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Abstract
Fix {a1, . . . , an} ⊂ N, and let x be a uniformly distributed random variable on [0, 2π ].
The probability P(a1, . . . , an) that cos(a1x), . . . , cos(anx) are either all positive or all
negative is non-zero since cos(ai x) ∼ 1 for x in a neighborhood of 0.We are interested
in how small this probability can be. Motivated by a problem in spectral theory,
Goncalves, Oliveira e Silva, and Steinerberger proved that P(a1, a2) ≥ 1/3 with
equality if and only if {a1, a2} = gcd(a1, a2) · {1, 3}. We prove P(a1, a2, a3) ≥ 1/9
with equality if and only if {a1, a2, a3} = gcd(a1, a2, a3) · {1, 3, 9}. The pattern
does not continue, as {1, 3, 11, 33} achieves a smaller value than {1, 3, 9, 27}. We
conjecture multiples of {1, 3, 11, 33} to be optimal for n = 4, discuss implications for
eigenfunctions of Schrödinger operators −� + V , and give an interpretation of the
problem in terms of the lonely runner problem.
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1 Introduction and Result

1.1 Introduction

The purpose of this paper is to introduce a seemingly elementary problem. For any
given set {a1, . . . , an} ⊂ N (where we assume a1 < a2 < · · · < an), we consider the
associated functions cos(a1x), cos(a2x),…, cos(anx) and ask the following question:
if x is chosen uniformly at random, what is the chance that all of these n numbers have
the same sign? Formally, we are interested in

P(a1, . . . , an) = 1

2π

∣
∣
∣
∣

{

x ∈ [0, 2π] : min
1≤i≤n

cos (ai x) > 0 or max
1≤i≤n

cos (ai x) < 0

}∣
∣
∣
∣
.

It is clear that this likelihood has to be positive because for values of x near 0 or 2π , all
of the cosines are close to 1. It is easy to see that P(a1, . . . , an) ≥ 1/(2an). A natural
question is how small this quantity can be. Hence, we define

pn = inf{a1,...,an}⊂N

P(a1, . . . , an).

It is less clear whether pn is strictly positive or what size we would expect it to be. A
natural intuition is that if we take the integers ai to be large and independent of one
other, then the likelihood for each x to have the same sign should be roughly of the
order 2−n , but there are configurations that are dramatically better than this.

Proposition For any n ≥ 2, we have that

pn ≤ P

(

1, 3, 9, . . . , 3n−1
)

= 1

3n−1 .

In general, pn appears to decay faster than 3−n , but we are not aware of much
weaker bounds. For small values of n, much more is understood. In particular, there is
a precise result on p2. Goncalves, Oliveira e Silva, and Steinerberger [6] proved that
p2 = 1/3 and, more precisely,

P(a1, a2) ≥ 1

3

with equality if and only if {a1, a2} = gcd(a1, a2) · {1, 3}. Their result is slightly
more general and phrased in a different setting, where it was used to understand
sign correlations of eigenfunctions of Schrödinger operators. We refer to Sect. 1.3 for
details.

1.2 Result

The main purpose of our paper is to establish that p3 = 1/9 and to identify configu-
rations for which the value is attained.
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Theorem (Main Result) We have

P(a1, a2, a3) ≥ 1

9

with equality if and only if {a1, a2, a3} = gcd(a1, a2, a3) · {1, 3, 9}.
Our proof uses Fourier Analysis to establish that having the ai spread over different

scales results in probabilities closer to 2−(n−1). Extremal configurations have at least
some ai relatively small, which is reminiscent of [10]. We use this to deduce that a1
and a2 are relatively small, i.e., a1 = 1 and a2 ≤ 7, and show that

if a3 � a2 then P(a1, a2, a3) ∼ 1

2
· P(a1, a2).

Combined with the existing result P(a1, a2) ≥ p2 = 1/3, this shows that a3 cannot be
much larger than a2. We specifically deduce a3 ≤ 84, which reduces the problem to a
finite search space. There does not appear to be a fundamental obstacle to generalize
the approach to p4, but the number of cases increases dramatically.

