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Abstract

The purpose of this paper is to prove an optimal restriction estimate for a class of flat
curves in RY, d > 3. Namely, we consider the problem of determining all the pairs
(p, q) for which the L? — L9 estimate holds (or a suitable Lorentz norm substitute at
the endpoint, where the L” — L9 estimate fails) for the extension operator associated to
y(t) = (t, %, el (;dT_ll)!, ¢(1)), 0 <t < 1, with respect to the affine arclength mea-

sure. In particular, we are interested in the flat case, i.e. when ¢ (¢) satisfies »@D0) =0
for all integers d > 1. A prototypical example is given by ¢ (1) = e~ !/!. The paper
(Bak et al., J. Aust. Math. Soc. 85:1-28, 2008) addressed precisely this problem. The
examples in Bak et al. (2008) are defined recursively in terms of an integral, and they
represent progressively flatter curves. Although these include arbitrarily flat curves,
it is not clear if they cover, for instance, the prototypical case ¢ (1) = e~ /7. We will
show that the desired estimate does hold for that example and indeed for a class of
examples satisfying some hypotheses involving a log-concavity condition.

Keywords Fourier restriction - Simple curve - Log-concave

Mathematics Subject Classification 42B10 - 42B99

1 Introduction

Letd >2.Lety : I — RY be a C? curve defined on an interval I. The restriction of
the Fourier transform of f to y is given by

fya) = / e YO £(x)dx

Rd
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for Schwartz functions f € S(R?). We are interested in the L? — L7 estimate of the
restriction of the Fourier transform:

1/q
(/ |[Foran| dz) < ClIflr ey, (1
1
and for what p — g range the estimate holds. The trivial estimate is the L' — L™
estimate. The critical line for the p — g range is ; d(d2+ D 1}” q > di;{i;z, where

p’ is the Holder conjugate exponent of p. (See [1].)

We are also interested in the conditions on y that allows the LP? — L9 estimate
to hold on the critical line. The simplest case is y(t) = (¢, % STreees %). Zygmund
[18] and Hormander [13] showed that (1) holds on the critical line for d = 2 and
Drury [11] showed the corresponding result for d > 3. Christ [8] proved partial
results for more general curves, and Bak et al. [4] showed that the estimate (1) holds
if y is nondegenerate Now consider a curve of simple type of the form y(r) =
(t, 122,, R (dd 1> & (1)) where ¢ is a C? function. In this case, (1) may fail if y is
degenerate, unless we replace the Euclidean arclength measure by the affine arclength
measure. Let w(¢) be a weight function defined by

w(t) = |7, (1) Fr

where 7, = det(y’ y” ... y@) is a torsion of y. The affine arclength measure is
given by w(#)dt. Thus, we will replace the estimate (1) by

1/q
A q
( /1 [Foe| wo dr) < CILf Lo gay- @)
. . d*>+d+42 :
Furthermore, even though (2) fails at the endpoint p = ¢ = el the restricted
strong type (p, ¢) may hold:
N g 1/q
( f |7 an]? we) dr) < CIfll ot gay- 3)
I

Bak et al. [3] showed that (2) holds for curves satisfying some conditions on the
critical line, and in [5], they showed the endpoint estimate (3) holds when ¢ is any
polynomial, where C = Cy depends only on the upper bound N on the degree of the
polynomial. Also, Bak and Ham [2] showed the corresponding endpoint estimate for
certain complex curves y (z) € C¢ of simple type. For more cases, see also [10], [16]
and [17].

In this paper, we extend the result in [3] to the endpoint estimate, i.e., (3) holds for
some curves that satisfy some hypotheses involving a certain log-concavity condition.
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Theorem 1.1 Suppose d > 2. Let y € C%(I) be of the form

[2 td_l
y(@) = (l‘, CTRRREE m,fﬁ(f))

defined on I = (0, 1). Suppose that $'? is positive and increasing on I. Suppose that
there exists § > 0 such that ¢(d) is log-concave on (0, §), i.e.,

601 + (1= 2)x2) = [ )@ (o)) @

forall ) € [0, 1] and x1, x> € (0, 8). Then, for pg = (d*> +d +2)/(d* + d), there is
a constant C < oo, depending only on d, such that for all f € LP&!(RY),

—~ 1/pa
([170 @ wod) ™ < it ©

The paper is organized as follows. In Sect. 2, we establish a lower bound for a
Jacobian related to an offspring curve. In Sect. 3, we collect some useful results on
interpolation spaces. Section 4 is devoted to the proof of Theorem 1.1. In Sect. 5, we
provide some relevant examples.

