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Abstract
The Turán problem for an open ball of radius r centered at the origin in R

d consists
in computing the supremum of the integrals of positive definite functions compactly
supported on that ball and taking the value 1 at the origin. Siegel proved, in the 1930s
that this supremum is equal to 2−d mutiplied by the Lebesgue measure of the ball and
is reached by a multiple of the self-convolution of the indicator function of the ball of
radius r/2. Several proofs of this result are known and, in this paper, we will provide
a new proof of it based on the notion of “dual Turán problem”, a related maximization
problem involving positive definite distributions. We provide, in particular, an explicit
construction of the Fourier transform of a maximizer for the dual Turán problem. This
approach to the problem provides a direct link between certain aspects of the theory of
frames in Fourier analysis and the Turán problem. In particular, as an intermediary step
needed for our main result, we construct new families of Parseval frames, involving
Bessel functions, on the interval [0, 1].

Keywords Positive definite functions and distributions · Fourier frames · Bessel
functions

Mathematics Subject Classification 43A45 · 42C15

1 Introduction

Consider a symmetric open set U ⊂ R
d , i.e. 0 ∈ U and −x ∈ U whenever x ∈ U .

The Turán problem associated with U consists in computing the supremum of the
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integrals
∫

U h(x) dx , where h is a continuous, positive definite function with support
contained in U and satisfying h(0) = 1. The corresponding supremum is called the
Turán constant of U . The name of the problem originates from a discussion between
Turán and Stec̆kin [24] in the 1970s, but, already in the 1930s, Siegel [23] had solved
the particular case of the problemwhereU is a ball, by showing that its Turán constant
is 2−d |U |, where |·| denotes the Lebesguemeasure. If, in addition to being symmetric,
U is also assumed to be convex, there is a natural candidate for a maximizer for the
Turán, namely the function

f = |V |−1 χV ∗ χ̃V , (1)

where V = 1
2 U = {x/2, x ∈ U } and where g̃ is defined by g̃(x) = g(−x) for any

function g on R
d . Since the Fourier transform of f is f̂ = |V |−1 |χ̂V |2 ≥ 0, f is

positive definite and satisfies f (0) = 1. Note that f is not compactly supported in U ,
but it is a limit of positive definite, compactly supported functions inU with value 1 at
the origin (see Definition 1). A symmetric, convex open setU is called a Turán domain
if its Turán constant is 2−d |U | = |V | and if it is achieved by the function f defined
above. As far as we know, no example of symmetric, convex open set which is not a
Turán domain is known. More recently, the Turán problem has been investigated for
particular domains in R

d [2, 3, 12, 17] and also in the setting of other l.c.a. groups [13,
15, 16, 18, 21]. We refer the reader to Révész’s paper [21] for an historical perspective
on the Turán problem and its extensions to various settings.

In this paper, we will be mostly interested in the problem where U is a ball. In
addition to the proof given by Siegel in [23], Gorbachev [12], as well as Kolountzakis
and Révész [17], provided alternate proofs for the case of the ball. Our main goal
in this paper is to provide yet a different proof for this result, which involves the
concept of “dual Turán problem”. To define this last problem in the case of B(0, r),
the ball of radius r centered at 0 inR

d , we need to consider the class of positive definite
distributions onR

d . Note that the distributional Fourier transform of a positive definite
distribution S inR

d ,F(S), is a positive tempered measureμ by the Bochner-Schwartz
theorem (see [22]). The dual Turán problem consists then in maximizing the quantity
D(S) := μ({0}), whereμ = F(S), over the collection of positive definite distributions
on R

d equal to the Dirac mass δ0 on B(0, r). It turns out that a maximizer for this
problem, Tr , exists and we will give an explicit formula for its Fourier transform
F(Tr ). If fr is the function given in (1) with V = B(0, r/2), we will show that
the convolution equation fr ∗ Tr = 1 holds on R

d . This last equation essentially
characterizes maximizers for both the Turán problem and its dual and Siegel’s result
will easily follow from it once we find the explicit form of F(Tr ).

The paper is organized as follows. In Sect. 2, we define the notion of Turán max-
imizer and that of dual Turán maximizer for an arbitrary bounded symmetric open
subset of R

d and discuss some of their properties. In Sect. 3, we make a connection
between the problem of constructing a dual Turán maximizer for U and the problem
of constructing Parseval Fourier frames for the space L2(V ) if U = V − V and V is
open. We specialize to the case where U is a ball centered at the origin in Sect. 4 and
find a possible candidate for a dual Turán maximizer. Using spherical harmonics, we
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show that proving that our candidate is actually a Turán maximizer is equivalent to
proving that certain collections of functions built using Bessel functions are Parseval
frames for some L2-spaces. This last result is proved in Sect. 5 and, in Sect. 6, we
prove in particular, that, for d ≥ 2, the dual Turán maximizer for the ball that we
constructed cannot be a locally bounded, complex measure on R

d .

2 The Turán Problem and Its Dual

We will start by introducing some notations and some basic definitions and facts. If
h ∈ L1(Rd), the Lebesgue space of integrable functions on R

d , we define its Fourier
transform by the formula

F(h)(ξ) = ĥ(ξ) =
∫

Rd
e−2π iξ ·x h(x) dx, ξ ∈ R

d .

This definition can be extended to the whole space S ′(Rd) of tempered distributions
with the mapping F : S ′(Rd) → S ′(Rd) being bijective (see [22]). Recall that
a continuous function f : R

d �→ C is positive definite (abbr. “p.d.”) if, for any
x1, . . . , xm ∈ R

d and any ξ1, . . . , ξm ∈ C, we have

m∑

i, j=1

f (xi − x j ) ξi ξ j ≥ 0.

Bochner’s theorem states that if f is a continuous p.d. function on R
d , then f can be

represented as the integral

f (x) =
∫

Rd
e2π i x ·ξ dμ(ξ), x ∈ R

d ,

for some bounded, positive Borel measure μ on R
d (i.e. f is the inverse Fourier

transform of the measure μ). Note that this implies, in particular, that

| f (x)| ≤ f (0), x ∈ R
d .

For the remaining part of this section, we will assume that U is an open symmetric
subset of R

d and that U is bounded. We will denote by A(U ) the collection of con-
tinuous p.d. functions on R

d compactly supported in U and satisfying f (0) = 1. The
Turán problem for U consists thus in computing the number

TRd (U ) := sup
h∈A(U )

∫

Rd
h(x) dx,

which is called the Turán constant of U .
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Definition 1 A continuous function f : R
d → C is called a Turán maximizer for U

if f is p.d. with f (0) = 1,
∫
Rd f (x) dx = TRd (U ) and there exists a sequence ( fn)

of functions in A(U ) such that fn → f in S ′(Rd).

Note that the sequence ( fn) in the previous definition satisfies

∫

Rd
fn(x) dx →

∫

Rd
f (x) dx = TRd (U ),

by applying the convergence of the sequence ( fn) in S ′(Rd) to a test function identi-
cally equal to 1 on a neighborhood of U .

If V ⊂ R
d is open, let C∞

0 (V ) denote the space of complex valued, infinitely
differentiable functions defined on R

d and compactly supported in V . Recall that a
distribution S on R

d is called positive definite if, for every ϕ ∈ C∞
0 (Rd), we have the

inequality

〈S, ϕ ∗ ϕ̃〉 ≥ 0.

Apositive Borel measure onR
d is called tempered if it defines a tempered distribution.

This will be the case if and only if

∫

Rd

1

(1 + |ξ |2)m
dμ(ξ) < ∞,

for some integer m ≥ 0. By the Bochner-Schwartz theorem, a distribution on R
d is

positive definite if and only if it is tempered and its distributional Fourier transform is
a positive tempered measure. (See [8, 20, 22] for more details.)

If S is a positive definite distribution on R
d , we define the density of S to be the

number

D(S) := lim
ε→0+

〈
S, εd/2 e−επ |·|2〉 .

Note that, if F(S) = μ ≥ 0, we have

lim
ε→0+

〈
S, εd/2 e−επ |·|2〉 = lim

ε→0+

∫

Rd
e−π |ξ |2/ε dμ(ξ) = μ({0}),

using the Lebesgue dominated convergence theorem, showing that D(S) = μ({0}).
We will denote by Ã(U ) the collection of positive definite distributions on R

d which
are equal to the Dirac mass at the origin, δ0, on U . The dual Turán problem for U
consists then in computing the number

T̃Rd (U ) := sup
S∈Ã(U )

D(S).

An element T of Ã(U ) such that D(T ) = T̃Rd (U ) is call a dual Turán maximizer
for U . We point out that, if h ∈ A(U ) and S ∈ Ã(U ), the convolution product h ∗ S
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is well-defined as a tempered distribution since h has compact support. Furthermore,
h ∗ S is positive definite since, letting μ = F(S), we have

F(h ∗ S) = ĥ Ŝ = ĥ dμ,

and ĥ dμ is a positive, tempered measure. The following result shows that h ∗ S is
actually a continuous positive definite function bounded by 1 and, in particular, that
ĥ dμ is a bounded measure.

