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Abstract
In this paper, we consider a weighted version of one-dimensional discrete Hardy
inequalities with power weights of the form nα . We prove the inequality when α

is an even natural number with the sharp constant and remainder terms. We also
find explicit constants in standard and weighted Rellich inequalities(with weights nα)
which are asymptotically sharp as α → ∞. As a by-product of this work we derive
a combinatorial identity using purely analytic methods, which suggests a plausible
correlation between combinatorial and functional identities.
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1 Introduction

The classical Hardy inequality on the positive half-line reads as

∫ ∞

0
|u′(x)|2dx ≥ 1/4

∫ ∞

0

|u(x)|2
x2

dx, (1.1)

for u ∈ C∞
0 (0,∞), the space of smooth and compactly supported functions. This

inequality first appeared in Hardy’s proof of Hilbert’s theorem [9] and then in the
book [10]. It was later extended to higher order derivatives by Birman [3]: Let k ∈ N
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and u ∈ C∞
0 (0,∞), then

∫ ∞

0
|u(k)(x)|2dx ≥ 22k

[(2k − 1)!!]2
∫ ∞

0

|u(x)|2
x2k

dx, (1.2)

where u(k) denotes the kth derivative of u and (2k − 1)!! = (2k − 1)(2k − 3)(2k −
5) . . . 3 · 1. Inequality (1.2) for k = 2 is referred to as Rellich inequality. Note that
constants in (1.1) and (1.2) are sharp, that is, these inequalities fail to hold true for a
strictly bigger constant.

The main goal of this paper is to study a discrete analogue of (1.1) and (1.2) as
well as their weighted versions on integers. A well known discrete variant of (1.1)
states: Let N0 denotes the set of non-negative integers and u : N0 → R be a finitely
supported function with u(0) = 0. Let Du(n) := u(n) − u(n − 1) denote the first
order difference operator on N0. Then

∞∑
n=1

|Du(n)|2 ≥ 1

4

∞∑
n=1

|u(n)|2
n2

. (1.3)

The constant in (1.3) is sharp. This inequality was developed alongside the integral
inequality (1.1) during the period 1906–1928: [19] contains many stories and contri-
butions of other mathematicians such as E. Landau, G. Polya, I. Schur and M. Riesz
in the development of Hardy inequality. We would also like to mention some recent
proofs of Hardy inequality (1.3) [7, 13, 17, 18, 20] as well as [2, 4, 5, 8, 11, 14–16,
22, 23], where various variants of (1.3) have been studied and applied: extensions of
(1.3) to higher dimensional integer lattice, on combinatorial trees, general weighted
graphs, etc.

In this paper, we are concerned with an extension of inequality (1.3) in two direc-
tions. First, we consider a weighted version of (1.3) with power weights nα:

∞∑
n=1

|Du(n)|2nα ≥ c
∞∑
n=1

|u(n)|2
n2

nα, (1.4)

for some positive constant c. We prove inequality (1.4) with the sharp constant and
furthermore improve it by adding lower order remainder terms in the RHS. This is
done when α is a non-negative even integer. This problem has been studied previously:
in [21], (1.4) was proved when α ∈ (0, 1) and recently it was extended to α > 5 in
[8]. In this paper, we provide a new method to prove these inequalities, which extends
and improves previously known results.

Secondly, we consider the higher order versions of inequality (1.3), in which the
“discrete derivative” on the LHS of (1.3) is replaced by higher order operators. In
other words, we prove a discrete analogue of inequalities (1.2). In particular, we find
a constant c(k) in the following Rellich inequality for finitely supported functions on
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non-negative integers:

∞∑
n=0

|�u(n)|2 ≥ c
∞∑
n=1

|u(n)|2
n4

, (1.5)

where the second order difference operator on N0, called Laplacian is given by

�u(n) :=
{
2u(n) − u(n − 1) − u(n + 1), if n ∈ N

u(0) − u(1), if n = 0

This is a well known discrete analogue of second order derivative. Inequality (1.5) has
been considered in the past in a general setting of graphs [12, 15]. In these papers,
authors developed a general theory to tackle problems of the kind (1.5), however; one
cannot deduce the Rellich inequality (1.5) from their general theory. To the author’s
best knowledge, this is the first time an explicit constant has been computed in the
discrete Rellich inequality (1.5). We also prove inequality (1.5) with weights n2k , for
positive integers k. The constant obtained is asymptotically sharp as k → ∞.

As a side product, we discovered a surprising connection between functional and
combinatorial identities. Using purely analytic methods, we managed to prove a non-
trivial combinatorial identity, whose appearance in the context of discrete Hardy-type
inequalities seems mysterious. This connection will be explained in Sects. 3 and 6.
We hope that the analytic method presented here might lead to the discovery of new
combinatorial identities.

The paper is structured as follows: In Sect. 2, we state the main results of the paper.
In Sect. 3, we prove auxiliary results using which we prove our main results in Sects. 4
and 5. In Sect. 6, we prove a combinatorial identity using lemmas proved in Sect. 3.
Finally we conclude the paper with an appendix 1.

Remark 1.1 For the convenience of reader we would recommend that reader should
read Sects. 4 and 5 before reading Sect. 3 to get a better understanding of ideas involved
and origin of the lemmas proved in Sect. 3.