We will use the notation A < B to mean that A < CB for some constant C
depending only on d. And A &~ B means A < B and B < A.

2 A Lower Bound for a Certain Jacobian

In this section, we establish the lower bound for a certain Jacobian, which plays an
important role to prove Theorem 1.1. Before formulating this result, we introduce
some notation before presenting the crucial proposition needed to prove Theorem 1.1.

Ford > 2and x = (x1,...,x4) € R4, let V(x) denote the determinant of the
Vandermonde matrix:

Valx) = 1_[ (xj —x).

l<i<j<d

ForO<t=n<---<tglethi =t;—t;. Then,0 =h; <--- < hgandt; =t +h;.
Also, define

v(h) = Vaty =[] (hj—ho.
I<i<j<d

Ify :[0,1] = R? andif 0 < t < 1 — hy, define

d
L@, h)y =)yt +h),
i=1
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which is called an offspring curve of y for each fixed h. Let Jy(¢, h) be the Jacobian
determinant of I":

ar ar ar
Jot hy =det [ o, 2 2.
o (t. 1) e(Bt o ahd)

Now we formulate the following proposition, which provides the lower bound of
Jacobian of the offspring curve. (See also Proposition 2.1 in [3] and Proposition 3.5
in [9].)

Proposition 2.1 Let Jy(t, h) be defined as above, where
y() = (¢, ’2—2!, ey %, ¢ (1)) satisfies the condition in Theorem 1.1. Then, fort €
[0,8), h € (0,8) ! andt + hg < 8,

d 1/d
Jo(t,h) = Cq v(h)[]"[qs(d)(z + hd)] (6)

i=1
for some constant Cy which depends only on d.

Before embarking on the proof of Proposition 2.1, we need some definitions and
lemmas from [3].

Lemma 2.2 (Lemma 2.2 in [3]) Fix A € (0, 1). Define some intervals (a;, b;) by
ai <b; fori=1,...,Nand b <ajy1 fori=1,...,N—1.

Suppose also that form = 1, ..., M, and for s € RN, v,,(s) is a function having one
of the three following forms:

sj—s; forsomel <i < j=<N,
U (s) = d; —s; for some dj > bj,

si —c¢; forsomecj <aj.

Suppose that », € (0,1) and A, < A forn = 1,...,N. Let Ry(a, b, A) be the
region of all s = (s1,...,SN) € RN satisfying (1 — Ap)a, + Anby < s, < by, for
n=1,...,N.Then

M by by M
/ va(s)dsN...dslzC(M,A)N/ / va(s)dsN...dsl.
Ry (a,b,A) m=1 aj N —
(7)
Now, we define a function ¢, (¢; h) recursively:
$2(t; h2) = X10,h,1() 3
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Ford > 3 and ¢t < hy, define

Ry_1(t,h) = {x e RY™1 10 < x; < min(t, ),
hi <xi <hjt1,i=2,...,d -2 9)
max(t, hg—1) < xg—1 < hg},

and define
Ca(t; h) =/ Ca—1(t —uysun, ... ug—1)duy ...dug— (10)
Ra—1(t.h)

if t < hg,and ¢4(t; h) i()ift > hy.
Consider a function J g (s) : R — R defined by

Ty () = det(y'(s1) ...y (s0))- (1)

Notice that y/(s;) = (1, si, ..., (s)?72/(d — 2)!, ¢/ ().
Observe that by simple calculation,

Tt +hyy oot +ha) = st ).

Lemma 2.3 (Lemma 2.3 in [3]) Let {4 and .]Ng(t) be defined by (8), (10), and (11) with
§1 < ---<sy4. Then

~ Sd
OB / Ca(u — 1582 = 51, ..., 50 — sa-1)$ P (w) du.
51

Lemma 2.4 Suppose that ¢(d) is log-concave on (0,8) and 0 = hy < hy < --- < hy.
Then,

d 1/d
[1‘[¢“’>(r + m)} < ¢“D(Ha(t, 1) (12)

i=1

where t +h; € (0,8) fori = 1,....d and Hy(t,h) = Y S0 (t + hy) € [1.1 + hgll.