Proposition 1 Suppose that U ⊂ R
d is a bounded symmetric set. Let h ∈ A(U ) and

S ∈ Ã(U ), then the convolution product h∗S is a continuous positive definite function
satisfying

|(h ∗ S)(x)| ≤ 1, x ∈ R
d .

Furthermore, we have the inequality
(∫

U
h(x) dx

)

D(S) ≤ 1, h ∈ A(U ), S ∈ Ã(U ). (2)

Proof If S ∈ Ã(U ), we can write S in the form S = δ0 + R, where R is supported
in the set R

d \ U . Since h is compactly supported in U , there exists ε > 0 such that
supp(h) + B(0, 2 ε) ⊂ U and, in particular, h ∗ R = 0 on the ball B(0, ε). Thus,

h ∗ S = h + h ∗ R = h on B(0, ε).

Let ψ ∈ C∞
0 (Rd) with ψ ≥ 0, supported in the ball B(0, 1) and satisfying

∫
Rd ψ(x) dx = 1. Since ψ̂ is a continuous p.d. function, we have |ψ̂(ξ)| ≤ ψ̂(0) = 1
for ξ ∈ R

d . Define

ψn(x) = nd ψ(n x), n ≥ 1.

Then,
∫

Rd
(ψn ∗ ψ̃n)(x) dx = 1 and supp

(
ψn ∗ ψ̃n

)
⊂ B(0, 2/n).

If N > 0 is fixed, the Lebesgue dominated convergence theorem shows that
∫

|ξ |≤N
ĥ(ξ) dμ(ξ) =

∫

|ξ |≤N
|ψ̂(0)|2 ĥ(ξ) dμ(ξ)

= lim
n→∞

∫

|ξ |≤N
|ψ̂(ξ/n)|2 ĥ(ξ) dμ(ξ)

≤ lim
n→∞

∫

Rd
|ψ̂(ξ/n)|2 ĥ(ξ) dμ(ξ) = lim

n→∞ 〈h ∗ S, ψn ∗ ψ̃n〉
= lim

n→∞ 〈h, ψn ∗ ψ̃n〉 = h(0) = 1,
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using the fact that the sequence (ψn ∗ ψ̃n) is an approximate identity in the last line.
Letting N → ∞ and applying the Lebesgue monotone convergence theorem, we
obtain that

∫

Rd
ĥ(ξ) dμ(ξ) ≤ 1.

This implies that h ∗ S is a continuous p.d. function with (h ∗ S)(0) ≤ 1, which, in
turn, yields the inequality |h ∗ S| ≤ 1 on R

d . We have also

D(h ∗ S) =
∫

{0}
ĥ(ξ) dμ(ξ) = ĥ(0) μ({0}) ≤

∫

Rd
ĥ(ξ) dμ(ξ) ≤ 1,

yielding the inequality (2). 
�
Corollary 2 Let U ⊂ R

d be a bounded symmetric set. Suppose that f is a continuous
p.d. function on R

d satisfying f (0) = 1 and that there exists a sequence (hn) in A(U )

such that hn → f in S ′(Rd). If there exists T ∈ Ã(U ) such that f ∗ T = 1 on R
d ,

then f is a Turán maximizer and T is a dual Turán maximizer for U. Furthermore,
we have the identity

TRd (U ) T̃Rd (U ) = 1. (3)

Proof We have F( f ∗ T ) = f̂ dμ = δ0, where μ = F(T ). Hence,

D( f ∗ T ) = f̂ (0) μ({0}) = 1,

yielding

(∫

U
f (x) dx

)

D(T ) = 1, (4)

Choosing ψ ∈ S(Rd) identically equal to 1 on a neigborhood of U , we have

∫

U
hn(x) dx = 〈hn, ψ〉 → 〈 f , ψ〉 =

∫

U
f (x) dx .

which shows, in particular, that
∫

U f (x) dx ≤ TRd (U ). If h ∈ A(U ), we have

(∫

U
h(x) dx

)

D(T ) ≤ 1

by Proposition 1, which shows that TRd (U ) ≤ D(T )−1 = ∫
U f (x) dx . Hence,∫

U f (x) dx = TRd (U ) and f is a Turán maximizer for U . Finally, by Proposition 1
again, we have

(∫

U
f (x) dx

)

D(S) ≤ 1
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for all S ∈ Ã(U ), with equality when S = T . We conclude that T must be a dual
Turán maximizer for U and thus also, using (4), that the identity (3) holds. 
�
When dealing with the particular case where U is a ball centered at 0, we can assume,
for simplicity, that U = B(0, 2). Consider now the function f defined by the formula

f = |B|−1 χB ∗ χ̃B, (5)

where B = B(0, 1) = {x ∈ R
d , |x | < 1}, and the functions fn defined by a similar

formula with B replaced by Bn = B(0, 1 − 1/n) for n ≥ 2. Then, each fn is a
p.d. function compactly supported in U = B(0, 2) with fn(0) = 1, i.e. each fn

belongs toA(U ). Furthermore, it is easily checked that fn → f uniformly on R
d and

thus also in S ′(Rd). Using Corollary 2, we obtain thus the following.

Corollary 3 If f is the function defined by (5) and, if there exists T ∈ Ã (B(0, 2)) such
that f ∗ T = 1 on R

d , then f is a Turán maximizer and T is a dual Turán maximizer
for B(0, 2).

We now state the main result of this paper which involves a measure constructed
using certain Bessel functions. (See (14) for the definition of the Bessel function Jν ,
if ν ≥ 0.)

Theorem 4 Suppose that d ≥ 2 and let f be the p.d. function defined in (5). Let μ be
the positive measure defined on R

d by the formula

μ = 1

|B| δ0 +
∑

n≥1

1

π γn |Jd/2−1(γn)|2 σγn/2π , (6)

where, if t > 0, σt denotes the (d − 1)-dimensional surface measure on the sphere of
radius t and (γn)n≥1 denotes the sequence of positive zeros of the Bessel function Jd/2
written in increasing order. Then, μ defines a tempered distribution. Furthermore,
T := F−1(μ) belongs to Ã (B(0, 2)) and satisfies f ∗ T = 1 on R

d . In particular, T
is a dual Turán maximizer for B(0, 2) and T̃Rd (B(0, 2)) = μ({0}) = 1

|B| .

As an immediate consequence of the previous theorem, of Corollary 2 and Corollary 3,
we obtain the value of the Turán constant for the ball B(0, 2), first obtained by Siegel
[23].

Corollary 5 Under the same assumptions as in the previous theorem, f is a Turán
maximizer for B(0, 2) and TRd (B(0, 2)) = |B|.
Because of the statements given in Corollary 2 and Corollary 3, in order to prove
Theorem 4, we only need to show that the measure μ in the previous theorem is
tempered and that T := F−1(μ) belongs to Ã (B(0, 2)) and satisfies f ∗ T = 1 on
R

d . This is the main difficulty in the proof of this theorem and it will be our main
focus in the next two sections.

Before getting to that, we should mention an interesting property of any measure
which is the Fourier transform of an element in the class Ã(U ), (where U is any
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symmetric bounded open set) and thus also of the measure associated with any dual
Turán maximizer for U . This property is related to the notion of Beurling density of
a positive Borel measure on R

d which we now define. If z ∈ R
d and R > 0, let

IR(z) denote the (closed) cube centered a z with side length R. If μ is a positive Borel
measure on R

d , we define the upper and lower Beurling density of μ, denoted by
D+(μ) and D−(μ) respectively, to be the quantities

D+(μ) = lim sup
R→∞

sup
z∈Rd

μ(IR(z))

Rd
and D−(μ) = lim inf

R→∞ inf
z∈Rd

μ(IR(z))

Rd
.

The Beurling density of μ, denoted by D(μ), is say to exist if the two densities above
are equal and, in that case, we let D(μ) = D+(μ) = D−(μ). We will need the
following result which can be found in [9, Proposition 6.2]. Note that the measures
of the form F(S), where S ∈ Ã(U ), must be translation-bounded (see (9)) as we will
show in Proposition 9.

Proposition 6 Let μ be a positive, translation-bounded measure on R
d such that, for

some r > 0, we have F−1(μ) = δ0 on the ball B(0, r). Then, D(μ) exists and is
equal to 1.

By definition, any distribution in Ã(U ) must be equal to δ0 on some neighborhood of
0 and the following result follows immediately.

Corollary 7 If T ∈ Ã(U ) and μ = F(T ), then D(μ) exists and is equal to 1.

We now go back to the problem of constructing the distribution T in Theorem 4 and
proving the properties of T mentioned there.

Before studying more specifically the case where U is a ball, we consider the more
general case where the set U has the form U = V − V , where V is a bounded, open
subset of R

d . We explore some connections between the collection Ã(U ) and frame
theory in the next section. These will used when proving our main result, Theorem 4,
by applying them to the set U = B(0, 2) = B − B, where B = B(0, 1).