Naturally, one could be tempted to conjecture a general pattern and expect that
powers of 3 are the extremal configuration for the problem. This is not the case, as an
explicit computation shows

P (1, 3, 11, 33) = 1

33
<

1

27
= P (1, 3, 9, 27) .

Using Monte-Carlo sampling to narrow down a list of candidates 1 ≤ a1 < a2 <

a3 < a4 ≤ 105 and then performing an explicit calculation using Lemma 2.2, we
believe that multiples of {1, 3, 11, 33} are the extremal configuration for n = 4. As
for n = 5, numerical investigation has identified {1, 3, 11, 35, 105} as a possible
candidate, which shows p5 ≤ 1/105. It is again tempting to draw conclusions from
these examples. It seems not inconceivable that configurations with the minimal sign
correlation have a1 = 1, a2 = 3, and an = 3an−1.

1.3 Related Questions

The paper [6] is concerned with the sign pattern of eigenfunctions of Schrödinger
operators H = −� + V on the real line R. For many of these operators, there exists
a WKB expansion that allows us to replace the eigenfunction by a trigonometric
expansion up to a small error. For the sake of a concrete example, we consider the
operator H = −� + x2 whose eigenfunctions are the Hermite functions Hn(x).
Ordinarily, one would expect the sign of a Hermite function Hn in two different points
x �= y to be decoupled or unrelated. However, the sign of Hn(1/2) and Hn(5/2) are
identical for a set of n with asymptotic density

lim
n→∞

1

n
#{1 ≤ i ≤ n : sgn(Hi (1/2)) = sgn(Hi (5/2))} = 3

5
.
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Fig. 1 For n runners on a
circular track of length 1 all
starting at 0 and running at a
constant (integer) speed, what is
the proportion of time that they
all spend in the right half (+) or
the left half (−)?

0
+−

The relationship to our problem can be seen from an asymptotic expansion of Hermite
functions (valid on any compact interval)

�(2n + 1)

�(4n + 1)
ex

2/2H4n(x) = cos (
√
8nx) + O(1/

√
n)

and the observation that the sequence
√
8n mod 2π behaves like a uniformly dis-

tributed random variable (in the sense of being uniformly distributed over [0, 2π ]).
A second related problem is the Lonely Runner Conjecture by Cusick [4] andWills

[12]. In this problem, n runners start in the same spot on a circular track of length 1
and then run with constant speeds v1, v2, . . . , vn . The conjecture is that each runner
gets lonely at some time, meaning that the runner is distance at least 1/n from all
other runners. The problem is known to be difficult and only understood for small
n and special settings. We refer to [1–3, 7–9, 11] for an incomplete list of results.
We specifically mention Goddyn-Wong [5], who studied tight configurations of the
lonely runner problem, which seem to be of a similar type as our conjectured extremal
examples.

Our problemadmits a similar such interpretation (see Fig. 1). In our problem,we can
imagine the runners as starting in the same place, and we are asking for the proportion
of time that they are either all together on the left-hand side of the track or all together
on the right-hand side of the track.

2 Proofs of Results

2.1 Outline of the Proof

The proof proceeds as follows. In Sect. 2.2, we show that P(1, 3, . . . , 3n−1) = 1/3n−1

and then establish two useful lemmas. In Sect. 2.3, we apply our results to the three-
dimensional case P(a, b, c). We first revisit a Fourier analysis result from [6]. Using
this, we reduce to the case of a, b, c odd in Lemma 2.7 and then to the case a = 1 in
Lemma 2.8. We then use our results to bound b and c, and by checking these finitely
many cases with a computer, we establish our main theorem.
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2.2 Notation and Results for General Dimension

We start with some general notation. While we are primarily interested in sign cor-
relation on the interval [0, 2π ], it is useful at times to consider other intervals. Let
a1, a2, . . . , an be natural numbers. The cosine sign correlation of (a1, . . . , an) on a
bounded interval I ⊆ R is defined as

PI (a1, . . . , an) = 1

|I | ·
∣
∣
∣
∣

{

x ∈ I : min
1≤i≤n

cos(ai x) > 0 or max
1≤i≤n

cos(ai x) < 0

}∣
∣
∣
∣
.