Proof Let B(t) = — 1og[¢(d) ()]. Then, B is convex on (0, §). Therefore, by Jensen’s
inequality,

1 & 1<
i ;ﬂ(h‘) > B (E ;n)
where t; € (0,8) fori =1, ..., d. It follows that
1 1 &
exp [5 ;ﬂ(n)} > exp [ﬁ (g i;tl) }
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which implies

S|

(o))"= eol (1))

1=
Namely,
d

1/d d
[ [exp ( - log[d)‘d)(ti)])} > exp ( — log [W) (1 Z’;-)] )
=1 i=1

which implies

S|

W

d 1 d
[Tl @' < ¢@ ( Zz,-) .
i=1

i=1
Ifweputty =randt; =1t + h;, we get
d

1/d
[]‘[qs(d) (t+ h»} < ¢ (Ha(t, h)).

i=1

Proof of Proposition 2.1 We adapt the proof of Proposition 2.1 in [3].
We will use both notations ¢; and t +h;, where t; = t+h; forO =h; < hy, <--- < hy.

Jo(t.h) = T4t .t + hy, ...t + hy)

t+hy
- / Lol — 1 1) 6D (u) du
t

t+hy
> / cat — £ 1) 69 (w) du.

Hy(t,h)

The equality follows from Lemma 2.3 and the inequality follows from nonnegativ-
ity. Since ¢'?) is increasing,

t+hy
Jp(t, h) > oD (Hy(z, b)) a(u —t; h) du. (13)
Hy(t,h)
‘We will show that
t+hg
/ Ca(u —t; h) du > cq v(h). (14)
Hd(l,h)

Birkhauser
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To show (14), we will use induction on d > 2.

It is easy to verify for the case d = 2 that the (14) holds with ¢; = 1/2. Suppose that

(14) holds for d — 1 > 2. Consider a function 7 such that
7 D) = Xuziy @)
where f = ﬁ(tl + ... +t). Observe that

By oy TH (11, ta) = (=D det (v (1) ..y (ta=1)
= (=D @ 1)

Since fg(r) =0ift; = t;41, we get

J¢ (tl,...,
= (-7~ 1/ / Ve B TY (1L Samti ta) dsa—y -
:/ / .ﬁ,ﬁl(sl,,,,,sdfl)dsd,],,,dsl,
f td—1
By applying (15) and Lemma 2.3, we get
t+hy -
/ Cau =t h) du =T (0, ..., ta)
Hy(t,h)
15} 7] Sd—1
=/ / / Xuzi) (@)
n Ig—1 Y51
X Cg—1(u — 58158 —81,...,84—1 —Sq—2)dudsqg_1...ds;.

dsi

15)

et i=—.. ote thatif s; > Ajt; + (1 — Aj)tir1, thens = —(s1 + -+ s4-1) >
Let A; = <. Note that if A (1 — Ai)tis1, th - )

L+ + 1) =1, 50 Y=y (W) = x(u=5) (). Therefore,

t+hg
/ Ca(u—t; h)du

Hy(t,h)

t tq Sd—1
Z./ .-:/ /1 X{uz5) (1)
rmn+1-a)n Ad—1td—1+(1—=Ag—Dta Js1

X Cg—1(U — 81582 — 81, ..., 84—1 —Sq—2) du dsq—1 ...ds;.

By the induction hypotheses, we get the inequality

Sd—1
/ Xiuz=5y W) a—1(u — 8§15 52 — S1, ..., S4—1 — Sq—2) du
S1

> cqg—1Va-1(51, .., Sa—1).

(16)

7)
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By (16) and (17), we have

t+hg
/ Sa(u — 15 h) du

Hy(t,h)

123 td
zcdq/ / Va_1(s1,...,8q-1)dsy...dsq—1.
Mti+(1=A)n Ad—1td—1+(1=Ag—1)tq

Using the fact that V;_; is of the form [ ] v, (#) in Lemma 2.2, and

%) Iq
Vd(tl,...,td)z(d—l)!f / Va_i1(st, ..., 84-1)dsq—1 ...dsy,
1 td—1

we get the inequality (14) (see [3, p. 9]). If we apply (12) and (14) to (13), we obtain
(6). O

