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Abstract
We establish shape holomorphy results for general weakly- and hyper-singular bound-
ary integral operators arising from second-order partial differential equations in
unbounded two-dimensional domains with multiple finite-length open arcs. After
recasting the corresponding boundary value problems as boundary integral equations,
we prove that their solutions depend holomorphically upon perturbations of the arcs’
parametrizations. These results are key to prove the shape (domain) holomorphy of
domain-to-solutionmaps associated to boundary integral equations appearing in uncer-
tainty quantification, inverse problems and deep learning, to name a few applications.

Keywords Integral operators · Open arcs · Shape regularity · Shape holomorphy

1 Introduction

The efficient approximation of maps with high-dimensional parametric inputs poses
major challenges to traditional computational methods. Indeed, as the dimension of
the parametric input increases, the computational effort required to construct sur-
rogates of the original map may grow exponentially, thus leading to the curse of
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dimensionality. In [8], polynomial surrogates of high-dimensional input maps are
shown to converge independently of the dimension. Such results are derived from
the well-known approximation properties of one-dimensional analytic functions and
the existence of holomorphic extensions of the original maps onto tensor products
of Bernstein ellipses in the complex plane. We say that a map is holomorphic if it is
Fréchet differentiable on open complex subsets, which is equivalent to the existence
of derivatives of arbitrary order—analytic maps—in the same open subset. By vary-
ing the size of these ellipses on each parameter, namely the anisotropic parameter
dependence, one can prove convergence rates that do not depend on the dimension of
the parametric input, thereby breaking the curse of dimensionality in the parametric
dimension. Computationally, parametric holomorphy provides rigorous justification
and construction bases for a variety of methods such as: Smolyak interpolation and
quadrature [37, 44]; high-order Quasi-Monte Carlo integration (HoQMC) [11–15];
deep neural network surrogates [20, 21, 34, 39], together with its implications in
Bayesian inverse problems [7, 37, 38].

In this work, we consider a family of boundary value problems (BVPs) set on the
complement of a finite collection of open disjoint arcs in two dimensions, with either
Dirichlet or Neumann boundary conditions. We study the smoothness properties of
the domain-to-solution map in the context of complex variable. Given the lack of
Lipschitz regularity of the BVP domain, traditional variational formulations cannot
be applied, and hence, the existence of a holomorphic extension of the domain-to-
solution map does not follow from volume-based formulations, for instance, as in
[10]. Consequently, we recast the volume problems as boundary integral equations
(BIEs) posed on the collection of open arcs, as in [2–4, 6, 22, 24, 26, 41–43], and then
we extend the analysis of [18, 19] to the corresponding BIEs.

More precisely, we will assume that each arc admits a representation arising from
a suitable predefined collection of parametrizations. Our goal is to verify that the
solutions of the BIEs depend holomorphically upon perturbations of the boundary
shape. In so doing, we prove that the BIOs depend themselves holomorphically on the
arcs’ shape. By recalling that the inversion of linear isomorphisms defines an analytic
map, one can straightforwardly establish shape holomorphy of the domain-to-solution
map as in [18, 19]. Therein, the authors extend the solution map to the complex plane,
identifying geometries with parametrizations, and prove that the corresponding map
is holomorphic for Jordan arcs. Hence, by means of available complex variable results
on Banach spaces, one can state that there exists a complex neighborhood of the
collection of arc parametrizations for which the domain-to-solution map admits a
bounded holomorphic extension. Thus, map derivatives of arbitrary order not only
exist: the corresponding Taylor series expansion converges uniformly on an open
neighborhood of each of the parametric arcs.

Hence, our work can be seen as an extension of that in [19]. On one hand, our
analysis encompasses a collection of open arcs as well as more general BIOs including
the possibility of vector-valued ones. The generalization is achieved by assuming the
existence of a fundamental solution with a common structure for second-order partial
differential operators on two dimensions. Thus, we consider general BIOs whose
kernels are given by the assumed structure of the fundamental solution, and obtain
their holomorphic extensions by a slightly more abstract version of the result for
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BIOs presented in [19, Theorem 3.12]. Also, by assuming a Maue-type representation
formula, readily available for many specific operators, one may extend the shape
holomorphy of the weakly singular BIO to the hypersingular one. For example, we
show explicit results for scalar Helmholtz and Stokes problems, the latter also referred
to as the elastic wave equation.

In contrast with [19], we do not only establish the holomorphism result from
parametrizations sets to the solution in a fixed energy space, but instead consider
the range of the map in a scale of functional spaces defined on the open arcs. Indeed,
in the spirit of [13], the presently obtained results allow us to mathematically justify
the use of multi-level variants of HoQMC in the context of forward and inverse shape
UQ. This provides a functional framework for high-order numerical methods, such as
the one presented in [24]. In particular, the families of functional spaces considered
here correspond to Sobolev-type spaces defined through Fourier series expansions,
mapped back to open arcs by a cosine transformation (cf. [35, Chap. 11]).

As expected, the solutions of the Dirichlet and Neumann problems here considered
belong to highly regular spaces provided that both the geometry and right-hand sides
are regular enough. In particular, we assume that boundary conditions are given by the
restrictionof entire functions, thus having arbitrary regularity.Also, the arcs considered
here have a limited regularity in a Hölder-continuous spaces. We thoroughly analyze
how this limited smoothness restricts the functional spaces wherein solutions of the
respective problems are sought.

Outline

The remainder of the article is as follows. After setting notation in Sect. 2, the precise
problem under consideration is given in Sect. 3. In Sect. 4.3 we present relevant
abstract results to prove the holomorphic extension of BIOs, and also a result on
how we obtain parametric holomorphism from the general holomorphic extension.
In Sect. 5 we show holomorphic extensions of BIOs and derive the holomorphic
extension of domain-to-solution maps. Similarly, in Sect. 5.3 we prove the parametric
holomorphism of domain-to-solution maps. To illustrate our findings, in Sect. 6 we
apply these results toHelmholtz and time-harmonic elasticwave scattering by showing
that the structural assumptions on the corresponding BIOs are fulfilled. Lastly, Sect.
7 presents conclusions and possible extensions.

2 Preliminaries

Set ı = √−1. We define the set of natural numbers N including zero as N0 :=
{0, 1, 2, . . .}. Vectors andmatrices are indicated by boldface symbols,while for general
quantities that could be either vectors or scalars we do not use bold fonts. For a pair of
vectors v1, v2 ∈ C

n , with n ∈ N, we define the bilinear form v1 ·v2 =∑n
j=1 v1jv

2
j , and

the Euclidean norm ‖v1‖2 = v1 · v1, where the conjugate of a vector is understood as
component-wise conjugation. Also, given real numbers a, b, we say that a � b if there
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exists a positive constant c, independent of the variables relevant for the corresponding
analysis, such that a ≤ cb. If a � b and b � a we write a ∼= b.

Let B1, B2 be twoBanach spaces over thefieldK ∈ {R, C}.Wedenote byL(B1, B2)

the space of bounded linear operators from B1 to B2. As it is customary, we equip it
with the standard operator norm, thus rendering it a Banach space itself.

2.1 Hölder Spaces

Let �1,�2 ⊂ R
d , d = 1, 2, be non-empty, open connected sets. Given m ∈ N0 and

α ∈ [0, 1], we consider the space Cm,α (�1,�2) of functions f : �1 → �2 with
derivatives up to order m in �1 having a continuous extension to �1, and such that
the derivatives of order m are α-Hölder continuous. Endowed with the norm

‖ f ‖Cm,α(�1,�2)
:=

∑

k:|k|≤m

sup
x∈�1

∥
∥
∥∂k f (x)

∥
∥
∥+

∑

k:|k|=m

sup
x, y∈�1
x 	= y

∥
∥∂k f (x) − ∂k f ( y)

∥
∥

‖x − y‖α ,

where we use the standard multi-index notation [30, p. 61], Cm,α (�1,�2) becomes
a Banach space. The case α = 0, Cm(�1,�2), corresponds to functions with m
continuous derivatives in �1 with norm

‖ f ‖Cm,0(�1,�2)
:=

∑

k:|k|≤m

sup
x∈�1

∥
∥
∥∂k f (x)

∥
∥
∥ .

On the other hand, the case α = 1 corresponds to the one where the m-derivatives are
Lipschitz continuous, and thus the derivatives of order m + 1 exist and are bounded
almost everywhere (see [17, p. 280]). Notice that for m1,m2 ∈ N0 and α1, α2 ∈
[0, 1], such that m1 + α1 < m2 + α2, one has the inclusion Cm2,α2 (�1,�2) ⊂
Cm1,α1 (�1,�2).

2.2 Chebyshev Polynomials and Periodic Sobolev Spaces

Next, we recall definitions and properties of Chebyshev polynomials that will be
employed to define functional spaces. For |t | ≤ 1, set w(t):=√

1 − t2, and denote by
Tn(t) the nth first-kind Chebyshev polynomial normalized according to

∫ 1

−1
Tn(t)Tm(t)w−1(t)dt = δn,m, ∀ n,m ∈ N0,

being δn,m the Kronecker delta. Additionally, let Un denote the nth Chebyshev poly-
nomial of the second kind normalized as follows

∫ 1

−1
Un(t)Um(t)w(t)dt = δn,m, ∀ n,m ∈ N0.
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Furthermore, we define ên(θ):=exp(ınt)√
2π

as the nth Fourier polynomial normalized

in the L2(−π, π)-norm. For any smooth, periodic function u : [−π, π ] → C, its
Fourier coefficients are defined as

ũn =
∫ π

−π

u(θ )̂e−n(θ)dθ.

Similarly, given u : [−1, 1] → C, we define two families of first-kind Chebyshev
coefficients:

un :=
∫ 1

−1
u(t)Tn(t)dt, and ûn :=

∫ 1

−1
u(t)Tnw

−1(t)dt,

and two families of second-kind Chebyshev coefficients:

ün :=
∫ 1

−1
u(t)Un(t)dt, and ǔn :=

∫ 1

−1
u(t)Unw(t)dt .

Fourier coefficients of a bi-periodic function u : [−π, π ]× [−π, π ] → C are defined
as

ũn,l :=
∫ π

−π

∫ π

−π

u(θ, φ)̂e−n(θ )̂e−l(φ)dθdφ, (2.1)

and similarly for Chebyshev coefficients of bi-variate functions on [−1, 1] × [−1, 1].
We remark that the above coefficients’ definitions may be extended to those of distri-
butions by duality respect to the bases [35, Sect. 5.2].

Throughout, we will make extensive use of periodic Sobolev spaces over [−π, π ],
defined for s ∈ R as

Hs[−π, π ]:=
{

u : ‖u‖2Hs =
∞∑

n=−∞
(1 + n2)s |̃un|2 < ∞

}

.

We refer to [35, Chap. 5] for a more rigorous definition. Following [2, 16, 40], we
introduce for s ∈ R the following spaces defined over (−1, 1):

T s :=
{

u : ‖u‖2T s =
∞∑

n=0

(1 + n2)s |un|2 < ∞
}

,

Ws :=
{

u : ‖u‖2Ws =
∞∑

n=0

(1 + n2)s |̂un|2 < ∞
}

.
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These two functional spaces can be defined rigorously by recalling the definition of
Hs and by defining two periodic lifting operators as

(Nu)(θ) := u(cos θ)| sin θ |, and, (N̂u)(θ) := u(cos θ),

which again are extended to distributions by duality along with the equivalences

u ∈ T s ⇔ Nu ∈ Hs[−π, π ], with, ‖u‖T s ∼= ‖Nu‖Hs [−π,π ]
u ∈ Ws ⇔ N̂u ∈ Hs[−π, π ], with, ‖u‖Ws ∼= ‖N̂u‖Hs [−π,π ].

(2.2)

In addition, for s ∈ R, we define second-kind spaces over (−1, 1) as

Us :=
{

u : ‖u‖2Us =
∞∑

n=0

(1 + n2)s |ün|2 < ∞
}

,

Y s :=
{

u : ‖u‖2Ms =
∞∑

n=0

(1 + n2)s |ǔn|2 < ∞
}

.

These spaces may also be defined from periodic Sobolev spaces via the next odd-
periodic liftings

(Zu)(θ) := Nu(θ) sign(sin θ), and, (Ẑu)(θ) := N̂u(θ)sign(sin θ),

where the sign function is defined with the convention sign(0) = 0. In addition, we
have the equivalences

u ∈ Us ⇔ Ẑu ∈ Hs[−π, π ], with, ‖u‖Us ∼= ‖Ẑu‖Hs [−π,π ]
u ∈ Y s ⇔ Zu ∈ Hs[−π, π ], with, ‖u‖Y s ∼= ‖Zu‖Hs [−π,π ].

Using the previous characterizations alongwith the inequality, |(ũ sin(·))n| � |̃un+1|+
|̃un−1| (for u an even function), one can readily observe that, for all s ∈ R, it holds
that

Ws ⊂ Y s . (2.3)

The dual space of Hs can be identified with H−s in the L2(−π, π) duality pairing.
Thus, by using the lifting operators, one can identify the dual space of T s with W−s

and the dual of Us with Y−s , now with respect to the L2(−1, 1) duality pairing.
Furthermore, these duality identifications and (2.3) imply that

Us ⊂ T s, ∀ s ∈ R. (2.4)

From the density of the Fourier basis in Hs using the inverse of the lifting operators,
it is possible to deduce that the functions {wUn}n∈N are dense in Us .
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A mayor role in the analysis of the hyper-singular BIO is played by the mapping
properties of the derivative operator. Specifically, using the density of the Chebyshev
basis one can easily see that

d

dt
: Us → T s−1, and,

d

dt
: Ws → Y s−1. (2.5)

Also we recall from [35, Lemma 5.3.2] that the periodic spaces Hs[−π, π ] are
compactly embedded for increasing values of s. Hence, the same holds for the spaces
T s,Ws,Us,Y s .

Finally, depending on whether the underlying differential operatorP (see Sect. 3.1)
is scalar or vectorial, we use set either

T
s = T s, U

s = Us, W
s = Ws, Y

s = Y s,

or

T
s = T s × T s, U

s = Us ×Us, W
s = Ws × Ws, Y

s = Y s × Y s,

respectively. We will also consider the Cartesian product spaces

M∏

j=1

T
s,

M∏

j=1

U
s,

M∏

j=1

W
s,

M∏

j=1

Y
s,

provided with standard norms.

2.3 Bi-periodic Sobolev and Hölder Spaces

Along with the previous spaces, the forthcoming analysis will require the use of
Sobolev spaces of bi-periodic functions along with an immersion result of Hölder
spaces in their Sobolev counterparts. The latter will be employed in Sect. 4.4.

Given s1, s2 non-negative real numbers we recall the Sobolev norm for bi-periodic
functions [35, Chap. 6]:

‖g‖2s1,s2 =
∞∑

n=−∞

∞∑

	=−∞
(1 + n2)s1(1 + 	2)s2 |̃gn,l |2,

where g̃n,l , are Fourier coefficients of the bi-periodic function g defined in (2.1). Notice
that in contrast to standard Sobolev spaces we could have different levels of regularity
s1,s2 on each variable.

