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Abstract
We prove an L p-spectral multiplier theorem for sub-Laplacians on Heisenberg type
groups under the sharp regularity condition s > d |1/p − 1/2|, where d is the topo-
logical dimension of the underlying group. Our approach relies on restriction type
estimates where the multiplier is additionally truncated along the spectrum of the
Laplacian on the center of the group.

Keywords Nilpotent Lie group · Heisenberg type group · Sub-Laplacian · Spectral
multiplier · Restriction type estimate · Sub-Riemannian geometry
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1 Introduction

1.1 Statement of theMain Result

Let G be a two-step stratified Lie group, that is, a connected, simply connected, two-
step nilpotent Lie group whose Lie algebra g admits a decomposition g = g1 ⊕ g2
with [g1, g1] = g2 and g2 ⊆ g being contained in the center of g. Let X1, . . . , Xd1 be
a basis of g1. This basis can be identified with a system of left-invariant vector fields
on G via the Lie derivative. Let L be the sub-Laplacian associated with the vector
fields X1, . . . , Xd1 , that is, the second order, left-invariant differential operator given
by
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L = −
(

X2
1 + · · · + X2

d1

)
.

This operator is positive and self-adjoint on L2(G), where G is endowed with a
left-invariant Haar measure. Via functional calculus, one can define for every Borel
measurable function F : R → C the operator F(L) on L2(G), which is a bounded
operator on L2(G)whenever the spectral multiplier F is bounded. Regardingmultipli-
ers F for which F(L) extends to a bounded operator on L p(G), sufficient conditions
can be given in terms of differentiability properties of the multiplier F , usually
expressed by the scale-invariant localized Sobolev norms ‖ · ‖L2

s,sloc
, s ≥ 0, given

by

‖F‖L2
s,sloc

:= sup
t>0

‖F(t · )η‖L2
s (R).

Here, η : R → C is a smooth non-zero function with compact support in (0,∞)

and L2
s (R) ⊆ L2(R) denotes the Sobolev space of (fractional) order s ≥ 0. Due to

a celebrated theorem of Christ [8] and of Mauceri and Meda [25], F(L) extends to a
bounded operator on all L p-spaces for 1 < p < ∞ whenever

‖F‖L2
s,sloc

< ∞ for some s > Q/2,

where Q = dim g1 + 2 dim g2 is the homogeneous dimension of the underlying Lie
group.Moreover, F(L) is of weak type (1, 1), i.e., bounded from L1(G) to the Lorentz
space L1,∞(G). (Actually, the theorem holds true for stratified Lie groups of arbitrary
step, but our focus lies on stratified Lie groups of step two.)

In the case of Heisenberg (-type) groups, Müller and Stein [29], and independently
Hebisch [13] showed that the threshold s > Q/2 can even be pushed down to s > d/2,
where d is the topological dimension of the underlying group. This result has been
extended to other specific classes of two-step stratified Lie groups [18, 19, 21] (and
also to other settings, cf. [1, 5, 9, 20]), but up to now, it is still open whether the
threshold s > d/2 is sufficient for any two-step stratified Lie group. However, Martini
and Müller [22] were able to show that for all two-step stratified Lie groups and left-
invariant sub-Laplacians, the sharp threshold is strictly less than Q/2, but not less than
d/2.

On the other hand, instead of asking for boundedness on all L p-spaces for 1 <

p < ∞ simultaneously, one can ask for the minimal threshold sp ∈ [0, d/2] such
that F(L) is bounded on L p whenever ‖F‖L2

s,sloc
< ∞ for some s > sp. In [24],

Martini, Müller, and Nicolussi Golo showed for a large class of smooth second-order
real differential operators associated with a sub-Riemannian structure on smooth d-
dimensional manifolds that at least regularity of order s ≥ d |1/p − 1/2| is necessary
for having L p-spectralmultiplier estimates.On the opposite, one expects this threshold
also to be essentially sufficient. Sufficiency results featuring the regularity condition
s > Q |1/p − 1/2|, where Q ≥ d is the homogeneous dimension, are available in
various settings [7, 16, 34], but beyond the Euclidean setting (where d = Q), to the
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best of my knowledge, sufficiency of the threshold s ≥ d |1/p − 1/2| has so far only
been proven in exceptional cases, see [6, 33].

The purpose of this paper is to extend the results for Grushin operators of [33] to
sub-Laplacians on Heisenberg type groups, which is the following subclass of two-
step stratified Lie groups: Suppose that g is endowed with an inner product 〈·, ·〉 for
which the stratification g = g1 ⊕ g2 is orthogonal. Let g∗

2 denote the dual of g2. For
any μ ∈ g∗

2, we have a skew-symmetric bilinear form ωμ : g1 × g1 → R given by

ωμ(x, x ′) := μ([x, x ′]), x, x ′ ∈ g1. (1.1)

Then, for any μ ∈ g∗
2, there is a skew-symmetric endomorphism Jμ on g1 such that

ωμ(x, x ′) = 〈Jμx, x ′〉 for all x, x ′ ∈ g1. Let | · | denote the norm on g∗
2 induced by

the inner product 〈·, ·〉. Then the group G is called a Heisenberg type group if Jμ is
orthogonal for |μ| = 1, that is,

J 2
μ = −|μ|2 idg1 for all μ ∈ g∗

2.

Note that this implies in particular that g2 = [g1, g1] is the center of g. Given any
orthonormal basis X1, . . . , Xd1 of g1 with respect to the inner product 〈·, ·〉, we con-
sider the associated sub-Laplacian

L = −
(

X2
1 + · · · + X2

d1

)
. (1.2)

Our main result is the following spectral multiplier estimate, together with a corre-
sponding result for Bochner–Riesz multipliers. By the result of [24], the threshold
s > d (1/p − 1/2) is optimal up to the endpoint and cannot be decreased. Note that
the required order of regularity in the second part of Theorem 1.1 is the same as in the
Bochner–Riesz conjecture, see for example [36]. However, note also that Theorem 1.1
only makes a statement in the range 1 ≤ p ≤ 2(d2 + 1)/(d2 + 3), where d2 is the
dimension of the center of the group.

Theorem 1.1 Let G be a Heisenberg type group of topological dimension d = dim G
and center of dimension d2, and let L be a sub-Laplacian as in (1.2). Suppose that
1 ≤ p ≤ 2(d2 + 1)/(d2 + 3). Then the following statements hold:

(1) If p > 1 and if F : R → C is a bounded Borel function such that

‖F‖L2
s,sloc

< ∞ for some s > d (1/p − 1/2) ,

then the operator F(L) is bounded on L p(G), and

‖F(L)‖L p→L p ≤ C p,s‖F‖L2
s,sloc

.

(2) For any δ > d (1/p − 1/2) − 1/2, the Bochner–Riesz means (1 − t L)δ+, t ≥ 0,
are uniformly bounded on L p(G).
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If s > d/2 in the first part of Theorem 1.1, then the operator F(L) is of weak type
(1, 1) by [13]. The condition 1 ≤ p ≤ 2(d2+1)/(d2+3) in Theorem 1.1 derives from
the Stein-Tomas restriction estimate on g2, which is used for the proof of the spectral
multiplier estimates. Due to this assumption, the first part of the theorem only gives
results when d2 ≥ 2, whichmeans thatG must be aHeisenberg type groupwhich is not
a Heisenberg group. This reflects the phenomenon that there are no good analogues of
Fourier restriction estimates available in the case of Heisenberg groups, except for the
trivial L1-L∞ estimates, which is due to the fact that the Heisenberg group admits only
a one-dimensional center [27]. It remains an open question whether such p-specific
spectral multiplier estimates as above also hold in the setting of Heisenberg groups.

The spectral multiplier results of Theorem 1.1 are extended in a follow-up paper
[32] to the class of Métivier groups. However, the approach of [32] requires additional
methods due to the fact that the matrices Jμ from above are no longer orthogonal and
the spectral decomposition into eigenspaces, which depend onμ, is more complicated.

1.2 Structure of the Proof

Building on methods of [4, 6, 33], the proof of the spectral multiplier estimates of
Theorem 1.1 relies on restriction type estimates, a fundamental connection that was
first discovered by Fefferman [10] and has since then been exploited by many other
authors, see [7, 12, 35]. The key idea can be illustrated as follows. Suppose that we
want to derive L p-boundedness of the Bochner–Riesz means (1− L)δ+. If F : R → C

is the multiplier given by

F(λ) = (1 − λ2)δ+, λ ∈ R,

then F(
√

L) = (1 − L)δ+. We decompose F as

F =
∞∑
ι=0

F (ι),

where |τ | ∼ 2ι whenever τ ∈ supp̂F (ι) for ι ≥ 1. It suffices to show

‖F (ι)(
√

L)‖p→p � 2−ει for some ε > 0.

Let K(ι) be the convolution kernel associated with F (ι)(
√

L), that is,

F (ι)(
√

L) f = f ∗ K(ι) for f ∈ S(G),

where ∗ denotes the group convolution. By the Fourier inversion formula, we have

F (ι)(
√

L) = 1

2π

∫

|τ |∼2ι

χ(τ/2ι)F̂(τ ) cos(τ
√

L) dτ,
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where χ : R → C is some smooth function which is compactly supported in (0,∞).
Thanks the frequency localization of the dyadic pieces F (ι), since solutions of the
wave equation associated with L possess finite propagation speed, the convolution
kernel K(ι) is supported in a Euclidean ball of dimension BR × BR2 ⊆ R

d1 × R
d2

centered at the origin with radius R ∼ 2ι. Now having a restriction type estimate
which is essentially of the form

‖F (ι)(
√

L) f ‖2 � ‖F (ι)‖2‖ f ‖p, (1.3)

then, given a function f with supp f ⊆ BR × BR2 (which one can assume without
loss of generality), Hölder’s inequality provides

‖F (ι)(
√

L) f ‖p � RQ/q‖F (ι)(
√

L) f ‖2 � RQ/q‖F (ι)‖2‖ f ‖p, (1.4)

where Q = d1 + 2d2 and 1/q = 1/p − 1/2. On the other hand, one can show that
F ∈ L2

Q/q+ε(R) for some ε > 0 if δ > Q/q − 1/2, whence the last term of (1.4) can
be estimated via

RQ/q‖F (ι)‖2‖ f ‖p � 2−ει‖F (ι)‖L2
Q/q+ε(R)‖ f ‖p.