3 Preliminaries on Interpolation Space

In this section, we provide some definitions and lemmas established in [5], which are
needed to prove Theorem 1.1. Let X = (X(, X) be a compatible couple of quasi-
normed spaces X and X, i.e., both Xo and X are continuously embedded in the
same topological vector space. We can define both the K -functional on X+ X, given
by

K(f,t,X)= inf t ,
(f ) ff0+f](||f0||xo+||f1||xl)

and the J-functional on Xo N X1, given by

J(f o, X) = max ([l £llx,, 111 f 1 x))-

For 0 < 6 < 1, let the interpolation space )_(g,q be a subspace of Xo + X1, where

1/q
( Y 27K (f. 2", X)V) 1 <gq < oo,

nez B
sup2 K (f, 2", X) q = o0

nez

Iflg,, =

is finite. Then, Xy N X is dense in )_(g’q when 1 < g < oo, so we can give an
equivalent norm | - ||5(9 4o 00 Xo,4 by

_ 1/q
HN@N=M<ZDWHMWKW),

nez

Birkhauser
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where the infimum is taken over f = Y f, and f, € Xo N X, with convergence
in Xo + X. Note that || - ||)-(0.q and || - ”5(9,,,;1 are equivalent when 0 < 6 < 1. (For
details, see Theorem 3.11.3 in [6].)

To present some lemmas, we introduce some definitions. Let 0 < r < 1. For a
quasi-normed space X, its norm is called » — convex if there exists a constant C > 0
such that

n n 1r
| Yol =c (Zl ||xl-||§(>
1= 1=

for any finite x; € X. Kalton [14] and Stein et al. [15] showed that the Lorentz space
L™ isr — convex for0 <r < 1.

For a quasi-normed space X, let £/ (X) be a sequence space whose element { f;} is
X-valued and satisfies

1/p
(Z 2””’||fn||§}> < o0,

nez

We can also define a function space bP(X: dw), where w is a weight function and X
is Lorentz space on an interval 7, such that f € bP(X; dw) implies {xw, , flnez €
F(X),ie.,

1/p
1 Up (xcay = (Z 2”"uxw,,,_nfn§i) < o0,

nez

where Wy, = {t € I : 2" < w(t) < 21}
Then, by definition, b{’/p(LP; dw) = LP(I; dw).
Now, we state some lemmas that will be helpful in proving Theorem 1.1.

Lemma 3.1 (Lemma A.3in [5]) Let O < r < 1 and V be an r — convex space. For
i=1,...,n, let

X' = (xi, X})

be couples of compatible quasi-normed spaces and let M be an n-linear operator
defined on [];_, (X{, N X}) with values in V. Suppose that

1Mo ol < [T 1A
i=1

Xp

Birkhauser
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Jfor 0 < 6; < 1 for all i. Then there is C > 0 such that for all (f1,..., fa) €
[Ti=i (Xp N XY,

IMCfr - v < [T

i=l
and M extends to a bounded operator on [[!_, X él_ -

Lemma 3.2 (Theorem 1.3in [5]) Fori =1,...,nandcy,...,c, € R, c1 # ¢; for
i=2,....nLt0O<r<1and X = (X0, X1) be a couple of compatible complete
quasi-normed spaces. Let V be an r — convex space and M be an n-linear operator
defined on Xy + X1 and w be a weight function. Suppose

n
IMLf - Fallly < iz, oxyzdw) 1_[ I1fillby, xo:dw)-

i=2
Then,

IMLf. . fallv ST il (&

1
i=1 n:

;dw)

nr

—1lyn .
wherec = - Y | ci.

Lemma3.3 (Lemma A.4in [5]) Let0 < p < 00, 50,51 € R, and 0 < 6 < 1. Let
(X0, X1) be a compatible couple of quasi-normed spaces. If p < q < oo, then there
is the continuous embedding

€8 (X0, X1)o,q) = (Lo (X0), €5 (X1))o.q
fors = (1 —8)sg + Os1.

In fact, b? (X) is a retract of [/ (X). Define r : I7'(X) — bl(X) by r({f,}) =
Yonez Wunfa and i 2 bJ(X) — IJ(X) by [i(f)ln = Wi f. Then, r o is the
identity operator on b? (X). Therefore, Lemma 3.3 implies that there is the continuous
embedding

b{ (X0, X1)g.4) = (b5 (X0), b, (X1))e.4

under the hypotheses of Lemma 3.3.