2 Main Results

2.1 Hardy Inequalities

Theorem 2.1 (Improved weighted Hardy inequalities) Let u ∈ Cc(Z), the space of
finitely supported functions, and also assume u(0) = 0. Then for k ∈ N, we have

∑
n∈Z

|u(n) − u(n − 1)|2
(
n − 1

2

)2k

≥
k∑

i=1

γ k
i

∑
n∈Z

|u(n)|2n2k−2i

+2−2k−2
∑

n∈Z\{0}

|u(n)|2
n2

, (2.1)
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where the non-negative constants γ k
i are given by

22iγ k
i := 2

(
2k

2i

)
− 2

(
k

i

)
+

(
k

i − 1

)
. (2.2)

Here �(x) denotes the Gamma function and
(x
y

) := �(x+1)
�(x−y+1)�(y+1) denotes the bino-

mial coefficient.

Dropping the remainder terms in inequality (2.1) gives the following weighted
Hardy inequalities:

Corollary 2.2 (Weighted Hardy inequalities) Let u ∈ Cc(Z) and u(0) = 0. Then for
k ∈ N, we have

∑
n∈Z

|u(n) − u(n − 1)|2
(
n − 1

2

)2k

≥ (2k − 1)2

4

∑
n∈Z

|u(n)|2n2k−2. (2.3)

Moreover, the constant (2k − 1)2/4 is sharp.

We would like to mention that inequality (2.3) was proved in paper [22] with the
weight (n − 1/2)α and α ∈ (0, 1). Note that the above inequalities reduce to corre-
sponding Hardy inequalities on non-negative integers N0, when we restrict ourselves
to functions u taking value zero on negative integers.

Using the method used in the proofs of above Hardy inequalities, we also managed
to prove higher-order versions of theHardy inequality, in-particularwe prove a discrete
Rellich inequality which has been missing from the current literature.

2.2 Higher Order Hardy Inequalities

Theorem 2.3 (Higher order Hardy inequalities) Let m ∈ N. Then we have

∞∑
n=0

|�mu(n)|2 ≥ 1

24m

2m−1∏
i=0

(8m − 3 − 4i)
∞∑
n=1

|u(n)|2
n4m

, (2.4)

for all u ∈ Cc(N0) with u(i) = 0 for 0 ≤ i ≤ 2m − 1, and

∞∑
n=1

|D(�mu)(n)|2 ≥ 1

24m+2

2m∏
i=0

(8m + 1 − 4i)
∞∑
n=1

|u(n)|2
n4m+2 , (2.5)

for all u ∈ Cc(N0) with u(i) = 0 for 0 ≤ i ≤ 2m. Here Du and �u denotes the first
and second order difference operators on N0 respectively.

Theorem 2.3 is a discrete analogue of inequalities of Birman (1.2). Inequality (2.4)
for m = 1 gives Rellich inequality:
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Corollary 2.4 (Rellich inequality) Let u ∈ Cc(N0) and u(0) = u(1) = 0. Then we
have

∞∑
n=0

|�u(n)|2 ≥ 5

16

∞∑
n=1

|u(n)|2
n4

. (2.6)

Remark 2.5 It is worthwhile to notice that in Theorem 2.3 the number of zero condi-
tions on the function u equals the order of the operator. Whether the number of zero
conditions are optimal or not is not clear to us. Furthermore, we don’t believe the
constants obtained in Theorem 2.3 are sharp. There seems to be a lot of room for the
improvement in the constants, though it is not clear how to get better explicit bounds.

Finally, we obtain explicit constants in weighted versions of higher order Hardy
Inequalities. For functions u : Z → R we define the first and second order difference
operators on Z analogously: Du(n) := u(n)−u(n−1) and �u(n) := 2u(n)−u(n−
1) − u(n + 1).

Theorem 2.6 (Power weight higher order Hardy inequalities) Let m ≥ 1 and u ∈
Cc(Z) with u(0) = 0. Let Du and �u denote the first and second order difference
operators on Z. Then

∑
n∈Z

|�mu(n)|2n2k ≥
m−1∏
i=0

C(k − 2i)
∑
n∈Z

|u(n)|2n2k−4m (2.7)

for k ≥ 2m and

∑
n∈Z

|D(�mu)(n)|2
(
n − 1

2

)2k

≥ (2k − 1)2

4

m−1∏
i=0

C(k − 1 − 2i)

∑
n∈Z

|u(n)|2n2k−4m−2 (2.8)

for k ≥ 2m + 1, where C(k) is given by

C(k) := k(k − 1)(k − 3/2)2. (2.9)

Remark 2.7 By taking nβ as test functions in the inequalities (2.7) and (2.8) it can be
easily seen that the sharp constants in these inequalities are of the order O(k4m) and
O(k4m+2) respectively. Therefore constants obtained in Theorem 2.6 are asymptoti-
cally sharp as k → ∞.
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3 Some Auxiliary Results

Lemma 3.1 Let u ∈ C∞([−π, π ]). Furthermore, assume that derivatives of u satisfy
dku(−π) = dku(π) for all k ∈ N0. For every k ∈ N we have

∫ π

−π

|dk(u sin(x/2))|2dx =
k∑

i=0

αk
i

∫ π

−π

|diu|2dx

+
k∑

i=0

βk
i

∫ π

−π

|diu|2 sin2(x/2)dx, (3.1)

where

22(k−i)αk
i := 1

2

(
2k

2i

)
− 1

2
(−1)k−i

(
k

i

)2

− 1

2
(−1)k−iξ ki , (3.2)