3 The Connection with Fourier Frames

A countable collection of vectors {hk} in a separable Hilbert H is called a frame if
there exist two positive constants C, D such that

C ‖h‖2 ≤
∑

k

|(h, hk)|2 ≤ D ‖h‖2, h ∈ H.

The frame is called a Parseval frame if C = D = 1. In that case, any h ∈ H admits
the expansion

h =
∑

k

(h, hk) hk
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in terms of the Parseval frame system, which generalizes the corresponding expansion
in terms of an orthonormal basis for H. We refer the reader to [6] for an overview
of frames and their properties in various settings. Let V ⊂ R

d be a bounded, open
set. The Hilbert space of interest for us will be L2(V ). A collection of exponentials
{e2π iλ·x }λ∈
, where 
 ⊂ R

d is a discrete set, is called a Fourier frame for L2(V ) if
their restrictions to V form a frame for L2(V ). This is thus equivalent to having

C ‖h‖22 ≤
∑

λ∈


|ĥ(λ)|2 ≤ D ‖h‖22, f ∈ L2(V ),

for some positive constants C, D, where ‖h‖22 = ∫ |h(x)|2 dx . Introducing the mea-
sure μ = ∑

λ∈
 δλ, where δλ is the Dirac mass at λ, we can rewrite the frame
inequalities in the form

C ‖h‖22 ≤
∫

Rd
|ĥ(ξ)|2 dμ(ξ) ≤ D ‖h‖22, h ∈ L2(V ). (7)

This last formulation of the frame inequalities suggests to extend the definition of
Fourier frames to arbitrary Borel measures μ on R

d by using the inequalities in (7).
Thus, we will say that the collection of exponentials {e2π iλ·x }λ∈Rd forms a continuous
Fourier frame with respect to μ for L2(V ) if the inequalities in (7) hold for some
C, D > 0. In the case C = D = 1, we use the term continuous Parseval Fourier
frame (with respect to μ). (See [1, 11] for more details about continuous frames and
frames associatedwithmeasures.) Themain result of this section shows that the Fourier
tranforms of the elements of Ã(U ), where U = V − V , are exactly the positive Borel
measures onR

d associatedwith continuous Parseval Fourier frames for L2(V ). Before
stating it, we need some preliminary results. Note that we use the notation A − B for
the set {a − b, a ∈ A, , b ∈ B} and A − b for {a − b, a ∈ A}, if A, B ⊂ R

d and
b ∈ R

d . The sets A + B and A + b are defined in a similar way.

Lemma 8 Let V ⊂ R
d be a bounded, open set and consider the bounded, symmetric

open set U = V −V . Then, given a test function φ ∈ C∞
0 (U ), there exist finitely many

sequences (ϕi
k)k≥1 and (ψ i

k)k≥1 in C∞
0 (V ), where 1 ≤ i ≤ m, such that

∑m
i=1 ϕi

k ∗
ψ̃ i

k → φ in C∞
0 (U ) as k → ∞.

Proof Wefirst show that given any z ∈ U , there exists ε > 0 such that our claim is true
for any φ ∈ C∞

0 (U )whose support is contained in B(z, ε). Indeed, sinceU = V − V ,
z ∈ V − x0 for some x0 ∈ V and since V − x0 is open, there exists ε > 0 such that
B(z, ε) ⊂ V − x0. If φ is supported in B(z, ε), then δx0 ∗ φ is supported in V . Let
ρ ∈ C∞

0 (B(0, 1))) with ρ ≥ 0 and
∫

B ρ(x) dx = 1. Define the approximation of the
identity ρk ∈ C∞

0 (B(0, 1/k)) for k ≥ 1 by

ρk(x) = kd ρ(x k), x ∈ R
d .
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Then standard arguments show that δx0 ∗ φ ∗ ρk → δx0 ∗ φ in C∞
0 (V ) as k → ∞ and

thus

φ = lim
k→∞ (δx0 ∗ φ) ∗ (δ−x0 ∗ ρk) = lim

k→∞ (δx0 ∗ φ) ∗ ˜(δx0 ∗ ρ̃k)

in C∞
0 (U ) since δx0 ∗ φ and δx0 ∗ ρ̃k , for k large enough, both belong to C∞

0 (V ).
The case of a general function φ ∈ C∞

0 (U ) follows from the above using a standard
partition of unity argument. 
�
If a positive Borel measure μ satisfies the second inequality in (7), i.e. the so-called
Bessel inequality

∫

Rd
|ĥ(ξ)|2 dμ(ξ) ≤ D ‖h‖22, h ∈ L2(V ), (8)

then μ must be translation-bounded, i.e. there exists a constant C > 0 such that

μ(B + ξ) ≤ C for all ξ ∈ R
d , (9)

which implies, in particular, that μ must be tempered. We will prove this in the next
proposition as well as other useful facts deduced from the assumption (8). Before
doing so, we remark that the Bessel condition (8) always holds if μ is a bounded
measure since

∫

Rd
|ĥ(ξ)|2 dμ(ξ) ≤ ‖ĥ‖2∞ μ(Rd) ≤ ‖h‖22 |V | μ(Rd), h ∈ L2(V ),

a fact which we will be using in the next section.

Proposition 9 Let μ be a positive Borel measure satisfying the Bessel condition (8) in
L2(V ). Then,

(a) μ is translation-bounded and, in particular, μ is tempered.
(b) Let R = F−1(μ). Then, for any h ∈ L2(V ), we have R ∗ h ∈ L2

loc(R
d) and, if

K ⊂ R
d is any compact set, the mapping L2(V ) → L2(K ) : h �→ R ∗ h|K is

bounded.
(c) We have the identity

∫

B
(R ∗ h)(x) g(x) dx =

∫

Rd
ĥ(ξ) ĝ(ξ) dμ(ξ), for any h, g ∈ L2(V ).

Proof To prove (a), choose h �= 0 in L2(V ) as well as a point ξ0 ∈ R
d with 2 a :=

|ĥ(ξ0)|2 > 0 and r > 0 such that |ĥ(ξ)|2 ≥ a if |ξ − ξ0| ≤ r . Then, applying the
inequality (8) to the function e2π i(η−ξ0)·x h(x), where η ∈ R

d is arbitrary, we have

a μ(B(η, r)) = a
∫

|ξ−η|≤r
1 dμ(ξ)
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≤
∫

Rd
|ĥ(ξ0 + ξ − η)|2 dμ(ξ) ≤ D ‖h‖22, η ∈ R

d ,

from which (9) easily follows.
To prove (b), note that if the inequality (8) holds for all functions in L2(V ), it also

does for all functions in L2(V +a), if a ∈ R
d , since translation of a function by a does

not affect the modulus of its Fourier transform. Furthermore, the inequality means that
the linear mapping L2(V +a)) → L2(μ) : h �→ ĥ is bounded and it is easily checked
that its adjoint applied to a function G ∈ L2(μ) is the restriction of the distribution
F−1(G dμ) to the set V + a. Since the adjoint operator is also bounded, it follows
that F−1(G dμ) belongs to L2(V + a) for any a ∈ R

d and thus to L2
loc(R

d). (See
[10] for more details and extensions of these ideas to other spaces of functions and
distributions.) In particular, if R is the distribution F−1(μ) and h ∈ L2(V ), we have
R ∗ h = F−1(ĥ dμ) ∈ L2

loc(R
d) with the mapping L2(V ) → L2(K ) : h �→ R ∗ h|K

being bounded for any compact set K ⊂ R
d . This proves (b). Finally, if ϕ ∈ C∞

0 (V ),
we have the identity

∫

B
(R ∗ ϕ)(x) ϕ(x) dx = 〈R ∗ ϕ, ϕ〉 = 〈ϕ̂ dμ, ϕ̂〉 =

∫

Rd
|ϕ̂(ξ)|2 dμ(ξ), (10)

by definition of the Fourier transform of a tempered distribution. If h ∈ L2(V ),
consider a sequence (ϕn) in C∞

0 (V ) with ϕn → h in L2(V ). Standard approximation
arguments show that we can replace ϕ by h in the Eq. (10) and the identity in (c) easily
follows. 
�

We now prove the main result in this section.

Theorem 10 Let V ⊂ R
d be a bounded, open set and consider the bounded, symmetric

open set U = V − V . Let μ be a positive Borel measure on R
d . Then, the following

are equivalent.

(a) μ is tempered and R = F−1(μ) ∈ Ã(U ).
(b) We have the identity

∫

V
|h(x)|2 dx =

∫

Rd
|ĥ(ξ)|2 dμ(ξ), h ∈ L2(V ).

(c) μ is a tempered measure and, letting R = F−1(μ), we have the identity R ∗h = h
on V for any h ∈ L2(V ).

(d) μ is a tempered measure and, letting R = F−1(μ), we have the identity

∫

V
|h(x)|2 dx =

∫

V
(R ∗ h)(x) h(x) dx, h ∈ L2(V ).