4 Proof of Theorem 1.1

The interval I = (0, 1) can be decomposed into (0, §) U [, 1). Since qb(d) is positive
and increasing on 7, y(¢) is nondegenerate if ¢t € [§, 1) for any 0 < § < 1. Then,

Birkhauser
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by Theorem 1.4 in [4], Theorem 1.1 holds on [§, 1). Therefore, it is enough to show

that Theorem 1.1 holds on (0, §), if y satisfies the log-concavity property (4) for some

d>+d+2
2

§ > 0 and ¢? is positive and increasing on (0, 8). Let gg = Py = and

I =(0,9).

Definition4.1 Let ¢ be a class of y(¢), defined on I, given by y(t)
= (1, %, e %, ¢ (1)), for which ¢ € C?(I), and ¢'? is positive, increasing

and log-concave on 1.

Consider the adjoint operator T, given by

Tog(x) = / IO g () dr,
1
and define C by

C = sup sup ||ng||ﬁ}d~°° (18)
ve€ gl 9a (;quw) <!

where || f{I7%,.00 = Sup,~ 1744 £+ (1) with f** is the maximal function of nonin-
creasing rearrangment of f.

The proof is an adaptation of the Proof of Theorem 4.2 in [5]. We will prove
an L2-estimate and an (L9¢, L94-°°)-estimate for some d-linear operator M which
will be constructed from 7,,, and using a technique introduced in [7] with these two
estimates, we will get a suitable estimate 1igr the L94/4:% pnorm of M. Then, we can
get an estimate for a multi-linear operator M using Lemmas 3.1-3.3 and we can show
that C is bounded by some constant depending only on d.

Define a d-linear operator M by

d
Migi, ..., galx) = [ ] Twai ()
i=1
d
—i<x,_2 V(li)> d
= / e V= I lsitow)) dr ... dia.
14 ,
i=1
Let I? = | J E; where
Ex={(t.....ta) €It tz1) <+ < tr(ap}
and 7 is the permutation on d. Then, without loss of generality, we can assume

t; < --- < tq so that the operator M is defined on £ = E| := {(t1,...,13) € 17
t; < --- < tg}. Therefore, redefine the operator M by

Mlgi, ..., gallx) = f e M TEMY G YW (¢, h) dtdh
E

Birkhauser
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where G (1, h) =[], gi(t4+hi), W(t, h) = T[], w(t+hi), h € 197 and t +hy <
6. Divide E into Fy, k € Z, where

Fe={(t,t +hy,....t +hg) € E:2"% D ) <27k,

and define

Milgi, ..., gal(x) = / eI Gt YW (¢, h) didh. (19)
Fy

We will obtain an upper bound for M.
L2 — estimate By the change of variables I'(r, 1) — y, Plancherel’s theorem,
and the change of variables y — I'(¢, h), we get

IMelgts ..., galllx < f \G(t, YW (t, h)|*Jy(t, )" drdh.
Fy

Observe that Jy (¢, h) isnonzero on Fy. Then, by [9], the change of variables I' (¢, 7)) —
y is at most d!-to-one, so we can use the change of variables without any problem.
Since I' € €, Proposition 2.1 holds, so we get the inequality

d 1/d
Jo(t,h) = Cy v(h)[]"[qs““(r + hd)] (20)

i=1

for some C; > 0, which depends only on d. By (20) and the definition of w, we get
IMilgrs .. galll3 5/ Gt W (2, h)Po(h) ™ W (e, )TV dr dh.
Fy

It is known (Lemma 1 of [12]) that the sublevel set estimate for v(/) is
l{h € R u(h) < ¢} < 9.

Taking ¢ = 27X, we get

IMilgs ... gdIR < 2T | 1Ga mIwa, 15" P drdh. @1

~ Fk
Also, we can get the following inequality,
B=d) o 12 3-d 3-d
|Gz, HIW(, )] |~ dtdh <lgjw* ||2l_[||giw T oo
Fi i
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forany j =1, ..., d. Complex interpolation and (21) lead to

d
d=2 3—d
IMlgr. .. gallla S 28 [Tllgiw™ IIr,
i=1

with Z?:l rl.*] = % Finally, putting ; = 2d, we obtain

d
d=2 3-d
IMilgr, .-, gallle S 25 [T llgiw™ llaa. (22)
i=1

(L94, L.94-°°) — estimate Fix h andlet I, = (0, §—hy). ObservethatI'(-, h) € €.
Then,