22(k−i)βk
i := (−1)k−iξ ki + (−1)k−i

(
k

i

)2

, (3.3)

and

ξ ki :=
∑

0≤m≤min{i,k−i}
1≤n≤k−i

(−1)n2n−m
(
k + 1

i − m

)(
k

i + n

)(
n − 1

m

)
. (3.4)

Proof Using the Leibniz product rule for the derivative we get

|dk(u(x) sin(x/2))|2 =|
k∑

i=0

(
k

i

)
diu(x)dk−i sin(x/2)|2

=
k∑

i=0

(
k

i

)2

|diu(x)|2|dk−i sin(x/2)|2

+ 2Re
∑

0≤i< j≤k

(
k

i

)(
k

j

)
di

u(x)d ju(x)dk−i sin(x/2)dk− j sin(x/2).

Integrating both sides, we obtain

∫ π

−π

|dk(u(x) sin(x/2))|2 =
k∑

i=0

(
k

i

)2 ∫ π

−π

|diu(x)|2|dk−i sin(x/2)|2

+ 2Re
∑

0≤i< j≤k

(
k

i

)(
k

j

) ∫ π

−π

diu(x)

d ju(x)dk−i sin(x/2)dk− j sin(x/2).

(3.5)
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Let 0 ≤ i < j and I (i, j) :=Re
∫ π

−π
diu(x)d ju(x)dk−i sin(x/2)dk− j sin(x/2).

Applying integration by parts iteratively, we get

I (i, j) = Re
∫ π

−π

diu(x)d ju(x)dk−i sin(x/2)dk− j sin(x/2)

=
� i+ j

2 	∑
σ=i

∫ π

−π

Ci, j
σ (x)|dσu|2, (3.6)

where Ci, j
σ is given by

Ci, j
σ (x) =

(
j − σ − 1

σ − i − 1

)
(−1) j−σdi+ j−2σ wi j (x)

+ 1

2

(
j − σ − 1

σ − i

)
(−1) j−σdi+ j−2σ wi j (x),

and wi j (x) := dk−i sin(x/2)dk− j sin(x/2).1

Using (3.6) in (3.5), we see that

∫ π

−π

|dk(u(x) sin(x/2))|2 =
k∑

i=0

∫ π

−π

Di (x)|diu|2, (3.7)

since the derivatives which appear in the expression of I (i, j) are of order between
i and � i+ j

2 	. Observing that the terms which contributes to Di are of the form I (i −
m, i + n) with the condition m ≤ n, we get the following expression for Di (x):

Di (x) = 2
∑

0≤m≤min{i,k−i}
m≤n≤k−i

(
k

i − m

)(
k

i + n

)
Ci−m,i+n
i (x),

where Ci,i
i (x) := 1

2 |dk−i sin(x/2)|2.
It can be checked that for non-negative integers l, dlwi j (x) ∈ {sin2(x/2),

cos2(x/2), cos x, sin x} (with some multiplicative constant). Thus Di (x) is a linear
combination of sin2(x/2), cos2(x/2),
cos x and sin x . Namely, we have

Di (x) = Ci
1 sin

2(x/2) + Ci
2 cos

2(x/2) + Ci
3 cos x + Ci

4 sin x .

Note that sin2(x/2) can appear in the expression of Di iff wi−m,i+n is a multiple of
sin2(x/2) and m = n. Further, observing that wi−m,i+m is a multiple of sin2(x/2) iff
k − i + m is even, we get

1 See Appendix 1 for a proof of identity (3.6).
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Ci
1 = 2

∑
1≤m≤min{i,k−i}
k−i+m is even

2−2(k−i)
(

k

i − m

)(
k

i + m

)
+ 2−2(k−i)

(
k

i

)2

δi , (3.8)

where
δi := 1 if k − i is even

0 if k − i is odd
Similarly, cos2(x/2) can appear in the expression of Di iff wi−m,i+n is a multiple

of cos2(x/2) and m = n, and wi−m,i+m is a multiple of cos2(x/2) iff k − i + m is
odd. Therefore we have

Ci
2 = 2

∑
1≤m≤min{i,k−i}
k−i+m is odd

2−2(k−i)
(

k

i − m

)(
k

i + m

)
+ 2−2(k−i)

(
k

i

)2

(1 − δi ).

(3.9)

Let us compute the coefficient of sin x in Di . Observe that sin x can appear in Di in
two different ways; first, when eitherwi−m,i+n is a multiple of sin2(x/2) or cos2(x/2)
and n − m is odd; secondly, when wi−m,i+n is a multiple of sin x and n − m is even.
Further, observing that wi−m,i+n is a multiple of sin2(x/2) or cos2(x/2) iff n − m is
even and wi−m,i+n is a multiple of sin x iff n − m is odd implies that Ci

4 = 0.
After computing Ci

1,C
i
2 and C

i
4, it’s not hard to see that

Ci
3 = (−1)k−i−12−2(k−i)

∑
0≤m≤min{i,k−i}

m<n≤k−i

(−1)n2n−m
(

k

i − m

)(
k

i + n

)

((
n − 1

m − 1

)
+ 1

2

(
n − 1

m

))
. (3.10)