Proof Suppose that (a) holds and let ϕ ∈ C∞
0 (V ). Using the fact that the test function

ϕ ∗ ϕ̃ is supported in U and that R = δ0 on U , we have

∫

V
|ϕ(x)|2 dx = (ϕ ∗ ϕ̃)(0) = 〈δ0, ϕ ∗ ϕ̃〉
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= 〈R, ϕ ∗ ϕ̃〉 = 〈μ, |ϕ̂|2〉 =
∫

Rd
|ϕ̂(ξ)|2 dμ(ξ). (11)

This shows that the identity in (b) holds if h = ϕ ∈ C∞
0 (V ) and the general case

follows by a standard approximation argument. Conversely, if (b) holds, we have also

∫

V
g(x) h(x) dx =

∫

Rd
ĝ(ξ) ĥ(ξ) dμ(ξ), g, h ∈ L2(V ), (12)

using the polarization identity. By Proposition 9, μ is tempered and, if R = F−1(μ)

and ϕ,ψ ∈ C∞
0 (V ), we have thus

(ϕ ∗ ψ̃)(0) =
∫

V
ϕ(x) ψ(x) dx =

∫

Rd
ϕ̂(ξ) ψ̂(ξ) dμ(ξ) = 〈R, ϕ ∗ ψ̃〉.

If φ ∈ C∞
0 (U ), the previous identity together with Lemma 8 imply that 〈δ0, φ〉 =

〈R, φ〉,
which shows that R = δ0 onU . Hence, R = δ0 onU , which yields (a). If (b) holds,

μ is tempered by part (a) of Proposition 9 and we can let R = F−1(μ). Let h ∈ L2(V )

and let ψ ∈ C∞
0 (V ). Using the identity (12), we have then

〈R ∗ h, ψ〉 = 〈ĥ dμ, ψ̂〉 =
∫

Rd
ĥ(ξ) ψ̂(ξ) dμ(ξ) =

∫

V
h(x) ψ(x) dx

which shows that (c) holds. Conversely, if (c) holds and ψ ∈ C∞
0 (V ), we have

∫

V
|ψ(x)|2 dx =

∫

V
(R ∗ ψ)(x) ψ(x) dx = 〈R ∗ ψ,ψ〉

= 〈ψ̂ dμ, ψ̂〉 =
∫

Rd
|ψ̂(ξ)|2 dμ(ξ),

showing that (11) holds. This yields (b) using an approximation argument . Finally,
(c) clearly implies (d) and, if (d) holds, the operator S : L2(V ) → L2(V ) : h �→
R ∗ h|V − h, which is bounded and self-adjoint, satisfies (Sh, h) = 0 for all h ∈
L2(V ). Hence S = 0 and (c) holds. This proves our claim. 
�

4 Construction of a Dual TuránMaximizer for the Ball

We now go back to the problem of constructing a p.d. distribution T ∈ Ã (B(0, 2))
satisfying f ∗ T = 1 on R

d , where f = |B|−1 χB ∗ χ̃B and B = B(0, 1). In one
dimension, this problem is easily solved. Indeed, in that case,

f (x) = 1

2
(χ(−1,1) ∗ χ(−1,1))(x) = (1 − |x/2|) χ(−2,2)(x), x ∈ R,
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and we can take T to be the “Dirac train” T = ∑
k∈Z δ2k which belongs to Ã((−2, 2))

since T = δ0 on (−2, 2) and T̂ = 1
2

∑
k∈Z δk/2 ≥ 0. This yields the well-known fact

that TR((−2, 2)) = 2 and, of course, that T̃R((−2, 2)) = 1/2 for the dual problem.
In the following, we will thus assume that d ≥ 2. Letting μ = F(T ) and taking

Fourier transforms in the equation f ∗ T = 1, we obtain

|B|−1 |χ̂B |2 dμ = δ0 on R
d , (13)

in the Fourier domain. Since χ̂B(0) = |B|, this last identity is equivalent to the proper-
ties that 0 is an isolated point of the support ofμwithμ = |B|−1 δ0 on a neighborhood
of 0 and that the set supp(μ) \ {0} is contained in the set {ξ ∈ R

d , χ̂B(ξ) = 0}. Now,
in dimension d, the function χ̂B is given explicitly by the formula

χ̂B(ξ) = |ξ |−d/2 Jd/2(2π |ξ |), ξ ∈ R
d ,

(see [25]), where, for ν ≥ 0, Jν is the Bessel function defined by

Jν(x) =
∞∑

k=0

(−1)k
( x
2

)2k+ν

k! �(ν + k + 1)
. (14)

We refer the reader to the books [7, 19, 26] for detailed accounts of classical properties
and various applications of Bessel functions. In particular, it is well-known that the
function Jd/2 admits an infinite number of positive zeros 0 < γ1 < γ2 < · · · < γn <

· · · . Let Sd−1 denote the unit sphere in R
d and σ1 the usual surface measure on Sd−1.

Since f and thus also f̂ are radial functions, it is clear that if a measure μ satisfies the
identity (13), so is the radial measure μ̊ defined by

〈μ̊, ϕ〉 =
∫

Rd
ϕ̊ dμ, ϕ ∈ Cc(R

d),

where Cc(R
d) denotes the space of continuous functions with compact support on R

d

and

ϕ̊(ξ) = 1

σ1(Sd−1)

∫

Sd−1
ϕ(|ξ | τ) dσ1(τ ), ξ ∈ R

d .

Assuming thus that μ is radial and supported in the set {0} ∪ {ξ ∈ R
d , χ̂B(ξ) = 0},

it follows that, for some coefficients cn ≥ 0, μ must have the form

μ = c0 δ0 +
∑

n≥1

cn σγn/2π , (15)

where {γn}n≥1 is the sequence of positive zeros of the function Jd/2 written in increas-
ing order and σt denotes the standard (d − 1)-dimensional surface measure on the
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sphere of radius t . The inverse Fourier transform of the measure σt also has an explicit
expression in term of a Bessel function which is given by the formula:

F−1(σt )(x) = 2π td/2 |x |−d/2+1 Jd/2−1(2π t |x |), x ∈ R
d .

Taking (formally) the inverse Fourier transform of both sides of (15), we obtain an
expansion of the form

F−1(μ) = d0 +
∑

n≥1

dn |x |−d/2+1 Jd/2−1(|x |γn) on R
d , (16)

for some constants dn , n ≥ 0. In order to determine the values of these constants, we
notice that, if we define ψ0(x) = 1 and

ψn(x) = |x |−d/2+1 Jd/2−1(|x |γn), n ≥ 1,

we have

−�ψ0 = 0, and − �ψn = γ 2
n ψn, for n ≥ 1,

on R
d and thus also on B. Furthermore, If z ∈ R

d and |z| = 1, we clearly have
d
dr {ψ0(r z)}∣∣r=1 = 0. Also, using the identity

d

dx

{
x−ν Jν(x)

} = −x−ν Jν+1(x), (17)

where ν ≥ 0, we have, for n ≥ 1,

d

dr
{ψn(r z)}

∣
∣
∣
∣
r=1

= d

dr

{
r−d/2+1 Jd/2−1(γn r)

}∣
∣
∣
∣
r=1

= γ
d/2−1
n

d

dr

{
(γnr)−d/2+1 Jd/2−1(γn r)

}∣
∣
∣
∣
r=1

= −γ
d/2
n (γnr)−d/2+1 Jd/2(γn r)

∣
∣
∣
r=1

= 0.

Let L2
rad(B) denote the subspace of L2(B) consisting of radial functions. It is well

known that the collections of radial eigenfunctions of the operator −� on B satisfy-
ing the Neumann boundary condition ∂ψ

∂n = 0 on the boundary ∂ B form a complete
orthogonal system for L2

rad(B), and that collection coincides precisely with the restric-
tions of the functions in the collection {ψn}n≥0 defined above to the ball B. Another
way to obtain this result is to reduce it to a one dimensional problem. The fact that the
system defined above is an orthonormal basis for L2

rad(B) is easily seen to be equiva-
lent to the one-dimensional system {φn}n≥0 being an orthonormal basis for L2((0, 1)),
where

φ0(r) = r
d−1
2 and φn(r) = √

r Jd/2−1(γn r) for n ≥ 1.
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Aproof that this last collection forms an orthonormal basis for L2((0, 1)) can be found
in [14].

Thus, for any g ∈ L2
rad(B), we have the expansion

g = 1

|B|
(∫

B
g(x) dx

)

+
∑

n≥1

(∫

B
g(x) |x |−d/2+1 Jd/2−1(|x |γn)dx

) |x |−d/2+1 Jd/2−1(|x |γn)

‖ψn‖22
, (18)

with

‖ψn‖22 =
∫

B
|x |−d+2 Jd/2−1(|x |γn)

2 dx = σ̂1(0)
∫ 1

0
Jd/2−1(rγn)

2 r dr

= 2πd/2

�(d/2)

∫ 1

0
Jd/2−1(rγn)

2 r dr , n ≥ 1.

