \int_{H} \langle \pi(h)u, v \rangle \, dh$ for $u, v \in \mathcal{H}_{\pi}$. For $y^* \in \mathcal{B}(\mathcal{H}_{\pi})^*$, write $y^* = \sum_{i,j} \alpha_{ij} e_{ij}^*$. Since $\int_H e_{ij}^* \pi(th)^* dh = e_{ij}^* \int_H \pi(th)^* dh = e_{ij}^* (T_H^* \pi(t)^*)$ for any *i*, *j*, we have

$$
T_H(y^*\pi(t)^*) = \int_H y^*\pi(th)^* dh
$$

=
$$
\sum_{i,j} \alpha_{ij} \int_H e_{ij}^*\pi(th)^* dh
$$

=
$$
\sum_{i,j} \alpha_{ij} e_{ij}^*(T_H^{\pi}\pi(t)^*)
$$

=
$$
y^*(T_H^{\pi}\pi(t)^*)
$$

for any $t \in G$. Hence $T_H(y^*\pi(\cdot))^*) = y^*(T_H^*\pi(\cdot))^*$. Consider for $x^* \in X^*$ and $y^* \in \mathcal{B}(\mathcal{H}_\pi)^*$,

$$
(y^* \otimes x^*)(\widehat{\varphi}^\mu(\pi)) = \int_{G/H} \varphi(tH) y^*(T_H^{\pi}\pi(t)^*) d\langle \mu, x^* \rangle (tH)
$$

=
$$
\int_{G/H} T_H(\varphi_q(\cdot) y^*\pi(\cdot)^*) d\langle \mu, x^* \rangle (tH)
$$

=
$$
\int_G \varphi_q(t) y^*\pi(t)^* d\langle \check{\mu}, x^* \rangle (t)
$$

=
$$
(y^* \otimes x^*) (\widehat{\varphi_q}^{\check{\mu}}(\pi)).
$$

Hence $\widehat{\varphi}^{\mu}(\pi) = \widehat{\varphi_a}^{\mu}(\pi)$. $\mu^{\mu}(\pi)$.

Definition 11 We say that the Fourier transform $\mathcal{F}_{G/H}^{\mu}$ satisfies the **Riemann**– **Lebesgue lemma** if $\mathcal{F}_{G/H}^{\mu}(\varphi) \in c_0(\widehat{G/H}; \mathcal{B}(\mathcal{H}_\pi) \check{\otimes} X)$ for all $\varphi \in L^1(G/H, \mu)$.

Corollary 5.6 If \mathcal{F}_G^{μ} satisfies the Riemann–Lebesgue lemma, then so does $\mathcal{F}_{G/H}^{\mu}$.

The Fourier transform $\mathcal{F}_{G/H}^{\mu}$ also satisfies the uniqueness theorem.

Theorem 5.7 *Let* $\mu \in \mathcal{M}(G/H, X)$ *and* $\varphi \in L^1(G/H, \mu)$ *. If* $\widehat{\varphi}^{\mu}(\pi) = 0$ *for all* $[\pi] \in \widehat{G/H}$, then $\varphi = 0$ μ -a.e.

Proof Suppose that $\widehat{\varphi}^{\mu}(\pi) = 0$ for all $[\pi] \in \widehat{G/H}$. Then $\widehat{\varphi_q}^{\mu}(\pi) = 0$ for all $[\pi] \in \widehat{G/H}$. Meson as if \widehat{L} , \widehat{G} , \widehat{L} , \widehat{L} , \widehat{H} , \widehat{L} , \widehat{H} , \widehat{L} , \widehat{L} , \widehat $\widehat{G/H}$. Moreover, if $[\pi] \in \widehat{G}$ but $[\pi] \notin \widehat{G/H}$, then $\widehat{\varphi_q}^{\mu}(\pi) = 0$. Indeed, for any