When I = [0, 2π ], we omit the subscript. Define the indicator function

χ(a1,...,an)(x) =
{

1 if min1≤i≤n cos(ai x) > 0or max1≤i≤n cos(ai x) < 0

0 otherwise
.

Observe that the sign correlation of (a1, . . . , an) can be equivalently expressed as

PI (a1, . . . , an) = 1

|I |
∫

I
χ(a1,...,an)(x) dx . (2.1)

We now prove a result that implies the proposition given in the introduction.

Proposition 2.1 Suppose that P(a1, a2, ..., an) = 1/an and ai is odd for all i . Then
for any positive integer m,

P(a1, a2, ..., an, 3an ..., 3
man) = 1

3man
.

Proof We first show that

χ−1
(a1,...,an)

(1) =
[

0,
π

2an

)

∪
(

π − π

2an
, π + π

2an

)

∪
(

2π − π

2an
, 2π

]

. (2.2)

All ai are odd, so all cos(ai t) are positive in a neighborhood of 0, negative in a
neighborhood of π , and positive in a neighborhood of 2π . Since cos(ai t) has period
2π/ai and an is the largest of the ai ’s, we have

[

0,
π

2an

)

∪
(

π − π

2an
, π + π

2an

)

∪
(

2π − π

2an
, 2π

]

⊆ χ−1
(a1,...,an)

(1).

Note that the total length of these intervals is 2π/an , so

P(a1, a2, ..., an) = 1

2π
· |χ−1

(a1,...,an)
(1)| = 1

an

implies that (2.2) holds up to a set N of measure 0. Since cos(ai t) is continuous, we
see that if χ(a1,...,an)(x) = 1 for some x ∈ [0, 2π ], then χ(a1,...,an) ≡ 1 in some interval
containing x . Hence, N = ∅, and (2.2) holds.
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Now consider (a1, . . . , an, 3an). The period of cos(3ant) is 2π/(3an), so on the
interval I = [0, π/(2an)), we see that cos(3ant) > 0 only for t ∈ [0, π/(6an)). On the
remaining intervals in χ−1

(a1,...,an)
(1), we see that cos(3ant) < 0 on (π −π/(6an), π +

π/(6an)) and cos(3ant) > 0 on (2π − π/(6an), 2π ]. Combined, we see that

χ−1
(a1,...,an ,3an)

(1) =
[

0,
π

6an

)

∪
(

π − π

6an
, π + π

6an

)

∪
(

2π − π

6an
, 2π

]

.

From this, we conclude

P(a1, . . . , an, 3an) = 1

2π

∫ 2π

0
χ(a1,...,an ,3an)(x) dx = 1

2π
· 2π

3an
= 1

3an
.

Observe that if an is odd, then 3an is also odd. Hence, the general result follows from
induction on m. ��

Our general approach in the preceding result is to consider where χ(a1,...,an) has
value 1. Using this idea, we derive a general method for calculating P(a1, . . . , an).

Lemma 2.2 Let � = lcm(a1, . . . , an). For each m ∈ {0, 1, . . . , 4� − 1}, choose a
sample point x∗

m ∈ (πm/(2�), π(m + 1)/(2�)). Then

P(a1, . . . , an) = #{x∗
m : χ(a1,...,an)(x

∗
m) = 1}

4�
.

Proof The function cos(ai x) is 0 when ai x = π/2 + πk for some k ∈ Z. Then zeros
can only occur when

x = π

2ai
+ πk

ai
= π(1 + 2k)

2ai
= π · (1 + 2k) · �/ai

2�
.

Hence, χ(a1,...,an) is constant on intervals of the form (πm/(2�), π(m + 1)/(2�)).
Each of these intervals has the same length, and the finitely many points of the form
πm/(2�) on [0, 2π ] do not affect the integral in (2.1). ��

Recall that pn = inf{a1,...,an}⊂N P(a1, . . . , an). The results of [6] imply p2 = 1/3
and Proposition 2.1 implies p3 ≤ 1/9, so p3 ≤ p2/3. Focusing on this factor of
1/3, we show that P(a1, . . . , an) ≤ P(a1, . . . , an−1)/3 can only hold when an is
sufficiently small with respect to the remaining integers {a1, . . . , an−1}.
Lemma 2.3 If an > 12 · lcm(a1, . . . , an−1), then

P(a1, . . . , an) >
1

3
· P(a1, . . . , an−1).