Lemma 2.1 Let g ∈ Cm,α ([−π, π ] × [−π, π ], C) be a bi-periodic function with m ∈
N0 and α ∈ [0, 1]. Provided non-negative real numbers s1, s2 satisfying s1 + s2 <
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m + α, one has that

‖g‖2s1,s2 � ‖g‖2Cm,α([−π,π ]×[−π,π ],C),

where the implied constant is independent of g.

We relegate the proof of the previous lemma to Appendix A.

Remark 2.2 A similar result to Lemma 2.1 can be established by noticing that the
smoothness of g implies a certain decay speed for the Fourier coefficients. In fact,
for a pair of non-negative real values s1, s2 and g ∈ Cm ([−π, π ] × [−π, π ], C) one
recovers the bound of Lemma 2.1, under the more restrictive condition s1 + s2 + 1 <

m. This requirement can be relaxed to s1 + s2 < m when considering functions in
Cm ([−π, π ] × [−π, π ], C) with derivatives of orderm+1 integrables or of bounded
variation. We also notice that, for s1, s2 ∈ N0, one requires the slightly less restrictive
condition s1 + s2 ≤ m + α.

2.4 Arc Parametrizations

Let (−1, 1) be the canonical interval. Throughout, we will define an open arc as the
image of a continuously differentiable, globally invertible function r : (−1, 1) → R

2.
We further assume that the tangent vector is nowhere null and fix the normal vector
to have the same direction of (r ′

2,−r ′
1). Rigorously speaking, this definition identifies

open arcs with their corresponding parametrization instead of the set of points that
describe the arc in R

2. The function r is also called parametrization of the arc.

Remark 2.3 The parametrization of the open arcs will be taken as elements of
Cm,α

(
(−1, 1), R

2
)
. The ensuing shape holomorphy analysis considers complex

Banach spaces in contrast to these real-valued. We overcome this issue by con-
sidering Cm,α

(
(−1, 1), C

2
)
and will only use those elements with global inverse

and non-null tangent vector at every point. The subset of such functions is
denoted by Cm,α

b

(
(−1, 1), R

2
)
. In some instances, we will use the Cartesian

product space,
∏M

j=1 Cm,α
b

(
(−1, 1), R

2
)
. This is a subset of the product space

∏M
j=1 Cm,α

(
(−1, 1), R

2
)
, equipped with the standard norm:

‖g‖∏M
j=1 Cm,α((−1,1),R2) = max

j=1,...,M
‖g j‖Cm,α((−1,1),R2).

3 Boundary Value Problems and Boundary Integral Formulation

3.1 Boundary Value Problems on Open Arcs

Let us denote by 
 the set of M disjoint open finite-length arcs {
1, . . . , 
M }, where
each arc is characterized by a parametrization r j : [−1, 1] → 
 j ⊂ R

2. In addition,
we also refer to 
 as the geometric configuration of the associated problem.



Journal of Fourier Analysis and Applications (2024) 30 :14 Page 9 of 51 14

Let us consider a second-order partial differential operator of the following general
form

P = −
2∑

j=1

2∑

k=1

∂x j A j,k∂k + A,

where A j,k and A can be constant complex-valued scalars or 2 × 2 matrices. In the

latter case, we further assume thatA
�
j,k = A�

k, j andA
� = A. We define the co-normal

trace operator over the boundary 
p as

Bpu:=
2∑

j=1

(np) j

2∑

k=1

A j,k∂ku
∣
∣

p

, p = 1, . . . , M,

for any smooth function u and where np denotes the unitary normal vector of 
p.
Equipped with these definitions, we consider the following BVPs:

Problem 3.1 (Dirichlet and Neumann BVPs) Seek u such that

Pu = 0, on R
2 \ 
, (3.1)

condition at infinity(P), (3.2)

complemented with either boundary conditions:

u = f D on 
p, p = 1, . . . , M, (Dirichlet),

Bpu = f N on 
p, p = 1, . . . , M, (Neumann).

Condition (3.2) specifies the behavior of u far away from 
 and it is crucial to show
uniqueness. Its particular form depends on the specific partial differential operator P .
Boundary data f D and f N correspond to the right-hand sides of the Dirichlet and
Neumann boundary value problems, respectively. Throughout, we assume that these
are the restriction to 
 of entire functions in each coordinate in R

2. Still, analytic
functions on bounded domains can be usedwithout fundamentally changing any result.

In what follows, we assume uniqueness for both Dirichlet and Neumann BVPs,
while existence results will be a consequence of the boundary integral formulation
presented next.

Remark 3.2 Certain assumptions on the operator P are worth further comments.
Specifically,

(i) The coefficients of P are assumed to be constants. Though this assumption is not
entirely necessary, one would require the coefficients to be at least analytic in the
spatial variable. Otherwise, structural assumptions on the fundamental solutions
of P will not hold as detailed in the upcoming section.



14 Page 10 of 51 Journal of Fourier Analysis and Applications (2024) 30 :14

(ii) We have also assumed that A
�
j,k = A�

k, j and A
� = A, and also that P lacks

any first order derivative term. These conditions ensure that the co-normal trace is
self-adjoint, thus rendering the analysis simpler. Yet, our results still hold without
this restriction by suitably modifying the associated integral operators [30, Chap.
7].

3.2 Boundary Integral Formulation

We now recall the boundary integral formulation of BVPs for the partial differential
operatorP introduced in Sect. 3.1. To this end,we assume the existence of a fundamen-
tal solution associated to P , which we denote by G(x, y). For further details we refer
to [30, Chap. 6] and references therein. In addition, we assume that the fundamental
solution admits a decomposition of the form

G(x, y) = F1
(
‖x − y‖2

)
log ‖x − y‖2 + F2

(
‖x − y‖2

)
, (3.3)

where the functions F1 and F2 are assumed to be entire complex-valued scalars or
2×2 matrices. Furthermore, whenever F1 is a scalar we assume that F1(0) 	= 0 while
if matrix-valued then F1(0) should admit an inverse.

Remark 3.3 One could lessen the restrictions for F1, F2 and impose that they are only
analytic on an open connected set of C. If so, our results would still hold inside the
analyticity domain of F1, F2.

Next, we introduce the single and double layer potentials, respectively, on a generic
open arc γ as

(
ŜLγ λ̂

)
(x):=

∫

γ

G(x, y)̂λ( y)ds y,
(
D̂Lγ μ̂

)
(x):=

∫

γ

(Bn, yG(x, y)
)�

μ̂( y)ds y,

where Bn, y denotes the co-normal trace1 in the y variable. The densities λ̂ and μ̂

are defined on γ , and are scalar-valued or two-dimensional vectors depending on
the nature of P . The fundamental solution definition ensures that both potentials are
homogeneous solutions of (3.1) inR

2\γ . Furthermore, we assume that both potentials
satisfy the radiation condition (3.2).

Let r : (−1, 1) → R
2 be a parametrization of the open arc γ. We introduce the

transformed densities:

λ(τ) := λ̂ ◦ r(τ )‖r ′(τ )‖, μ(τ) := μ̂ ◦ r(τ ), τ ∈ (−1, 1),

1 The general definition of the double layer potential involves the adjoint of the co-normal trace operator
but under our assumptions on P this operator is self-adjoint.
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and the pulled-back potentials

(SLr�) (x) :=
∫ 1

−1
G(x, r(τ ))�(τ )dτ,

(DLr�) (x) :=
∫ 1

−1

(Bn, yG(x, r(τ ))
)�

�(τ)‖r ′(τ )‖dτ,

defined for � : [−1, 1] → C. From these definitions it is direct that ŜLγ λ̂ = SLrλ,
and also that D̂Lγ μ̂ = DLrμ.

With these elements, one can now reformulate the BVPs presented in the previous
section as a set of BIEs.We do so by imposing boundary conditions on indirect integral
representations built via the above boundary layer potentials.

Problem 3.4 (Dirichlet and Neumann BIEs) We seek densities λ = (λ1, . . . , λM ) and
μ = (μ1, . . . , μM ), with each λi and μi defined over [−1, 1] for i = 1, . . . , M , such
that

M∑

j=1

(SLr j λ j ) ◦ r i = f D ◦ r i , i = 1, . . . , M, (Dirichlet BIE),

M∑

j=1

(Bn,xDLr j μ j ) ◦ r i = f N ◦ r i , i = 1, . . . , M, (Neumann BIE).

With these, we derive the following solutions for BVPs (Problem 3.1):

u =
M∑

j=1

SLr j λ j (Dirichlet), u =
M∑

j=1

Bn,xDLr j μ j (Neumann).

We can rewrite the BIEs in matrix form:

Vr1,...,rMλr1,...,rM = fDr1,...,rM , Wr1,...,rMμr1,...,rM = fNr1,...,rM , (3.4)

where

(Vr1,...,rM )i, j :=(SLr j ) ◦ r i and (Wr1,...,rM )i, j :=(Bn,xDLr j ) ◦ r i

are weakly- and hyper-singular BIOs, and

( f Dr1,...,rM )i = f D ◦ r i and ( f Nr1,...,rM )i := f N ◦ r i .

The weakly singular operators can be represented as a Lebesgue integral as follows

(Vr1,...,rM )i, j�(t) =
∫ 1

−1
G(r i (t), r j (τ ))�(τ )ds, t ∈ (−1, 1),
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for a function � : [−1, 1] → R. On the other hand, the hyper-singular operator can
only be expressed as a Hadamard’s finite-part integral. However, for every s ∈ R, and
� ∈ Us , we will assume the existence of a Maue-type representation formula of the
form

(Wr1,...,rM )i, j� = d

dt

∫ 1

−1
G(r i (t), r j (τ ))

d

ds
�(τ)ds +

∫ 1

−1
G̃(r i (t), r j (τ ))�(τ )ds,

(3.5)

where G̃ is a function with the same structure of the fundamental solution, i.e. as in
(3.3) . Such expressions for the hyper-singular operators are well known for particular
cases of P on closed boundaries; see for example [29, 33] or the general result for
scalar operators in [36, Chap. 3.3.4]. Yet, to the best of our knowledge, there is no
known result for the general case. Similar results to the case of open arcs are derived
by zero-extensions of boundary densities on the arc onto closed curves containing the
arc (cf. [23]).

To conclude this section, we remark that since we construct solutions of the BVPs
upon boundary potentials acting on the resulting densities for the BIEs above, we in
fact show existence results of these BVPs by showing that of the BIEs. Moreover,
as it was pointed out in [24, Remark 3.11], the uniqueness of the boundary integral
formulations can be inferred from the uniqueness of the boundary value problems,
which was assumed to hold in the previous section.

4 Holomorphic Extensions

We now introduce the main tools to prove the sought shape holomorphy property
of the BIOs on open arcs. This result is stated ahead in Theorems 5.7 and 5.11. The
main ingredient is the holomorphic extension of BIOs to complex-valued parametriza-
tions. In view of this, in Sect. 4.1 we introduce holomorphic maps in general Banach
spaces. In Sect. 4.2, we consider subsets of Banach spaces that are characterized by
countably-many parameters (parametric subsets), and introduce the associated notion
of parametric holomorphy in Definition 4.3. We show that the general holomorphy
property is inherited as parametric holomorphism when a map is restricted to a para-
metric subset.

Based on previous work [18, 19], in Sect. 4.3 we present a general framework for
establishing the holomorphic extension of some general class of integral operators on
arbitrary Banach spaces. Finally, in Sects. 4.4, 4.5, and 4.6 we present the tools that
enable us to consider the extension of theBIOs in Sect. 3.1 to complex parametrizations
in the framework of Sect. 4.3.

4.1 Holomorphic Maps in Banach Spaces

Let B1, B2 be Banach spaces over the field K ∈ {R, C}. When the underlying field of
either B1 or B2 is R, we say that B1 or B2 is a real Banach space, otherwise we refer
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to them as complex Banach spaces. One can construct a complex Banach space by
taking as starting point a real one. For instance, suppose that B1 is a real Banach space,
we define the space BC

1 as the set of elements of the form b + ıd, with b, d ∈ B1,
and we refer to it as the complexification of B1. The complexification of B1 is also a
Banach space with the norm ‖b+ ıd‖BC

1
:= supθ∈[0,2π ] ‖b cos θ +d sin θ‖B1 , and C as

the underlying field. If B1 is a real Banach space, given an arbitrary subset K ⊂ B1,
and δ a positive real number, we define

Kδ =
{
k ∈ BC

1 such that ∃ b ∈ K : ‖b − k‖BC

1
< δ
}

.

We now introduce the notion of holomorphy in Banach spaces (cf. [32] for a more
details on complex analysis in Banach spaces).

Definition 4.1 Let K ⊂ B1. Assume that there exists an open set O ⊂ BC

1 such that
K ⊂ O. We say that the map f : K ⊂ B1 → B2 is holomorphic in K if there
exists an extension of f to O, still denoted by f , such that f : O → B2 is Fréchet
differentiable.

The next result states that if an invertible operator admits a bounded holomorphic
extension so does its inverse. The proof is based on well-known results from complex
variable theory.

Theorem 4.2 ([19, Proposition 4.20]) For K ⊂ B1, let (Ak)k∈K be a family of opera-
tors in L(X ,Y ) such that:

(i) For every k ∈ K, Ak has a bounded inverse, i.e. A−1
k ∈ L(Y , X).

(ii) There exists δ > 0 such that the map K � k �→ Ak ∈ L(X ,Y ) admits a bounded
holomorphic extension into Kδ .

Then, there exists η, depending of K and δ, such that the map

K � k �→ A−1
k ∈ L(Y , X)

admits a bounded holomorphic extension into Kη.

4.2 Parametric Holomorphy

In concrete applications, such as the ones arising in forward and inverse computational
UQ, one is usually interested in using a parametrically defined compact set that in turn
defines the set of admissible parametric representations. A particular example of this
construction consists in considering an affine-parametric set of the form

K =
{

k y ∈ B1 : k y = k0 +
∞∑

n=1

ynkn, y = {yn}n∈N ∈ U

}

, (4.1)

where k0 ∈ B1 is fixed, U:=[−1, 1]N and {kn}n∈N ⊂ B1 is a fixed sequence, usually
referred to as perturbation basis, as one can interpret the elements k y as perturbations
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of the nominal value k0 modulated by the parameter sequence y ∈ U. By assuming
{‖kn‖B1} ∈ 	1(N), one can prove that K is compact in B1, as shown in [9, Lemma
2.7]. Within this framework, we consider maps of the form F : U → B2 : y �→ f (k y)
where f : B1 → B2 denotes a holomorphic map in the sense of Definition 4.1. This
construction renders F a Banach-space-valued map with a high-dimensional input.

For a rigorous study of F , we make use of the so-called (b, p, ε)-holomorphic
maps, originally introduced in [8], a key mathematical property to break the curse
of dimensionality in the approximation of parametric maps with high-dimensional
inputs. Specifically, for � > 1, we consider the Bernstein ellipse in the complex plane

E�:=
{
z + z−1

2
: z ∈ C with 1 ≤ |z| ≤ �

}

⊂ C.