< CllgllL4a 1,;dw)
L4d-%°

”/ e IO o (ywr (1) di
I

2
with wr(¢) = |tr(2)|4>+4 . Furthermore, observe that if we(t) < w(z), then we can
write we (1) = e(H)w() with0 < e < 1 and

|

/ e YD g (ywe (1) dt
I

= H/ e YD o ()e(nw(r) di
L4d-> I

L9d-%°

r 1/qa
N /Ig(t)e(t)lqdw(t) dt}
L J I

B 1/qa
<C /Ig(t)l‘“e(t)w(t)dt]
LJI

B 1/qa
=C / lg (@)% we (1) df} : (23)
LJI

Also, for Y9 e = 1,letwe 4 (1) = [1%_, w(z +h;) . Then, by the positivity of ¢@
and Jensen’s inequality for a convex function — log,

IA

() .
_log<zel¢ <r+hl>>

d
—log (Z ¢(d)(t —|—hi)> e

i=1

IA

> e ( —log(¢“ (1 + h,-»)

i=1

d
= —log <]_[ oDt + hi)ff), (24)

i=1

SO we get We j, < wr.
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By (23) and (24), we get

Hf e IO g (e (1) di
Ip

1/qq
,SC[ |g(t)|qdwe,h(t)dt:| .
Ih

L49d-°

Wi(t, h

If we put G(z, h) ) instead of g(¢), then
b )

We j (1

/ e CTHO) Gt YW (e, h) dt
I

194+
Wi, /’l) qd 1/q4 (25)
gc[[ G(t,h)———| wen(t) dt:| .
Iy we,h(t)
So we have
HMk[gl, o gdl = H / e TR G YW (2, h) dtdh
L9d->° Fr L9d->°
5/ /e_i(x’r(”h))G(t,h)W(t,h)dt dh
H Iy L4d->®

W(t, h)|9

D)

sefLU,

where H = {(h1,...,hg) € [9:0=h; < hy-- < hg, 2=*tD < y(h) < 27F}
and the last expression is bounded by

f.L,

where p/; = gq. Since H is a subset of Fy, the sublevel set estimate of v(h) gives
|H| < 27%/4 Since ¢, = pg, we get

1/qa
We k(1) dt:| dh

a4 g (44 71/
g1@Ow® 7 [Tgi@ +haywt +ha) 7 dt] dh
i=2

1— €L qd 1/qa
HMk[glw--,gd] SC/ [/ giw(t) rd dt]
qu‘oo H ]h
d s
x [Tl8iC+hayw(+ha)' "7 l|oo di
=2

d .
—2k/d 1-sL 1--L
S22 giw TP g, [T Hgiw 7 oo
i=2
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By symmetry,
d s
HMk[gl, - 8d] S27ae [ Tlgiw P, (26)
L i=1
d 4 1 1

where ) ;¢ =1land ) ;| —= —.

Si 4d

Estimate on the L%/9>® norm of M Fix y > 0 and define G, = {x

IMlg1, ..., gal(x)| > 2y}. Then, for any constant K,

2

Y Mg, - g4
2

2k<K

qd
Gyl <y? +y74 Y Mg, -, gd]

2k K

qd >

By (22) and (26), we obtain

d d
3-d _ &
G| < yfzK(de)/d 1_[ lgiw * ”%d + y*quKﬂqd/dch H ||gl.w1 Pd ||g’ff,
i=1 i=1

If we choose K appropriately so that

d d .
—2 p(d-2)/d 3d 9 —qa 1 —2qa/d =2k qa
y KD Tlgiw s |3, =y~ K —2a0/dct [T giw ™ 7a I3,
i=1 i=1

which means

d
d—2+2qy 9 1_;;
T =y [ lgiw 1"[||g,w4 57,

i=1 i=1
then we obtain

d—242q4 6 d=2
YIGy| T S C 1"[||ng 5 1"[||g, P ||
i=1 i=1

d—24+2q; i, we get

Since d+2)qs — qa

d=2 e a R
||M[g1,...,gd]||z17d,oo<Cd+21"[||g,w TN [T hew P

i=1 i=1

d Cde

d 2 d+2 1—;*’ ZT—%

= Cdw2 1"[||g,w i I N P i
i=1

i=1
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3—d 3—d
Observe that [|giw ™3 ll2a & Y 1725 X, ,&ill2a and