Note that for values of an ≤ 12 · lcm(a1, . . . , an−1), the conclusion of Lemma 2.3
need not hold. For example, Lemma 2.2 allows us to calculate P(1, 3, 11) = 5/33 and
P(1, 3, 11, 33) = 1/33.
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Proof of Lemma 2.3 Let � = lcm(a1, . . . , an−1). As observed in the preceding lemma,
χ(a1,...,an−1) is constant on any interval of the form I = (πm/(2�), π(m + 1)/(2�)) ⊆
[0, 2π ]. Suppose χ(a1,...,an−1)|I = 1. The function cos(ant) completes r full cycles on
I for some r ∈ N. We denote the intervals for these cycles I1, . . . , Ir , and let Ir+1 be
the remaining portion of I . Decompose

PI (a1, . . . , an) =
∑r

j=1 |I j |PI j (a1, . . . , an) + |Ir+1|PIr+1(a1, . . . , an)

|I |
≥

∑r
j=1 |I j |PI j (a1, . . . , an)

|I | .

(2.3)

Observe that since cos(ant) completes one full cycle in each I j and all remaining
components have the same sign, we have that

PI j (a1, . . . , an) = 1

2
· PI j (a1, . . . , an−1) = 1

2
.

All intervals I j have the same length, so this implies

PI (a1, . . . , an) ≥ r |I1|
2|I | .

Since |I | = π/(2�), |I1| = 2π/an , and r = �(π/(2�))/(2π/an)� = �an/(4�)�, we
find

PI (a1, . . . , an) ≥ 4�

2an
·
⌊an
4�

⌋

≥ 2�

an

(an
4�

− 1
)

= 1

2
− 2�

an
.

Since the assumption an > 12� implies 2�/an < 1/6, we have

PI (a1, . . . , an) >
1

2
− 1

6
= 1

3
= 1

3
PI (a1, . . . , an−1)

on any I where χ(a1,...,an−1) ≡ 1. Hence, P(a1, . . . , an) > P(a1, . . . , an−1)/3.

Remark 2.4 By also considering an upper bound in the proof of the preceding lemma,
one can obtain the bounds

1

2
− 2�

an
≤ PI (a1, . . . , an) ≤ 1

2
+ 4�

an
. (2.4)

Hence, we see that as an → ∞, we have PI (a1, . . . , an) → 1/2. This allows us to
conclude that

lim
an→∞ P(a1, . . . , an) = 1

2
· P(a1, . . . , an−1),
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so this formalizes the idea that large values of an multiply sign correlation by a factor
of approximately 1/2. The bounds in (2.4) also allow us to find an so that the factor is
arbitrarily close to 1/2, and Lemma 2.3 is a special case of this.

2.3 Three Dimensions

We now focus on the three-dimensional case and prove our Main Result. Goncalves,
Oliveira e Silva, and Steinerberger considered

�(x, y) = sgn(cos(2πx) cos(2π y)). (2.5)

Using Fourier Analysis, they established the following result for lines on the two-
dimensional torus T

2 = [0, 1]2/ ∼.

Lemma 2.5 ([6], Lemma 3) Let a, b ∈ R be nonzero such that a/b = p/q for some
coprime p, q ∈ Z. Let α, β ∈ R and let γ (t) = (at −α, bt −β) be the corresponding
ray on T

2. If either p or q are even, then

lim
T→∞

1

T

∫ T

0
�(γ (t)) dt = 0.

If both p and q are odd, then

lim
T→∞

1

T

∫ T

0
�(γ (t)) dt = (−1)

p+q
2

8

π2 pq

∞
∑

�=0

cos(2π(2� + 1)(pβ − qα))

(2� + 1)2
.

There is one important consequence of this result, which we use multiple times.
We state and prove this below.