However, this approach does in general only provide thresholds featuring the homoge-
neous dimension Q in place of the topological one. Employing the approach of [33],
we additionally decompose the multipliers F (ι) dyadically along the spectrum of the
Laplacian

U =
(
−

(
U 2
1 + · · · + U 2

d2

))1/2
,

whereU1, . . . , Ud2 is a basis of the second layer g2 of the Lie algebra g.More precisely,
we decompose F (ι) such that

F (ι)(
√

L) =
∞∑

�=0

F (ι)(
√

L)χ�(L/U ), (1.5)

where (χ�)�∈Z is a dyadic decomposition of R \ {0} such that |λ| ∼ 2� if λ ∈ suppχ�.
The convolution kernel K(ι)

� of the operator F (ι)
� (L, U ) = F (ι)(

√
L)χ�(L/U ) can

be explicitly written down in terms of the Fourier transform and rescaled Laguerre
functions ϕ

|μ|
k (for their definition, see (2.9) below), namely,

K(ι)
� (x, u) = (2π)−d2

∞∑
k=0

∫

g∗
2\{0}

F (ι)
(√[k]|μ|

)
χ�([k])ϕ|μ|

k (x)ei〈μ,u〉 dμ, (1.6)

where [k] := 2k + d1/2. Thus, due to the factor χ�([k]) in the integral, the truncation
achieved by the function χ� corresponds to taking in (1.6) only the summands with
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[k] ∼ 2�. Assuming in the following that F (ι) is compactly supported around 1 (which
is of course in general not true in viewof the Paley–Wiener theorembut can be achieved
by a cut-off), we have |μ| ∼ [k]−1 and thus |μ| ∼ 2−� on the support of F (ι)

� , whence
the truncation afforded by the functions χ� is also referred to as a truncation along the
spectrum of U . Pointwise estimates for Laguerre functions (cf. Eq. (1.1.44),1 (1.3.41),
and Lemma 1.5.3 of [37] or alternatively the table on page 699 of [2]) suggest that
ϕk(x) := ϕ1

k (x) has exponential decay for |x | � [k]1/2. Hence, since |μ| ∼ [k]−1, the

function ϕ
|μ|
k , which satisfies

ϕ
|μ|
k (x) = |μ|d1/2ϕk(|μ|1/2x),

is supported where |x | � |μ|−1/2[k]1/2 ∼ 2� =: R�, up to some exponentially
decaying term. This means that the kernelK(ι)

� is essentially supported in a Euclidean
ball of dimension BR�

× BR2 ⊆ R
d1 × R

d2 centered at the origin. Now, instead of
(1.3), suppose we had a restriction type estimate of the form

‖F (ι)
� (L, U ) f ‖2 � R−d2/q

� ‖F (ι)‖2‖ f ‖p. (1.7)

Wedistinguish the cases 0 ≤ � ≤ ι and � > ι. In the former case,wedecompose the ball
BR × BR2 into a grid of balls B(�)

m of dimension R� × R2 with respect to the Euclidean
distance on the layers g1 and g2, respectively. Correspondingly, we decompose the
function f supported in BR × BR2 into a sum of functions fm supported in balls
of dimension R� × R2. Then Hölder’s inequality, applied with 1/p = 1/q + 1/2,
combined with the restriction type estimate (1.7) would provide

‖F (ι)
� (L, U ) fm‖p � (Rd1

� R2d2)1/q‖F (ι)
� (L, U ) fm‖2

� (Rd1−d2
� R2d2)1/q‖F (ι)

� ‖2‖ fm‖p. (1.8)

Since G is a Heisenberg type group, we have d2 < d1. Together with � ≤ ι, we obtain

Rd1−d2
� R2d2 ∼ 2(�−ι)(d1−d2)2ι(d1+d2) ≤ 2ι(d1+d2).

Hence we may estimate the last term of (1.8) by

Rd/q‖F (ι)‖2‖ f ‖p � 2−ει‖F (ι)‖L2
d/q+ε(R)‖ f ‖p.

The case � > ι can be treated similarly by using (1.4) in conjunction with (1.7)
and summing the geometric series over all � > ι. As a consequence, only regularity
δ > d/q−1/2 of themultiplier F(λ) = (1−λ2)δ+ is necessary for the L p-boundedness
of the Bochner–Riesz mean F(

√
L) = (1 − L)δ+. Thus, at least by our heuristics,

the truncation of (1.5) ultimately provides thresholds with the topological dimension
instead of the homogeneous one.

1 There is a small typo in Eq. (1.1.44): The factor e−x has to be replaced by e−x/2.
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It should be emphasized that the present approach benefits from the fact that the
dimension d2 of the second layer g2 of the Lie algebra g is smaller than the dimension
of the first layer. Doing the decomposition in the first layer reflects a phenomenon
that has already been prominent in the setting of Grushin operators −
x − |x |2
u ,
(x, u) ∈ R

d1 × R
d2 , which are closely related to sub-Laplacians on Heisenberg type

groups. In [23], Martini and Sikora proved a Mikhlin–Hörmander type result with
threshold s > D/2 for Grushin operators, where D := max{d1 + d2, 2d2}, which was
later improved by Martini and Müller [20] to hold for the topological dimension d in
place of D. Both approaches rely on weighted Plancherel estimates for the associated
integral kernels, but differ by the employedweights.While [23] uses the weight |x |γ in
the first layer in conjunction with a sub-elliptic estimate, [20] employs the weight |u|γ
in the second layer. A similar phenomenon occurred later in the articles [6] and [33],
where spectral multiplier theorems with p-specific regularity bounds were proved.
The approach of Chen and Ouhabaz [6] relies on weighted restriction type estimates
using the weight |x |γ in the first layer, while [33] employs the weighted Plancherel
estimate of [20] with weight in the center to express support conditions of integral
kernels. In accordance with the phenomenon of [23] and [20], the result of [6] needs
s > D (1/p − 1/2) as regularity condition, while [33] only needs regularity of order
s > d (1/p − 1/2). The present article relies on the same key idea as in [33], but
uses instead a weighted Plancherel estimate featuring the weight |x |γ . However, this
approach still provides the optimal threshold s > d (1/p − 1/2) in Theorem 1.1 and
is in line with the phenomena described above, since d2 < d1 and thus D = d, due to
the fact that G is a Heisenberg type group.

1.3 Structure of the Paper

Sections 2 and 5 are preliminary sections dealing with the spectral theory and
sub-Riemannian geometry of sub-Laplacians. In Sect. 3, we prove the previously men-
tioned truncated restriction type estimates. Section4 is devoted to proving a weighted
Plancherel estimate with weight |x |γ . In Sect. 6 we reduce the proof of Theorem 1.1
to spectral estimates for multipliers whose Fourier transform is supported on dyadic
scales. The proof of this reduced version of Theorem 1.1 is given in Sect. 7. Section8 is
an additional section, where we show that a sub-elliptic estimate for the sub-Laplacian
with the help of which one could directly transfer the approach of [6] to the setting of
Heisenberg type groups is in general false.

1.4 Notation

We let N = {0, 1, 2, . . . }. The space of (equivalence classes of) integrable simple
functions on a two-step stratified Lie group G will be denoted by D(G), while S(G)

shall denote the space of Schwartz functions on G ∼= R
d . The indicator function

of a subset A of some measurable space will be denoted by 1A. Given two suitable
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functions f , g on G, let f ∗ g denote the group convolution given by

f ∗ g(x, u) =
∫

G
f (x ′, u′) g

(
(x ′, u′)−1(x, u)

)
d(x ′, u′), (x, u) ∈ G,

where d(x ′, u′) denotes the Lebesgue measure on G. For a function f ∈ L1(Rn), the
Fourier transform f̂ is defined by

f̂ (ξ) =
∫

Rn
f (x)e−iξ x dx, ξ ∈ R

n,

while the inverse Fourier transform f̌ is given by

f̌ (x) = (2π)−n
∫

Rn
f (ξ)eixξ dξ, x ∈ R

n .

We write A � B if A ≤ C B for a constant C . If A � B and B � A, we write
A ∼ B. Moreover, we fix the following dyadic decomposition throughout this article:
Let χ : R → [0, 1] be an even and smooth function such that 1/2 ≤ |λ| ≤ 2 for all
λ ∈ suppχ and

∑
j∈Z

χ j (λ) = 1 for λ �= 0,

where χ j is given by

χ j (λ) = χ(λ/2 j ) for j ∈ Z. (1.9)

2 Spectral Theory of Sub-Laplacians on Heisenberg Type Groups

Let G be a two-step stratified Lie group. Via exponential coordinates, we may identify
G with its Lie algebra g, which is the tangent space at the identity of G. Since G is
stratified of step 2, g can be decomposed as g = g1⊕g2 with [g1, g1] = g2 and g2 ⊆ g
being contained in the center of g. Let ġ∗

2 = g∗
2 \ {0}. For any μ ∈ g∗

2, let ωμ be the
skew-symmetric bilinear form given by

ωμ(x, x ′) = μ([x, x ′]), x, x ′ ∈ g1.

Then G is called a Heisenberg type group if there is an inner product 〈·, ·〉 on g with
respect towhich the decomposition g = g1⊕g2 is orthogonal, and the skew-symmetric
endomorphisms Jμ given by ωμ(x, x ′) = 〈Jμx, x ′〉 for all x, x ′ ∈ g1 satisfy

J 2
μ = −|μ|2 idg1 for all μ ∈ g∗

2,

where | · | is the norm on g∗
2 induced by the inner product 〈·, ·〉.
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For the rest of this section, we assume that G is a Heisenberg type group. In
particular, this implies that

• dim g1 is even,
• dim g2 < dim g1 (since g∗

2 → (g1/Rx ′)∗, μ → ωμ(·, x ′) is injective for x ′ �= 0).