This ellipse has foci at z = ±1 and semi-axes of length a:= 1
2 (�+�−1) and b:= 1

2 (�−
�−1). Let us consider the tensorized poly-ellipse

Eρ :=
⊗

j≥1

Eρ j ⊂ C
N,

where ρ:={ρ j } j≥1 is such that ρ j > 1, for j ∈ N. We adopt the convention
E1:=[−1, 1] to include the case ρ j = 1.

Definition 4.3 ([8, Definition 2.1]) Let X be a complex Banach space equipped with
the norm ‖·‖X . For ε > 0 and p ∈ (0, 1), we say that the map

U � y �→ u y ∈ X

is (b, p, ε)-holomorphic if and only if

(i) The map U � y �→ u y ∈ X is uniformly bounded, i.e.

sup
y∈U
∥
∥u y
∥
∥
X ≤ C0,

for some finite constant C0 > 0.
(ii) There exists a positive sequence b:={b j } j≥1 ∈ 	p(N) and a constant Cε > 0

such that for any sequence ρ:={ρ j } j≥1 of numbers strictly larger than one that is
(b, ε)-admissible, i.e. satisfying

∑

j≥1

(ρ j − 1)b j ≤ ε,

the map y �→ u y admits a complex extension z �→ u z that is holomorphic with
respect to each variable z j on a set of the form

Oρ :=
⊗

j≥1

Oρ j ,
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where Oρ j ⊂ C is an open set containing Eρ j . This extension is bounded on Eρ

according to

sup
z∈Eρ

‖u z‖X ≤ Cε.

In the context of the multiple open arcs problem (Problem 3.1) and its boundary
integral formulation (cf. Sect. 3.2), wewill consider a nominal geometric configuration
parametrized by functions r01, . . . , r

0
M , and perturbations defined for each individual

arc in an affine manner as in (4.1). We show that under some assumptions in the
perturbation basis, the map from the parameter space to the boundary is holomorphic
in the sense of Definition 4.3.

We conclude this section by a introducing a result that allows us to establish para-
metric holomorphy in the sense of Definition 4.3.

Theorem 4.4 Assume that the sequence {kn}n∈N ⊂ B1 in (4.1) is such that ‖kn‖B1 ∈
	p(N) for some p ∈ (0, 1). Assume that there exists δ > 0 such that the map f : K ⊂
B1 → B2 admits a bounded holomorphic extension onto Kδ ⊂ BC

1 . Then, there exists
ε > 0 such that the map

U � y �→ f (k y) ∈ B2,

is (b, p, ε)-holomorphic with b = {‖kn‖B1}n∈N and the same p ∈ (0, 1), and it is
continuous in the product topology.

Proof The map U � y �→ k y ∈ B1 is (b, p, ε)-holomorphic. The proof follows the
same steps as that of [10, Lemma 5.8], and we skip it for the sake of brevity. Being
f : K ⊂ B1 → B2 holomorphic itself in the sense of Definition 4.1, the composition
of these two maps preserves this property with the same b ∈ 	p(N) and p ∈ (0, 1).
The continuity statement follows by using the exact same technique used in the proof
of [10, Lemma 5.7]. ��

4.3 Holomorphic Integral Operators

We continue by following the framework introduced in [19] so as to establish the
holomorphic dependence of certain classes of BIOs. For the sake of completeness, we
revisit the most important results presented therein and elaborate on their extension to
the BIOs for two-dimensional screens or cracks.

As in Sect. 4.2, we consider a real-valued Banach space B1, its corresponding
complexification BC

1 as introduced in Sect. 4.1, and a compact set K ⊂ B1. For each
k ∈ K , we consider the integral operator Pk defined as

(Pku) (t):=
∫ 1

−1
S(t − τ)pk(t, τ )u(τ )ds, (4.2)

where the function S does not depend on the parameter k ∈ K . We further assume
that for each k ∈ K the integral operator Pk introduced in (4.2) defines a bounded
linear operator between two Banach spaces X and Y , i.e. for each k ∈ K we have
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that Pk ∈ L(X ,Y ). Furthermore, we assume that the continuous functions are dense
in X . The following result enables us to construct the holomorphic extension of the
map K � k �→ Pk ∈ L(X ,Y ).

Theorem 4.5 ([19, Theorem 3.12]) Assume that

(i) The function S is continuous everywhere except possibly at the origin. In addition,
in a neighborhood of t = 0 we assume that

|S(t)| � |t |−β

for some β ∈ [0, 1), and that pk ∈ C0 ((−1, 1) × (−1, 1), C) for each k ∈ K.
(ii) There exists a δ > 0 such that the map

K � k �→ pk ∈ C0 ((−1, 1) × (−1, 1), C)

admits a bounded holomorphic extension onto Kδ denoted by

Kδ � k �→ pk,C ∈ C0 ((−1, 1) × (−1, 1), C) .

(iii) For δ as in item (ii), the corresponding extension of the integral operator Pk to Kδ

defined as

(Pk,Cu)(t):=
∫ 1

−1
S(t − τ)pk,C(t, τ )u(τ )ds

is uniformly boundedupon Kδ , i.e. there exists a positive constantC(K , δ), depend-
ing on K and δ only, such that

sup
k∈Kδ

‖Pk,C‖L(X ,Y ) < C(K , δ).

Then, the map
K � k �→ Pk ∈ L(X ,Y )

admits a bounded holomorphic extension into Kδ .

Remark 4.6 In [19], the above result is explicitly proved for continuous functions and
then extended by density to an appropriate scale of Sobolev spaces. A close inspection
of the proof reveals that this hypothesis could be further relaxed. Indeed, it is enough to
consider functions in L1(−1, 1) that are denses in B1 so as to apply Fubini’s theorem.
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4.4 BIOs on the Canonical Arc

Based on the functional spaces defined on Sect. 2.1, we proceed to study the mapping
properties of the following three types of BIOs:

(R f u)(t) :=
∫ 1

−1
f (t, τ )u(τ )ds,

(L f u)(t) :=
∫ 1

−1
log |t − τ | f (t, τ )u(τ )ds,

(S f u)(t) :=
∫ 1

−1
log |t − τ |(t − τ)2 f (t, τ )u(τ )ds,

where f ∈ Cm,α ((−1, 1) × (−1, 1), C), for some m ∈ N0 and α ∈ [0, 1]. We will
use the results of this section to establish the mapping properties of the weakly- and
hyper-singular operators, as this will enable us to invoke Theorem 4.5. The analysis
follows closely that of [35, Chaps. 6 and 11]. In particular, we consider periodizations
of the three types of integral operators, and then apply [35, Theorem 6.1.3] to obtain
the mapping properties of the operators. However, and in contrast to [35, Chap. 6], we
consider kernels of limited regularity.

Remark 4.7 Let f ∈ Cm,α ((−1, 1) × (−1, 1), C) be given. Set

σ(θ, φ) := f (cos θ, cosφ), and ϕ(θ, φ) := f (cos θ, cosφ) sin θ sin φ.

One can readily observe that both functions are bi-periodic and belong to
Cm,α ([−π, π ] × [−π, π ], C). Moreover, since trigonometric functions and their
derivatives are trivially bounded, we have that

‖σ‖Cm,α([−π,π ]×[−π,π ],C)
∼= ‖ϕ‖Cm,α([−π,π ]×[−π,π ],C)

∼= ‖ f ‖Cm,α((−1,1)×(−1,1),C),

where the implicit constants are independent of f .

4.4.1 Operator Rf

Let us recall the periodic lifting operators N̂ ,N ,Z, Ẑ defined as in Sect. 2.1. When
applied to the operator R f , we obtain the following periodic operators:

(N̂ R f u)(θ) = 1

2

∫ π

−π

f (cos θ, cosφ)Nu(φ)dφ,

(ZR f u)(θ) = 1

2

∫ π

−π

f (cos θ, cosφ) sin θ sin φẐu(φ)dφ.
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We will also make use of the following operators:

RN
f u(θ) := 1

2

∫ π

−π

f (cos θ, cosφ)u(φ)dφ,

RZ
f u(θ) := 1

2

∫ π

−π

f (cos θ, cosφ) sin θ sin φu(φ)dφ,

related to N̂ R f , and ZR f as follows

N̂ R f u = RN
f Nu, ZR f u = RZ

f Ẑu.

The following results follows directly from [35, Theorem 6.1.1] and Lemma 2.1.

Lemma 4.8 Let s ∈ R, and f ∈ Cm,α ((−1, 1) × (−1, 1), C) the kernel function of
R f . If one of the following conditions is satisfied

(i) s > − 1
2 and s + 3

2 < m + α, or
(ii) s ≤ − 1

2 and −s + 1
2 < m + α,

we have that RN
f ∈ L(Hs, Hs+1) and RZ

f ∈ L(Hs, Hs+1). Furthermore, they are
compact operators in the corresponding spaces, and satisfy

‖RN
f ‖L(Hs ,Hs+1) � ‖σ‖Cm,α([−π,π ]×[−π,π ],C),

‖RZ
f ‖L(Hs ,Hs+1) � ‖ϕ‖Cm,α([−π,π ]×[−π,π ],C),

where σ, ϕ are defined as in Remark 4.7 and unspecified constants do not depend on
f .

Proof Let us focus on the operator RN
f as for RZ

f the proof is equivalent when chang-
ing the kernel σ with ϕ. We can directly see that the kernel has no singularity, and
consequently, the integral operator is of arbitrary order, in particular, of order −1.
Thus, by [35, Theorem 6.1.3], for ν arbitrary close to 1

2 , we have that

‖RN
f ‖2L(Hs ,Hs+1)

�
∞∑

n=−∞

∞∑

l=−∞
(1 + n2)a(1 + l2)b |̃σn,l |2 + (1 + n2)c(1 + l2)d |̃σn,l |2,

where a = s + 1, b = max{ν, |ν − 1|}, c = ν, d = max{|s|, ν} for s > − 1
2 , and

a = s + 1, b = max{ν, |ν − 1|}, c = ν, d = max{|s|, ν} for s < − 1
2 .

For s = 1
2 , we use [35, Theorem 6.1.1] so as to get the same bound with a =

max{|s + 1|, ν}, b = max{|s|, ν}, with ν as before, and parameters c, d not specified
as the second term of the right-hand side of the above inequality does not appear in
this case. From Lemma 2.1, if one of the conditions specified in the hypothesis holds,
we obtain the bound

‖RN
f ‖L(Hs ,Hs+1) � ‖σ‖Cm,α([−π,π ]×[−π,π ],C) < ∞,



Journal of Fourier Analysis and Applications (2024) 30 :14 Page 19 of 51 14

and therefore, RN
f ∈ L(Hs, Hs+1).

Compactness follows from similar arguments as we can consider that the operator
is of order −1 − ε, for arbitrary small ε > 0, and show that RN

f ∈ L (Hs, Hs+1+ε
)
.

Then, by the compact embedding of Hs spaces we obtain the stated result. ��
Using the properties of lifting operators we derive those of the operator R f .

Corollary 4.9 Let s ∈ R be such that the hypotheses of Lemma 4.8 are fulfilled. Then,
we have that R f ∈ L(T s,Ws+1) and R f ∈ L(Us,Y s+1). Furthermore, they are
compact operators satisfying

‖R f ‖L(T s ,Ws+1) � ‖ f ‖Cm,α((−1,1)×(−1,1),C),

‖R f ‖L(Us ,Y s+1) � ‖ f ‖Cm,α((−1,1)×(−1,1),C),

with implicit constants independent of f .

Proof From the properties of the periodic lifting operator (2.2), and the previous
Lemma, one deduces that

‖R f u‖Ws+1 ∼= ‖N̂ R f u‖Hs+1 = ‖RN
f Nu‖Hs+1 ≤ ‖RN

f ‖L(Hs ,Hs+1)‖Nu‖Hs .

We recall that ‖Nu‖Hs ∼= ‖u‖T s (cf. Eq. (2.2)), and also by the previous Lemma and
Remark 4.7, we get

‖RN
f ‖L(Hs ,Hs+1) � ‖ f ‖Cm,α((−1,1)×(−1,1),C),

as stated. The proof is analogous for Us and Y s+1 by using RZ
f instead of RN

f . ��

4.4.2 Operator Lf

As in the previous case, we consider two lifting versions of L f :

(N̂ L f u)(θ) = log 2

2

∫ π

−π

f (cos θ, cosφ)Nu(φ)dφ

+
∫ π

−π

f (cos θ, cosφ) log

∣
∣
∣
∣sin

(
θ − φ

2

)∣
∣
∣
∣Nu(φ)dφ,

and

(ZL f u)(θ) = log 2

2

∫ π

−π

f (cos θ, cosφ) sin θ sin φẐu(φ)dφ

+
∫ π

−π

f (cos θ, cosφ) sin θ sin φ log

∣
∣
∣
∣sin

(
θ − φ

2

)∣
∣
∣
∣ Ẑu(φ)dφ.

We see that these two operators can be characterized as the sum of a regular operator
plus a logarithmic one. The logarithmic part gives rise to an operator of order −1.
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Thus, by the same arguments used in the analysis of R f , we arrive at the following
result:

Corollary 4.10 For s ∈ R, let the hypotheses of Lemma 4.8 hold. Then, L f ∈
L(T s,Ws+1) and L f ∈ L(Us,Y s+1). Furthermore, the bounds

‖L f ‖L(T s ,Ws+1) � ‖ f ‖Cm,α((−1,1)×(−1,1),C),

‖L f ‖L(Us ,Y s+1) � ‖ f ‖Cm,α((−1,1)×(−1,1),C),

hold with unspecified constants independent of f .

4.4.3 Operator Sf

Finally, consider the S f operator, whose periodic liftings are

(N̂ S f u)(θ) = log 2

2

∫ π

−π
(cos θ − cosφ)2 f (cos θ, cosφ)Nu(φ)dφ

+ 4
∫ π

−π
log

∣
∣
∣
∣sin

(
θ − φ

2

)∣
∣
∣
∣ sin

2
(

θ − φ

2

)

sin2
(

θ + φ

2

)

f (cos θ, cosφ)Nu(φ)dφ,

and

(ZS f u)(θ) = log 2

2

∫ π

−π

(cos θ − cosφ)2 f (cos θ, cosφ) sin θ sin φẐu(φ)dφ

+ 4
∫ π

−π

log

∣
∣
∣
∣sin

(
θ − φ

2

)∣
∣
∣
∣ sin

2
(

θ − φ

2

)

sin2
(

θ + φ

2

)

× f (cos θ, cosφ) sin θ sin φẐu(φ)dφ.

While these operators are of order−3, we will consider them as a compact operator of
order −1. This can be done by analyzing the mapping properties from T s (resp. Us)
to Ws+1+ε (resp. Y s+1+ε). In particular, we can select ε small enough such that the
same conditions of Lemma 4.8 apply to deduce the following result.