Corollary 2.6 Let a, b ∈ R be nonzero such that a/b = p/q for some coprime p, q ∈
Z, and define γ (t) = (at, bt) to be a ray on T

2. If either p or q is even, then

∫ 1

0
�(γ (t)) = 0.

If both p and q are odd, then

∣
∣
∣
∣

∫ 1

0
�(γ (t))

∣
∣
∣
∣
= 1

|pq| .

Proof For α = β = 0, the function �(γ (t)) is 1-periodic, so for any positive integer
k, the integral of �(γ (t)) on [k, k + 1] is the same. Then for any positive integer T ,

1

T

∫ T

0
�(γ (t)) = 1

T
·
T−1
∑

k=0

∫ k+1

k
�(γ (t)) dt =

∫ 1

0
�(γ (t)) dt .
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For these values of T , equality in Lemma 2.5 must hold without the limit. The result
immediately follows for p or q even. If p and q are odd, note that α = β = 0 implies
pβ − qα = 0, so combined with

∑∞
�=0 1/(2� + 1)2 = π2/8, we see that

∣
∣
∣
∣

∫ 1

0
�(γ (t)) dt

∣
∣
∣
∣
=

∣
∣
∣
∣
∣

8

π2 pq

∞
∑

�=0

1

(2� + 1)2

∣
∣
∣
∣
∣
= 1

|pq| .
��

We consider lines on the three-dimensional torus T
3, which we denote as γ (t) =

(at, bt, ct). Define the function

�(γ (t)) = �(at, bt) + �(at, ct) + �(bt, ct) − 1

2
, (2.6)

which takes value 1 when cos(2πat), cos(2πbt), cos(2πct) have the same sign and
−1 otherwise. Letting I denote the set of all x ∈ [0, 2π ] such that � (γ (x/2π)) = 1,
a change of variables shows

∫ 1

0
�(γ (t)) dt = 1

2π

∫ 2π

0
�

(

γ
( x

2π

))

dx

= 1

2π
(|I | − (2π − |I |)) = 2 · P(a, b, c) − 1.

(2.7)

For the remainder of this section, we fix distinct a, b, c ∈ N and select
p, q, r , s, u, v ∈ N such that a/b = p/q, a/c = r/s, and b/c = u/v with
gcd(p, q) = gcd(r , s) = gcd(u, v) = 1. We now give a reduction to the case when
a, b, c are all odd.

Lemma 2.7 Suppose gcd(a, b, c) = 1 and P(a, b, c) ≤ 1/9. Then a, b, c are odd and

1

|pq| + 1

|rs| + 1

|uv| ≥ 5

9
.

Proof Since P(a, b, c) ≤ 1/9, (2.7) implies

∣
∣
∣
∣

∫ 1

0
�(at, bt, ct)dt

∣
∣
∣
∣
= |1 − 2 · P(a, b, c)| ≥

∣
∣
∣
∣
1 − 2 · 1

9

∣
∣
∣
∣
= 7

9
. (2.8)

We show that if a, b, or c are even, then

∣
∣
∣
∣

∫ 1

0
�(at, bt, ct)dt

∣
∣
∣
∣
≤ 2

3
,

so (2.8) is not satisfied. First, assume that we have one even integer out of {a, b, c}.
Without loss of generality, suppose it is c. Then v, s are even and p, q are odd, so by
triangle inequality and Corollary 2.6,
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∣
∣
∣
∣

∫ 1

0
�(at, bt, ct)dt

∣
∣
∣
∣
≤ 1

2

(∣
∣
∣
∣

∫ 1

0
�(at, bt)dt

∣
∣
∣
∣
+

∣
∣
∣
∣

∫ 1

0
�(at, ct)dt

∣
∣
∣
∣

+
∣
∣
∣
∣

∫ 1

0
�(bt, ct)dt

∣
∣
∣
∣
+ 1

)

≤ 1

2|pq| + 1

2
≤ 2

3
.

Next, assume that we have two even integers out of {a, b, c}.Without loss of generality,
suppose they are a and b. Then r and u are both even. Regardless of whether one or
both of p and q are even, the above inequality still holds. Combined, we see that all
three of a, b, and c must be odd. Using the triangle inequality and Corollary 2.6 again
on (2.8), we obtain

7

9
≤ 1

2|pq| + 1

2|rs| + 1

2|uv| + 1

2
.