The integral in the last identity can be expressed in terms of the values of the function
Jd/2−1 at the number γn using the following lemma. (This lemma might be a known
result in the theory of Bessel functions, but, as we could not find it in the litterature,
we provide a proof here for completeness.)

Lemma 11 If ν ≥ 0, α > 0 and Jν+1(α) = 0, we have the identity

∫ 1

0
|Jν(αr)|2 r dr = 1

2
|Jν(α)|2 .

Proof Note that the function y(r) = Jν(αr) is solution of the differential equation

(r y′)′ +
(
α2 r − ν

r

)
y = 0, r > 0,

and, multiplying both sides of this equation by 2 r y′ yields

d

dr

{
(r y′)2

}
+ (α2 r2 − ν2)

d

dr

{
y2

}
= 0, r > 0.

Integrating both sides on the interval [0, 1], we obtain
[
(r y′)2 + (α2 r2 − ν2) y2

]1

0
−

∫ 1

0
2α2 y2(r) r dr = 0.

Note that (r y′)2 + (α2 r2 − ν2) y2 vanishes at r = 0. Indeed this is clear if ν = 0
and, if ν > 0, this follows from the fact that y(0) = 0. Hence, the previous identity
can be written as

∫ 1

0
2 α2 y2(r) r dr = y′(1)2 + (α2 − ν2) y(1)2.
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Since y(r) = Jν(αr), we have thus

∫ 1

0
2 α2 Jν(αr)2 r dr = α2 J ′

ν(α)2 + (α2 − ν2) Jν(α)2. (19)

Now using the identity,

d

dr

{
r−ν Jν(r)

} = −r−ν Jν+1(r),

we have thus

−ν r−ν−1 Jν(r) + r−ν J ′
ν(r) = −r−ν Jν+1(r)

which implies that

0 = −Jν+1(α) = −ν Jν(α) + α J ′
ν(α).

Substituting into (19) yields

2
∫ 1

0
|Jν(αr)|2 r dr = |Jν(α)|2,

proving our claim. 
�

We can thus write (18) in the form

g = 1

|B|
(∫

B
g(x) dx

)

+ �(d/2)

πd/2

∑

n≥1

(∫

B
g(x) |x |−d/2+1 Jd/2−1(|x |γn)dx

) |x |−d/2+1 Jd/2−1(|x |γn)
∣
∣Jd/2−1(γn)

∣
∣2

,

(20)

for any g ∈ L2
rad(B), where the series converges in L2(B). Since σ̂1(0) = 2πd/2

�(d/2) and

|B| = πd/2

�(d/2+1) , this is, of course, equivalent to having

h(s) = d

(∫ 1

0
h(r) rd−1 dr

)

+ 2
∑

n≥1

(∫ 1

0
h(r) r−d/2+1 Jd/2−1(γnr) rd−1 dr

)
s−d/2+1 Jd/2−1(sγn)

∣
∣Jd/2−1(γn)

∣
∣2

,

(21)
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for any h satisfying

∫ 1

0
|h(r)|2 rd−1 dr < ∞. (22)

where the convergence is in the weighted L2-space L2((0, 1), rd−1) defined using the

integral in (22). Replacing h(s) by p(s) := h(s) s
d−1
2 in (21), we can easily see that

this last expansion formula is also equivalent to the expansion

p(s) = d

(∫ 1

0
p(r) r

d−1
2 dr

)

s
d−1
2

+ 2
∑

n≥1

(∫ 1

0
p(r) r1/2 Jd/2−1(γnr) dr

)
s1/2 Jd/2−1(sγn)
∣
∣Jd/2−1(γn)

∣
∣2

, (23)

valid for p in the unweighted L2((0, 1)) space. Going back to the problem of identi-
fying the coefficients dn , n ≥ 0, in (16), we note that, if the expansion (16) holds on
R

d , it must also hold on B, and this suggests to formally expand the radial distribution
δ0 in term of the orthogonal system {ψn}n≥0 on B to obtain these coefficients.

Since we have, for α > 0,

x−ν Jν(αx)
∣
∣
x=0 = αν

�(ν + 1) 2ν
,

a formal application of formula (20) yields the expansion

δ0 = 1

|B| ψ0(0) + �(d/2)

πd/2

∑

n≥1

ψn(0)
ψn(x)

∣
∣Jd/2−1(γn)

∣
∣2

= 1

|B| + �(d/2)

πd/2

∑

n≥1

(
γ

d/2−1
n

�(d/2) 2d/2−1

)
|x |−d/2+1 Jd/2−1(|x |γn)

∣
∣Jd/2−1(γn)

∣
∣2

= 1

|B| + 1

(2π)d/2−1

∑

n≥1

(
γ

d/2−1
n

π

)
|x |−d/2+1 Jd/2−1(|x |γn)

∣
∣Jd/2−1(γn)

∣
∣2

on B(0, 1) and thus, taking Fourier tranforms,

μ = 1

|B| δ0 + 1

(2π)d/2−1

∑

n≥1

(
γ

d/2−1
n

π

)
γ

−d/2
n (2π)d/2−1

|Jd/2−1(γn)|2 σγn/2π

= 1

|B| δ0 +
∑

n≥1

1

π γn |Jd/2−1(γn)|2 σγn/2π . (24)

Let μ be the positive Borel measure defined by formula (24). Our next goal will be
to show that μ is a tempered measure and that T = F−1(μ) belongs to Ã (B(0, 2))).
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We will show this by proving that the statement in part (b) of Theorem 10 holds if μ

is the measure defined in (24) and V = B, using the fact that B(0, 2) = B − B.
In order to achieve this goal, we will need to use the theory of spherical harmonics.

Webriefly recall somebasic aspects of the theory of these functions.We refer the reader
to the books [4, 25] for more details. Recall that if t ≥ 0 and F is a function on R

d , F
is called homogeneous of degree t , if F(ax) = at F(x) whenever a > 0 and x ∈ R

d .
Homogeneous polynomials of degree n which satisfies the Laplace equation �u = 0
onR

d are called solid spherical harmonics of degree m.A spherical harmonic of degree
m is the restriction of a solid spherical harmonics of degree m to the unit sphere Sd−1.
It is well known that spherical harmonics of different degrees are orthogonal to each
other with respect to the usual surface measure on Sd−1. Furthermore, ifHm denotes
the space of spherical harmonic of degree m, then the dimension of Hm is given by

(
d + m − 1

m

)

−
(

d + m − 3

m − 2

)

if n ≥ 2 while dim(H0) = 1 and dim(H1) = d. In the following, we will denote by
a(m) the dimension of Hm and choose, for each m, an orthogonal basis

Ym,1, Ym,2, . . . , Ym,a(m),

for Hm . We can assume that the functions Ym,k are real-valued without any loss of
generality. We have thus

∫

Sd−1
Yn,k(x) Ym,l(x) dσ1(x) = δm,n δk,l m, n ≥ 0, 1 ≤ k ≤ a(n), 1 ≤ l ≤ a(m).

We will need the following result (see [5, p. 58]).

Proposition 12 Let Ym ∈ Hm be any spherical harmonic of degree m. Then

∫

Sd−1
e2π i x ·ξ Ym(ξ) dσ1(ξ) = im 2π |x |−d/2+1 Jd/2+m−1(2π |x |) Ym(x/|x |), x ∈ R

d .

To simplify the notations, we define the functions

�m,k(x) = im 2π |x |−d/2+1 Jd/2+m−1(2π |x |) Ym,k(x/|x |), x ∈ R
d , (25)

for m ≥ 0 and 1 ≤ k ≤ a(m). We will also need the following proposition in
which, as before, σt denotes the (d − 1)-dimensional surface measure on the set
t Sd−1 = {ξ ∈ R

d , |ξ | = t}.
Proposition 13 Suppose that F ∈ L2(Rd) is compactly supported and consider the
function

G(x) =
∫

t Sd−1
F̂(ξ) e2π i x ·ξ dσt (ξ), x ∈ R

d .
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Then,

G(x) = td−1
∑

m≥0

∑

1≤k≤a(m)

cm,k(t)�m,k(t x) (26)

where

cm,k(t) =
∫

Rd
F(x)�m,k(t x) dx .

Furthermore, the series in (26) converges uniformly on R
d .

Proof First note that, for fixed t , the continuous function ξ �→ F̂(tξ) defined on Sd−1

can be expanded as the series

F̂(t ξ) =
∑

m≥0

∑

1≤k≤a(m)

cm,k(t) Ym,k(ξ), ξ ∈ Sd−1,

which converges in L2(σ1) and where

cm,k(t) =
∫

Sd−1
F̂(tξ) Ym,k(ξ) dσ1(ξ), m ≥ 0, 1 ≤ k ≤ a(m).

It follows that

G(x) = td−1
∫

Sd−1
F̂(t ξ) e2π i x ·tξ dσ1(ξ)

= td−1
∑

m≥0

∑

1≤k≤a(m)

cm,k(t)
∫

Sd−1
Ym,k(ξ) e2π i t x ·ξ dσ1(ξ).