Corollary 4.11 Let s ∈ R be such that the same conditions of Corollary 4.10 are
satisfied. Then, S f ∈ L(T s,Ws+1) and S f ∈ L(Us,Y s+1) booth been compact
operators. Moreover, we have the bounds:

‖S f ‖L(T s ,Ws+1) � ‖ f ‖Cm,α((−1,1)×(−1,1),C),

‖S f ‖L(Us ,Y s+1) � ‖ f ‖Cm,α((−1,1)×(−1,1),C),

with unspecified constants independent of f .
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4.5 Holomorphic Functions

In the ensuing analysis, we show the existence of holomorphic extensions for certain
recurrently appearing functions (cf. [19, Sect. 4.1]). However, as we are working with
open arcs, the functions considered herein are not periodic. The analysis provided in
this section lies in the context of spaces of the form Cm,α((−1, 1), R

2), with m ∈ N

and α ∈ [0, 1], with at least m + α > 2, instead of twice continuously differentiable,
periodic functions.Consequently, the holomorphic extension of functions formultiples
arcs requires suitable sets such as the ones below.

Definition 4.12 Let m ∈ N and α ∈ [0, 1]. We say that K is an (m, α)-admissible set
of arc parametrizations if K ⊂ Cm,α

b

(
(−1, 1), R

2
)
and if K is a compact subset of

Cm,α((−1, 1), R
2).

When dealing with multiple arcs we further need to impose that two pair of arcs
intersect or touch each other. In the following, we work under the assumption stated
below.

Assumption 4.13 Let K 1, . . . , KM be a collection of M ∈ N (m, α)-admissible set of
arc parametrizations, in the sense of Defintion 4.12, for some m ∈ N and α ∈ [0, 1].
For each i, j ∈ {1, . . . , n} with i 	= j it holds

inf
(r, p)∈Ki×K j

inf
(t,τ )∈(−1,1)×(−1,1)

‖r(t) − p(τ )‖ > 0.

Due to the structure of the G(·, ·), previously introduced in (3.3), we extensively
make use of the logarithmic function, which admits an holomorphic extension in
C\(−∞, 0]. Similarly, we also use the holomorphic extension of the squared distance
function between two points located in two—not necessarily different—arcs.

For r, p : (−1, 1) → R
2, the squared distance is defined as d2r, p(t, τ ) = ‖r(t) −

p(τ )‖2, and its extension to complex parametrizations takes the form (cp. [19, Sect.
4.1])

d2r, p(t, τ ) = (r(t) − p(τ )) · (r(t) − p(τ )),

where we have used the Euclidean inner product in the bilinear sense, as the inclusion
of the complex conjugation prevents the existence of any holomorphic extension.
Whenever r = p we use the notation d2r = d2r,r .

Another relevant function required to establish holomorphic extensions of our inte-
gral operators is the following. For each arc parametrization r : (−1, 1) → R

2 we
define Q r : (−1, 1) × (−1, 1) → R as

Q r(t, τ ):=
⎧
⎨

⎩

d2r (t, τ )

(t − τ)2
, t 	= τ,

r ′(t) · r ′(t), t = s,
(t, τ ) ∈ (−1, 1) × (−1, 1).

The next conditions will be later required to establish bounds on how large are the
regions where the BIOs admit holomorphic extensions.
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Condition 4.14 Let m ∈ N and α ∈ [0, 1], and let K 1, K 2 be two (m, α)-admissible
sets of arc parametrizations satisfying Assumption 4.13. The values δ1, δ2 > 0 satisfy

δ1 + δ2 <

√
I2
d + S2

d − Sd ,

where

Id := inf
(r, p)∈K 1×K 2

inf
(t,τ )∈(−1,1)×(−1,1)

‖r(t) − p(τ )‖,
Sd := sup

r∈K 1
δ1

sup
t∈(−1,1)

‖r(t)‖ + sup
p∈K 2

δ2

sup
t∈(−1,1)

‖ p(t)‖.

Condition 4.15 Let m ∈ N and α ∈ [0, 1], and let K be an (m, α)-admissible set of
arc parametrizations. The value δ > 0 satisfies

δ <

√
I2
Q + S2

Q − SQ,

where

IQ := inf
r∈K inf

t∈(−1,1)
‖r ′(t)‖, and SQ := sup

r∈K
sup

t∈(−1,1)
‖r ′(t)‖.

The following result ensures that the square of the distance function admits a
bounded holomorphic extension to a set of the form Kδ for some δ > 0.

Lemma 4.16 Let m ∈ N and α ∈ [0, 1], and let K 1, K 2 be two (m, α)-admissible sets
of arc parametrizations.

(i) For any pair τ1, τ2 > 0, the map

K 1 × K 2 � (r, p) �→ d2r, p ∈ Cm,α ((−1, 1) × (−1, 1), C)

admits a bounded holomorphic extension into K 1
τ1

× K 2
τ2
.

(ii) For δ1 > 0 and δ2 > 0 satisfying Condition 4.14 there exists η > 0 such that

inf
(r, p)∈K 1

δ1
×K 2

δ2

inf
(t,τ )∈(−1,1)×(−1,1)

Re{d2r, p(t, τ )} ≥ η > 0.

Proof See Appendix B.1. ��
Lemma 4.17 Let m ∈ N and α ∈ [0, 1], and let K be an (m, α)-admissible set of arc
parametrizations.

(i) For δ as in Condition 4.15, the map

K � r �→ Q r ∈ Cm−1,α ((−1, 1) × (−1, 1), C)

admits a bounded holomorphic extension into Kδ .
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(ii) There exists a constant ζ = ζ(K , δ) > 0, depending upon K and δ only, such that

inf
r∈Kδ

inf
(t,τ )∈(−1,1)×(−1,1)

Re{Q r(t, τ )} ≥ ζ,

inf
r∈Kδ

inf
(t,τ )∈(−1,1)×(−1,1)

Re{Q−1
r (t, τ )} ≥ ζ,

where Q−1
r represents the multiplicative inverse 1/Q r .

(iii) The map

K � r �→ Q−1
r ∈ Cm−1,α ((−1, 1) × (−1, 1), C)

admits a bounded holomorphic extension into Kδ .

Proof See Appendix B.2. ��

4.6 Holomorphic Extension of Integral Kernels

We now show that the kernels of the weakly- and hyper-singular BIOs—according
to the representations in (3.3)—have holomorphic extensions. We do so by extending
the integral kernels using our previous results on the functions d2r, p and Q r .

By (3.3), for two—not necessarily different—arcparametrizations r, p : (−1, 1) →
R
2, one can write

G(r(t), p(τ )) = log(d2r, p(t, τ ))F1(d
2
r, p(t, τ )) + F2(d

2
r, p(t, τ )). (4.3)

The next result follows straightforwardly from Lemma 4.16 and the structure assumed
for G(·, ·) in (3.3).
Lemma 4.18 Let m ∈ N and α ∈ [0, 1], and let K 1, K 2 be two (m, α)-admissible
sets of arc parametrizations satisfying Assumption 4.13. Then, there exist δ1, δ2 > 0
satisfying Condition 4.14 such that the map

K 1 × K 2 � (r, p) �→ G(r(t), p(τ )) ∈ Cm,α ((−1, 1) × (−1, 1), C) (4.4)

admits a bounded holomorphic extension into K 1
δ1

× K 2
δ2
.

Proof By Lemma 4.16 (ii), there exist δ1, δ2 > 0 such that the real part of the loga-
rithm argument in (4.3) is bounded from below away from zero. Hence, the function
G(r(t), p(τ )) is well defined for all (t, τ ) ∈ (−1, 1) × (−1, 1), and for any non-
intersecting arc parametrizations r, p : (−1, 1) → R

2. Furthermore, by Lemma 4.16
(i) along with the fact that the logarithm is analytic in the branch cut C\(−∞, 0], one
concludes that the map in (4.4) admits a bounded holomorphic extension in K 1

δ1
×K 2

δ2
.

��
For the self-interaction case, i.e. r = p, the result does not follow from the argu-

ments used in the proof of Lemma 4.18, as a logarithmic singularity inevitably occurs
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at dr(t, t) = 0, thus breaking the analyticity of the logarithmic. In this case, we
consider the following decomposition:

G(r(t), r(τ )) = GR
r (t, τ ) + GS

r (t, τ ), (4.5)

where

GR
r (t, τ ) := (log Q r(t, τ )) F1(d

2
r (t, τ )) + F2(d

2
r (t, τ )),

GS
r (t, τ ) := 2 log |t − τ |F1(d2r (t, τ )). (4.6)

Notice that now the logarithmic singularity has been isolated in the term GS
r defined

in (4.6). Furthermore, it does not depend on any arc parametrization, and we have
following result.

Lemma 4.19 Let m ∈ N and α ∈ [0, 1], and let K be an (m, α)-admissible set of arc
parametrizations. Then, there exists δ > 0 satisfying Condition 4.15 such that

K � r �→ GR
r ∈ Cm−1,α ((−1, 1) × (−1, 1), C) and

K � r �→ F1(d
2
r ) ∈ Cm,α ((−1, 1) × (−1, 1), C)

admit bounded holomorphic extensions onto Kδ .

Proof The only part that does not follow directly is the logarithmic term of GR
r .

However, by Lemma 4.17, we are again in the holomorphic domain of the logarithmic
and one retrieves the above statements. ��

Remark 4.20 We have assumed that the functions F1 and F2 in the decomposition of
G(x, y) stated in (3.3) are entire, and that they depend solely on the square of the
distance between points x and y. However, less restrictive cases are to be considered.
For example, wewill consider caseswhere F1, F2 are replaced by the functionsG1,G2
that take the following form:

G j (t, τ ) = f j
(
r ′(t), p′(τ ))Fj (d

2
r, p(t − τ)

)
, j = 1, 2,

where f j is entire in both coordinates, and Fj as before for j = 1, 2. Under this
assumption, both Lemmas 4.18 and 4.19 still hold true but the space
Cm,α ((−1, 1) × (−1, 1), C) has to be replaced by Cm−1,α ((−1, 1) × (−1, 1), C), as
the functions f1, and f2 now depend on the derivative of the arc parametrizations. This
loss of one order of regularity has no effect, as one needs to consider the holomorphic
extension of the full kernel function which, by the first map in Lemma 4.19, needs to
lie in Cm−1,α ((−1, 1) × (−1, 1), C).
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5 Shape Holomorphy of Domain-to-SolutionMaps

We now study the holomorphic properties of the boundary-to-solution maps:

(r1, . . . , rM ) �→ λr1,...,rM and (r1, . . . , rM ) �→ μr1,...,rM ,

where λr1,...,rM ,μr1,...,rM are the solutions of the Dirichlet and Neumann boundary
integral formulations introduced in (3.4). The study is carried out in three main steps:

(i) ByTheorem4.5 and results fromSects. 4.4, 4.5, and4.6,we show that the following
maps have holomorphic extensions

(r1, . . . , rM ) �→ Vr1,...,rM , (r1, . . . , rM ) �→ Wr1,...,rM ,

on proper compact subsets of
∏M

j=1 Cm,α
(
(−1, 1), R

2
)
, where the boundary inte-

gral operatos Vr1,...,rM , Wr1,...,rM are those from Sect. 3.1.
(ii) We prove that the previous operators have inverses, and then use Theorem 4.2 to

obtain the holomorphic extensions of the boundary to solution map.
(iii) We consider arc parametrizations determined by a countable set of parameters and

study the parametric holomorphism of the domain-to-solution map. We do so by
combining the above results and the abstract ones in Sect. 4.2.

Steps (i) and (ii) are carried out in Sects. 5.1 (single arc) and 5.2 (multiples arcs). The
final step is presented in Sect. 5.3.

5.1 Single Interaction

Firstly, let us study the weakly singular BIO between two arc parametrizations. Let
r, p ∈ Cm,α

b

(
(−1, 1), R

2
)
be the parametrization of two open arcs. For u defined in

[−1, 1] we set
(
Vr, pu

)
(t) =

∫ 1

−1
G(r(t), p(τ ))u(τ )dτ, t ∈ (−1, 1). (5.1)

Following the notation of Sect. 3.2, we have Vr i ,r j = (Vr1,...,rM )i, j , for i, j =
1, . . . , M .

Due to the fundamental solution structure (3.3) as well as Lemmas 4.18 and 4.19,
the operator Vr, p (5.1) can be expressed in terms of R f , L f and S f introduced in Sect.
4.4. The function G(r(t), p(τ )) and its suitable decomposition will play the role of
f in the aforementioned operators on the canonical arc. This analysis in performed
thoroughly in Lemma 5.2 ahead. For the hyper-singular BIO, we assume the existence
of a suitable Maue’s formula so as to reuse the shape holomorphy result for BIOs
resembling weakly singular BIOs.

Based on results of Sect. 4.4, we introduce the following condition that will enable
us to ensure the continuity of the integral operators on appropriate spaces.

Condition 5.1 The triple (m, α, s) with m ∈ N, α ∈ [0, 1], s ∈ R satisfies either one
of the following conditions:
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(i) s > − 1
2 , and s + 5

2 < m + α,
(ii) s ≤ − 1

2 , and
3
2 − s < m + α.

Observe that these conditions are exactly as those required in Lemma 4.8 but with
m−1 instead ofm. This is due to the loss of regularity in the kernel with respect to the
parametrization. Equipped with these results, we can state the main result concerning
the holomorphic dependence of the operator Vr, p upon a set of arc parametrizations.

Lemma 5.2 Assume that Condition 5.1 holds for some m ∈ N, α ∈ [0, 1], and s ∈ R.

(i) Let K be an (m, α)-admissible set of arc parametrizations. Then, there exists
δ > 0, depending only on K and satisfying Condition 4.15, such that

K � r �→ Vr,r ∈ L(Ts, W
s+1) and K � r �→ Vr,r ∈ L(Us, Y

s+1)

admit bounded holomorphic extensions into Kδ . Furthermore, for each r ∈ Kδ it
holds that Vr,r ∈ L(Ts, W

s+1) is a Fredholm operator of index zero.
(ii) Let K 1, K 2 be two (m, α)-admissible sets of arc parametrizations satisfying

Assumption 4.13. Then, there exist δ1, δ2 > 0, depending on K 1 and K 2 and
satisfying Condition 4.14, such that the maps

K 1 × K 2 � (r, p) �→ Vr, p ∈ L(Ts, W
s+1) and

K 1 × K 2 � (r, p) �→ Vr, p ∈ L(Us, Y
s+1)

admit bounded holomorphic extensions into K 1
δ1

×K 2
δ2
. Moreover, for any (r, p) ∈

K 1
δ1

× K 2
δ2

the maps Vr, p ∈ L(Ts, W
s+1), Vr, p ∈ L(Us, Y

s+1) define compact
operators.

Proof For the sake of brevity, we assume that P is scalar and consider only spaces
T s,Ws+1, as either vector P or the case of spaces Us,Y s+1 follow verbatim.

We start by proving item (i), i.e. when p = r for Vr,r . To this end, let us recall the
decomposition of the fundamental solution (4.5) and define V R

r,r (resp. V
S
r,r ) for the

integral operator with kernel GR
r (resp. GS

r ). Hence, we first proceed to show that V R
r,r

fulfills the assumptions of Theorem 4.5.