Simplifying further, we find that Di (x) = (Ci
2+Ci

3)+ (Ci
1−Ci

2−2Ci
3) sin

2(x/2).
Next we simplify the constants (Ci

2 + Ci
3) and (Ci

1 − Ci
2 − 2Ci

3). Let

ξ ki :=
∑

0≤m≤min{i,k−i}
1≤n≤k−i

(−1)n2n−m
(
k + 1

i − m

)(
k

i + n

)(
n − 1

m

)

and consider

(−1)k−i−1Ci
3 = 2−2(k−i)

∑
0≤m≤min{i,k−i}

m<n≤k−i

(−1)n2n−m
(

k

i − m

)(
k

i + n

)

((
n − 1

m − 1

)
+ 1

2

(
n − 1

m

))

= 2−2(k−i)

2
ξ ki −

∑
1≤m≤min{i,k−i}

(−1)m2−2(k−i)
(

k

i − m

)(
k

i + m

)
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= 2−2(k−i)

2
ξ ki − (−1)k−i

2

(
Ci
1 − Ci

2 + 2−2(k−i)
(
k

i

)2

(1 − 2δi )

)
.

Simplifying further we obtain

22(k−i)
(
Ci
1 − Ci

2 − 2Ci
3

)
= (−1)k−iξ ki + (−1)k−i

(
k

i

)2

. (3.11)

Using the expression of Ci
3 from (3.11), we get

22(k−i)
(
Ci
2 + Ci

3

)
=

∑
1≤m≤min{i,k−i}

(
k

i − m

)(
k

i + m

)
+ 1

2

(
k

i

)2

− 1

2
(−1)k−i

(
k

i

)2

− 1

2
(−1)k−iξ ki

=1

2

(
2k

2i

)
− 1

2
(−1)k−i

(
k

i

)2

− 1

2
(−1)k−iξ ki .

(3.12)

In the last step we used Chu-Vandermonde Identity:
(m+n

r

) =
r∑

i=0

(m
i

)( n
r−i

)
with as

change of variable. 
�
Lemma 3.2 Let u be a function satisfying the hypothesis of Lemma 3.1. Furthermore,
assume that u has zero average, that is

∫ π

−π
udx = 0. Then we have

∫ π

−π

|u′|2 sin2(x/2)dx ≥ 1

16

∫ π

−π

|u|2dx . (3.13)

Remark 3.3 Inequality (3.13) is an improvement of well known Poincaré-Friedrichs
inequality in dimension one [10, Theorem 258]:

∫ π

−π

|u′(x)|2dx ≥
∫ π

−π

|u(x)|2dx,

since sin2(x/2) ≤ 1.

Proof Let w(x) := 1
4 sec(x/2). Expanding the square we obtain

|u′ sin(x/2) + w(u − u(π))|2 = |u′|2 sin2(x/2) + w2|u − u(π)|2
+ 2Re[(w sin(x/2))u′(u − u(π))]

= |u′|2 sin2(x/2) + w2|u − u(π)|2 + w sin(x/2)(|u − u(π)|2)′.

Fix ε > 0. Doing integration by parts, we obtain

∫ π−ε

−π+ε

|u′ sin(x/2) + w(u − u(π))|2dx =
∫ π−ε

−π+ε

|u′|2 sin2(x/2)
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+
∫ π−ε

−π+ε

(w2 − (w sin(x/2))′)|u − u(π)|2dx + B.T . ≥ 0, (3.14)

where the boundary term B.T. is given by

B.T . := w(π − ε) sin((π − ε)/2)|u(π − ε) − u(π)|2
−w(−π + ε) sin((−π + ε)/2)|u(−π + ε) − u(π)|2. (3.15)

Therefore we have
∫ π−ε

−π+ε

|u′|2 sin2(x/2)dx ≥
∫ π−ε

−π+ε

(−w2 + (w sin(x/2))′)|u − u(π)|2dx − B.T .

(3.16)

Using −w2 + (w sin(x/2))′ = 1
16 sec

2(x/2) ≥ 1/16 above, we obtain

∫ π−ε

−π+ε

|u′|2 sin2(x/2)dx ≥ 1

16

∫ π−ε

−π+ε

|u − u(π)|2dx − B.T . (3.17)

Using periodicity of u along with the first order taylor expansion of u around π

and −π , one can easily conclude that B.T. goes to 0 as ε goes to 0. Now taking limit
ε → 0 on both sides of (3.17) and using dominated convergence theorem, we obtain

∫ π

−π

|u′|2 sin2(x/2)dx ≥ 1

16

∫ π

−π

|u − u(π)|2dx

= 1

16

∫ π

−π

|u|2 + 1

16

∫ π

−π

|u(π)|2 − 2

16
Reu(π)

∫ π

−π

udx

≥ 1

16

∫ π

−π

|u|2dx .


�
Lemma 3.4 Let u be a function satisfying the hypotheses of Lemma 3.2. For k ∈ N,
the following holds

∫ π

−π

|dk(u(x) sin(x/2))|2dx ≥
k−1∑
i=0

(
αk
i + 1

16
βk
i+1

)∫ π

−π

|diu(x)|2dx

+βk
0

∫ π

−π

|u|2 sin2(x/2)dx, (3.18)

where αk
i and βk

i are as defined in (3.2) and (3.3) respectively.