Let d1 = dim g1 and d2 = dim g2. We fix an orthonormal basis X1, . . . , Xd1 of g1 and
an orthonormal basis U1, . . . , Ud2 of g2. In the following, to simplify our notation, we
identify G and g = g1 ⊕ g2 with R

d1 × R
d2 via the chosen basis. Note that the group

multiplication is then given by

(x, u)(x ′, u′) = (x + x ′, u + u′ + 1
2 [x, x ′]), x, x ′ ∈ g1, u, u′ ∈ g2.

As usual, the tangent space g is in turn identified with the Lie algebra of (smooth)
left-invariant vector fields on G via the Lie-derivative. Given a smooth function f on
G, we have

X j f (x, u) = d

dt
f ((x, u)(t X j , 0))

∣∣
t=0

= ∂x j f (x, u) + 1

2

d2∑
k=1

〈Uk, [x, X j ]〉∂uk f (x, u),

Uk f (x, u) = ∂uk f (x, u).

The sub-Laplacian L associated with the vector fields X1, . . . , Xd1 is the second order
differential operator given by

L = −
(

X2
1 + · · · + X2

d1

)
.

For f ∈ L1(G) andμ ∈ g∗
2, let f μ denote theμ-section of the partial Fourier transform

along the second layer g2 given by

f μ(x) =
∫

g2

f (x, u)e−i〈μ,u〉 du, x ∈ g1. (2.1)

Up to some constant, this defines an isometryF2 : L2(g1×g2) → L2(g1×g∗
2). Given

f ∈ L2(G), we also write f μ = (F2 f )(·, μ) (for almost all μ ∈ g∗
2) in the following.

For fixed μ ∈ g∗
2, we have

(X j f )μ = Xμ
j f μ,

where Xμ
j is the differential operator on g1 given by

Xμ
j = ∂x j + i

2μ([x, X j ]).
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Let Lμ be the μ-twisted Laplacian on g1 given by

Lμ = −
((

Xμ
1

)2 + · · · +
(

Xμ
d1

)2)
. (2.2)

Let n := d1/2 and S := {μ ∈ g∗
2 : |μ| = 1}. Note that Jμ is orthogonal with

eigenvalues ±i for μ ∈ S. Hence, for any μ ∈ ġ∗
2, there is an orthogonal matrix

Tμ = Tμ̄ on g1 = R
2n , where μ̄ := μ/|μ| ∈ S, such that

ωμ(Tμ̄z, Tμ̄w) = |μ|ω(z, w) for all z, w ∈ R
2n,

where ω(z, w) = (J z)�w is the standard symplectic form2 on R
d1 which is induced

by the d1 × d1 matrix

J =
(

0 − idRn

idRn 0

)
. (2.3)

By compactness of S, we may assume that the map ġ∗
2 � μ �→ Tμ̄ is measurable, see

for instance [3, Thm. 1]. Let v
μ
j be the j-th column of T −1

μ̄ and ∇ denote the usual

gradient on R
2n . Then, given a smooth function g on R

2n , we obtain

Xμ
j (g ◦ T −1

μ̄ )(Tμ̄z) = ∇g(z)vμ
j + i

2ωμ(Tμ̄z, X j )g(z)

= ∇g(z)vμ
j + i

2 |μ|ω(z, vμ
j )g(z).

Since
∑d1

j=1 v
μ
j (v

μ
j )� is the identity matrix on R

d1 thanks to orthogonality, the μ-
twisted Laplacian Lμ of (2.2) transforms into

Lμ
(

g ◦ T −1
μ̄

)
(Tμ̄z) = L |μ|

0 g(z), (2.4)

where Lλ
0 is the λ-twisted Laplacian on R

2n given by

Lλ
0 = −
z + 1

4λ
2|z|2 − iλ

n∑
j=1

(a j∂b j − b j∂a j ), λ > 0, (2.5)

where we write z ∈ R
2n as z = (a1, . . . , an, b1, . . . , bn). The λ-twisted Laplacian

Lλ
0 admits a complete orthonormal system of eigenfunctions, which are given by

the matrix coefficients of the Schrödinger representation, see [37, Sect. 1.3]. More
precisely, let πλ : Hn → U(L2(Rn)), where U(L2(Rn)) is the group of unitary

2 A prominent choice in the literature is also the symplectic form (z, w) �→ Im(zw̄) = −ω(z, w), which
would correspond to the transpose of the matrix in (2.3). The reason for choosing ω as above instead of
(z, w) �→ Im(zw̄) is that we want to have the same sign for the third summand in (2.5) as in (1.3.14) of
[37].
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operators on L2(Rn), denote the Schrödinger representation of the Heisenberg group
Hn = R

2n × R on L2(Rn) given by

πλ(a, b, t)ϕ(ξ) = eiλt eiλ(aξ+ 1
2 ab)ϕ(ξ + b),

where a, b ∈ R
n, t ∈ R and ϕ ∈ L2(Rn), ξ ∈ R

n . Moreover, let �λ
ν be the Hermite

function defined by

�λ
ν(ξ) = λn/4

n∏
j=1

hν j

(
λ1/2ξ j

)
, ξ ∈ R

n,

where h� shall denote the �-th Hermite function on R given by

h�(t) = (−1)�(2��!√π)−1/2et2/2
(

d

dt

)�

(e−t2), t ∈ R.

Then, by Theorems 1.3.2 and 1.3.3 of [37], the matrix coefficients �λ
ν,ν′ , ν, ν′ ∈ N

n

given by

�λ
ν,ν′(z) := (2π)−n/2λn/2(πλ(z, 0)�

λ
ν,�

λ
ν′), z ∈ R

2n (2.6)

form a complete orthonormal system of eigenfunctions of Lλ
0, with

Lλ
0�

λ
ν,ν′ = (2|ν′|1 + n)λ�λ

ν,ν′ , (2.7)

where (·, ·) is the inner product on L2(R2n), and |ν|1 = ν1 + · · · + νn denotes the
length of the multiindex ν ∈ N

n . Hence L2(R2n) decomposes into eigenspaces of Lλ
0,

where the orthogonal projection �λ
k onto the eigenspace of the eigenvalue (2k + n)λ,

k ∈ N is given by

�λ
k g =

∑
ν∈Nn

∑
|ν′|1=k

(g,�λ
ν,ν′)�λ

ν,ν′ , g ∈ L2(R2n).

Via the transformation Tμ̄, the spectral decomposition of the μ-twisted Laplacian Lμ

of (2.2) can be expressed in terms of the spectral decomposition of Lλ
0, which follows

directly from (2.4) and (2.7). In the following, we put

[k] := 2k + n, k ∈ N.

Lemma 2.1 For μ ∈ ġ∗
2, the operator Lμ on L2(g1) admits an orthonormal basis

of eigenfunctions associated with the eigenvalues [k]|μ|, k ∈ N. The orthogonal
projection �

μ
k onto the eigenspace of the eigenvalue [k]|μ| is given by

�
μ
k g =

(
�

|μ|
k

(
g ◦ Tμ̄

)) ◦ T −1
μ̄ , g ∈ L2(g1). (2.8)
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Remark Lemma 2.1 is essentially Proposition 4.5 of [4]. Note, however, that the defi-
nitions of �λ

k and �
μ
k in [4] differ from ours by the factors λn and |μ|n . Moreover, [4]

even states that the above result holds for left-invariant sub-Laplacians on the larger
class of Métivier groups. Unfortunately, this is not the case in general, since the eigen-
values of the twisted Laplacian Lμ are not necessarily of the form [k]|μ| if G is only
assumed to be a Métivier group. An example may be found for instance in [29, Eq.
(2.3), (2.4)], where the corresponding eigenvalues are of the form

n∑
j=1

a j (2ν j + 1)|μ|, ν ∈ N
n .

See also [21, Sect. 2] for a further discussion. However, the results of [4] remain true
under the additional hypothesis that G is a Heisenberg type group, and the restriction
theorem of [4] can be expected to hold in greater generality.

A restriction type estimate that holds beyond Heisenberg type groups can be found
in the follow-up paper [32], but unfortunately the estimate there does not seem to be
sufficient to recover the result claimed in [4].

The projection �λ
k can be written in a more explicit form as a twisted convolution

with a Laguerre function. For λ > 0, let f ×λ g be the λ-twisted convolution given
by

f ×λ g(z) =
∫

R2n
f (w)g(z − w)e

i
2λω(z,w) dw, z ∈ R

2n,

where ω is again the standard symplectic form induced by the matrix J in (2.3).
Moreover, let ϕλ

k be the Laguerre function given by

ϕλ
k (z) = λn Ln−1

k

(
1
2λ|z|2

)
e− 1

4λ|z|2 , z ∈ R
2n, (2.9)

where Ln−1
k denotes the k-th Laguerre polynomial of type n − 1. Then, since

�λ
ν,ν′(z) = λn/2�1

ν,ν′
(
λ1/2z

)
(2.10)

by the definition (2.6) of �λ
ν,ν′ , (1.3.41) and (1.3.42) of [37, pp. 21] imply

ϕλ
k (z) = (2π)n/2λn/2

∑
|ν|1=k

�λ
ν,ν(z). (2.11)

Hence, by (2.1.5) of [37, p. 30], �λ
k may be rewritten as

�λ
k g = g ×λ ϕλ

k . (2.12)

Remark Our definition of ϕλ
k differs from that of [4] by the factor |λ|n/2.
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The operators L,−iU1, . . . ,−iUd2 (where U1, . . . , Ud2 is the chosen basis of the
second layer g2) form a system of formally self-adjoint, left-invariant and pairwise
commuting differential operators, whence they admit a joint functional calculus [17].
It is well-known [30, Sect. 1] that for suitable functions F : R × R

d2 → C, the
operator F(L,U) with U := (−iU1, . . . ,−iUd2) possesses a convolution kernel that
can be expressed in terms of the Fourier transform and Laguerre functions ϕλ

k . We
provide a direct argument here, although alternatively, the convolution kernel can also
be computed by using the Fourier inversion formula of the group Fourier transform on
G and the fact that the unitary group representations and the joint functional calculus
of L,−iU1, . . . ,−iUd2 are compatible, see Proposition 1.1 and Lemma 2.2 of [27].