(i) The operator V R
r,r satisfies Theorem 4.5 with S ≡ 1 and pk = GR

r .
(ii) Thus, it follows from Lemma 4.19 that there exists δ > 0 such that

GR
r ∈ Cm−1,α ((−1, 1) × (−1, 1), C) ,

for each r ∈ Kδ . Furthermore, Lemma 4.19 ensures that the map

K � r �→ GR
r ∈ Cm−1,α ((−1, 1) × (−1, 1), C)

admits a bounded holomorphic extension into Kδ .
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(iii) By assuming that Condition 5.1 holds for a triple (m, α, s), it follows from Corol-
lary 4.9 that for each r ∈ Kδ one has V R

r,r ∈ L (T s,Ws+1
)
, furthermore, it defines

a compact operator, satisfying

∥
∥
∥V R

r,r

∥
∥
∥L(T s ,Ws+1)

�
∥
∥
∥GR

r

∥
∥
∥Cm−1,α((−1,1)×(−1,1),C)

, (5.2)

where the implied constant is independent of the parametrization r : (−1, 1) →
R
2. By (5.2) and, again, Lemma 4.19 the quantity ‖V R

r,r‖L(T s ,Ws+1) is uniformly
bounded over r ∈ Kδ .

By Theorem 4.5 the map K � r �→ V R
r,r ∈ L(T s,Ws+1) admits a bounded holomor-

phic extension onto Kδ .
Now, let us consider GS

r and decompose it as follows: GS
r = GS,1

r + GS,2
r with:

GS,1
r (t, τ ) := 2F1(d

2
r (t, t)) log |t − τ |,

GS,2
r (t, τ ) := 2(F1(d

2
r (t, τ )) − F1(d

2
r (t, t))) log |t − τ |.

The integral operator with kernel GS,1
r (resp. GS,2

r ) is denoted by V S,1
r,r (resp. V S,2

r,r ).
Observe that for each r it holds that d2r (t, t) = 0 for all t ∈ (−1, 1), and thus,
F1(d2r (t, t)) = F1(0). Consequently, V

S,1
r,r is independent of the parametrization and

it follows from Corollary 4.10 that V S,1
r,r ∈ L(T s,Ws+1). The map r �→ V S,1

r,r is
trivially holomorphic as it is constant with respect to the parametrization r . Moreover,
in the representation of the fundamental solution we have assumed that F1(0) 	= 0.
Hence, V S,1

r,r is invertible from T s intoWs+1 (cf. [22]). Notice that whenP is a vector-
valued operator the conclusion still holds as F1(0) is assumed to be an invertiblematrix.
However, for the pair Us,Y s+1 this does not hold as the associated integral operator
to the logarithmic term is not an invertible operator on the mentioned spaces.

We proceed to show that the operator V S,2
r,r fulfils the assumptions of Theorem 4.5.

(i) Taylor’s theorem yields

F1(dr(t, τ )2) − F1(0) = dr(t, τ )2
∫ 1

0
F ′
1(ηd

2
r (t, τ ))dη,

where we have used dr(t, t) = 0 for all t ∈ (−1, 1). By expanding the distance
function, for each (t, τ ) ∈ (−1, 1) × (−1, 1) we obtain

F1(dr(t, τ )2) − F1(0) = (t − τ)2 fr(t, τ ),

where

fr(t, τ ) :=
(∫ 1

0
r ′(t + η(τ − t))dη

)

·
(∫ 1

0
r ′(t + η(τ − t))dη

)

×
∫ 1

0
F ′
1(ηd

2
r (t, τ ))dη.
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We obtain the following representation of GS,2
r :

GS,2
r (t, τ ) = (t − τ)2 log |t − τ | fr(t, τ ).

Consequently, for each r ∈ K , the operator V S,2
r,r fits the framework of Theorem

4.5 with S(t) = t2 log |t | and pk(t, τ ) = fr(t, τ ).
(ii) It follows from Lemma 4.19 that the map

K � r �→ fr ∈ Cm−1,α ((−1, 1) × (−1, 1), C)

admits a bounded holomorphic extension into Kδ for some δ > 0.
(iii) Assume that the triple (m, α, s) satisfies Condition 5.1. Then, by Corollary 4.11,

for each r ∈ K we have that V S,2
r,r ∈ L (T s,Ws+1

)
, and, furthermore, V S,2

r,r defines
a compact operator satisfying the bound

∥
∥
∥V S,2

r,r

∥
∥
∥L(T s ,Ws+1)

� ‖ fr‖Cm−1,α((−1,1)×(−1,1),C) . (5.3)

The right-hand side of (5.3) is uniformly bounded on Kδ as a consequence of
Lemma 4.19.

It follows from Theorem 4.5 that the map K � r �→ V S,2
r,r ∈ L(T s,Ws+1) admits a

bounded holomorphic extension onto Kδ .
Lastly, we obtain the holomorphic extension of Vr,r by acknowledging that

Vr,r = V R
r,r + V S,1

r,r + V S,2
r,r ,

since the three operators on the right-hand side have holomorphic extension at least
in Kξ , for 0 < ξ < δ. On the other hand V R

r,r , V
S,2
r,r are compact operators, and since

V S,1
r,r is invertible, Vr,r is Fredholm of index zero.
The proof of the second part of the lemma is proved as with the part involving V R

r,r ,
but by using Lemma 4.18 instead of Lemma 4.19. We skip it for the sake of brevity. ��

We also consider the generic hyper-singular operator interaction and establish the
sought shape holomorphy property for this type of BIOs. To do so, we employ the
previously assumed Maue’s representation formula (3.5), which takes the form

(
Wr, pu

)
(t) = d

dt

∫ 1

−1
G(r(t), p(τ ))

d

dτ
u(τ )dτ +

∫ 1

−1
G̃(r(t), p(τ ))u(τ )dτ,

where again we have Wr i ,r j = (Wr1,...,rM )i, j , and also the next result.

Lemma 5.3 Assume that Condition 5.1 holds for some m ∈ N, α ∈ [0, 1], and s ∈ R.

(i) Let K be an (m, α)-admissible set of arc parametrizations. Then, there exists
δ > 0, depending only on K and satisfying Condition 4.15, such that

K � r �→ Wr,r ∈ L(Us, Y
s−1),
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admits a bounded holomorphic extensions into Kδ . Furthermore, for any r ∈ Kδ

one has that Wr,r ∈ L(Us, Y
s−1) is a Fredholm operator of index zero.

(ii) Let K 1, K 2 be two (m, α)-admissible sets of arc parametrizations satisfying
Assumption 4.13. Then, there exist δ1, δ2 > 0, satisfying Condition 4.14, such
that the map

K 1 × K 2 � (r, p) �→ Wr, p ∈ L(Us, Y
s−1),

admits a bounded holomorphic extensions into Kδ1 × Kδ2 . Moreover, for any
(r, p) ∈ K 1

δ1
× K 2

δ2
, the map Wr, p ∈ L(Us, Y

s−1) is compact.

Proof Again, we restrict ourselves to the scalar case. Except for the Fredholm order,
the proof follows directly fromMaue’s representation formula, themapping properties
of the derivative operators (2.5)—also independent of the parametrizations—and the
arguments of Lemma 5.2.

To show the Fredholm order, we use the decomposition of the hyper-singular oper-
ator Wr, p = W 1

r, p + W 2
r, p, with

(
W 1

r, pu
)

(t) := d

dt

∫ 1

−1
G(r(t), p(τ ))

d

dτ
u(τ )dτ,

(
W 2

r, pu
)

(t) :=
∫ 1

−1
G̃(r(t), p(τ ))u(τ )dτ.

For W 1
r, p, we argue as in Lemma 5.2. We decompose this operator into three parts:

two of them are compact by the previous lemma, and the remaining part is

2F1(0)
d

dt

∫ 1

−1
log |t − s| d

ds
u(τ )ds. (5.4)

The factor 2F1(0) is assumed to be invertible, and the integral operator is the standard
hyper-singular one for the Laplace equation. Hence, the operator in (5.4) is invertible
as a map in L(Us, Y

s−1) (cf. [22]).
The operator W 2

r, p can be analyzed as in Lemma 5.2, so as to find that W 2
r, p ∈

L (Us, Y
s+1
)
. Therefore, by the compact embedding of the corresponding spaces (see

Sect. 2.1) we have that W 2
r, p ∈ L (Us, Y

s−1
)
is a compact operator. ��

Remark 5.4 In practice, the term G̃ of Maue’s representation formula includes a factor
involving normal vectors. This implies that the corresponding functions F1, F2 have
the structure described in Remark 4.20. Consequently, none of the results needs to be
modified.

We can further generalize the structure of the functions G1,G2 in Remark 4.20 by
considering the form:

G j (t, τ ) = f j
(
(r ′(t), r ′′(t), . . . , r(n)(t), p′(τ ), p′′(τ ), . . . , p(n)(τ )

)
Fj (d

2
r, p(t−τ)),
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where f j is entire in each coordinate. With the above representation, Condition 5.1 is
changed to:

(i) s > − 1
2 , and s + 3

2 + n < m + α,
(ii) s ≤ − 1

2 , and
1
2 + n − s < m + α.

5.2 Multiple Arcs (M > 1)

Lemmas 5.2 and 5.3 ensure that for every pair of arcs r, p there exists a region—
depending on the arcs—such that weakly- and hyper-singular BIOs have holomorphic
extensions. Now we return to the original problem (Sects. 3.1 and 3.2) to prove the
BIOs’ holomorphic extension for the interaction of M > 1 arcs (cf. Theorem 5.6).
With this, we obtain the holomorphic extension of the so-called domain-to-solution
map for the problem presented in Sect. 3.1.

Condition 5.5 Consider M ∈ N different (m, α)-admissible sets of parametrizations
K 1, . . . , KM satisfying Assumption 4.13. Let δ1, . . . , δM be M strictly positive real
numbers, such that

(i) Each δ j satisfies Condition 4.15 in the compact set K j , for j = 1, . . . , M.
(ii) For each (δi , δ j ) with i, j ∈ {1, . . . , M} and i 	= j , Condition 4.14 is fulfilled in

K i × K j .

Theorem 5.6 Let s ∈ R, m ∈ N and α ∈ [0, 1] be such that Condition 5.1 is ful-
filled. Let K 1, . . . , KM be M (m, α)-admissible sets of parametrizations satisfying
Assumption 4.13. Then there exist δ1, . . . , δM > 0 satisfying Condition 5.5 such that

K 1 × · · · × KM � (r1, . . . , rM ) �→ Vr1,...,rM ∈ L
⎛

⎝
M∏

j=1

T
s,

M∏

j=1

W
s+1

⎞

⎠ ,

K 1 × · · · × KM � (r1, . . . , rM ) �→ Wr1,...,rM ∈ L
⎛

⎝
M∏

j=1

U
s,

M∏

j=1

Y
s−1

⎞

⎠ ,

admit bounded holomorphic extensions into K 1
δ1

× · · · ×KM
δM

.

Proof We prove only the result for the weakly singular BIO as the hyper-singular case
follows similarly. Our first observation is that one can write

Vr1,...,rM =

⎛

⎜
⎜
⎜
⎝

Vr1,r1 Vr1,r2 . . . Vr1,rM
Vr2,r1 Vr2,r2 . . . Vr2,rM

...
. . . . . .

...

VrM ,r1 VrM ,r2 . . . VrM ,rM

⎞

⎟
⎟
⎟
⎠

.
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By Lemma 5.2, there exist δ1, . . . , δM > 0 satisfying Condition 5.5 such that the maps

K j � r j �→ Vr j ,r j ∈ L
(
T
s, W

s+1
)

,

Ki × K j � (r i , r j ) �→ Vr i ,r j ∈ L
(
T
s, W

s+1
)

, i 	= j,

admit bounded holomorphic extension into K j
δ j

and Ki
δi

× K j
δ j
, respectively. Since

each component has a holomorphic extension, by defining the norms for
∏M

j=1 T
s and

∏M
j=1 W

s+1 as the standard Euclidean norm of a Cartesian product space, we directly
deduce that

K 1 × · · · KM � (r1, . . . , rM ) �→ Vr1,...,rM ∈ L
⎛

⎝
M∏

j=1

T
s,

M∏

j=1

W
s+1

⎞

⎠

admits a bounded holomorphic extension into K 1
δ1

· · · × KM
δM

. ��

From this last result, by Theorem 4.2, and assuming that the right-hand sides of
the BVPs are given by entire functions (Sect. 3.1), we conclude that λr1,...,rM and
μr1,...,rM , solutions to the Dirichlet and Neumann problems, respectively, depend
holomorphically upon perturbations of arc parametrizations r1, . . . , rM .

Theorem 5.7 Under the same hypothesis of Theorem 5.6, there exists η > 0 such that
the maps

K1 × · · · × KM � (r1, . . . , rM ) �→ λr1,...,rM ∈
M∏

j=1

T
s (5.5)

and

K1 × · · · × KM � (r1, . . . , rM ) �→ μr1,...,rM ∈
M∏

j=1

U
s (5.6)

admit boundedholomorphic extensions into K 1
η×· · · KM

η , where for each (r1, . . . , rM ) ∈
K 1 × · · · × KM we have that λr1,...,rM and μr1,...,rM are the boundary solutions of
the Dirichlet and Neumann problems stated in (3.4).

Proof As before, we prove only the result for the weakly singular BIO and provide
remarks whenever the proof differs for the hyper-singular case.

The proof relies on Theorem 4.2. Firstly, we need to ensure that for each
(r1, . . . , rM ) ∈ K 1 ×· · · KM the maps introduced in (5.5) and (5.6) are well defined.
To this end, we use the block-wise decomposition of the weakly singular BIO defined
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on multiple disjoint arcs into diagonal and off-diagonal components, i.e.

Vr1,...,rM =
⎛

⎜
⎝

Vr1,r1 . . . 0
...

. . .
...

0 . . . VrM ,rM

⎞

⎟
⎠+

⎛

⎜
⎝

0 . . . Vr1,rM
...

. . .
...

VrM ,r1 . . . 0

⎞

⎟
⎠ (5.7)

An equivalent decomposition can be stated for the hyper-singular BIO. It follows
from Lemma 5.2—Lemma 5.3 for the hyper-singular BIO—that the diagonal part, i.e.
the first summand in (5.7), is composed of index zero Fredholm operators, while the
off-diagonal one includes compact operators. Recalling the definition of a Cartesian
product space, the block operators are Fredholm of index zero. From the Fredholm

property, we obtain that Vr1,...,rM ∈ L
(∏M

j=1 T
s,
∏M

j=1 W
s+1
)
—also Wr1,...,rM ∈

L
(∏M

j=1U
s,
∏M

j=1 Y
s−1
)
—is invertible provided that is injective. This is equivalent

to the unisolvence of the corresponding volume problem presented in Sect. 3.1 (cf.
[24]).