To show the uniform convergence of this last series, we note that, if M ≥ 1, we have

∣
∣
∣
∣
∣
∣
G(x) − td−1

M∑

m=0

∑

1≤k≤a(m)

cm,k(t)
∫

Sd−1
Ym,k(ξ) e2π i t x ·ξ dσ1(ξ)

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣
td−1

∑

m≥M+1

∑

1≤k≤a(m)

cm,k(t)
∫

Sd−1
Ym,k(ξ) e2π i t x ·ξ dσ1(ξ)

∣
∣
∣
∣
∣
∣

≤ td−1

⎛

⎝
∑

m≥M+1

∑

1≤k≤a(m)

|cm,k(t)|2
⎞

⎠

1/2

×
⎛

⎝
∑

m≥M+1

∑

1≤k≤a(m)

∣
∣
∣
∣

∫

Sd−1
Ym,k(ξ) e2π i t x ·ξ dσ1(ξ)

∣
∣
∣
∣

2
⎞

⎠

1/2

,
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and this last quantity goes to 0 as N → ∞ since

∑

m≥0

∑

1≤k≤a(m)

|cm,k(t)|2 =
∫

Sd−1
|F̂(t ξ)|2 dσ1(ξ) < ∞

and

∑

m≥0

∑

1≤k≤a(m)

∣
∣
∣
∣

∫

Sd−1
Ym,k(ξ) e2π i t x ·ξ dσ1(ξ)

∣
∣
∣
∣

2

=
∫

Sd−1
|e2π i t x ·ξ |2 dσ1(ξ) = σ̂1(0) < ∞.

We have also, by Proposition 12, that

∫

Sd−1
Ym,k(ξ) e2π i t x ·ξ dσ1(ξ) = �m,k(t x), x ∈ R

d ,

and

cm,k(t) =
∫

Sd−1
F̂(tξ) Ym,k(ξ) dσ1(ξ)

=
∫

Sd−1

(∫

Rd
F(x) e−2π i tξ ·x dx

)

Ym,k(ξ) dσ1(ξ)

=
∫

Sd−1

(∫ ∞

0

∫

Sd−1
F(rτ) e−2π i tξ ·rτ dσ1(τ ) rd−1 dr

)

Ym,k(ξ) dσ1(ξ)

=
∫ ∞

0

∫

Sd−1
F(rτ)

(∫

Sd−1
e−2π i trτ ·ξ Ym,k(ξ) dσ1(ξ)

)

dσ1(τ ) rd−1 dr

=
∫ ∞

0

∫

Sd−1
F(rτ)�m,k(t r τ) rd−1 dr =

∫

Rd
F(x)�m,k(t x) dx,

for m ≥ 0 and 1 ≤ k ≤ a(m), which completes the proof. 
�
The next step is now to find conditions equivalent for the identity (b) in Theorem 10
to hold for the measure μ defined in (24).

Proposition 14 Let μ be the measure in (24). Then, μ satisfies (b) in Theorem 10,
i.e. the identity

∫

B
|h(x)|2 dx =

∫

Rd
|ĥ(ξ)|2 dμ(ξ), h ∈ L2(B),

if and only if, for any measurable function p on (0, 1) satisfying
∫ 1
0 |p(r)|2 rd−1 dr <

∞, the following identities hold:
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∫ 1

0
|p(r)|2 rd−1 dr = d

∣
∣
∣
∣

∫ 1

0
p(r) rd−1 dr

∣
∣
∣
∣

2

+
∑

n≥1

2

|Jd/2−1(γn)|2
∣
∣
∣
∣

∫ 1

0
r−d/2+1 Jd/2−1(γnr) p(r) rd−1dr

∣
∣
∣
∣

2

, (27)

and, for every m ≥ 1,
∫ 1

0
|p(r)|2 rd−1 dr

=
∑

n≥1

2

|Jd/2−1(γn)|2
∣
∣
∣
∣

∫ 1

0
r−d/2+1 Jd/2+m−1(γnr) p(r) rd−1 dr

∣
∣
∣
∣

2

. (28)

Proof For every integer N ≥ 1, defined the measure

μN = 1

|B| δ0 +
N∑

n=1

1

π γn |Jd/2−1(γn)|2 σγn/2π

and let TN = F−1 (μN ). If h ∈ L2(B), we have, using Proposition 13, that

TN ∗ h = F−1
(

ĥ dμN

)
= ĥ(0)

|B| +
N∑

n=1

1

π γn |Jd/2−1(γn)|2 F
−1

(
ĥ σγn/2π

)

= 1

|B|
∫

B
h(x) dx

+
N∑

n=1

1

π γn |Jd/2−1(γn)|2
( γn

2π

)d−1

×
∑

m≥0
1≤k≤a(m)

cm,k(γn/2π)�m,k(γn x/2π)

= 1

|B|
∫

B
h(x) dx

+
N∑

n=1

2 γ d−2
n

(2π)d |Jd/2−1(γn)|2

×
∑

m≥0
1≤k≤a(m)

cm,k(γn/2π)�m,k(γn x/2π),

where

cm,k(γn/2π) =
∫

Rd
h(x)�m,k(γn x/2π) dx

=
∫ 1

0

∫

Sd−1
h(rτ)�m,k(γn r τ/2π) dσ1(τ ) rd−1 dr .



11 Page 22 of 31 Journal of Fourier Analysis and Applications (2024) 30 :11

Using the fact that μN , being a bounded measure, satisfies the Bessel condition (8),
we obtain, using part (c) of Proposition 9, that

∫

Rd
|ĥ(ξ)|2 dμN (ξ) = (TN ∗ h, h)

= 1

|B|
∣
∣
∣
∣

∫

B
h(x) dx

∣
∣
∣
∣

2

+
N∑

n=1

2 γ d−2
n

(2π)d |Jd/2−1(γn)|2

×
∑

m≥0
1≤k≤a(m)

∣
∣cm,k(γn/2π)

∣
∣2 .

Define, for m ≥ 0 and 1 ≤ k ≤ a(m), the function

hm,k(r) =
∫

Sd−1
h(rτ) Ym,k(τ ) dσ1(τ ), 0 ≤ r ≤ 1,

and note that

∫

B
|h(x)|2 dx =

∫ 1

0

∫

Sd−1
|h(rτ)|2 dσ1(τ ) rd−1 dr

∑

m≥0
1≤k≤a(m)

∫ 1

0
|hm,k(r)|2 rd−1 dr . (29)

Also, since dim(H0) = 1, we can take Y0,1(τ ) = σ̂1(0)−1/2. Hence,

∫

B
h(x) dx =

∫ 1

0

∫

Sd−1
h(rτ) dσ1(τ ) rd−1 dr

= σ̂1(0)
1/2

∫ 1

0

∫

Sd−1
h(rτ) Y0,1(τ ) dσ1(τ ) rd−1 dr

= σ̂1(0)
1/2

∫ 1

0
h0,1(r) rd−1 dr .

and

1

|B|
∣
∣
∣
∣

∫

B
h(x) dx

∣
∣
∣
∣

2

= σ̂1(0)

|B|
∣
∣
∣
∣

∫ 1

0
h0,1(r) rd−1 dr

∣
∣
∣
∣

2

= d

∣
∣
∣
∣

∫ 1

0
h0,1(r) rd−1 dr

∣
∣
∣
∣

2

.

Furthermore, using the fact that, for r ≥ 0 and τ ∈ Sd−1,

�m,k(γn r τ/2π) = im (2π)d/2 γ
−d/2+1
n r−d/2+1 Jd/2+m−1(γn r) Ym,k(τ ),
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we have

∣
∣
∣
∣

∫ 1

0

∫

Sd−1
h(rτ)�m,k(γn r τ/2π) dσ1(τ ) rd−1 dr

∣
∣
∣
∣

2

= (2π)dγ −d+2
n

∣
∣
∣
∣

∫ 1

0
r−d/2+1 Jd/2+m−1(γnr)

(∫

Sd−1
h(rτ) Ym,k(τ ) dσ1(τ )

)

rd−1 dr

∣
∣
∣
∣

2

= (2π)dγ −d+2
n

∣
∣
∣
∣

∫ 1

0
r−d/2+1 Jd/2+m−1(γnr) hm,k(r) r dr

∣
∣
∣
∣

2

.

It follows thus that

∫

Rd
|ĥ(ξ)|2 dμN (ξ) = d

∣
∣
∣
∣

∫ 1

0
h0,1(r) rd−1 dr

∣
∣
∣
∣

2

+
N∑

n=1

2

|Jd/2−1(γn)|2
∑

m≥0
1≤k≤a(m)

∣
∣
∣
∣

∫ 1

0
r−d/2+1 Jd/2+m−1(γnr) hm,k(r) rd−1 dr

∣
∣
∣
∣

2

.

and, using the Lebesgue monotone convergence theorem, we deduce that

∫

Rd
|ĥ(ξ)|2 dμ(ξ) = d

∣
∣
∣
∣

∫ 1

0
h0,1(r) rd−1 dr

∣
∣
∣
∣

2

+
∑

n≥1

2

|Jd/2−1(γn)|2
∑

m≥0
1≤k≤a(m)

∣
∣
∣
∣

∫ 1

0
r−d/2+1 Jd/2+m−1(γnr) hm,k(r) rd−1 dr

∣
∣
∣
∣

2

.