Rewriting this, we conclude that

5

9
≤ 1

|pq| + 1

|rs| + 1

|uv| . ��
Finally, we rule out the case a �= 1 and conclude with a proof of our main result.

Lemma 2.8 Suppose gcd(a, b, c) = 1 and a < b < c. If a �= 1, then P(a, b, c) > 1
9 .

Proof If a, b, or c is even, then the result follows from Lemma 2.7. Assume then that
a, b, and c are all odd, so that p, q, r , s, u, and v are all odd as well. We do not consider
the case when both a | b and a | c since this violates gcd(a, b, c) = 1. We also do
not consider the case when both a | b and b | c since this would imply a | c. The
remaining cases can be grouped into the following situations:

(1) a � b, a � c,
(2) a � c, b � c,
(3) a � b, b � c, and
(4) a � b, a | c, b | c.
By Lemma 2.7, it suffices to show that in these cases,

1

|pq| + 1

|rs| + 1

|uv| <
5

9
.

We will consider cases (1), (2), and (3) simultaneously. Note that 1 < a < b < c
implies q > p ≥ 1, s > r ≥ 1, and v > u ≥ 1. If a � b, it follows that p ≥ 3 and
q ≥ 5. Likewise, a � c implies r ≥ 3 and s ≥ 5, and b � c implies u ≥ 3 and v ≥ 5.
In (1), (2), and (3), two out of the following three hold: a � b, a � c, or b � c. Then

1

|pq| + 1

|rs| + 1

|uv| ≤ 1

15
+ 1

15
+ 1

3
= 7

15
<

5

9
.

Thus, in these cases, we see that P(a, b, c) > 1/9.
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Now consider case (4). Note that a � b, so p ≥ 3 and q ≥ 5. We consider r , s, u,
and v. We know that a | c and b | c with a < b, so s > v. If s ≥ 7, we see that

1

|pq| + 1

|rs| + 1

|uv| ≤ 1

15
+ 1

7
+ 1

3
= 19

35
<

5

9
.

Note that v > 3 implies s ≥ 7 since s > v. Hence, the only possibility to attain
P(a, b, c) ≤ 1/9 is s = 5 and v = 3. From the definition of r , s, u, and v, this
implies that a/c = 1/5 and b/c = 1/3. We conclude that c = 5a and c = 3b, which
implies b = 5a/3. Thus, we consider triples of the form k · {a, 5a/3, 5a}. Recall that
gcd(a, b, c) = 1, so we must have a = 3, and {3, 5, 15} is the only possibility. A
direct check with Lemma 2.2 shows that P(3, 5, 15) > 1/9. ��
Proof of Main Result By Proposition 2.1, 1/9 is achieved by k · {1, 3, 9} for any k ∈ N.
We show that no other choices of a, b, c can attain P(a, b, c) ≤ 1/9. It suffices to
consider a < b < cwith gcd(a, b, c) = 1. Recall from Lemma 2.7 that if P(a, b, c) ≤
1/9, then a, b, and c are odd and

1

|pq| + 1

|rs| + 1

|uv| ≥ 5

9
.

In addition, Lemma 2.8 shows that a = 1, which forces p = r = 1, q = b, and s = c.
Since b < c, we also have u ≥ 1 and v ≥ 3. Additionally, c is odd, so c ≥ b + 2.
Combined, we see that

1

|pq| + 1

|rs| + 1

|uv| ≤ 1

b
+ 1

b + 2
+ 1

3
.

Note that for b ≥ 9, we have

1

b
+ 1

b + 2
+ 1

3
≤ 1

9
+ 1

11
+ 1

3
= 53

99
<

5

9
.

Hence, we must have b < 9, and since b cannot be even, it suffices to consider b ≤ 7.
Since P(a, b) ≥ 1/3 for any a, b, it follows from Lemma 2.3 that c ≤ 12b ≤ 84.
Therefore, if P(a, b, c) ≤ 1/9, we must have a = 1, b ≤ 7, and c ≤ 84. Computer
verification using Lemma 2.2 then establishes the result.
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