Proposition 2.2 Let F : R × R
d2 → C be a bounded Borel function. Then

(F(L,U) f )μ(x) = F(Lμ,μ) f μ(x) (2.13)

for all f ∈ L2(G) and almost all x ∈ g1, μ ∈ g∗
2. If F is additionally compactly

supported in R × (Rd2 \ {0}), then F(L,U) possesses a convolution kernel KF(L,U ),
i.e.,

F(L,U) f = f ∗ KF(L,U) for all f ∈ S(G),

which is given by

KF(L,U)(x, u) = (2π)−d2
∞∑

k=0

∫

ġ∗
2

F([k]|μ|, μ)ϕ
|μ|
k (x)ei〈μ,u〉 dμ (2.14)

for almost all (x, u) ∈ G.

Proof The identity (2.13) can be proved by the same approach as in the proof of
Proposition 5 of [23] by writing down the corresponding functional calculi in terms of
the Fourier transform and the orthogonal projections provided by the eigenfunctions
of theμ-twisted Laplacian Lμ. To prove (2.14), we observe that (2.13) and Lemma 2.1
yield

F(L,U) f (x, u) = (2π)−d2
∞∑

k=0

∫

ġ∗
2

F([k]|μ|, μ)�
μ
k f μ(x)ei〈μ,u〉 dμ. (2.15)

By Lemma 2.1, (2.12), and the fact that ϕ|μ|
k is radial-symmetric,

�
μ
k f μ(x) =

(
�

|μ|
k

(
f μ ◦ Tμ̄

)) (
T −1

μ̄ x
)

=
((

f μ ◦ Tμ̄

) ×|μ| ϕ
|μ|
k

) (
T −1

μ̄ x
)

=
∫

R2n
f μ

(
Tμ̄w

)
ϕ

|μ|
k (T −1

μ̄ x − w)e
i
2 |μ|ω(T −1

μ̄ x,w) dw
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=
∫

g1

f μ(x ′)ϕ|μ|
k (x − x ′)e

i
2ωμ(x,x ′) dx ′, (2.16)

whereω denotes again the standard symplectic form onR
2n associated with thematrix

J from (2.3). Plugging (2.16) into (2.15), unboxing the Fourier transform f μ, and
rearranging the order of integration yields

F(L,U) f (x, u) = (2π)−d2

∫

G
f (x ′, u′)

∞∑
k=0

∫

ġ∗
2

F([k]|μ|, μ)ϕ
|μ|
k (x − x ′)

ei〈μ,u−u′〉e
i
2ωμ(x,x ′) dμ d(x ′, u′).

By definition, we have

f ∗ KF(L,U)(x, u) =
∫

G
f (x ′, u′)KF(L,U)(x − x ′, u − u′ − 1

2 [x ′, x]) d(x ′, u′).

This yields (2.14). ��

3 Truncated Restriction Type Estimates

In this section, we prove the truncated restriction type estimates for the sub-Laplacian
L = (X2

1 +· · ·+ X2
d1

), given that G is a Heisenberg type group and X1, . . . , Xd1 is an
orthonormal basis on the first layer g1 of the stratification g = g1 ⊕ g2. As in [4] (and
similarly in [6, 33]), the idea of the proof is to first apply a restriction type estimate
in the variable x ∈ g1 for the μ-twisted Laplacian Lμ given by (2.2) and then the
Stein–Tomas restriction estimate in the central variable u ∈ g2. The restriction type
estimate for the orthogonal projection �

μ
k onto the k-th eigenspace of the μ-twisted

Laplacian Lμ is given by the following lemma, which is Lemma 4.7 of [4]. Let again
[k] = 2k + d1/2 and n = d1/2.

Lemma 3.1 If 1 ≤ p ≤ 2(d1 + 1)/(d1 + 3), then

‖�μ
k ‖L p(g1)→L2(g1) ≤ C p|μ|n( 1

p − 1
2 )[k]n( 1

p − 1
2 )− 1

2 for all k ∈ N. (3.1)

Proof By Theorem 1 of [15], we have ‖�1
k‖2→p′ � [k]n( 12− 1

p′ )− 1
2 , so by duality

‖�1
k‖p→2 � [k]n( 1

p − 1
2 )− 1

2 .

In view of (2.10), rescaling with λ1/2 yields

‖�λ
k‖p→2 � λ

n( 1
p − 1

2 )[k]n( 1
p − 1

2 )− 1
2 for λ > 0.

Hence, together with (2.8) and a substitution, we obtain (3.1). ��
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Remark The condition 1 ≤ p ≤ 2(d2+1)/(d2+3) of Theorem 1.1 (and Theorem 3.2
below) implies in particular 1 ≤ p ≤ 2(d1 + 1)/(d1 + 3) since d1 > d2 due to the
fact that G is a Heisenberg type group.

Choosing a basis U1, . . . , Ud2 of the second layer g2, we define the operator

U :=
(
−

(
U 2
1 + · · · + U 2

d2

))1/2
.

Now we state the truncated restriction type estimates for the sub-Laplacian L .

Theorem 3.2 (Truncated restriction type estimates) Suppose that 1 ≤ p ≤ 2(d2 +
1)/(d2 + 3). Let F : R → C be a bounded Borel function supported in [1/8, 8], and,
for � ∈ N, let F� : R × R → C be given by

F�(λ, ρ) = F(
√

λ)χ�(λ/ρ) for λ ≥ 0, ρ �= 0,

and F�(λ, ρ) = 0 else, where (χ�)�∈Z is the dyadic decomposition of (1.9). Then

‖F�(L, U )‖p→2 ≤ C p2
−�d2(

1
p − 1

2 )‖F‖2 for all � ∈ N. (3.2)

Remark Note that d1 is even since G is a Heisenberg type group. Thus, χ�([k]) = 0
for all k ∈ N whenever � < 0. Hence (2.15) yields

∞∑
�=0

F�(L, U ) f = F(
√

L) f .

Proof Let f ∈ S(G). Given μ ∈ g∗
2 and k ∈ N, we write gμ

k = F(
√[k]|μ|) f μ,

where f μ denotes again the partial Fourier transform in μ. Note that [k] ∼ 2� for
([k]|μ|, |μ|) ∈ supp F�. Using Plancherel’s theorem, (2.13), and orthogonality in
L2(g1), we obtain

‖F�(L, U ) f ‖2L2(G)
∼

∫

g∗
2

∫

g1

|F�(Lμ, |μ|) f μ(x)|2 dx dμ

=
∫

ġ∗
2

∫

g1

∣∣∣∣
∞∑

k=0

F(
√[k]|μ|)χ�([k])�μ

k f μ(x)

∣∣∣∣
2

dx dμ

�
∑

[k]∼2�

∫

ġ∗
2

‖�μ
k gμ

k ‖2L2(g1)
dμ. (3.3)

Now Lemma 3.1 yields

‖�μ
k gμ

k ‖2L2(g1)
� |μ|d1( 1

p − 1
2 )[k]d1(

1
p − 1

2 )−1‖gμ
k ‖2L p(g1)

∼ [k]−1‖gμ
k ‖2L p(g1)

. (3.4)
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In the last line we used the fact that [k]|μ| ∼ 1 whenever [k]|μ| ∈ supp F . Moreover,
since 2/p ≥ 1, Minkowski’s integral inequality yields

∫

ġ∗
2

‖gμ
k ‖2L p(g1)

dμ ≤
(∫

g1

( ∫

ġ∗
2

|gμ
k (x)|2 dμ

) p
2

dx

) 2
p

. (3.5)

Let fx := f (x, ·) and ·̂ denote the Fourier transform on g2. Using polar coordinates
and applying the Stein–Tomas restriction estimate [38] yields

∫

ġ∗
2

|gμ
k (x)|2 dμ =

∫ ∞

0

∫

Sd2−1
|F(

√[k]r) f̂x (rω)|2rd2−1 dσ(ω) dr

=
∫ ∞

0
|F(

√[k]r)|2r−d2−1
∫

Sd2−1

∣∣( fx (r
−1 · ))∧

(ω)
∣∣2 dσ(ω) dr

�
∫ ∞

0
|F(

√[k]r)|2r−d2−1‖ fx (r
−1 · )‖2L p(g2)

dr

=
∫ ∞

0
|F(

√[k]r)|2r2d2(
1
p − 1

2 )−1 dr ‖ fx‖2L p(g2)

∼ [k]−2d2(
1
p − 1

2 )‖F‖2L2(R)
‖ fx‖2L p(g2)

.

In combination with (3.3), (3.4) and (3.5), we obtain

‖F�(L, U ) f ‖2L2(G)
�

∑

[k]∼2�

[k]−2d2(
1
p − 1

2 )−1‖F‖22‖ f ‖2p

∼ 2−2�d2(
1
p − 1

2 )‖F‖22‖ f ‖2p.

This proves (3.2). ��

4 AWeighted Plancherel Estimate

In this section, we prove a weighted Plancherel estimate for convolution kernels asso-
ciated with the sub-Laplacian L on the Heisenberg type group G. Usually, those
estimates are the crux of the matter when proving Mikhlin–Hörmander results featur-
ing the threshold s > d/2, where d is the topological dimension of the underlying
space, see for example [18, Theorem 4.6] or [19, Proposition 3]. However, in the
present setting, the weighted Plancherel estimate (4.1) will serve a different purpose,
namely turning support conditions in conjunction with convolution kernels into some
sort of rapid decay.