Proof Let f = di−1u. Applying Lemma 3.2 to f we get

∫ π

−π

|diu|2 sin2(x/2)dx ≥ 1

16

∫ π

−π

|di−1u|2dx . (3.19)
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Using (3.19) in (3.1) and using αk
k = 0 gives the desired estimate (3.18). Note that in

proving (3.18) we have assumed the non-negativity of the constants βk
i , which will be

proved in Sect. 6. 
�
The next two lemmas are weighted versions of Lemmas 3.2 and 3.4 and will be

used in proving the higher order Hardy inequalities.

Lemma 3.5 Let u be a function satisfying the hypotheses of Lemma 3.1. Furthermore,
assume that

∫ π

−π
u sin2k−2(x/2)dx = 0. For k ≥ 1, we have

∫ π

−π

|u′|2 sin2k(x/2)dx ≥ (4k − 3)

16

∫ π

−π

|u|2 sin2k−2(x/2)dx . (3.20)

Proof Let w := 1
4 sin

k−1(x/2) sec(x/2). Expanding the square, we obtain

|u′ sink(x/2) + w(u − u(π))|2 = |u′|2 sin2k(x/2) + w2|u − u(π)|2
+ 2 sink(x/2)wRe[u′(u − u(π))]

= |u′|2 sin2k(x/2) + w2|u − u(π)|2

+ sink(x/2)w
(
|u − u(π)|2

)′
.

Now integrating over (−π + ε, π − ε) for a fixed ε > 0, we get

∫ π−ε

−π+ε

|u′ sin2(x/2) + w(u − u(π))|2

=
∫ π−ε

−π+ε

|u′|2 sin2k(x/2) +
∫ π−ε

−π+ε

w2|u − u(π)|2

+
∫ π−ε

−π+ε

w sink(x/2)
(
|u − u(π)|2

)′
.

Finally, using integrating by parts, we obtain

∫ π−ε

−π+ε

|u′ sin2k(x/2) + w(u − u(π))|2

=
∫ π−ε

−π+ε

|u′|2 sin2k(x/2) +
∫ π−ε

−π+ε

w2|u − u(π)|2

−
∫ π−ε

−π+ε

(
w sink(x/2)

)′ |u − u(π)|2 + B.T . ≥ 0,

(3.21)

where the boundary term B.T. is given by

B.T . := |u(π − ε) − u(π)|2w(π − ε) sink((π − ε)/2) − |u(−π + ε) − u(π)|2
w(−π + ε) sink((−π + ε)/2). (3.22)
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Now using (w sink(x/2))′ − w2 = 1
16 sin

2k−2(x/2)
(
sec2(x/2) + 4k − 4

) ≥
4k−3
16 sin2k−2(x/2), we arrive at

∫ π−ε

−π+ε

|u′|2 sin2k(x/2) ≥ (4k − 3)

16

∫ π−ε

−π+ε

|u − u(π)|2 sin2k−2(x/2) − B.T .

(3.23)

Now taking limit ε → 0 on both sides of (3.23) and using dominated convergence
theorem, we obtain

∫ π

−π

|u′|2 sin2k(x/2) ≥ (4k − 3)

16

∫ π

−π

|u − u(π)|2 sin2k−2(x/2)

= (4k − 3)

16

∫ π

−π

|u|2 sin2k−2(x/2) + (4k − 3)/16
∫ π

−π

|u(π)|2 sin2k−2(x/2)

− (4k − 3)

8
Reu(π)

∫ π

−π

u sin2k−2(x/2) ≥ (4k − 3)

16

∫ π

−π

|u|2 sin2k−2(x/2).


�

Lemma 3.6 Suppose u satisfies the hypotheses of Lemma 3.2. Further, assume that u
has zero average. For k ≥ 2, we have

∫ π

−π

|dk(u sin2(x/2))|2dx ≥ αk
k−1

(
αk−1
k−2 + 1

16
βk−1
k−1

)∫ π

−π

|dk−2u|2dx . (3.24)

Proof We begin with the observation that although f = u sin(x/2) does not sat-
isfy the hypothesis dk f (−π) = dk f (π) of Lemma 3.1, identity (3.1) still holds
for f . In the proof of Lemma 3.1, the periodicity of derivatives is only used in the
derivation of (3.6); to make sure that no boundary term appears while doing integra-
tion by parts. The key observation is that di f (−π) = −di f (π), which imply that
di f (−π)d j f (−π) = di f (π)d j f (π). This makes sure no boundary terms appears
while performing integration by parts in (3.6) for the function f .

First using identity (3.1) for u sin(x/2) and then for u, along with non-negativity
of the constants αk

i and βk
i (will be proved in Sect. 6) we obtain

∫ π

−π

|dk(u sin2(x/2))|2dx ≥ αk
k−1

∫ π

−π

|dk−1(u sin(x/2))|2dx

≥ αk
k−1

(
αk−1
k−2 + 1

16
βk−1
k−1

) ∫ π

−π

|dk−2u|2dx .

The last inequality uses Lemma 3.2. 
�
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4 Proof of Hardy Inequalities

Proof of Theorem 2.1 Let u ∈ �2(Z), we define its Fourier transform F(u) ∈
L2((−π, π)) as follows:

F(u)(x) := (2π)−
1
2
∑
n∈Z

u(n)e−inx x ∈ (−π, π). (4.1)

Let 1 ≤ j ≤ k. Using the inversion formula for Fourier transform and integration by
parts, we get

u(n)nk− j = (2π)−
1
2

∫ π

−π

F(u)(x)nk− j einxdx

= (2π)− 1
2

i k− j

∫ π

−π

F(u)(x)dk− j einxdx

= (−1)k− j (2π)− 1
2

i k− j

∫ π

−π

dk− jF(u)(x)einxdx .