Using (29), the identity

∫

B
|h(x)|2 dx =

∫

Rd
|ĥ(ξ)|2 dμ(ξ), h ∈ L2(B)

is thus equivalent to having

∑

m≥0
1≤k≤a(m)

∫ 1

0
|hm,k(r)|2 rd−1 dr = d

∣
∣
∣
∣

∫ 1

0
h0,1(r) rd−1 dr

∣
∣
∣
∣

2

+
∑

n≥1

2

|Jd/2−1(γn)|2
∑

m≥0
1≤k≤a(m)

∣
∣
∣
∣

∫ 1

0
r−d/2+1 Jd/2+m−1(γnr) hm,k(r) rd−1 dr

∣
∣
∣
∣

2

,

(30)
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for every h ∈ L2(B). Choosing h ∈ L2(B) of the form

h(rτ) = p(r) Ym,k(τ ), 0 ≤ r ≤ 1, τ ∈ Sd−1,

for m ≥ 0 and 1 ≤ k ≤ a(m), we deduce from this last identity the infinite number
of Parseval type identities given in (27) and (28) for the space L2((0, 1), rd−1 dr)

consisting of themeasurable functions p on (0, 1) satisfying
∫ 1
0 |p(r)|2 rd−1 dr < ∞.

Conversely, it is easy to see that the identities (27) and (28) also imply (30), proving
our claim. 
�

As was mentioned earlier, the identity (27) is a well-known fact about Fourier-Bessel
series. It remains to prove the the identities (28), which will be our task in the next
section.

5 Parseval Frames Involving Bessel Functions

Wewill prove the identities (28) by induction on m using an approximation argument.
The following lemma will play a key role.

Lemma 15 For any real γ ≥ 0 and any integer d ≥ 2, the subspace

Mγ := {rγ d

dr

{
r−γ ϕ(r)

} : ϕ ∈ C∞
0 ((0, 1))}

is dense in L2((0, 1), rd−1).

Proof Let g ∈ L2((0, 1), rd−1 dr) satisfy

∫ 1

0
rγ d

dr

{
r−γ ϕ(r)

}
g(r) rd−1 dr = 0, for all ϕ ∈ C∞

0 ((0, 1)) .

This is equivalent to the identity (in the sense of distributions)

r−γ d

dr

{
g(r) rd+γ−1

}
= 0 on (0, 1)

which implies that g(r) = C r−d−γ+1, for some constant C . If C �= 0, this implies
that

∫ 1

0
r−2d−2γ+2 rd−1 dr =

∫ 1

0
r−d−2γ+1 dr < ∞,

or d + 2 γ < 2 and leads to a contradiction. Thus g = 0 and the conclusion follows
from the Hahn–Banach theorem. 
�
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Theorem 16 If d ≥ 2 is an integer and p ∈ L2((0, 1), rd−1 dr), the identities

∫ 1

0
|p(r)|2 rd−1 dr =

∞∑

n=1

2

|Jd/2−1(γn)|2
∣
∣
∣
∣

∫ 1

0
p(r) r−d/2+1 Jd/2+m−1(γnr) rd−1 dr

∣
∣
∣
∣

2

(31)

hold for any m ≥ 1, i.e. the collection
{ √

2
|Jd/2−1(γn)| r−d/2+1 Jd/2+m−1(γnr)

}

n≥1
is a

Parseval frame for L2((0, 1), rd−1 dr), and this for any m ≥ 1.

Proof We will use induction on m to prove our claim. Our starting point is the known
identity (27) which will help us to prove the case m = 1 of (31). We will use the fact
that, if ν ≥ 0, the function y(r) = Jν(r) is solution of the differential equation

r2 y′′(r) + r y′(r) + (r2 − ν2) y(r) = 0, r > 0, (32)

and also that it satisfies

d

dr

{
r−ν Jν(r)

} = −r−ν Jν+1(r), r > 0.

(see [26]). In particular, if γ > 0, we have

d

dr

{
r−ν Jν(γ r)

} = −γ r−ν Jν+1(γ r), r > 0. (33)

Furthermore, the function z(r) = r−ν Jν(r) is solution of the differential equation

r z′′(r) + (2 ν + 1) z′(r) + r z(r) = 0, r > 0. (34)

Let ν = d/2− 1 to simplify the notations and note that the identity (27) is equivalent
to the validity of the expansion, for any p ∈ L2((0, 1), rd−1 dr),

p = d
∫ 1

0
p(r) rd−1 dr +

∞∑

n=1

2

|Jν(γn)|2
(∫ 1

0
p(r) r−ν Jν(γnr) rd−1 dr

)

r−ν Jν(γnr),

where the series converges in L2((0, 1), rd−1 dr) and thus a also in D′ ((0, 1)). Dif-
ferentiating both sides of the previous expression and using (33) yields the expansion

p′ =
∞∑

n=1

2

|Jν(γn)|2
(∫ 1

0
p(r) r−ν Jν(γnr) rd−1 dr

)
d

dr

{
r−ν Jν(γnr)

}
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= −
∞∑

n=1

2

|Jν(γn)|2
(

γn

∫ 1

0
p(r) r−ν Jν(γnr) rd−1 dr

)

r−ν Jν+1(γnr)

which holds in D′ ((0, 1)). Letting p = ϕ ∈ C∞
0 ((0, 1)) and z(r) = r−ν Jν(r), we

have, using (34),

γn

∫ 1

0
ϕ(r) r−ν Jν(γnr) rd−1 dr =

∫ 1

0
ϕ(r) (γn r) z(γnr) γ ν

n rd−2 dr

= −γ ν
n

∫ 1

0
ϕ(r)

[
(γn r) z′′(γnr) + (d − 1) z′(γnr)

]
rd−2 dr

= −γ ν
n

∫ 1

0
ϕ(r)

[
γn rd−1 z′′(γnr) + (d − 1) rd−2z′(γnr)

]
dr

= −γ ν
n

∫ 1

0
ϕ(r)

d

dr

{
rd−1 z′(γnr)

}
dr = γ ν

n

∫ 1

0
ϕ′(r) rd−1 z′(γnr) dr

= −γ ν
n

∫ 1

0
ϕ′(r) (γnr)−ν Jν+1(γnr) rd−1 dr

= −
∫ 1

0
ϕ′(r) r−ν Jν+1(γnr) rd−1 dr .

It follows thus that

ϕ′ =
∞∑

n=1

2

|Jν(γn)|2
(∫ 1

0
ϕ′(r) r−ν Jν+1(γnr) rd−1 dr

)

r−ν Jν+1(γnr)

where the series converges in the distributional sense on the interval (0, 1). Applying
this identity to the test function ϕ′(r) rd−1, we obtain thus

∫ 1

0
|ϕ′(r)|2 rd−1 dr = 〈ϕ′(r), ϕ′(r) rd−1〉

=
∞∑

n=1

2

|Jν(γn)|2
(∫ 1

0
ϕ′(r) r−ν Jν+1(γnr) rd−1 dr

)

×
〈
r−ν Jν+1(γnr), ϕ′(r) rd−1

〉

or

∫ 1

0
|ϕ′(r)|2 rd−1 dr =

∞∑

n=1

2

|Jd/2−1(γn)|2
∣
∣
∣
∣

∫ 1

0
ϕ′(r) r−d/2+1 Jd/2(γnr) rd−1 dr

∣
∣
∣
∣

2

.

Using Lemma 15 with γ = 0, the case m = 1 of the identity (31) follows easily from
the previous identity by an approximation argument. We now prove the general case
by induction.
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Let us assume that (31) holds for some m ≥ 1. This is to equivalent to having the
expansion

p =
∞∑

n=1

2

[Jν(γn)]2
(∫ 1

0
p(r) r−ν Jν+m(γnr) rd−1 dr

)

r−ν Jν+m(γnr)

where the series converges in L2((0, 1), rd−1 dr) and thus also inD′ ((0, 1)). It follows
that the identity

rm d

dr

{
r−m p

} =
∞∑

n=1

2

[Jν(γn)]2
(∫ 1

0
p(r) r−ν Jν+m(γnr) rd−1 dr

)

× rm d

dr

{
r−ν−m Jν+m(γnr)

}

holds in D′ ((0, 1)) which is equivalent, using (33) to the identity

rm d

dr

{
r−m p

} = −
∞∑

n=1

2

[Jν(γn)]2
(∫ 1

0
p(r) r−ν γn Jν+m(γnr) rd−1 dr

)

× r−ν Jν+m+1(γnr).