Proposition 4.1 Let F and F� be defined as in Theorem 3.2, and K� be the convolution
kernel of the operator F�(L, U ). Then, for all α ≥ 0,

∫

G

∣∣|x |αK�(x, u)
∣∣2 d(x, u) ≤ Cα2

�(2α−d2)‖F‖2L2 for all � ∈ N. (4.1)
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Proof Let α ≥ 0. Using (2.14) in combination with Plancherel’s theorem, we obtain

∫

G

∣∣|x |αK�(x, u)
∣∣2 d(x, u)

∼
∫

ġ∗
2

∫

g1

∣∣∣|x |α
∞∑

k=0

F�

([k]|μ|, |μ|)ϕ|μ|
k (x)

∣∣∣
2

dx dμ. (4.2)

Given μ ∈ ġ∗
2, we consider the rescaled Hermite operator Hμ = −
z + 1

4 |z|2|μ|2
acting on L2(R2n). By Proposition 3.3 of [6],

‖| · |αg‖L2(R2n) � |μ|−α‖(Hμ)α/2g‖L2(R2n). (4.3)

On the other hand, by Equation (1.3.25) of [37], the functions �
|μ|
ν,ν′ defined by (2.6)

are also eigenfunctions of Hμ, with

Hμ�
|μ|
ν,ν′ = (|ν| + |ν′| + n)|μ|�|μ|

ν,ν′ for all ν, ν′ ∈ N
n .

By the definition (2.11) of ϕ
|μ|
k , this implies in particular

Hμϕ
|μ|
k = [k]|μ|ϕ|μ|

k .

(Alternatively, one could use (2.7) by exploiting that ϕ|μ|
k is radial-symmetric by (2.9)

and that the operators Hμ and L |μ|
0 coincide on such functions.) Hence, together with

(4.3), the right-hand side of (4.2) can be dominated by a constant times

∫

ġ∗
2

∫

R2n

∣∣∣∣∣
∞∑

k=0

[k]α/2|μ|−α/2F� ([k]|μ|, |μ|) ϕ
|μ|
k (x)

∣∣∣∣∣
2

dx dμ. (4.4)

Using [k]|μ| ∼ 1 for
√[k]|μ| ∈ supp F , |F�(λ, ρ)| ≤ |F(λ)| and orthogonality of

the functions ϕ
|μ|
k , (4.4) can be estimated by a constant times

∑

[k]∼2�

[k]2α
∫

ġ∗
2

∫

R2n

∣∣∣F
(√[k]|μ|

)
ϕ

μ
k (x)

∣∣∣
2

dx dμ. (4.5)

Since the functions �
|μ|
ν,ν′ form an orthonormal basis of L2(R2n),

|μ|−n‖ϕ|μ|
k ‖22 = |{ν ∈ N

n : |ν|1 = k}| =
(

k + n − 1

k

)
∼ (k + 1)n−1.
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Hence ‖ϕ|μ|
k ‖22 ∼ [k]−1 for [k]|μ| ∈ supp F . Thus (4.5) is comparable to

∑

[k]∼2�

[k]2α−1
∫

ġ∗
2

∣∣∣F
(√[k]|μ|

)∣∣∣
2

dμ. (4.6)

Using polar coordinates and a substitution in the integral over ġ∗
2 shows that (4.6) in

turn is comparable to

∑

[k]∼2�

[k]2α−1−d2‖F‖2L2(R)
∼ 2�(2α−d2)‖F‖2L2(R)

.

This proves (4.1). ��

5 The Sub-Riemannian Geometry of the Sub-Laplacian

In this section we summarize the main properties of the sub-Riemannian geometry
associated with left-invariant sub-Laplacians on two-step stratified groups. Let G be
a two-step stratified Lie group and g = g1 ⊕ g2 be a stratification of its Lie algebra.
Let X1, . . . , Xd1 be a basis of g1 and L = −(X2

1 + · · · + X2
d1

) be the associated

sub-Laplacian. We again identify G ∼= g via the exponential map and g ∼= R
d by

means of the basis X1, . . . , Xd1 of g1 and a basis U1, . . . , Ud2 of g2.
Let dCC denote the Carnot–Carathéodory distance associated with the vector fields

X1, . . . , Xd1 . By definition, this means that for g, h ∈ G, the distance dCC(g, h) is
given by the infimum over all lengths of horizontal curves γ : [0, 1] → G joining
g with h, see for instance [39, Sect. III.4]. Since the vector fields X1, . . . , Xd1 are
left-invariant and [g1, g1] = g2, they satisfy Hörmander’s condition [14], that is, the
vector fields X1, . . . , Xd1 along with their iterated commutators

[Xi , X j ], [Xi , [X j , Xl ]], . . .

span the tangent space g = TeG of G at the identity e ∈ G, and hence at every
point g ∈ G. (In our two-step setting, the vector fields X1, . . . , Xd1 together with
their commutators [Xi , X j ] already span the tangent space.) Hence, due to the Chow–
Rashevskii theorem [39, Proposition III.4.1], dCC is indeed a metric on M , which
induces the (Euclidean) topology of G = R

d .
Since X1, . . . , Xd1 are left-invariant vector fields, dCC is left-invariant, that is,

dCC(ag, ah) = dCC(g, h) for all a, g, h ∈ G. (5.1)

On the other hand,

‖(x, u)‖ := (|x |4 + |u|2)1/4, (x, u) ∈ G
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defines a homogeneous norm in the sense of Folland and Stein [11] with respect to
the dilations δR given by

δR(x, u) = (Rx, R2u), R ≥ 0. (5.2)

Hence G × G � (g, h) �→ ‖g−1h‖ is a left-invariant (quasi-)distance on G. Since any
twohomogeneous norms on a homogeneousLie group are equivalent [11, Lemma1.4],
we have

dCC(g, h) ∼ ‖g−1h‖ for all g, h ∈ G. (5.3)

Let BdCC
R (g) denote the ball of radius R ≥ 0 centered at g ∈ G with respect to dCC.

Then (5.1) and (5.2) yield

|BdCC
R (g)| = RQ |BdCC

1 (0)|, (5.4)

where we identify 0 with the identity element e ∈ G via G ∼= g, and Q = d1 + 2d2
is the homogeneous dimension. Note that (5.4) yields in particular that the metric
space (G, dCC) equipped with the the Lebesgue measure (which is a bi-invariant Haar
measure on G) is a space of homogeneous type with homogeneous dimension Q.

Furthermore, the sub-Laplacian L possesses the finite propagation speed property
with respect to the Carnot-Carathéodory distance dCC, which will be of fundamental
importance in the proof of Theorem 1.1.

Lemma 5.1 If f , g ∈ L2(G) are supported in open subsets U , V ⊆ G, then

(cos(t
√

L) f , g) = 0 for all |t | < dCC(U , V ).

For a proof, see [26] or [28, Corollary 6.3].

6 Reduction of Theorem 1.1 to Dyadic Spectral Multipliers

To prove Theorem 1.1, we use the following general spectral multiplier result of
[7], which allows us to reduce the spectral multiplier estimates of Theorem 1.1 to
estimates for spectral multipliers whose Fourier transforms are supported on dyadic
scales. Very similar arguments are used in [6, Sect. 5] and [33, Sect. 4], but we give
a detailed discussion for the convenience of the reader. Given a suitable multiplier
F : R → C, we use the notation

F (ι) := (F̂χι)
∨ for ι ∈ Z, (6.1)

where ·̂ and ·∨ denote the Fourier transform and its inverse on R, respectively, and
(χι)ι∈Z is the dyadic decomposition from (1.9).
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Proposition 6.1 [7, Proposition I.22]Let (X , ρ, μ)be a metric measure space of homo-
geneous type and Q ≥ 0 such that

μ(Bλr (x)) ≤ CλQμ(Br (x)) for all x ∈ X , r > 0, λ ≥ 1,

where Bs(x) denotes the ball of radius s > 0 centered at x ∈ X. Let 1 ≤ p0 < p < 2.
Suppose that L is a positive self-adjoint operator on L2(X) such that the following
statements are satisfied:

(i) L possesses the finite propagation speed property, that is,

(cos(t
√

L) f , g)L2(X) = 0 for all |t | < ρ(U , V )

whenever f , g ∈ L2(X) are supported in open subsets U , V ⊆ X, where

ρ(U , V ) := inf{ρ(u, v) : u ∈ U , v ∈ V }.

(ii) L satisfies the Stein–Tomas restriction type condition (ST∞
p0,2

) of [7], that is, for
any R > 0 and all bounded Borel functions F : R → C supported in [0, R],

‖F(
√

L)(1Br (x) f )‖2 ≤ Cμ(Br (x))
1
2− 1

p0 (Rr)
Q( 1

p0
− 1

2 )‖F‖∞‖ f ‖p0 (6.2)

for all x ∈ X, all r ≥ 1/R, and all f ∈ L p0(X).
(iii) There is some β > Q/2 such that

sup
t>0

‖F(t
√

L)‖p→p ≤ C‖F‖L∞
β

for all even bounded Borel functions F : R → C with supp F ⊆ [−1, 1].
Suppose that F : R → C is an even bounded Borel function and that there is a
bounded sequence (α(ι))ι∈Z with

∑
ι≥0(ι + 1)α(ι) < ∞ such that

‖(Fχi )
( j)(

√
L)‖p→p ≤ α(i + j) for all i, j ∈ Z. (6.3)

Then the operator F(
√

L) is of weak-type (p, p).

Remark To be precise, in [7], Proposition I.22 requires the condition (Ep0,2) in place
of the Stein–Tomas type restriction condition (ST∞

p0,2
). However, both conditions are

equivalent by Proposition I.3 of the same paper. Moreover, the notation of our decom-
position indexed by i and j differs slightly from that of [7] since (Fηi )

( j) = (Fχ−i )
( j),

where (ηi )i∈Z is the dyadic decomposition from [7, Eq. (I.3.3)]. The somewhat arti-
ficial requirement that F shall be an even function is linked to the finite propagation
speed property. This will become apparent at the beginning of the proof of Proposi-
tion 7.1.
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We apply Proposition 6.1 in the setting where X = G is a two-step stratified Lie
group and

L = −
(

X2
1 + · · · + X2

d1

)
(6.4)

is the sub-Laplacian associated with a basis X1, . . . , Xd1 of the first layer of the
stratification g = g1⊕g2 of G. The measureμ in Proposition 6.1 will be the Lebesgue
measure on G.