- k(11— .
lgiw 7l =D ez 2 P4 llxw, ,8&ills» SO we can write

d
d=2
IMigt..... gallg o S,Cd+21"[||g,||f’” w4, dw)l"[ug,uf’“ @iy 27)

Then, by Lemma 3.1 and (27),

d
d—2
IMlgt.....gallg o S CF [ Tlsillzi (28)

-2
i=1 21

where X"d,zl (bl3 L(L* dw), bl_e (L% dw))

&_

a+2°
Also, we can find the continuous embeddlng
Bl saaag e (L2 L) 0 s dw
24 r( ~d) a2

i
d+2
< (L% dw), bt o (L% dw))
_ 2
d+

Pd

by Lemma 3.3 with b/ instead of /7. Therefore, if we define
3—d d-2 €;
a=— (1o XL
d+2 d+2\ "

1 4 1 d-2 1

b d+2 2d dv2 s

and

we get (L*, L%)4— | = L%! and
d+2°

d
IMigt..... gall e o H 18615y 011 (29)
" Z Zd 1 d
where a; = i T — —.
=t =b T qa

Now, define a multi-linear operator M by
n
Migi. ... gl =[] Tweix).

) Birkhduser
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forn > qq4. Letr = q;‘i < 1. Then, as we stated in Sect. 4, L™ is an r — convex
space. We may write

Migr.....gal=Migi.....ga] [[ Twsi(x)
i=d+1

and by Holder’s inequality, it follows

n
Mgt ..., gnlllLree S IIMlgt, .., galll faara.o l—[ 1Twgi () Laaee.  (30)

i=d+1
Observe that if we put g; = g and a; = bi for alli =1,...,d in (29), we get
d—2
ITwglars S CERNRl ot auy G

By applying (29) and (31) to (30), and by using the generalized geometric means
inequality, we get

IMlgi. . ... gulllLr

d
d=2
<8 TTheilhy o T1 C sy, (L)
i=1 i=d+1

d
12+ 422 (n—d)
= C? " a2 ||gl||b1 (Lbl-l-dw)”gZ”bl (LP2:1: dw)

x]‘[ngln,,l (b dw) H I8y}, cws0;)
i=d+1
M
< Cd*d ||gl||1,1 th*l;dw)”g2”b}lz(Lb2’1;dw)

n—d
”n n—-2

(32)

X l_[ ||gl ”b] (Lb 1. dw)”gl (qu’l;dw)’

1 d
where Z?:[ =% —=_

i=1
bi  qa ~
We will choose a; and b; appropriately to get a upper bound of M. Recall that a;
depends on €; and b; depends on s;. Let n > 0 be small enough and let

: (d+2) —1 1
dag =

qd -2

1 1 d+2

- = _+n_’ l=27

Si dqq n—2
1 d+2 N
dgs a2 !
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Then,
1 n—1
——nd-2)—7, i=1,
qd n—2
I 1 d—2 o
bl - dd nl’l — 2’ =
1
— 4+, 3<i<d
qd
. P d
and it is easy to check that ) 7 5= o Moreover, we get
i qd

1 d-21 n-dl

bz_n—2b3+n—2qd'

Therefore, applying Lemma 3.1 in (32) allows us to get

~ a—on
IMlgt, ..., gnlllLree 5 Cd*+u llg1 ”b}ll(L”l‘l;dw)”gzllb},z(LbZ";dw)
n
< [Tlellz,,
i=3 )1—2’1

v — (pl (7b3.1. 1 1. :
where Y%’l = (ba3(L 3 ,dw),bl/qd(qu ,dw)),,_d’l. By Lemma 3.3, there is a

n—=2

continuous embedding

n—=2"

b, ((Lb3'1, LU g 3 dw) = bl (L dw) & Yug |

where ¢3 = as + . We put ¢; = aj and ¢ = a; and choose €1, €2, and
n—2 n—2qq
€3 properly so that ¢y, ¢», and c3 are all different. Then,