Applying Parseval’s Identity gives us

∑
n∈Z

|u(n)|2n2(k− j) =
∫ π

−π

|dk− jF(u)(x)|2dx . (4.2)

Similarly one gets the following identity

∑
n∈Z

|u(n) − u(n − 1)|2
(
n − 1

2

)2k

= 4
∫ π

−π

|dk(F(u) sin(x/2))|2dx . (4.3)

Finally, applying Lemma 3.4 on F(u) and then using (4.2), (4.3) we get

∑
n∈Z

|u(n) − u(n − 1)|2
(
n − 1

2

)2k

≥
k∑

i=1

γ k
i

∑
n∈Z

|u(n)|2n2(k−i)

+ βk
0

∑
n∈Z

|u(n) − u(n − 1)|2

≥
k∑

i=1

γ k
i

∑
n∈Z

|u(n)|2n2(k−i)

+ βk
0

4

∑
n∈Z\{0}

|u(n)|2
n2

,

(4.4)
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where γ k
i := 4αk

k−i + 1
4β

k
k−i+1. In the last step we used the classical Hardy inequality.

In Sect. 6 we simplify the expressions of αk
i and βk

i , which will complete the proof of
Theorem 2.1. 
�
Proof of Corollary 2.2 Assuming γ k

i ≥ 0 (which will be proved in Sect. 6) Theorem
2.1 immediately implies

∑
n∈Z

|u(n) − u(n − 1)|2
(
n − 1

2

)2k

≥ γ k
1

∑
n∈Z

|u(n)|2n2k−2.

It can be checked that ξ kk−1 = −k(k + 1). Using this in the expression of γ k
1 , we

find that γ k
1 = (2k−1)2

4 . Next, we prove the sharpness of the constant γ k
1 . Let C be a

constant such that

∑
n∈Z

|u(n) − u(n − 1)|2
(
n − 1

2

)2k

≥ C
∑
n∈Z

|u(n)|2n2k−2 (4.5)

for all u ∈ Cc(Z).
Let N ∈ N, β ∈ R and α ≥ 0 be such that 2β + 2k − 2 < −1. Consider the

following family of finitely supported functions on Z.

uβ,N (n) :=

⎧⎪⎨
⎪⎩
nβ for 1 ≤ n ≤ N

−Nβ−1n + 2Nβ for N ≤ n ≤ 2N

0 for n ≥ 2N and n ≤ 0

Clearly we have

∑
n∈Z

|uβ,N (n)|2n2k−2 ≥
N∑

n=1

n2β+2k−2. (4.6)

and

∑
n∈Z

|uβ,N (n) − uβ,N (n − 1)|2(n − 1/2)2k

=
∞∑
n=1

|uβ,N (n) − uβ,N (n − 1)|2(n − 1/2)2k

≤
N∑

n=2

(nβ − (n − 1)β)2n2k +
2N∑

n=N+1

N 2β−2n2k + 1.

(4.7)

Some basic estimates:

(nβ − (n − 1)β)2 ≤ β2(n − 1)2β−2,
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2N∑
n=N+1

n2k ≤
∫ 2N+1

N+1
x2kdx = (2N + 1)2k+1 − (N + 1)2k+1

2k + 1
.

Using the above in (4.7), we get

∑
n∈Z

|uβ,N (n) − uβ,N (n − 1)|2(n − 1/2)2k

≤ β2
N∑

n=2

(n − 1)2β−2n2k

+ N 2β+2k−1

2k + 1

[ (
2 + 1

N

)2k+1

−
(
1 + 1

N

)2k+1 ]
+ 1.

(4.8)

Using estimates (4.6) and (4.8) in (4.5) and taking limit N → ∞, we get

C
∞∑
n=1

n2β+2k−2 ≤ β2
∞∑
n=2

(n − 1)2β−2n2k + 1

= β2
2k∑
i=0

(
2k

i

) ∞∑
n=1

n2β+2k−i−2 + 1.

Finally, taking limit β → 1−2k
2 on the both sides, we obtain

C ≤ (2k − 1)2

4
. (4.9)

This proves the sharpness of γ k
1 . 
�

5 Proof of Higher Order Hardy Inequalities

Proof of Theorem 2.3 First we prove inequality (2.4) and then inequality (2.5).
Let m ∈ N, v ∈ Cc(Z) with v(0) = 0 and

ṽ(n) :=
{

v(n)

n2m
if n �= 0

0 if n = 0

Using the inversion formula for the Fourier transform, we obtain

�v = 2v(n) − v(n − 1) − v(n + 1) = (2π)−
1
2

∫ π

−π

F(v)(2 − e−i x − eix )einxdx

= (2π)−
1
2

∫ π

−π

4F(v) sin2(x/2)einxdx .
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Therefore we have F(�v) = 4 sin2(x/2)F(v). Applying this formula iteratively,
we obtain F(�mv) = 4m sin2m(x/2)F(v). Using Parseval’s, identity we get

∑
n∈Z\{0}

|v|2
n4m

=
∫ π

−π

|F(ṽ)|2dx .