For our purposes of proving Theorem 1.1, we only need Corollary 6.2 for the
case where L is a sub-Laplacian on a Heisenberg type group, but the more general
version for arbitrary two-step stratified Lie groups is readily available. Note, however,
that Proposition 6.1 requires the restriction type condition (ST∞

p0,2
) in the setting of

arbitrary two-step stratified Lie groups. However, instead of using the restriction type
estimates of Theorem 3.2, we use a Plancherel estimate for the associated convolution
kernel, which in turn implies a restriction type estimate from L1 to L2.

Corollary 6.2 Let G be a two-step stratified Lie group and L be a sub-Laplacian as in
(6.4). Let p∗ ∈ [1, 2] and s > 1/2. Suppose that for all 1 ≤ p ≤ p∗ there exists some
ε > 0 such that

‖F (ι)(
√

L)‖p→p ≤ C p,s2
−ει‖F‖L2

s
for all ι ∈ N (6.5)

and all even bounded Borel functions F ∈ L2
s (R) supported in [−2,−1/2]∪ [1/2, 2].

Then the statements (1) and (2) of Theorem 1.1 hold for all 1 ≤ p ≤ p∗.

Remark The assumption 1 ≤ p ≤ 2(d2 + 1)/(d2 + 3) of Theorem 1.1 automatically
implies that s > 1/2 if s > d (1/p − 1/2) since

d

(
1

p
− 1

2

)
≥ d2

(
(d2 + 3)

2(d2 + 1)
− 1

2

)
= d2

d2 + 1
≥ 1

2
.

However, in Corollary 6.2, we only require 1 ≤ p ≤ p∗ for some p∗ ∈ [1, 2], which
is why we additionally assume s > 1/2 to make sure that ‖F |(0,∞)‖∞ � ‖F‖L2

s,sloc
.

Proof The result for Bochner–Riesz multipliers in the second part of Theorem 1.1 is
a direct consequence of (6.5) without Proposition 6.1 involved, which can be seen in
the same way as in the proof of Theorem 1.2 in [33, Sect. 4].

For the first part of Theorem 1.1, we observe that

‖F‖L2
s,sloc

∼ ‖F̃‖L2
s,sloc

for F(λ) = F̃(
√

λ).

Thus, we may pass from F(L) to the operator F(
√

L). We use Proposition 6.1 for
p0 = 1. Proposition 6.1 only shows that the operator F(

√
L) is of weak type (p, p),

but the boundedness on L p can be easily recovered as follows: First, note that the case
p = 1 is excluded in the first part of Theorem 1.1. Thus, suppose that the interval
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(1, p∗] is non-empty and let 1 < p ≤ p∗. Suppose that F : R → C is a bounded
Borel function satisfying

‖F‖L2
s,sloc

< ∞ for some s > d (1/p − 1/2) .

We can choose 1 < p̃ < p such that s > d (1/ p̃ − 1/2). Applying Proposition 6.1
implies that F(

√
L) is of weak type ( p̃, p̃). On the other hand, the assumption s > 1/2

in Corollary 6.2 ensures that

‖F |(0,∞)‖∞ � ‖F‖L2
s,sloc

.

Hence, via interpolation with the L2-L2 bound provided by the spectral theorem, we
may conclude that F(

√
L) is bounded on L p. The claimed estimate

‖F(
√

L)‖p→p ≤ C p,s‖F‖L2
s,sloc

in the first part of Theorem 1.1 follows by the closed graph theorem applied to the
map F �→ F(

√
L). Alternatively, this estimate can also be derived by inspecting the

arguments of [7] (see also [31, Sect. 7]).
Now we verify the assumptions of Proposition 6.1. Let p0 = 1. The finite prop-

agation speed property in (i) holds due to Lemma 5.1, and the estimate in (iii) is
automatically fulfilled by Theorem I.5 of [7]. Since p0 = 1, the restriction type condi-
tion (ST∞

p0,2
) is a consequence of a Plancherel estimate for the associated convolution

kernel, see also [7, Sect. III.5]. More precisely, given a bounded Borel measurable
function F : R → C, since L is a left-invariant operator, there is a convolution kernel
KF(

√
L)

such that F(
√

L) f = f ∗ KF(
√

L)
for all f ∈ S(R). By [8, Proposition 2],

there is some constant C > 0 such that we have the Plancherel estimate

‖KF(
√

L)
‖2L2(G)

= C
∫ ∞

0
|F(

√
λ)|2λQ/2 dλ

λ
,

where Q is the homogeneous dimension of G. If R > 0 and F : R → C is a bounded
Borel function supported in [0, R], then

∫ ∞

0
|F(

√
λ)|2λQ/2 dλ

λ
� RQ‖F‖2∞.

Thus, we obtain

‖F(
√

L) f ‖2 = ‖ f ∗ KF(
√

L)
‖2 ≤ ‖ f ‖1‖KF(

√
L)

‖2 � RQ/2‖F‖∞‖ f ‖1.

By (5.4), we have |BdCC
r (x, u)| = r Q |BdCC

1 (0)|. Hence, for p0 = 1, the factor on the
right-hand side of (6.2) is given by

|Br (x, u)|−1/2(Rr)Q/2 ∼ RQ/2,
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which verifies the restriction type condition (ST∞
p0,2

). Thus the assumptions of Propo-
sition 6.1 are satisfied.

Now suppose that the dyadic estimate (6.5) of Corollary 6.2 holds. Let F : R → C

be a bounded Borel function such that

‖F‖L2
s,sloc

< ∞ for some s > d (1/p − 1/2) .

To show that F(
√

L) is of weak type (p, p), we verify the required estimate (6.3) of
Proposition 6.1. Note that we may assume without loss of generality that F is an even
function since L is a positive operator. For i ∈ Z, we let Fi := Fχi , where (χi )i∈Z is
the dyadic decomposition from (1.9). Given i, j ∈ Z, let ι := i + j and

G(λ) := F(2iλ)χ(λ), λ ∈ R,

where χ is the bump function from (1.9). Then G is an even function, and

(Fi )
( j)(λ) = (F̂iχ j )

∨(λ) = (2i Ĝ(2i ·)χ j )
∨(λ)

= (Ĝχι)
∨(2−iλ) = G(ι)(2−iλ).

Let again δR be the dilation given by δR(x, u) = (Rx, R2u). Then

(F(
√

L) f ) ◦ δR−1 = F(R
√

L)( f ◦ δR−1).

This implies

‖G(ι)(2−i
√

L)‖p→p = ‖G(ι)(
√

L)‖p→p.

Hence, for ι ≥ 0, (6.5) yields

‖(Fχi )
( j)(

√
L)‖p→p = ‖G(ι)(

√
L)‖p→p

� 2−ει‖G(ι)‖L2
s

� 2−ει‖F‖L2
s,sloc

.

The case ι < 0 can be treated by the Mikhlin–Hörmander type result of [8, 25].
Suppose ι < 0. Let ψ := ∑

i≤2 χi . Then ψ is supported in [−8, 8]. We decompose
G(ι) as G(ι) = G(ι)ψ + G(ι)(1 − ψ). Since G(ι) = G ∗ χ̌ι, suppG ⊆ [−2, 2] and
χ̌ ∈ S(R), we have

∣∣∣
( d

dλ

)α

G(ι)(λ)

∣∣∣ =
∣∣∣
( d

dλ

)α
∫ 2

−2
2ιG(τ )χ̌(2ι(λ − τ)) dτ

∣∣∣

�N 2ι(α+1)
∫ 2

−2

|G(τ )|
(1 + 2ι|λ − τ |)N

dτ, α ∈ N. (6.6)
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Let Q denote again the homogeneous dimension of G. Choosing N := 0 in (6.6) and
using 2ι(α+1) ≤ 1, we obtain

‖G(ι)ψ‖L2
Q/2+1,sloc

�ψ ‖G‖2 � ‖F‖L2
s,sloc

.

On the other hand, choosing N := α + 1 in (6.6) yields in particular

∣∣∣
( d

dλ

)α

G(ι)(λ)

∣∣∣ � |λ|−α‖G‖2 for |λ| ≥ 4.

Since all derivatives of 1 − ψ are Schwartz functions, Leibniz rule yields

‖G(ι)(1 − ψ)‖L2
Q/2+1,sloc

�ψ ‖G‖2 � ‖F‖L2
s,sloc

.

Hence, applying the Mikhlin–Hörmander type result of [8] and [25] yields

‖(Fi )
( j)(

√
L)‖p→p = ‖G(ι)(2− j

√
L)‖p→p

= ‖G(ι)(
√

L)‖p→p � ‖F‖L2
s,sloc

.

This establishes the required condition (6.3) of Proposition 6.1. Thus we can apply
Proposition 6.1 and we get that the operator F(

√
L) is of weak type (p, p). ��

7 Proof of the Reduction of Theorem 1.1

Now suppose that L = (X2
1+· · ·+X2

d1
) is a sub-Laplacian on aHeisenberg type group

G, where X1, . . . , Xd1 is an orthonormal basis of the first layer g1 of the stratification
g = g1 ⊕ g2. Let again dCC denote the Carnot–Carathéodory distance associated with
the vector fields X1, . . . , Xd1 , let d = d1 + d2 be the topological dimension, and
Q = d1 + 2d2 be the homogeneous dimension of G. By Corollary 6.2, the proof
of Theorem 1.1 can be reduced to proving the following statement. Given a suitable
multiplier F : R → C, we write again

F (ι) := (F̂χι)
∨ for ι ∈ Z,

where (χι)ι∈Z is the dyadic decomposition of (1.9).