Hence, for each (r1, . . . , rM ) ∈ K 1×· · ·×KM , the operatorsVr1,...,rM ,Wr1,...,rM
are invertible mapping as follows

(Vr1,...,rM )−1 ∈ L
⎛

⎝
M∏

j=1

W
s+1,

M∏

j=1

T
s

⎞

⎠ ,

(Wr1,...,rM )−1 ∈ L
⎛

⎝
M∏

j=1

Y
s−1,

M∏

j=1

U
s

⎞

⎠ .

Thus, we have proved that the maps introduced in (5.5) and (5.6) are well defined. It
follows straightforwardly from Theorems 4.2 and 5.6 the there exists η > 0 such the
maps

K 1 × · · · × KM � (r1, . . . , rM ) �→ (Vr1,...,rM )−1 ∈ L
⎛

⎝
M∏

j=1

W
s+1,

M∏

j=1

T
s

⎞

⎠

K 1 × · · · × KM � (r1, . . . , rM ) �→ (
Wr1,...,rM

)−1 ∈ L
⎛

⎝
M∏

j=1

Y
s−1,

M∏

j=1

U
s

⎞

⎠

admit bounded holomorphic extensions into Kη. Recall that the right-hand sides of
the boundary integral formulations considered are of the form:

( f Dr1,...,rM ) j = f D ◦ r j and ( f Nr1,...,rM ) j = f N ◦ r j ,
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with f D , f N assumed to be entire functions. From this representation, arguing as in
Lemma 2.1, but for univariate functions, one can check that Condition 5.1 ensures that

f Dr1,...,rM ∈
M∏

j=1

W
s+1, f Nr1,...,rM ∈

M∏

j=1

Y
s+1 ⊂

M∏

j=1

Y
s−1.

Furthermore, once again using that f D , f N are entire functions, it is direct to see that
the maps (r1, . . . , rM ) �→ fDr1,...,rM , and (r1, . . . , rM ) �→ fNr1,...,rM admit bounded
holomorphic extensions to any region. The final result follows by composition of maps
with holomorphic extensions. ��
Remark 5.8 Theorem 5.7 enables us to obtain holomorphic extensions for some linear
functionals. In particular, if we consider linear functionals of the form

(Lu) (x) =
∫ 1

−1
ϑ(x, r1(t), . . . , rM (t)) · u(t)dt, x ∈ R

2,

where u = λ or u = μ, solutions of the corresponding BIEs (Problem 3.4), and ϑ is
entire on each coordinate, except possibly on the first one. The holomorphic exten-
sion of this functional is proven by showing that it is a composition of holomorphic
functions. First, we notice that by Theorem 4.5, (r1, . . . rM ) �→L·, has a bounded
holomorphic extension, and secondly, by the previous theorem, u also have a bounded
holomorphic extension. Hence, Lu has a bounded holomorphic extension.

5.3 Parametric Holomorphy of the Domain-to-SolutionMap

Throughout this section we denote by r01, r
0
2, . . . , r

0
M a collection of M arc

parametrizations, each of them contained in Cm,α
b

(
(−1, 1), R

2
)
, and such that no

crossing among them occurs. Specifically, we consider the next affine-parametric arc
parametrizations:

r j, y j = r0j +
∞∑

n=1

ynj r
n
j , j = 1, . . . , M, y j :=(ynj )n∈N ∈ U, (5.8)

where, for each j ∈ {1, . . . , M}, the sequence {rnj }n∈N ⊂ Cm,α
(
(−1, 1), R

2
)
. For

each n ∈ N and j = 1, . . . , M , let us set

bnj :=
∥
∥
∥rnj

∥
∥
∥Cm,α((−1,1),R2)

and b j = {bnj }n∈N. (5.9)

In order to restrict ourselves to admissible geometric configurations—arc parametriza-
tions satisfying r j, y j ∈ Cm,α

b

(
(−1, 1), R

2
)
for j = 1, . . . , M and each y ∈ U, such

that no crossings or intersections occur—and adopt the framework of Sect. 4.2, we
work under the following assumptions.
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Assumption 5.9 We assume that

(i) For each j ∈ N the sequence b j ∈ 	p(N) for some p ∈ (0, 1).
(ii) There exists a single ζ ∈ (0, 1) such that, for each j ∈ {1, . . . , M}, it holds that

sup
t∈(−1,1)

∞∑

n=1

‖(rnj )′(t)‖ ≤ ζ inf
t∈(−1,1)

‖(r0j )′(t)‖.

(iii) There exists η ∈ (0, 1) such that, for any i, j ∈ {1, . . . , M} and for each yi , y j ∈
U, one has

∥
∥
∥
∥
∥

∞∑

n=1

yni r
n
i (t) − ynj r

n
j (τ )

∥
∥
∥
∥
∥

≤ η inf
(t,τ )∈(−1,1)×(−1,1)

∥
∥
∥r0i (t) − r0j (τ )

∥
∥
∥ .

In the following, for j ∈ {1, . . . , M} we set

K j :=
{

r j, y ∈ Cm,α
(
(−1, 1), R

2
)

: r j, y = r0j +
∞∑

n=1

yn rnj , y = {yn}n∈N ∈ U

}

.

(5.10)

Observe that due to item (i) in Assumption 5.9 the series in (5.8) converges absolutely
and uniformly with respect to y ∈ U. Moreover, one can now obtain a proper set of
arc parametrizations as shown below.

Lemma 5.10 Let K1, . . . , KM ⊂ Cm,α
(
(−1, 1), R

2
)
be as in (5.10) for some m ∈ N

and α ∈ [0, 1], and let Assumption 5.9 be satisfied. Then K1, . . . , KM are (m, α)-
admissible arc parametrizations in the sense of Definition 4.13 satisfying Assumption
4.13.

Proof We start by proving that for each y ∈ U the arc parametrization r j, y :
(−1, 1) → R

2 defined as in (5.8) renders an element of Cm,α
b

(
(−1, 1), R

2
)
. The

proof follows substantially that of [18, Lemma 6.2], however we include the details
for the sake of completeness.

For t, τ ∈ (−1, 1), we directly have that

∥
∥r j, y(t) − r j, y(τ )

∥
∥ =

∥
∥
∥
∥
∥
r0j (t) − r0j (τ ) +

∞∑

n=1

yn(rnj (t) − rnj (τ ))

∥
∥
∥
∥
∥

.

Hence, by the Taylor expansion of r j, y, for every j = 0, . . . M , there exist ξ ∈ (−1, 1)
such that

∥
∥r j, y(t) − r j, y(τ )

∥
∥ = (t − τ)

∥
∥
∥
∥
∥
(r0j )

′(ξ) +
∞∑

n=1

yn(rnj )
′(ξ)

∥
∥
∥
∥
∥

≥ (t − τ)

(
∥
∥
∥(r0j )

′(ξ)

∥
∥
∥−

∥
∥
∥
∥
∥

∞∑

n=1

yn(rnj )
′(ξ)

∥
∥
∥
∥
∥

)

.
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By Assumption 5.9 (ii), we obtain

∥
∥
∥(r0j )

′(ξ)

∥
∥
∥−

∥
∥
∥
∥
∥

∞∑

n=1

yn(rnj )
′(ξ)

∥
∥
∥
∥
∥

≥ (1 − ζ ) inf
t∈(−1,1)

‖(r0j )′(t)‖ > 0.

We deduce that r j, y is injective for every y ∈ U, thus it has a global inverse. Further-
more, if we make the same analysis for the tangent vector we have that

∥
∥(r j, y)′(t)

∥
∥ ≥

(
∥
∥
∥(r0j )

′(t)
∥
∥
∥−

∥
∥
∥
∥
∥

∞∑

n=1

yn(rnj )
′(t)
∥
∥
∥
∥
∥

)

≥ (1 − ζ ) inf
t∈(−1,1)

‖(r0j )′(t)‖ > 0.

Thus, the tangent vector is nowhere null, and we have that K j ⊂ Cm,α
b

(
(−1, 1), R

2
)
.

As explained in Sect. 4.2, it follows from [9, Lemma 2.7] that each Ki is a compact
subset of Cm,α

(
(−1, 1), R

2
)
, thus rendering each of those sets (m, α)-admissible arc

parametrizations.
To conclude, we verify that under Assumption 5.9 the sets K1, . . . , KM fulfill

Assumption 4.13. Using item (iii) in Assumption 5.9 For any i, j ∈ {1, . . . , M} and
for each yi , y j ∈ U, one has that

∥
∥
∥r i, yi (t) − r j, y j (τ )

∥
∥
∥ =

∥
∥
∥
∥
∥
r0i (t) +

∞∑

n=1

yn rni (t) − r0j (τ ) −
∞∑

n=1

yn rnj (τ )

∥
∥
∥
∥
∥

≥
∣
∣
∣
∣
∣

∥
∥
∥r0i (t) − r0j (τ )

∥
∥
∥−

∥
∥
∥
∥
∥

∞∑

n=1

yni r
n
i (t) − ynj r

n
j (τ )

∥
∥
∥
∥
∥

∣
∣
∣
∣
∣

≥ (1 − η) > 0,

as stated. ��
Let us set for each y ∈ U

λ y:=λr1, y1 ,...,rM, yM
and μ y:=μr1, y1 ,...,rM, yM

,

where the elements y1, y2, . . . yM ∈ U are defined as

(y j )n = y j+nM , j ∈ {1, . . . , M}, n ∈ N.

Wewill make use of the set K := K1 ×· · ·×KM ⊂∏M
j=1 Cm,α

(
(−1, 1), R

2
)
, which

can be written as

K =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

k y =

⎛

⎜
⎜
⎜
⎝

r1, y1
r2, y2

...

rM, yM

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

r01
r02
...

r0M

⎞

⎟
⎟
⎟
⎠

+
∞∑

n=1

ynkn, y = {yn}n∈N ∈ U

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

,
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wherein,

{kn}n∈N =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

r11
0
...

0

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

0
r12
...

0

⎞

⎟
⎟
⎟
⎠

, . . .

⎛

⎜
⎜
⎜
⎝

0
0
...

r1M

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

r21
0
...

0

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

0
r22
...

0

⎞

⎟
⎟
⎟
⎠

, . . .

⎛

⎜
⎜
⎜
⎝

0
0
...

r2M

⎞

⎟
⎟
⎟
⎠

, . . .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

or more rigorously kn = r

⌈
n
M

⌉

j(n) e j(n), with
⌈

n
M

⌉
the upper integer part of n

M , and j(n)

is one plus the residual of the integer division n−1
M . We also define the parameter norm

set:

b :=
{
‖kn‖∏M

j=1 Cm,α((−1,1),R2)

}

n∈N
. (5.11)

Theorem 5.11 Let Condition 5.1 hold for some m ∈ N, α ∈ [0, 1], and s ∈ R.
Let Assumption 5.9 be satisfied with b j for j = 1, . . . , M as in (5.9) and for some
p ∈ (0, 1). Then the maps

U � y �→ λ y ∈
M∏

j=1

T
s, and U � y �→ μ y ∈

M∏

j=1

U
s

are (b, p, ε)-holomorphic for some ε > 0, p ∈ (0, 1) as in Assumption 5.9, and b
as in (5.11). Also, these maps are continuous when U is equipped with the product
topology.

Proof Being a direct consequence of Theorem 4.4, we only need to verify that the
hypotheses are satisfied. The role of the compact set K of Theorem 4.4 is played by K ,
which has the desired form and is compact due to the previous Lemma. Our definition
of b (5.11) coincides with that of Theorem 4.4, and we also have that b ∈ 	p(N) by
Assumption 5.9 (i). Finally, we observe that by Theorem 5.7, the maps

K � (r1, . . . , rM ) �→ λr1,...,rM ∈
M∏

j=1

T
s,

K � (r1, . . . , rM ) �→ μr1,...,rM ∈
M∏

j=1

U
s

have bounded holomorphic extensions. Moreover, by definition λ y,μ y, we have that
λ y = λk y , μ y = μk y , where λk y ,μk y are the corresponding elements f (k y) in
Theorem 4.4. The results then follow from Theorem 4.4 as stated. ��
Remark 5.12 The result stated in Theorem 5.11 enables us to conclude the parametric
holomorphy of linear functionals acting on λ y and μ y (cf. Remark 5.8).
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6 Applications: Time-Harmonic Acoustic and Elastic Wave Scattering

In the following, we consider two particular instances of the operator P , namely,
Helmholtz and elasticwave operators, and checkwhether the assumptions to guarantee
holomorphic extensions of their corresponding BIOs are satisfied.

6.1 Helmholtz Equation

The scalar Helmholtz operator with wavenumber κ ∈ R+ is given by P = −� − κ2.
In order to ensure well-posedness, one prescribes the following behavior at infinity

lim‖x‖→∞ ‖x‖ 1
2

(
∂u

∂‖x‖ − ıκu

)

= 0,

known as the Sommerfeld radiation condition. We refer to [25, 43] for uniqueness
of the Dirichlet problem and to [31] for the Neumann one. For the latter, the co-
normal trace becomes the standard Neumann trace, i.e. Bnu = n · ∇u = ∂nu for u
smooth enough, with continuous extensions to Sobolev spaces [30, Lemma 4.3]. The
fundamental solution of the operator P = −� − k2 in two-dimensional space is

Gκ(x, y) = i

4
H (1)
0 (κ ‖x − y‖), x, y ∈ R

2, (6.1)

where H (1)
0 denotes the Hankel function of first kind and order zero, defined as

H (1)
0 (z) = J0(z)+iY0(z) for z 	= 0, where J0,Y0 are the zeroth order Bessel functions

of first and second kind, respectively.

Corollary 6.1 (Helmholtz case) Consider the Dirichlet and Neumann BIEs (Problem
3.4) for the Helmholtz kernel (6.1) with κ > 0. Then, the arising BIOs and domain-
to-solution maps are shape holomorphic.

Proof From [1, 9.1.12 and 9.1.13], one has that

Gκ(x, y) = − 1

4π
log ‖x − y‖2 J0(κ‖x − y‖) + R(κ‖x − y‖2),

where the first kind Bessel function J0, and R are entire functions. Furthermore, from
[1, 9.1.12], one has that J0(0) = 1, and also J0(z) = j0(z2), with j0 being an entire
function. Hence, the representation of the form of (3.3) holds with

F1(z) = − 1

2π
j0(κz), and F2(z) = R(κz).

Therefore, shape holomorphy results for the Dirichlet problem follow directly from
Theorems 5.7 and 5.11.
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For the Neumann case, we make use of the corresponding Maue’s representation
formula [36, Corollary 3.3.24]:

(W
1,...,
M )i, j u(t) = d

dt

∫ 1

−1
G(r i (t), r j (τ ))

d

dτ
u(τ )dτ

− k2
∫ 1

−1
(r ′

i (t) · r ′
j (τ ))G(r i (t), r j (τ ))u(τ )dτ.

Thus, following the notation of Sect. 3.2 we have that

G̃(r i (t), r j (τ )) = −k2(r ′
i (t) · r ′

j (τ ))G(r i (t), r j (τ )).