~ (d—2)n
IMIlgi1, ..., gulllLroe ,S C >+ llg1 ||bgI (Lblvl;dw)”gZ”b}z(LbZJ;dw)

n
X 1_[ lgillpy (o2t dw)
i=3 ’
d—=2)n
S CE Nty (worraw 18216, 22wy

n
x T8l 12 au-
i=3

) Birkhduser
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Note that the last inequality comes from the trivial embedding. If we apply Lemma
3.2 to the last expression, we get

~ @-2n "
IMigr, ... galllree S Cam2 [T llgilpm 2, aw)
- ﬁ.’lr

i=1

1 n 7
wherec = 37 ¢ and Z, = (LP7, LP17)1

By simple calculation, we get ¢ = % and

nr*

Z Snr

— (7 bar gpbir — 74d
- (L ’ L )%’nr - L ’

==

since 1L 4 n=1 L _ 1 Therefore, b (Z
n bl n bz qd c
and we obtain

'dw) — qu

01,0 (L9 dw) = L% (dw)

1
ne

~ @d-2n
IMigi. ... gnlllroe S C¥2 [ lgill Loa (awy-

i=1

Ifweputg =g; foralli =1,...,n, we get

~ (d—2)n
IMlg1, ..., gulllLroe = ||Tw8||riqd,0° S Cdrv ||g||riqd(dw)'

(d=2)

By the definition (18) of C, this leads to C4*+2¢ < C, which implies that C is bounded
by some constant depending only on d.
O

5 Some Examples

Now we provide some examples that satisfy the hypotheses of Theorem 1.1. For a
given function ¢@ : (0, 8) — R*, define ¥ : (5!, 00) = Rby ¥ (x) = W If

¥ is log-convex, then ¢(@ is log-concave. The proof is as follows. If we assume that
Y is log-convex,

Y Ox1 4 (1= M)x2) < [ DY ()]
It follows that
YO+ (1= /0) 7 = [0 D)Mo @ (1)1

where t; = 1/x; and o = 1/x;. Since function 1/x is convex and ¥~ ! is decreasing
on (0, o0), we have

PPty + (1 = Mn) > [ D) D (1))
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s0 ¢@ is log-concave. Therefore, if ¥/ (x) = Vg (x) = is positive, increas-

O

ing, and log-convex on (87!, 00), then ¢'? satisfies the hypotheses of Theorem 1.1.

Also, for following examples, proving ' is log-convex is easier than proving ¢? is

log-concave, so we will give a proof that ¥ is positive, increasing, and log-convex.
1.Let¢(t) = e "andr € (0, 8), where § will be chosen later. Then,

@ (1) = o=/t oy Gda
$00) = (4 )

where
(—Ddt1g i=1
aid=18i—1d-1—Wd+i—Dajq1 1<i<d.
1 i=d

Then, Yy () = e (34| aj gx4* )~ Let P(x) = Y4 a; 4x¥Ti. The leading
coefficient of P, P’, P" are 1, 2d, 2d(2d — 1), respectively. Therefore, if we take §
small enough, which means x large enough, then P > 0 and PP” < (P’)?, which
implies that P is log-concave and P! is log-convex. So we can check that Vg (X)

is log-convex and wd)(d) (x) is positive and increasing for x € (8’], 00).
Likewise, for ¢ (1) = e~ /" withm € N,

(d—Dm -1

m .
I/f¢(d) (x) — ex Z al_xm+d+l ,

where the leading coefficient a(y—1), = 1 and a; fori =1,...,(d — Dm — 1 is
determined by d and m. Therefore 1#(/)(,1) (x) is log-convex, positive, and increasing for
x e (87!, 00).

2. Let ¢ (1) = exp(—e!/"). Then,

1/t Py_1(2) (d—1)/t Py (1) d/t 1 i|

o\ (1) =exp(—e‘/f)[e +. e —r e

where the P;(¢) are certain polynomials with degree < i. Therefore,
i ~ ~ -1
Vo) =e [e* Paoi(x) + -+ 4" Pi(x) + e‘“x“}
2

where degree of P, <2d.Let P(x) = ¢*Py_1(x) + -+ 9" D¥Py(x) + P x4 If
x is large enough, then P > 0 and PP” < (P’)2. (For x large, P acts like e?*x?%).
Therefore, g (x) is log-convex, positive, and increasing if x is large enough.

Observe that (L1kew1se ) for ¢, (t) = exp(—exp(... (exp(1/t)...), ¥ 5D (x) satisfies
the log-convexity for x large enough too.
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