Proposition 7.1 Suppose that 1 ≤ p ≤ 2(d2 + 1)/(d2 + 3). If s > d (1/p − 1/2),
then there exists some ε > 0 such that

‖F (ι)(
√

L)‖p→p ≤ C p,s2
−ει‖F (ι)‖L2

s
for all ι ∈ N

and any even bounded Borel function F ∈ L2
s supported in [−2,−1/2] ∪ [1/2, 2].
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Proof Let ι ∈ N and R := 2ι. We proceed in several steps.
(1) Reduction to compactly supported functions. Let f ∈ D(G) be an integrable

simple function on G. We first show that we may restrict to the case where f is
supported in BdCC

R (0). Since the metric space (G, dCC) endowed with the Lebesgue
measure is a space of homogeneous type and separable, we may choose a decompo-
sition into disjoint sets B j ⊆ BdCC

R (x ( j), u( j)), j ∈ N, (x ( j), u( j)) ∈ G such that for

every λ ≥ 1, the number of overlapping dilated balls BdCC
λR (x ( j), u( j)) is bounded by

a constant C(λ) ∼ λQ , which is independent of ι. We decompose f as

f =
∞∑
j=0

f j where f j := f |B j .

Since F is even, so is F̂ . As χι is even as well, the Fourier inversion formula provides

F (ι)(
√

L) f j = 1

2π

∫

2ι−1≤|τ |≤2ι+1
χι(τ )F̂(τ ) cos(τ

√
L) f j dτ.

Since L satisfies the finite propagation speed property, F (ι)(
√

L) f j is supported in

BdCC
3R (x ( j), u( j)) by the formula above. Together with the bounded overlap of these

balls, we obtain

‖F (ι)(
√

L) f ‖p
p �

∞∑
j=0

‖F (ι)(
√

L) f j‖p
p.

Altogether, since L is left-invariant, it suffices to show

∥∥1
B

dCC
3R (0)

F (ι)(
√

L) f
∥∥

p � 2−ει‖F (ι)‖L2
s
‖ f ‖p (7.1)

whenever our initial function f ∈ D(G) is supported in BdCC
R (0).

(2) Localizing the multiplier. Next we show that we may replace the multiplier F (ι)

by F (ι)ψ , where ψ is a smooth cut-off function which is compactly supported away
from the origin. Using the dyadic decomposition (χι)ι∈Z from (1.9), we put

ψ :=
2∑

j=−2

χ j .

Then 1/8 ≤ |λ| ≤ 8 whenever λ ∈ suppψ , and |λ| /∈ (1/4, 4) if λ ∈ supp(1 − ψ).
We decompose F (ι) as

F (ι) = F (ι)ψ + F (ι)(1 − ψ).

The second part of this decomposition can be treated by the Mikhlin–Hörmander type
result of [8] and [25]. Note that F (ι) = F ∗ χ̌ι, and χ̌ ∈ S(R). Thus, given α ∈ N and
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N ∈ N, we have

∣∣∣
( d

dλ

)α

F (ι)(λ)

∣∣∣ =
∣∣∣
( d

dλ

)α
∫ 2

−2
2ιF(τ )χ̌(2ι(λ − τ)) dτ

∣∣∣

�N 2ι(α+1)
∫ 2

−2

|F(τ )|
(1 + 2ι|λ − τ |)N

dτ. (7.2)

Since F is supported in [−2,−1/2] ∪ [1/2, 2], choosing N := α + 2 in (7.2) gives

∣∣∣
( d

dλ

)α

F (ι)(λ)

∣∣∣ � 2−ι min{|λ|−α, 1}‖F‖2 whenever |λ| /∈ (1/4, 4).

This implies

‖F (ι)(1 − ψ)‖L2
Q/2+1,sloc

�ψ 2−ι‖F‖2.

Hence, the Mikhlin–Hörmander type result of [8, 25] yields

‖(F (ι)(1 − ψ))(
√

L)‖p→p � 2−ι‖F‖2.

Thus, instead of (7.1), we are left proving

∥∥1
B

dCC
3R (0)

(F (ι)ψ)(
√

L) f
∥∥

p � 2−ει‖F (ι)‖L2
s
‖ f ‖p (7.3)

for all f ∈ D(G) that are supported in BdCC
R (0).

(3) Truncation along the spectrum of U . Next we decompose the operator
(F (ι)ψ)(

√
L) by a dyadic decomposition of U . For � ∈ N, let the function F (ι)

� :
R × R → C be given by

F (ι)
� (λ, ρ) = (F (ι)ψ)(

√
λ)χ�(λ/ρ) for λ ≥ 0, ρ �= 0

and F (ι)
� (λ, ρ) = 0 else. We decompose the function on the left-hand side of (7.3) as

1
B

dCC
3R (0)

(F (ι)ψ)(
√

L) f = 1
B

dCC
3R (0)

( ι∑
�=0

+
∞∑

�=ι+1

)
F (ι)

� (L, U ) f

=: g≤ι + g>ι. (7.4)

The sum over � > ι can be treated directly by the restriction type estimate of The-
orem 3.2. Recall that |BdCC

R (0)| ∼ RQ by (5.4). Hence, Hölder’s inequality with
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1/q = 1/p − 1/2 and the restriction type estimate (3.2) imply

‖g>ι‖p � RQ/q‖g>ι‖2

≤ RQ/q
∥∥∥∥

∞∑
�=ι+1

F (ι)
� (L, U ) f

∥∥∥∥
2

� 2ι(Q−d2)/q‖F (ι)ψ‖2‖ f ‖p

�ψ 2−ει‖F (ι)‖L2
s
‖ f ‖p

if we choose 0 < ε < s − d/q. (Note that ‖F (ι)‖2 ∼ 2−ιs‖F (ι)‖L2
s
due to the

localization in frequency.) Thus, we are done once we have also treated the sum over
� ∈ {0, . . . , ι}, that is, it remains to show

‖g≤ι‖p � 2−ει‖F (ι)‖L2
s
‖ f ‖p. (7.5)

(4) The support of the convolution kernel. Let K(ι)
� be the convolution kernel of the

operator F (ι)
� (L, U ). By (5.3), there is a constant C > 0 such that

BdCC
R (0) ⊆ BC R(0) × BC R2(0).

Hence the function f is supported in a Euclidean ball of dimension R × R2. In view of
the finite propagation speed property which we exploited in part (1) of the proof, we
may think of K(ι)

� being supported in a ball of dimension R × R2 as well (which is of
course not quite true since we replaced the multiplier F (ι) by F (ι)ψ). In the following,
we show that the convolution kernel K(ι)

� of the truncated multiplier is essentially
supported in an even smaller ball of dimension R� Rγ × R2, where R� := 2� and
γ > 0 will be a number chosen sufficiently small, depending only on the parameters
s, p, d1, d2. For convenience, we introduce the following notation: We will write

A �ι B

whenever A ≤ RC(p,d1,d2)γ B for some constant C(p, d1, d2) > 0 depending only on
the parameters p, d1, d2.

Given � ∈ {0, . . . , ι}, we split the Euclidean ball BC R(0) × BC R2(0) into a grid
with respect to the first layer, which gives a decomposition of supp f ⊆ BdCC

R (0) such
that

supp f =
M�⋃

m=1

B(�)
m ,
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where B(�)
m ⊆ BC R�

(x (�)
m ) × BC R2(0) are disjoint subsets, and |x (�)

m − x (�)

m′ | > R�/2
for m �= m′. Then the number M� of balls in this decomposition is bounded by

M� � (R/R�)
d1 = 2d1(ι−�). (7.6)

Moreover, given γ > 0, the number of overlapping balls

B̃(�)
m := B2C R� Rγ (x (�)

m ) × B9C R2(0), 1 ≤ m ≤ M�

can be bounded by a constant Nγ �ι 1 (which is independent of �). We decompose
the function f as

f =
M�∑

m=1

f |
B(�)

m
.

In the following, we show that the function

g(�)
m := 1

B
dCC
3R (0)

F (ι)
� (L, U )( f |

B(�)
m

)

is essentially supported in the ball B̃(�)
m . We decompose the function g≤ι of (7.4) as

g≤ι =
ι∑

�=0

M�∑
m=1

g(�)
m |

B̃(�)
m

+
ι∑

�=0

M�∑
m=1

g(�)
m |

g\B̃(�)
m

=: g(1)
≤ι + g(2)

≤ι . (7.7)

To show that the second summand is negligible (in the sense of (7.13)), we interpo-
late between L1 and L2 via the Riesz–Thorin interpolation theorem. For the L1-L1

estimate, note that (x, u) ∈ (g\B̃(�)
m ) ∩ BdCC

3R (0) and (x ′, u′) ∈ B(�)
m imply

|x − x ′| ≥ C R� Rγ .

Let K(ι)
� be the convolution kernel associated with F (ι)

� (L, U ). Then

F (ι)
� (L, U )( f |

B(�)
m

)(x, u) = ( f |
B(�)

m
) ∗ K(ι)

� (x, u),
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and we obtain

‖g(2)
≤ι ‖1 ≤

∫

G

ι∑
�=0

M�∑
m=1

1
(g\B̃(�)

m )∩B
dCC
3R (0)

(x, u)
∣∣( f |

B(�)
m

) ∗ K(ι)
� (x, u)

∣∣ d(x, u)

≤
∫

B
dCC
R (0)

ι∑
�=0

∫

A�(x ′)

M�∑
m=1

∣∣ f |
B(�)

m
(x ′, u′)

∣∣

× ∣∣K(ι)
�

(
(x ′, u′)−1(x, u)

)∣∣ d(x, u) d(x ′, u′)

=
∫

B
dCC
R (0)

| f (x ′, u′)| κγ (x ′, u′) d(x ′, u′), (7.8)

where

A�(x ′) := {(x, u) ∈ BdCC
3R (0) : |x − x ′| ≥ C R� Rγ }

and

κγ (x ′, u′) :=
ι∑

�=0

∫

A�(x ′)

∣∣K(ι)
�

(
(x ′, u′)−1(x, u)

)∣∣ d(x, u).