Now, letting p = ϕ ∈ C∞
0 ((0, 1)), we will show that

∫ 1

0
ϕ(r) r−ν γn Jν+m(γnr) rd−1 dr

= −
∫ 1

0
rm (

r−m ϕ(r)
)′

r−ν Jν+m+1(γnr) rd−1 dr . (35)

Starting with the right-hand side of (35), we have

−
∫ 1

0
rm (

r−m ϕ(r)
)′

r−ν Jν+m+1(γnr) rd−1 dr

=
∫ 1

0
r−m ϕ(r)

d

dr

{
Jν+m+1(γnr) rd+m−ν−1

}
dr

=
∫ 1

0
ϕ(r)

{
γn J ′

ν+m+1(γnr) rd−ν−1 + (d + m − ν − 1) Jν+m+1(γnr) rd−ν−2
}

dr .

It follows that the identity (35) is equivalent to

0 = r−ν γn Jν+m(γnr) rd−1 − γn J ′
ν+m+1(γnr) rd−ν−1

− (d + m − ν − 1) Jν+m+1(γnr) rd−ν−2

or to

r γn Jν+m(γnr) − r γn J ′
ν+m+1(γnr) − (d + m − ν − 1) Jν+m+1(γnr) = 0,
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for 0 < r < 1. Since d + m − ν − 1 = ν + m + 1, this will follow if we can prove
the identity

r Jν+m(r) − r J ′
ν+m+1(r) − (ν + m + 1) Jν+m+1(r) = 0, r > 0.

Since

Jν+m+1(r) = −rν+m [
r−ν−m Jν+m(r)

]′ = (ν + m) r−1 Jν+m(r) − J ′
ν+m(r),

this last identity can be written as

r Jν+m(r) − r
[
−(ν + m) r−2 Jν+m(r) + (ν + m) r−1 J ′

ν+m(r) − J ′′
ν+m(r)

]

− (ν + m + 1)
[
(ν + m) r−1 Jν+m(r) − J ′

ν+m(r)
]

= 0,

or, after multiplying by r ,

r2 J ′′
ν+m(r) + r J ′

ν+m(r) + [r2 − (ν + m)2] Jν+m(r) = 0

which is exactly the Bessel equation (32) satisfied by Jν+m . As before, we can deduce
that the identity (31) holds, if m is replaced by m + 1, for functions of the form
p(r) = rm d

dr

{
r−m ϕ(r)

}
, where ϕ ∈ C∞

0 ((0, 1)), a collection which is dense in
L2

(
(0, 1), rd−1 dr

)
by Lemma 15 applied to γ = m. Again, an approximation argu-

ment shows that (31) holds for all functions in L2
(
(0, 1), rd−1 dr

)
, which concludes

the proof. 
�
The previous theorem has, of course, direct counterparts for the space L2

rad(B) and the
unweighted space L2 ((0, 1)), which we state next.

Corollary 17 Let m ≥ 1 be an integer. Then,

(a) The collection
{ √

2
|Jd/2−1(γn)| |x |−d/2+1 Jd/2+m−1(γn|x |)

}

n≥1
is a Parseval frame

for L2
rad(B).

(b) The collection
{ √

2
|Jd/2−1(γn)|

√
r Jd/2+m−1(γnr)

}

n≥1
is a Parseval frame for

L2 ((0, 1)).

Although we did not use this fact in the proof, the case m = 1 in Theorem 16 and
in Corollary 17 is also well-known and, in fact, the Parseval frames are orthonormal
bases in this particular case. Indeed, the functions forming the Parseval frame in part
(a) of Corollary 17 are known to the radial eigenfunctions {�n} of the Laplace operator
on B that satisfy the Dirichlet boundary condition �n = 0 on the boundary of B, and
these form an orthonormal basis for L2

rad(B) (see [5]). This can also be easily deduced
from the fact that the collection in part (b) of Corollary 17 for an orthonormal basis
for L2 ((0, 1)), as proved in [14].

We now have all the ingredients to prove the main result of this paper.
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Proof of Theorem 4 Since, by construction, themeasureμ inTheorem4 satisfies f̂ μ =
δ0 or f ∗ T = 1 on R

d , where f = |B|−1 χB ∗ χ̃B and T = F−1(μ), it suffices to
show that T ∈ Ã(B(0, 2) by Corollary 3. This last property follows immediately from
Theorem 10, Proposition 14, Theorem 16 as well as the known identity (27) for Bessel
functions. 
�

6 Additional Properties of the TuránMaximizer and Its Dual

In dimension d ≥ 2, although we have an explicit formula for the Fourier transform
of the dual Turán maximizer T we constructed, i.e. the measure μ defined in (24), we
don’t have such an explicit expression for T itself. All we known is that T = δ0 on the
ball B(0, 2) and T is thus a measure on that open set. However, the following shows
T has to be “singular” near the sphere of radius 2 centered at 0 in the sense that it can
not be equal to a measure, i.e. a distribution of order 0, on any ball centered at 0 with
radius 2 + ε, ε > 0.

Proposition 18 Suppose that d ≥ 2 and let T = F−1(μ), where μ is the measure
defined in (24). Then, if ε > 0, the restriction of T to the ball B(0, 2 + ε) is not a
(complex) measure.

Proof Wewill argueby contradiction. Suppose thatT = δ0+ρwhereρ is a distribution
supported on the set {x ∈ R

d , |x | ≥ 2} whose restriction to the open set {x ∈
R

d , |x | < 2 + ε} is a complex measure also denoted by ρ. Let B be the open ball
{x ∈ R

d , |x | < 1}, let E = {y ∈ R
d , |y| ≥ 2} and define gn(y) = χB(zn−y) χE (y).

Note that the convolution ρ ∗ χB is given a. e. by the function

f (w) =
∫

|y|≥2
χB(w − y) dρ(y) =

∫

R

χB(w − y) χE (y) dρ(y) =
∫

R

gn(y) dρ(y)

on the open set {w ∈ R
d , |w| < 1+ε/2}. Since T ∗χB = 1, we have ρ∗χB = 1−χB

and, in particular, ρ ∗ χB = 1 a.e. on the set {x ∈ R
d , |x | > 1}. Now let z ∈ R

d with
|z| = 1 and consider a sequence (zn) inR

d with 1 < |zn| < 1+ε/2 such that zn → z.
Note that, if |z − y| < 1, we have |zn − y| < 1 and thus χE (y) = 0 = gn(y) for

n large enough. Also, if |z − y| > 1, we have |zn − y| > 1 and thus χB(zn − y) =
0 = gn(y) for n large enough. Finally, if |z − y| = 1, we have |y| < 2 unless y = 2 z.
Indeed, if |y| ≥ 2, we would have

2 ≤ |y| ≤ |z| + |y − z| = 2

which implies that |y| = 2 and that the vectors z and y − z are multiple of each other
yielding y = 2 z. We have thus χE (y) = 0 = gn(y) if |z − y| = 1 and y �= 2 z. Since
a locally bounded radial measure cannot give mass to any non-zero point, we have
|ρ|({2 z}) = 0 and we obtain that gn(y) → 0 ρ-almost everywhere as n → ∞. The
Lebesgue dominated convergence theorem then shows that f (zn) → 0 as n → ∞,
contradicting the fact that f = 1 a. e. on the set {x ∈ R

d , |x | > 1}. 
�
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It is straightforward to extend our main result to balls centered at the origin with
arbitrary radius or, more generally, to ellipsoidal regions, i.e. the images of the ball
B(0, 2) under an invertible linear transformation of R

d . If D is a linear transformation
of R

d , we denote by Dt its transpose, by det(D) its determinant and, if E ⊂ R
d , by

D(E) the set {Dx, x ∈ E}.
Theorem 19 Let d ≥ 2 and suppose that D : R

d → R
d is an invertible linear

transformation. Let U = D(B(0, 2)), let V = D(B) and let μ be the measure defined
in (6). Then,

(a) U is a Turán domain, i.e. the function f1 = |V |−1 χV ∗ χ̃V is a Turán maximizer
for U.

(b) The distribution T1 = | det(D)|F−1
(
μ(Dt ·)) is a dual Turán maximizer for U,

where

〈μ(Dt ·), ϕ〉 =
∫

Rd
ϕ((Dt )−1ξ) dμ(ξ), ϕ ∈ S(Rd).

Proof Note that

U = D(B(0, 2)) = D(B − B) = D(B) − D(B) = V − V .

Letting f = |B|−1 χB ∗ χ̃B , where B = B(0, 1), we have f1 = f (D−1·). Morover,
if (ϕn) is a sequence in A(B(0, 2)) converging to f in S ′(Rd), then the sequence
(ϕn(D−1·)) is a sequence in A(U ) converging to f1 in S ′(Rd). It is easily checked
that T1 ∈ Ã(U ) and that f̂1 T̂1 = δ0 on R

d . It follows that f1 ∗ T1 = 1 on R
d and the

results follows then Corollary 2. 
�
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