∑
n∈Z

|�mv|2 = 42m
∫ π

−π

|F(v)|2 sin4m(x/2)dx

= 42m
∫ π

−π

|F(ṽ)(2m)|2 sin4m(x/2)dx .

Using Lemma 3.5 iteratively we obtain

4−2m
∑
n∈Z

|�mv|2 =
∫ π

−π

|F(ṽ)(2m)|2 sin4m(x/2)dx

≥ 1

28m

2m−1∏
i=0

(8m − 3 − 4i)
∫ π

−π

|F(ṽ)|2dx

= 1

28m

2m−1∏
i=0

(8m − 3 − 4i)
∑

n∈Z\{0}

|v|2
n4m

,

under the assumption that

∫ π

−π

F(ṽ)(2m−k) sin2(2m−k)(x/2)dx

=
∑
n∈Z

F−1(F(ṽ)(2m−k))(n)F−1(sin2(2m−k)(x/2)) = 0 (5.1)

for 1 ≤ k ≤ 2m.
Next we compute the inverse Fourier transform of sin2(2m−k)(x/2) to simplify the

condition (5.1). Consider

sin2(2m−k)(x/2) = 2−(2m−k)(1 − cos x)2m−k

= 2−(2m−k)
2m−k∑
j=0

(
2m − k

j

)
(−1/2) j (eix + e−i x ) j

= 2−(2m−k)
2m−k∑
j=0

j∑
j ′=0

(
2m − k

j

)(
j

j ′

)
(−1/2) j e−i x(2 j ′− j).

Using the above expression, condition (5.1) becomes

∑
n∈Z

F−1(F(ṽ)(2m−k))(n) F−1(sin2(2m−k)(x/2))
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=
2m−k∑
j=0

∑
0≤ j ′≤ j
j ′ �= j/2

(
2m − k

j

)(
j

j ′

)
(−1/2) j (2 j ′ − j)−kv(2 j ′ − j) = 0.

So finally we arrive at the following inequality

∑
n∈Z

|�mv|2 ≥ 1

24m

2m−1∏
i=0

(8m − 3 − 4i)
∑

n∈Z\{0}

|v|2
n4m

, (5.2)

provided v ∈ Cc(Z) with v(0) = 0 satisfies

2m−k∑
j=0

∑
0≤ j ′≤ j
j ′ �= j/2

(
2m − k

j

)(
j

j ′

)
(−1/2) j (2 j ′ − j)−kv(2 j ′ − j) = 0, (5.3)

for 1 ≤ k ≤ 2m.
Let u ∈ Cc(N0) with u(i) = 0 for all 0 ≤ i ≤ 2m − 1. We define v ∈ Cc(Z) as

v(n) :=
{
u(n) if n ≥ 0

0 if n < 0

It is quite straightforward to check that the condition (5.3) is trivially satisfied. Now
applying inequality (5.2) to the above defined function v, we obtain

∞∑
n=1

|�mu|2 ≥ 1

24m

2m−1∏
i=0

(8m − 3 − 4i)
∞∑
n=1

|u|2
n4m

. (5.4)

This proves the inequality (2.4). Inequality (2.5) can be proved in a similar way, by
following the proof of (2.4) step by step. 
�

Proof of Theorem 2.6 First we prove inequality (2.7). We begin by proving the result
for m = 1 and then apply the result for m = 1 iteratively to prove it for general m.
Using inversion formula and integration by parts, we obtain

u(n)nk−2 = (2π)−
1
2

∫ π

−π

F(u)(x)nk−2einxdx

= (2π)− 1
2

i k−2

∫ π

−π

F(u)(x)dk−2einxdx

= (−1)k−2(2π)− 1
2

i k−2

∫ π

−π

dk−2F(u)(x)einxdx .
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Applying Parseval’s identity gives us

∑
n∈Z

|u(n)|2n2k−4 =
∫ π

−π

|dk−2F(u)(x)|2dx . (5.5)

Similarly, one gets the following identity

∑
n∈Z

|�u|2n2k = 16
∫ π

−π

|dk(F(u) sin2(x/2))|2dx . (5.6)

Now applying Lemma 3.6 and then using equations (5.5) and (5.6), we get

∑
n∈Z

|�u|2n2k ≥ 16αk
k−1

(
αk−1
k−2 + 1

16
βk−1
k−1

)

= k(k − 1)(k − 3/2)2
∑
n∈Z

|u|2n2k−4.

(5.7)

In the last line we used αk
k−1 = k(k − 1) and βk

k = 1 (see (3.2)- (3.4)). Now applying
the inequality (5.7) inductively completes the proof of inequality (2.7). For the proof
of inequality (2.8), we first apply inequality (2.3) and then inequality (2.7). 
�

6 Combinatorial Identity

In this section, we prove a combinatorial identity using the Lemma 3.1. This develops
a very nice connection between combinatorial identities and functional identities. We
believe that the method we present here can be used to prove new combinatorial
identities which might be of some value.

Theorem 6.1 Let k ∈ N and 0 ≤ i ≤ k. Then

∑
0≤m≤min{i,k−i}

1≤n≤k−i

(−1)n2n−m
(
k + 1

i − m

)(
k

i + n

)(
n − 1

m

)
= (−1)k−i

(
k

i

)
−

(
k

i

)2

.