Notice that this function has almost the same structure ofG(r i (t), r j (τ )) except for the
loss of onedegree of regularity becauseof the factors r ′

i , and r
′
j .However, asmentioned

in Remark 4.20, this does not have any impact, andwe obtain the corresponding results
for the Neumann problem. ��
Remark 6.2 For κ = 0 (Laplace operator), the fundamental solution becomes
G(x, y) = − 1

4π log ‖x − y‖2. Thus, well-posedness requires a suitable condition
at infinity. One particular alternative is to impose solutions to decay at infinity, which
for the Dirichlet problem implies that we have to change the space T s for the subspace
of functions such that 〈u, 1〉 = 0 (cf. [24, 43]).

6.2 ElasticWave Operators

In this case, one has thatP = α�+ (α +β)∇∇ ·+ω2. The parameters α, β are called
Lamé parameters2, with α > 0, α + β > 0, and ω > 0 is the angular frequency. We
also define the two standard pressure and shear wavenumbers

k2p := ω2

α + 2β
, k2s := ω2

β
.

The co-normal trace corresponds to the traction operator, defined as:

Bnu = αn(div(u)) + 2β∂nu + βn⊥(div(u⊥)),

where for v = (v1, v2) we set v⊥ = (v2,−v1). The standard condition at infinity is
called the Kupradze radiation condition [28]. We refer to [26] for uniqueness of the
related BVPs. In this case, the fundamental solution is given by

G(x, y) := i

4β
H (1)
0 (ksd)I + i

4ω2∇x∇x ·
(
H (1)
0 (ksd) − H (1)

0 (kpd)
)

, (6.2)

2 Typically, these are denotedμ, λ but we have changed this convention to α, β so as to avoid any confusion
with solutions of Dirichlet and Neumann problems, λ and μ, respectively.
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where d := ‖x − y‖, and I denotes the identity matrix. Alternatively, following [26]
this can be expressed as

G(x, y) = G1(d)I + G2(d)D(x − y),

where D(d) = ddt

‖d‖2 , and

G1(d) := i

4β
H (1)
0 (ksd) − i

4ω2d

(
ks H

(1)
1 (ksd) − kpH

(1)
1 (kpd)

)
,

G2(d) := i

4ω2

(
2ks H

(1)
1 (ksd) − 2kpH

(1)
1 (kpd)

d
+ k2pH

(1)
0 (kpd) − k2s H

(1)
0 (ksd)

)

Using the expansion ofHankel functions [1, 9.1.10 and 9.1.11], we can expressG1,G2

as

G j (d) = R j (d) + (log d2)J j (d), j = 1, 2.

where R1, R2 are entire functions on the variable d2, and

J 1(d) := − J0(ksd)

4πβ
+ 1

4πω2d

(
ks J1(ksd) − kp J1(kpd)

)
,

J 2(d) := − 1

4πω2

(
2ks J1(ksd) − 2kp J1(kpd)

d
+ k2p J0(kpd) − k2s J0(ksd)

)

.

Hence, from the series expansion of Bessel functions of zeroth and first order, we have
that J 1, J 2 are entire functions in the d2 variable, and also that

J 1(0) = − 1

4πβ
− 1

8πω2 (k2p − k2s ), J 2(0) = 0.

Thus, we can express the fundamental solution as

G(x, y) = (log d2)J + R, (6.3)

where J = J 1(d)I + J 2(d)D(x − y), and R = R1(d)I + R2(d)D(x − y). The only
difference with the canonical expression (3.3) is the presence of a factor D(x − y).
Let us study the properties of this factor.

Lemma 6.3 Consider two arcs r , and p and define the matrix function Dr, p as

(Dr, p(t, τ )) j,k :=

⎧
⎪⎪⎨

⎪⎪⎩

(r j (t) − p j (τ )) · (rk(t) − pk(τ ))

d2r, p(t, τ )
, r 	= p, or, t 	= s

r ′
j (t)r

′
k(τ )

r ′(t) · r ′(τ )
, otherwise

,
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where j, k ∈ 1, 2, and also two compact sets K 1, K 2 ⊂ Cm,α
b

(
(−1, 1), R

2
)
for some

m ∈ N, and α ∈ [0, 1].
(i) For K 1 = K 2, if we select δ as in Condition 4.15, then it holds that

r ∈ K 1 �→ (Dr,r) j,k ∈ Cm−1,α ((−1, 1) × (−1, 1), C) , j, k = 1, 2,

has a holomorphic extension in K 1
δ .

(ii) For K 1, K 2 disjoint sets, if δ1, δ2 as in Condition 4.14, then the map

(r, p) ∈ K 1 × K 2 �→ (Dr, p) j,k ∈ Cm,α ((−1, 1) × (−1, 1), C) , j, k = 1, 2,

has a holomorphic extension in K 1
δ1

× K 2
δ2
.

Proof For the first part, if t 	= τ we have that

(Dr,r(t, τ )) j,k = Q−1
r (t, τ )

(
r j (t) − r j (τ )

t − τ

)

·
(
rk(t) − rk(τ )

t − τ

)

,

where Q−1
r (t, τ ) = 1/Q r(t, τ ), and the results follow as in the proof of Lemma

4.17. The second part is direct from Lemma 4.16 and elementary results of complex
variable. ��
Corollary 6.4 (Elastic case) Consider the Dirichlet and Neumann BIEs (Problem 3.4)
for the time-harmonic elastic kernel (6.2) for α > 0, α + β > 0, and ω > 0. Then,
the arising BIOs and domain-to-solution maps are shape holomorphic.

Proof We only need to ensure that the integral kernels can be expressed as in 4.3.
The result for the Dirichlet problem follows directly by the decomposition of the
fundamental solution (6.3), Lemma 6.3 and also Remark 4.20 for the Dr,r factor.

For the Neumann problem, we use the following formula [5, Eq. 3.9],

(W
1,...,
M )i, ju =
∫ 1

−1
G1(r i (t), r j (τ ))u j (τ )ds+ d

dt

∫ 1

−1
G2(r i (t), r j (τ ))

du j (τ )

ds
ds

+
∫ 1

−1
G3(r i (t), r j (τ ))

du j (τ )

ds
ds

+ d

dt

∫ 1

−1
G2(r i (t), r j (τ ))u j (τ )ds,

(6.4)

where the first kernel function is

G1(r i (t), r j (τ )) := i

4

(
ρω2(r ′⊥

i (t)r ′⊥
j (τ )T − r ′

i (t) · r ′
j (τ )I)H (1)

0 (ksd)

− βkss (r
′⊥
j (τ )r ′⊥

i (t)T − r ′⊥
i (t)r ′⊥

j (τ )T )H (1)
0 (ksd)

−ρω2(r ′⊥
i (t)r ′⊥

j (τ )T )H (1)
0 (kpd)

)
,
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which only has logarithmic singularities as it is composed of zeroth-order Hankel
functions. Hence, it corresponds to the term G̃ in Maue’s formula (3.5). The holomor-
phic extension of the corresponding BIO is direct since the kernel function is of the
form described in Remark 4.20.

The second kernel in (6.4) is

G2(r i (t), r j (τ )) = 4β2AG(r i (t), r j (τ ))A + iβH (1)
0 (ksd)I,

where A =
(
0 −1
1 0

)

. From the analysis of the weakly singular BIO, we obtain the

holomorphic extension of the corresponding integral operator.
The third term in (6.4) is

iβr ′⊥
i (t)(r i (t) − r j (τ ))

2d

(
ks H

(1)
1 (ksd) − kpH

(1)
1 (kpd)

)
A,

which can be shown not to have any singularities, but the structure still is the one
described in Remark 4.20, only with G1 = 0. The associated integral BIO in (6.4)
can be seen as a map in L (Us, W

s), where the range is in W
s instead of Y

s . This is
due to the fact that if we start in U

s , by (2.5) the derivative changes the argument in
the operator to a function in T

s−1. Thus, by Corollary 4.9, we obtain the mentioned
mapping property. Though operators with the mentioned mapping properties were not
studied, by (2.3), we can still consider that this operator lies in L (Us, Y

s), and hence
it is compact inL (Us, Y

s−1
)
. The corresponding holomorphic extension then follows

arguing as in the regular part of Theorem 5.2. The final kernel function is

G4(r i (t), r j (τ )) = iβ(r i (t) − r⊥(τ ))r ′⊥
j (τ )T

2d

(
ks H

(1)
1 (ksd) − kpH

(1)
1 (kpd)

)
,

which is also a regular kernel, whose structure is described in Remark 4.20, with
G1 = 0. The mapping properties of the associated operator are not easily derived
since, if u j ∈ U

s , the evaluation of the BIO, discarding the derivative, would lie
in Y

s+1. Yet, we do not have a characterization of the derivative map in Y
s+1. We

circumvent this by using (2.4), and so if u j ∈ U
s then u j ∈ T

s , and hence the
evaluation of the integral operator is in W

s+1. Thus, by (2.5) the full operator is in
L (Us, Y

s) and compact inL (Us, Y
s−1
)
. Then, the holomorphic extension follows as

in the previous case. ��

7 Conclusions and FutureWork

We have shown a general framework for establishing parametric shape holomorphy of
BIEs in two-dimensional space with multiple arcs. Though we have limited our find-
ings to the case of homogeneous media, heterogeneous coefficients and non-explicit
fundamental solutions could also be addressed. Indeed, as long as the kernel can be
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decomposed as (3.3) all results hold. Future work involves the application of these
results in UQ and deep learning.

Funding This work was funded by ANID grants Fondecyt Iniciación No. 11230248 and Fondecyt Regular
No. 1231112.

Appendix A Immersion of Hölder Spaces

Herein, the symbol n will be used to denote a vector of two integers, not the normal
of an arc. Also, we denote the non-normalized Fourier basis by en(t) = exp (int), for
n ∈ Z, and the bi-periodic basis as en,l(t, τ ) = en(t)el(τ ), n, l ∈ Z.

We begin by introducing the Sobolev–Slobodeckij norm for bi-periodic functions
with domain [−π, π ] × [−π, π ]. Let n = (n1, n2) ∈ N

2
0, and γ = (γ1, γ2) ∈ [0, 1]2,

we define

‖g‖2n,γ =
∑

p≤n1

∑

q≤n2

‖∂ p
t ∂

q
s g(t, τ )‖2L2([−π,π ]×[−π,π ]) + |∂n1t ∂n2s g(t, τ )|2γ ,

where the Sobolev–Slobodeckij semi-norm is defined as

|u|2γ =
∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

|u(x, y) − u(t, y) + u(t, τ ) − u(x, s)|2
(
sin |x−t |

2

)1+2γ1 (
sin |y−s|

2

)1+2γ2
dxdydtds.

The semi-norm is generated by the following inner product:

〈u, v〉γ :=
∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

�̃u(x, t, y, s)�̃v(x, t, y, s)
(
sin |x−t |

2

)1+2γ1 (
sin |y−s|

2

)1+2γ2
dxdydtds,

where, the difference operator �̃ is given by

�̃u(x, t, y, s) := u(x, y) − u(t, y) + u(t, s) − u(x, s).

Following the uni-variate case [27, Theorem 8.6], we derive the following two results.

Lemma A.1 For (n1, l1), (n2, l2) ∈ Z
2 we have that:

〈en1,l1 , en2,l2〉γ = 16̃δn1,n2 δ̃l1,l2 Sγ1(n2)Sγ2(l2),

where δ̃n,m = 2πδn,m, for n,m ∈ Z, and

Sa(n) =
∫ π

0

(
sin

n

2
u
)2
(

sin
|u|
2

)−1−2a

du.
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Proof Wecompute the inner product between two basis, en1,l1 and en2,l2 . By permuting
integration variables, one has that

〈en1,l1 , en2,l2〉γ = 4
∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

en1,l1(x, y)�̃e−n2,−l2(x, t, y, s)
(
sin |x−t |

2

)1+2γ1 (
sin |y−s|

2

)1+2γ2
dxdydtds.

The right-hand side term is decomposed into the sum of four integrals defined as

I1 :=
∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

en1,l1(x, y)e−n2,−l2(x, y)
(
sin |x−t |

2

)1+2γ1 (
sin |y−s|

2

)1+2γ2
dxdydtds,

I2 := −
∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

en1,l1(x, y)e−n2,−l2(t, y)
(
sin |x−t |

2

)1+2γ1 (
sin |y−s|

2

)1+2γ2
dxdydtds,

I3 :=
∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

en1,l1(x, y)e−n2,−l2(t, τ )
(
sin |x−t |

2

)1+2γ1 (
sin |y−s|

2

)1+2γ2
dxdydtds,

I4 := −
∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

en1,l1(x, y)e−n2,−l2(x, s)
(
sin |x−t |

2

)1+2γ1 (
sin |y−s|

2

)1+2γ2
dxdydtds.

We perform the change of variables u = t − x , and v = s − y in the four integrals,
and by the periodicity of the involving factors, we get

I1 := δ̃n1,n2 δ̃l1,l2

∫ π

−π

(

sin
|u|
2

)−1−2γ1
du
∫ π

−π

(

sin
|v|
2

)−1−2γ2
dv,

I2 := −δ̃n1,n2 δ̃l1,l2

∫ π

−π

e−n2(u)

(

sin
|u|
2

)−1−2γ1
du
∫ π

−π

(

sin
|v|
2

)−1−2γ2
dv,

I3 := δ̃n1,n2 δ̃l1,l2

∫ π

−π

e−n2(u)

(

sin
|u|
2

)−1−2γ1
du
∫ π

−π

e−l2(v)

(

sin
|v|
2

)−1−2γ2
dv,

I4 := −δ̃n1,n2 δ̃l1,l2

∫ π

−π

(

sin
|u|
2

)−1−2γ1
du
∫ π

−π

e−l2(v)

(

sin
|v|
2

)−1−2γ2
dv.

Since the Fourier basis elements are en(t) = cos(nt) + i sin(nt), onw can use the
symmetries of cosine and sine functions to obtain

∫ π

−π

(1 − e−n2(u))

(

sin
|u|
2

)−1−2γ1
du = 2

∫ π

0
(1 − cos(n2u))

(

sin
|u|
2

)−1−2γ1
du.

Furthermore, we invoke the double-angle formula for the cosine so as to arrive at

∫ π

−π

(1 − e−n2(u))

(

sin
|u|
2

)−1−2γ1
du = 4

∫ π

0

(
sin

n2u

2

)2
(

sin
|u|
2

)−1−2γ1
du.
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Using this, we find

〈en1,n2 , el1,l2〉γ = 16̃δn1,n2 δ̃l1,l2
∫ π

0

(
sin

n2u

2

)2
(

sin
|u|
2

)−1−2γ1
du
∫ π

0

(

sin
l2v

2

)2 (

sin
|v|
2

)−1−2γ2
du.

which is equivalent to the statement of the lemma. ��
Lemma A.2 Let γ = (γ1, γ2) ∈ [0, 1]2, and � a bi-periodic function in [−π, π ] ×
[−π, π ], then

‖�‖2γ1,γ2 � ‖�‖2L2([−π,π ]×[−π,π ]) + |�|2γ ,

i.e. the Sobolev norm for two pure fractional orders γ1, γ2 of a bi-periodic function is
bounded by the Sobolev–Slobodeckij norm of order (0, 0), (γ1, γ2).