Given N ∈ N, the Cauchy–Schwarz inequality yields

∫

A�(x ′)
|K(ι)

�

(
(x ′, u′)−1(x, u)

)| d(x, u)

� (R� Rγ )−N
∫

A�(x ′)

∣∣|x − x ′|NK(ι)
� (x − x ′, u − u′ − 1

2 [x ′, x])∣∣ d(x, u)

� (R� Rγ )−N RQ/2
(∫

G

∣∣|x |NK(ι)
� (x, u)

∣∣2 d(x, u)

)1/2

. (7.9)

In the last line we used again that |BdCC
3R (0)| ∼ RQ by (5.4). By Proposition 4.1, the

second factor of (7.9) can be estimated by

∫

G

∣∣|x |NK(ι)
� (x, u)

∣∣2 d(x, u) �N R2N−d2
� ‖F (ι)‖22.

Hence

κγ (x ′, u′) �N

ι∑
�=0

R−γ N+Q/2R−d2/2
� ‖F (ι)‖2 � R−γ N+Q/2‖F (ι)‖2.

Altogether, with (7.8), we have

‖g(2)
≤ι ‖1 �N R−γ N+Q/2‖F (ι)‖2‖ f ‖1. (7.10)
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For the L2-L2 estimate, we use the trivial estimate

‖g(2)
≤ι ‖2 =

∥∥∥∥
ι∑

�=0

M�∑
m=1

g(�)
m |

g\B̃(�)
m

∥∥∥∥
2

≤
ι∑

�=0

M�∑
m=1

‖g(�)
m ‖2. (7.11)

Since ‖χ�‖∞ ≤ 1, each summand of (7.11) can be estimated by

‖g(�)
m ‖2 ≤ ‖F (ι)

� (L, U )( f |
B(�)

m
)‖2 ≤ ‖F (ι)‖∞‖ f |

B(�)
m

‖2.

Using Hölder’s inequality on the right-hand side of (7.11) yields

‖g(2)
≤ι ‖2 ≤ ‖F (ι)‖∞(ι + 1)M1/2

� ‖ f ‖2.

Together with (7.6) and the Sobolev embedding

‖F (ι)‖∞ � ‖F (ι)‖L2
α

∼ Rα‖F (ι)‖2, α > 1/2,

we obtain

‖g(2)
≤ι ‖2 � Rα‖F (ι)‖2(ι + 1)M1/2

� ‖ f ‖2
� Rα′ ‖F (ι)‖2‖ f ‖2 for α′ > α + d1/2. (7.12)

Applying the Riesz–Thorin interpolation theoremwith (7.10) and (7.12) and choosing
N = N (γ ) ∈ N sufficiently large in (7.10) yields

‖g(2)
≤ι ‖p �N 2−ιN ‖F (ι)‖2‖ f ‖p. (7.13)

In view of the decomposition (7.7), for showing (7.5), it thus remains to prove

‖g(1)
≤ι ‖p =

∥∥∥∥
ι∑

�=0

M�∑
m=1

g̃(�)
m

∥∥∥∥
p

� 2−ει‖F (ι)‖L2
s
‖ f ‖p, (7.14)

where

g̃(�)
m := 1

B̃(�)
m ∩B

dCC
3R (0)

F (ι)
� (L, U )( f |

B(�)
m

).

On a formal level, this means that we may indeed assume that the convolution kernel
K(ι)

� is supported in a ball of dimension R� Rγ × R2.
(5) The main contribution. Hölder’s inequality and the bounded overlapping prop-

erty of the balls B̃(�)
m imply

‖g(1)
≤ι ‖p

p �ι (ι + 1)p−1
ι∑

�=0

M�∑
m=1

‖g̃(�)
m ‖p

p. (7.15)
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Using Hölder’s inequality together with the restriction type estimate (3.2) yields

‖g̃(�)
m ‖p �

((
R� Rγ

)d1 R2d2
)1/q ‖g(�)

m ‖2
�ι

(
Rd1

� R2d2
)1/q ‖g(�)

m ‖2
�

(
Rd1−d2

� R2d2
)1/q ‖F (ι)‖2‖ f |

B(�)
m

‖p.

Plugging this estimate into the right-hand side of (7.15) and using the fact that the
functions f |

B(�)
m

have disjoint support, we obtain

‖g(1)
≤ι ‖p

p �ι (ι + 1)p−1
ι∑

�=0

(
Rd1−d2

� R2d2
)p/q ‖F (ι)‖p

2 ‖ f ‖p
p.

Choosing γ > 0 small enough, we may conclude that

‖g(1)
≤ι ‖p

p � 2−ει
ι∑

�=0

(
Rd1−d2

� Rd2−d1
)p/q ‖F (ι)‖p

L2
s
‖ f ‖p

p

for some 0 < ε < s − d/q. Recall that R� = 2� and R = 2ι. Since d1 > d2, we have

ι∑
�=0

((
R�

R

)d1−d2
)p/q

≤ C p.

Altogether, we obtain

‖g(1)
≤ι ‖p � 2−ε̃ι‖F (ι)‖L2

s
‖ f ‖p

for some ε̃ > 0. This is (7.14), so the proof is concluded. ��

8 Remarks onWeighted Restriction Type Estimates for
Sub-Laplacians

In [6], Chen andOuhabaz proved a spectralmultiplier theorem for theGrushin operator
G = −
x −|x |2
u acting on R

d1 ×R
d2 by using a weighted restriction type estimate

of the form

‖|x |α F(
√G) f ‖L2(Rd1×R

d2 ) ≤ C p,α‖F‖L2(R)‖ f ‖L p(Rd1×R
d2 ),

where α > 0 and F : R → C is a bounded Borel function supported in [1/4, 1].
Let L denote again a sub-Laplacian on a Heisenberg type group G with Lie algebra
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g = g1 ⊕ g2 with layers of dimension d1 and d2, respectively. Then

L f = G f

for any g1-radial function on the Heisenberg type group G, i.e., a function on G which
only depends on |x | (with x ∈ g1) and u ∈ g2 (where we identify again G with its Lie
algebra g, which is in turn identified withR

d1 ×R
d2 ). In view of this close relationship,

one might hope that the approach of Chen and Ouhabaz can also be applied in the
setting of Heisenberg type groups. However, a crucial ingredient of their approach is
the sub-elliptic estimate

‖|x |αg‖L2(Rd1 ) ≤ Cα‖|μ|−α(Hμ)α/2g‖L2(Rd1 ), g ∈ L2(Rd1), (8.1)

where Hμ = −
x + 1
4 |x |2|μ|2 denotes again the rescaled Hermite operator on R

2n .
Unfortunately, the analogous estimate of (8.1) in our setting, where Hμ is replaced
by the μ-twisted Laplacian Lμ of (2.2), fails. We will prove in the following that the
estimate (8.1) where Hμ is replaced by Lμ is false for α = 1. (The approach of [6]
requires to choose 0 < α < d2(1/p − 1/2) as large as possible, so large values of α

are the crucial ones.)
Via (2.4) and a linear substitution, the estimate

‖|x |αg‖L2(g1) ≤ Cα‖|μ|−α(Lμ)α/2g‖L2(g1)

is equivalent to

‖|z|αg‖L2(R2n) ≤ Cα‖|μ|−α(L |μ|
0 )α/2g‖L2(R2n),

where L |μ|
0 is the twisted Laplacian of (2.5). Rescaling with |μ|, we may restrict to

the case |μ| = 1. Let A := L1
0. Then, by (2.5),

A = −
z + 1
4 |z|2 − i N ,

where, when writing z = (a1, . . . , an, b1, . . . , bn),

N =
n∑

j=1

(a j∂b j − b j∂a j ).

Now, suppose that

‖|z|g‖L2(R2n) ≤ C‖A1/2g‖L2(R2n) for all g ∈ S(R2n). (8.2)

Recall that the matrix coefficients �ν,ν′ of the Schrödinger representation π1(·, 0)
given by (2.6) are eigenfunctions of A with

A�ν,ν′ = (2|ν′|1 + n)�ν,ν′ . (8.3)
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On the other hand, the functions �ν,ν′ are also eigenfunctions of H = −
z + 1
4 |z|2

by Equation (1.3.25) of [37], with

H�ν,ν′ = (|ν|1 + |ν′|1 + n)�ν,ν′ . (8.4)

When writing ζ = (α1, . . . , αn, β1, . . . , βn), direct computation shows

Âg(ζ ) = Âĝ(ζ ),

where the operator Â is given by

Â := |ζ |2 − 1
4
ζ + i

n∑
j=1

(∂α j β j − ∂β j α j )

and ·̂ denotes the 2n-dimensional Fourier transform given by

ĝ(ζ ) =
∫

R2n
g(z)e−i〈ζ,z〉

R2n dz, ζ ∈ R
2n .

Since Â(g(2ζ )) = (Ag)(2ζ ), the estimate (8.2) together with Plancherel’s theorem
implies

‖(−
z)
1/2g‖L2(R2n) ≤ C‖A1/2g‖L2(R2n) for all g ∈ S(R2n). (8.5)

Setting g := �ν,ν′ and using (8.4), (8.2), (8.5), (8.3), we obtain

(|ν|1 + |ν′|1 + n)‖g‖2L2(R2n)
= ‖H1/2g‖2L2(R2n)

= (
(−
z + 1

4 |z|2)g, g
)

= ∥∥(−
z)
1/2g

∥∥2
L2(R2n)

+ 1
4

∥∥|z|g∥∥2
L2(R2n)

≤ C‖A1/2g‖2L2(R2n)

= C(2|ν′|1 + n)‖g‖2L2(R2n)
.

Now fixing ν′ ∈ N
n and letting |ν| → ∞ yields a contradiction, whence the assumed

estimate (8.2) is indeed false.
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