(6.1)

Proof Using sin2(x/2) = (1 − cos x)/2, identity (3.1) can be re-written as

k∑
i=0

(−1)k−i2−2(k−i)

(
ξ ki +

(
k

i

)2
)∫ π

−π

|diu|2 cos xdx

−
k∑

i=0

2−2(k−i)
(
2k

2i

)∫ π

−π

|diu|2dx

= −2
∫ π

−π

|dk(u sin(x/2))|2dx .

(6.2)
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Let u = ein(x/2) sin(x/2). Then some straightforward calculations give us the follow-
ing identities for m ≥ 0

22m
∫ π

π

|dmu|2dx = π

2

(
(n + 1)2m + (n − 1)2m

)
. (6.3)

22m
∫ π

−π

|dmu|2 cos x = −π

2
(n2 − 1)m . (6.4)

22k
∫ π

−π

|dk(u sin(x/2))|2 = π

8

(
(n + 2)2k + (n − 2)2k + 4n2k

)
. (6.5)

Using equations (6.3) - (6.5) in (6.2), we obtain

−1

2

k∑
i=0

(−1)k−i

(
ξ ki +

(
k

i

)2
)

(n2 − 1)i = 1

2

k∑
i=0

(
2k

2i

)(
(n + 1)2i + (n − 1)2i

)

− 1

4

(
(n + 2)2k + (n − 2)2k + 4n2k

)

= −1

2
n2k .

(6.6)

The last step uses

k∑
i=0

(
2k

2i

)
(n + 1)2i = 1

2

(
(n + 2)2k + n2k

)
. (6.7)

and

k∑
i=0

(
2k

2i

)
(n − 1)2i = 1

2

(
(n − 2)2k + n2k

)
. (6.8)

Therefore, for n ∈ N, we have

k∑
i=0

(−1)k−i

(
ξ ki +

(
k

i

)2
)

(n2 − 1)i =
k∑

i=0

(
k

i

)
(n2 − 1)i , (6.9)

which implies the identity (6.1). 
�
Remark 6.2 Using identity (6.1), expressions of αk

i , β
k
i defined by (3.2), (3.3) respec-

tively become

22(k−i)αk
i = 1

2

(
2k

2i

)
− 1

2

(
k

i

)
and 22(k−i)βk

i =
(
k

i

)
,
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and γ k
i := 4αk

k−i + 1
4β

k
k−i+1 becomes

22iγ k
i = 2

(
2k

2i

)
− 2

(
k

i

)
+

(
k

i − 1

)
.

From the above expressions, it is quite straightforward that the above constants are
non-negative, thus justifying the assumptions used in the proofs of Lemma 3.4, lemma
3.6 and Corollary 2.2. Finally, the expression of γ k

i along with (4.4) completes the
proof of Theorem 2.1.
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Appendix

We prove identity (3.6) with wi j replaced with an arbitrary smooth 2π periodic
funcition.

Lemma A.1 Let u, w ∈ C∞[−π, π ] such that their derivatives satisfy dku(−π) =
dku(π) and dkw(−π) = dkw(π), for all k ∈ N0. Then for non-negative integers
0 ≤ i < j we have

I (i, j, w) := Re
∫ π

−π

diu(x)d ju(x)w(x)dx

=
� i+ j

2 	∑
σ=i

∫ π

−π

Ci, j
σ,w(x)|dσu|2, (A.1)

where Ci, j
σ,w is given by

Ci, j
σ,w(x) =

(
j − σ − 1

σ − i − 1

)
(−1) j−σdi+ j−2σ w(x)

+ 1

2

(
j − σ − 1

σ − i

)
(−1) j−σdi+ j−2σ w(x).

http://creativecommons.org/licenses/by/4.0/
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Proof We prove the result using induction on the parameter k := j − i . Let us assume
that (A.1) is true for all 0 ≤ i < j such that 3 ≤ j − i ≤ k. Consider non-negative
integers i < j such that j − i = k + 1. Then integration by parts yields

I (i, j, w) = Re
∫ π

−π

diu(x)d ju(x)w(x)dx

= −Re
∫ π

−π

diu(x)d j−1u(x)w′(x)dx − Re
∫ π

−π

di+1u(x)d j−1u(x)w(x)dx

= −I (i, j − 1, w′) − I (i + 1, j − 1, w).

Further using induction hypothesis we get

I (i, j, w) =
�(i+ j−1)/2	∑

σ=i+1

∫ π

−π

( − Ci, j−1
σ,w′ − Ci+1, j−1

σ,w

)|dσ u|2dx −
∫ π

−π

Ci, j−1
i,w′ |diu|2dx

− δ(i + j)
∫ π

−π

Ci+1, j−1
�(i+ j)/2	,w|d�(i+ j)/2	u|2dx,

(A.2)

where δ(odd numbers) := 0 and δ(even numbers) := 1. Using identity
(n
r

)+ ( n
r−1

) =(n+1
r

)
we obtain

− Ci, j−1
σ,w′ − Ci+1, j−1

σ,w = Ci, j
σ,w. (A.3)

It can also be checked that −Ci, j−1
i,w′ = Ci, j

i,w = 1
2d

j−1w as well as −Ci+1, j−1
�(i+ j)/2	,w =

Ci, j
�(i+ j)/2	,w = (−1) j−iw (for even i + j). These observations along with (A.3) and

(A.2) proves (A.1) for 3 ≤ j − i = k + 1.
The base cases j − i ∈ {1, 2, 3} can be checked by hand (it’s a consequence of

iterative integration by parts). 
�
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