Proof We consider a function � expanded in terms of bi-periodic Fourier basis func-
tions. By Lemma A.1, it holds that

|�|2γ = 〈�, �〉γ ∼=
∞∑

n=−∞

∞∑

l=−∞
|̃�n,l |2Sγ1(n)Sγ2(l).

From [27, (8.8)], we have that the function Sa(n) from LemmaA.1, behave as Sa(n) ∼=
(n2)a , for a ∈ [0, 1]. Consequently,

|�|2γ ∼=
∞∑

n=−∞

∞∑

l=−∞
|̃�n,l |2(n2)γ1(l2)γ2 .

We can now use the well-known inequality (1+n2)γ1 ≤ (n2)γ1 +1—analogously for
l and γ2—, so that

‖�‖2γ1,γ2 =
∞∑

n=−∞

∞∑

l=−∞
(1 + n2)γ1(1 + l2)γ2 |̃�n,l |2 � |�|2γ + ‖�‖2L2([−π,π ]×[−π,π ])

as stated. ��

A.1 Proof of Lemma 2.1

We will first show that ‖g‖2s1,s2 can be bounded by the Sobolev–Slobodeckij norm
‖g‖2n,γ , with n = ([s1], [s2]), and γ = ({s1}, {s2}), where [s1], [s2] denote the integer
parts of s1, s2 respectively and {s1}, {s2} are the corresponding fractional parts. By
definition, one has that

‖g‖2s1,s2 =
∞∑

n=−∞

∞∑

l=−∞
(1 + n2){s1}(1 + l2){s2}(1 + n2)[s1](1 + l2)[s2]

∣
∣̃gn,l

∣
∣2
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Using the inequality (1 + n2)s � (n2)s + 1, we obtain

‖g‖2s1,s2 �
∞∑

n=−∞

∞∑

l=−∞
(1 + n2){s1}(1 + l2){s2}(1 + n2[s1])(1 + l2[s2])

∣
∣̃gn,l

∣
∣2

�
[s1]∑

p=0

[s2]∑

q=0

∞∑

n=−∞

∞∑

l=−∞
(1 + n2){s1}(1 + l2){s2}(1 + n2p)(1 + l2q)

∣
∣̃gn,l

∣
∣2

�
[s1]∑

p=0

[s2]∑

q=0

∞∑

n=−∞

∞∑

l=−∞
(1 + n2){s1}(1 + l2){s2}(1 + n2pl2q)

∣
∣̃gn,l

∣
∣2 .

We notice that the Fourier coefficients of ∂
p
t ∂

q
s g are in fact (in)p(il)q g̃n,l . Hence, we

obtain that

‖g‖2s1,s2 �
[s1]∑

p=0

[s2]∑

q=0

∞∑

n=−∞

∞∑

l=−∞
(1 + n2){s1}(1 + l2){s2}

∣
∣
∣
∣
∣

(
˜

∂
[p]
t ∂

[q]
s g(t, τ )

)

n,l

∣
∣
∣
∣
∣

2

+
∞∑

n=−∞

∞∑

l=−∞
(1 + n2){s1}(1 + l2){s2}

∣
∣̃gn,l

∣
∣2 .

(A1)

From the last inequality, we notice that for {s1} = {s2} = 0, we have that

‖g‖2s1,s2 �
[s1]∑

p=0

[s2]∑

q=0

∞∑

n=−∞

∞∑

l=−∞

∣
∣
∣
∣
∣

(
˜

∂
[p]
t ∂

[q]
s g(t, τ )

)

n,l

∣
∣
∣
∣
∣

2

+
∞∑

n=−∞

∞∑

l=−∞

∣
∣̃gn,l

∣
∣2 .

Then, by Parseval’s identity we obtain

‖g‖2s1,s2 � ‖g‖2([s1],[s2]),(0,0).

In any other case, {s1} > 0 or {s2} > 0, for every p ∈ {0, . . . , [s1]} and
q ∈ {0, . . . , [s2]} we define �p,q = ∂

p
t ∂

q
s g(t, τ ), and from (A1) we see that we

only need to show that

∞∑

n=−∞

∞∑

l=−∞
(1 + n){s1}(1 + l2){s2}

∣
∣
∣�̃p,q

n,l

∣
∣
∣
2

� ‖�‖2(0,0),({s1},{s2}),

which holds by Lemma A.2 with � := �[s1],[s2]. We conclude that

‖g‖2s1,s2 � ‖g‖2([s1],[s2]),({s1},{s2}). (A2)

To finish the proof we will bound the general norm ‖g‖2n,γ , in terms of a
Cm,α ([−π, π ] × [−π, π ], C)-norm with appropriate m ∈ N0, and α ∈ [0, 1]. First,
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from the definition of Hölder norms, it holds that

‖g‖2n,(0,0) � ‖g‖Cm,α([−π,π ]×[−π,π ],C),

for m + α ≥ n1 + n2. For the purely fractional case, we have that for any a, b > 0
such that a + b = 1

|g|2(γ1,γ2) � ‖g‖2C0,α([−π,π ]×[−π,π ],C)

×
⎛

⎜
⎝

∫ π

−π

∫ π

−π

|x − t |2aα

(
sin |x−t |

2

)1+2γ1
dtdx

⎞

⎟
⎠

⎛

⎜
⎝

∫ π

−π

∫ π

−π

|y − s|2bα
(
sin |y−s|

2

)1+2γ2
dsdy

⎞

⎟
⎠ ,

and thus, the right-hand side is finite only if α > γ1 + γ2. However, this condition
cannot be used whenever γ1 + γ2 ≥ 1. For the latter, we assume that m ≥ 1, and by
the mean value theorem, we see that

|g(x, y) − g(t, y) + g(t, τ ) − g(x, s)| =
∣
∣
∣
∣

∫ x

t
∂1g(λ, y) − ∂1g(λ, s)dλ

∣
∣
∣
∣

= |x − t | |∂1g(ξ, y) − ∂t g(ξ, s)|
≤ |x − t ||y − s|α‖g‖C1,α([−π,π ]×[−π,π ],C).

Similarly, by reordering terms we conclude that

|g(x, y) − g(t, y) + g(t, τ ) − g(x, s)| ≤ |y − s||x − t |α‖g‖C1,α([−π,π ]×[−π,π ],C).

Thus, for every a ≥ 0, b ≥ 0 such that a + b = 1 we have

|g|2γ � ‖g‖2C1,α([−π,π ]×[−π,π ],C)

×
∫ π

−π

∫ π

−π

∫ π

−π

∫ π

−π

(|x − t |a+αb|y − s|b+αa)2

(
sin |x−t |

2

)1+2γ1 (
sin |y−s|

2

)1+2γ2
dxdydtds,

and one can easily see that integrals in the right-hand side are finite if α > γ1+γ2−1.
Finally, we conclude that

‖g‖2n,γ � ‖g‖2Cm,α([−π,π ]×[−π,π ],C)

×
{
for n1 + n2 + γ1 + γ2 < m + α if α1 + α2 < 1,

for (n1 + n2 + 1) + (γ1 + γ2 − 1) < m + α, if γ1 + γ2 ≥ 1.

which is equivalent to

‖g‖2n,γ � ‖g‖2Cm,α([−π,π ]×[−π,π ],C),
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if n1 + n2 + γ1 + γ2 < m +α. The statement of the lemma then follows from this last
bound and (A2). ��

Appendix B Proofs Lemmas 4.16 and 4.17

We present proofs for Lemmas 4.16 and 4.17. For the latter, we will need the following
auxiliary result.

Lemma B.1 Let m ∈ N, α ∈ [0, 1] and K ⊂ Cm,α
b

(
(−1, 1), R

2
)
be a compact set of

Cm,α
(
(−1, 1), R

2
)
.

(i) It holds that

inf
r∈K inf

t∈(−1,1)
‖r ′(t)‖ > 0 and sup

r∈K
sup

t∈(−1,1)
‖r ′(t)‖ < ∞.

(ii) There exists δ > 0 such that

inf
r∈Kδ

inf
t∈(−1,1)

Re({(r ′(t) · r ′(t))} > 0.

i.e. there exists δ > 0 fulfilling Condition 4.15.

Proof The first part follows from the continuity of

I(r):= inf
t∈(−1,1)

‖r ′(t)‖ and S(r):= sup
t∈(−1,1)

‖r ′(t)‖

in Cm,α
b

(
(−1, 1), R

2
)
. Indeed, if for each r ∈ Cm,α

b

(
(−1, 1), R

2
)
we consider any

p ∈ Cm,α
(
(−1, 1), R

2
)
such that ‖r − p‖Cm,α((−1,1),R2) < ε, one has that

|I(r) − I( p)| ≤ inf
t∈(−1,1)

∣
∣
∥
∥r ′(t)

∥
∥− ∥∥ p′(t)

∥
∥
∣
∣

≤ inf
t∈(−1,1)

∥
∥r ′(t) − p′(t)

∥
∥ ≤ ‖r − p‖Cm,α((−1,1),R2) < ε.

Thus, one concludes that the map r �→ I(r) is continuous, and then the infimum in
K is achieved since K is compact. The supremum case follows similarly.

For the second part we set

I1 = inf
r∈K I(r) and S1 = sup

r∈K
S(r),

and consider any element r ∈ Kδ . Then, there is p ∈ K such that ‖r −
p‖Cm,α((−1,1),R2) < δ, and it holds that

r ′ · r ′ = ‖r ′‖2 + 2(r ′ − p′) · p′ + (r ′ − p′) · (r ′ − p′).

Therefore,

Re(r ′ · r ′) ≥ I2
1 − 2S1δ − δ2,
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and the result then follows by selecting δ <

√
I2
1 + S2

1 − S1. ��

B.1 Proof of Lemma 4.16

First, we prove that the map

r, p ∈ Cm,α
(
(−1, 1), C

2
)

× Cm,α
(
(−1, 1), C

2
)

→ d2r, p ∈ Cm,α ((−1, 1), C)

has a Fréchet derivative at every point. Consequently, the holomorphic extension
in compact sets of Cm,α

b

(
(−1, 1), R

2
) × Cm,α

b

(
(−1, 1), R

2
)
follows directly. We

limit ourselves to the case m ≥ 1 since the result is formulated in terms of
Cm,α
b

(
(−1, 1), R

2
)
and by convention C0,αb

(
(−1, 1), R

2
) = ∅.

Choose two arbitrary functions r, p ∈ Cm,α
(
(−1, 1), C

2
)
. Since, d2r, p(t, τ ) =

(r1(t) − p1(τ ))2 + (r2(t) − p2(τ ))2, we have that

d2r, p(t, τ ) ∈ Cm,α ((−1, 1) × (−1, 1), C) .

For a pair v1, v2 ∈ Cm,α
(
(−1, 1), C

2
)
, we define

Dd2r, p[v1, v2](t, τ ) := 2(r(t) − p(τ )) ·
(
v1(t) − v2(τ )

)
,

which is linear in v1, v2 and lies in Cm,α ((−1, 1) × (−1, 1), C). Finally, we notice
that

d2r+v1, p+v2
(t, τ ) − d2r, p(t, τ ) − Dd2r, p[v1, v2](t, τ ) = d2

v1,v2
(t, τ ).

by the product derivation rule, one can directly show that

‖d2
v1,v2

(t, τ )‖Cm,α((−1,1)×(−1,1),C) �‖v1‖2Cm,α((−1,1),C2)
+ ‖v2‖2Cm,α((−1,1),C2)

.

Hence, Dd2r, p[v1, v2] is in fact the Fréchet derivative of d2r, p. Since r, p are arbitrary,
the distance function is holomorphic in an arbitrary open set of Cm,α

(
(−1, 1), C

2
)×

Cm,α
(
(−1, 1), C

2
)
.

For the final part, since the sets are admissible we have by Assumption 4.13, it
holds that

Id = inf
(r, p)∈K 1×K 2

inf
(t,τ )∈(−1,1)×(−1,1)

‖r(t) − p(τ )‖ > 0.

Then, for any δ1, δ2 > 0 (r, p) ∈ K 1
δ1

× K 2
δ2
, and (̃r, p̃) ∈ K 1 × K 2 we have that

d2r, p(t, τ ) = (r(t) − p) · (r(t) − p) = ((r − r̃)(t) + ( p̃ − p)(τ ) + r̃(t) − p̃(τ ))

·((r − r̃)(t) + ( p̃ − p)(τ ) + r̃(t) − p̃(τ )).
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Aassuming that r̃, p̃ are such that

‖r − r̃‖Cm,α((−1,1),C2) < δ1, ‖ p − p̃‖Cm,α((−1,1),C2) < δ2

we get the bound

Re(d2r, p(t, τ )) ≥ I2
d − 2Sd(δ1 + δ2) − (δ1 + δ2)

2,

where Id , and Sd are defined as in Condition 4.14. Hence, it follows directly that if
δ1, δ2 satisfying Condition 4.14 we have that

Re(d2r, p(t, τ )) > 0.

B.2 Proof of Lemma 4.17

Consider r ∈ Cm,α
(
(−1, 1), C

2
)
, withm ≥ 1, as in LemmaB.1. By Taylor expansion,

it is immediate that

Q r ∈ Cm−1,α ((−1, 1) × (−1, 1), C) .

For v ∈ Cm,α
(
(−1, 1), C

2
)
, let us define

DQ r [v](t, τ ) = 2(r(t) − r(τ )) · (v(t) − v(τ ))

(t − s)2
,

with the continuous extension for t = s, given by the Taylor expansions of r
and v. It is clear that DQ r [v] is linear in the v variable and also DQ r [v] ∈
Cm−1,α ((−1, 1) × (−1, 1), C). We also have that

d2r+v(t, τ ) = d2r (t, τ ) + 2(r(t) − r(τ )) · (v(t) − v(τ )) + d2v (t, τ ).

Therefore, one has that

Q r+v(t, τ ) = Q r(t, τ ) + DQ r [v](t, τ ) + Qv(t, τ ).

Arguing as in the proof of Lemma 4.16, we have that

‖Qv‖Cm−1,α((−1,1)×(−1,1),C2) � ‖v‖2Cm,α((−1,1),C2)
,

and one concludes that there is a Fréchet derivative everywhere. Thus, the function
has a holomorphic extension in Cm,α

b

(
(−1, 1), R

2
)
.

Now, we show that the real part is strictly positive. Using the Taylor expansion once
again, we have that
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d2r (t, τ ) = (t − s)2
(∫ 1

0
r ′(t + δ(s − t))dδ

)

·
(∫ 1

0
r ′(t + δ(s − t))dδ

)

.

Consequently, we can write

Q r(t, τ ) =
(∫ 1

0
r ′(t + δ(s − t))dδ

)

·
(∫ 1

0
r ′(t + δ(s − t))dδ

)

.

The result then follows from the mean value theorem and selecting δ as in Lemma
B.1. The results for Q−1

r follows using the fact that the function z−1 is holomorphic
away from zero.
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