 $x^* \in X^*$ and $y^* \in \mathcal{B}(\mathcal{H}_\pi)^*$,

$$
(y^* \otimes x^*)(\widehat{\varphi_q}^{\check{\mu}}(\pi)) = \int_G \varphi_q(t) y^* \pi(t)^* d\langle \check{\mu}, x^* \rangle(t)
$$

=
$$
\int_{G/H} \varphi(tH) y^* (T_H^{\pi} \pi(t)^*) d\langle \mu, x^* \rangle(tH) = 0
$$

since $T_H(y^*\pi(\cdot))^*) = y^*(T_H^{\pi}\pi(\cdot))^*) = 0$. Then one can apply Theorem [5.3](#page-21-0) and obtains that $\varphi_q = 0$ μ -a.e. Hence $\varphi = T_H(\varphi_q) = 0$ μ -a.e.

Funding The first author was supported by Science Achievement Scholarship of Thailand (SAST), Council of Science Dean of Thailand.

References

- 1. Blasco, O.: Fourier analysis for vector-measures on compact abelian groups. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. **110**(2), 519–539 (2016)
- 2. Calabuig, J.M., Galaz-Fontes, F., Navarrete, E.M., Sánchez-Pérez, E.A.: Fourier transform and convolutions on L^p of a vector measure on a compact Hausdorff abelian group. J. Fourier Anal. Appl. **19**(2), 312–332 (2013)
- 3. Delgado, O., Miana, P.J.: Algebra structure for L^p of a vector measure. J. Math. Anal. Appl. 358(2), 355–363 (2009)
- 4. Diestel, J., Uhl, J.J.: Vector Measures, Mathematical Surveys, vol. 15. American Mathematical Society, Providence (1977)
- 5. Farashahi, A.G.: Abstract operator-valued Fourier transforms over homogeneous spaces of compact groups. Groups Geom. Dyn. **11**(4), 1437–1467 (2017)
- 6. Farashahi, A.G.: A class of abstract linear representations for convolution function algebras over homogeneous spaces of compact groups. Can. J. Math. **70**(1), 97–116 (2018)
- 7. Farashahi, A.G.: Abstract measure algebras over homogeneous spaces of compact groups. Int. J. Math. **29**(1), 1850005 (2018)
- 8. Farashahi, A.G.: Fourier-Stieltjes transforms over homogeneous spaces of compact groups. Groups Geom. Dyn. **13**(2), 511–547 (2019)
- 9. Farashahi, A.G.: Absolutely convergent Fourier series of functions over homogeneous spaces of compact groups. Mich. Math. J. **69**(1), 179–200 (2020)
- 10. Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, vol. 40. Wiley, Hoboken (1999)
- 11. Folland, G.B.: A Course in Abstract Harmonic Analysis, vol. 29. CRC Press, Boca Raton (2015)
- 12. Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis II: Structure and Analysis for Compact Groups Analysis on Locally Compact Abelian Groups, vol. 152. Springer, Berlin (2013)
- 13. Kumar, M., Kumar, N.S.: Fourier analysis associated to a vector measure on a compact group. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. **114**(2), 50 (2020)
- 14. Kumar, M., Kumar, N.S.: Convolution structures for an Orlicz space with respect to vector measures on a compact group. Proc. Edinb. Math. Soc. (2) **64**(1), 87–98 (2021)
- 15. Okada, S., Ricker, W., Sánchez-Pérez, E.A.: Optimal Domain and Integral Extension of Operators, vol. 180. Birkhäuser, Basel (2008)
- 16. Reiter, H., Reiter, P., Stegeman, J.: Classical Harmonic Analysis and Locally Compact Groups, London Mathematical Society Monographs, vol. 22. Clarendon Press, Oxford (2000)
- 17. Ryan, R.A.: Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics. Springer, London (2002)
- 18. Stefánsson, G.F.: Integration in vector spaces. Ill. J. Math. **45**(3), 925–938 (2001)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.