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Abstract
This paper is concerned with the oscillatory singular integral operator TQ defined by

TQ f (x) = p.v.
∫
Rn

f (x − y)
�(y)

|y|n eiQ(|y|)dy,

where Q(t) = ∑
1≤i≤m ai tαi is a real-valued polynomial on R, � is a homogenous

function of degree zero on R
n with mean value zero on the unit sphere Sn−1. Under

the assumption of that � ∈ H1(Sn−1), the authors show that TQ is bounded on the
weighted Lebesgue spaces L p(ω) for 1 < p < ∞ and ω ∈ ÃI

p(R+) with the uniform
bound only depending on m, the number of monomials in polynomial Q, not on the
degree of Q as in the previous results. This result is new even in the case ω ≡ 1, which
can also be regarded as an improvement and generalization of the result obtained by
Guo in [New York J. Math. 23 (2017), 1733-1738].
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1 Introduction

Let n ≥ 2 and Sn−1 be the unit sphere in R
n equipped with the normalized Lebesgue

measure dσ . Suppose that � ∈ L1(Sn−1) is a homogeneous function of degree zero
on R

n and satisfies the cancellation property

∫
Sn−1

�(x ′)dσ(x ′) = 0. (1.1)

We consider the oscillatory singular integral operator defined by

TP f (x) = p.v.
∫
Rn

ei P(x,y) �(y)

|y|n f (x − y)dy,

where P(x, y) = ∑
|α|+|β|≤d aα,βxα yβ is a real-valued polynomial onR

n×R
n with a

fixed degree d ∈ N, which is closely related to harmonic analysis on nilpotent groups
and singularRadon transforms. It follows from[2, 18, 19] thatwhen� ∈ C1(Sn−1),TP
is bounded on L p(Rn) for 1 < p < ∞ andweak type (1, 1)with the bounds depending
on the degree of P and being independent of the coefficients of P . Subsequently, Lu
and Zhang [17] improved the condition � ∈ C1(Sn−1) to � ∈ Lq(Sn−1) for some
1 < q < ∞. Afterwards, this result was successively extended the cases of that
� ∈ L log+ L(Sn−1), B0,0

q (Sn−1) and H1(Sn−1) in [1, 13, 16].
It should be pointed out that there are the embedding relations among the functions

on Sn−1:

C1(Sn−1) � Lq(Sn−1) � L log+ L(Sn−1), B0,0
q (Sn−1) � H1(Sn−1) � L1(Sn−1).

On the other hand, when P(x, y) = P(y), by a sparse domination, Lacey and
Spencer [14] showed that if � ∈ C1(Sn−1), then TP is bounded on L p(ω) for 1 <

p < ∞ and ω ∈ Ap, the Muckenhoupt class, with the bound depending on the degree
of P , being independent of the coefficients of P . Ding and Liu [4] considered the
following oscillatory singular integral operator

Tλ f (x) = p.v.
∫
Rn

ei Qλ(|y|) �(y)

|y|n f (x − y)dy,

which is a generalization of the strongly singular convolution operator studied firstly
by Fefferman in [9], where Qλ(r) = ∑

2≤k≤d λkrk is a real-valued polynomial on R

and λ = (λ2, · · · , λd) ∈ R
d−1, and showed that when � ∈ H1(Sn−1), Tλ is bounded

on L p(Rn) for 1 < p < ∞ with bound depending on the degree of Qλ, not on the
coefficients λ. Moreover, for the following oscillatory Hilbert transform

HQ f (x) := p.v.
∫
R

eiQ(t) f (x − t)
dt

t
(1.2)
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with Q(t) = ∑
1≤k≤m aktαk , where ak ∈ R and αk is a positive integer for each

1 ≤ k ≤ m, Guo [12] proved that for a fixed m ∈ N,

‖HQ f ‖2 ≤ Cm‖ f ‖2,

with Cm is a constant that depends only on m, the number of monomials in Q, but not
on any ak or αk .

Inspired by the results above, we will study the following oscillatory singular inte-
gral operators

TQ f (x) = p.v.
∫
Rn

ei Q(|y|) �(y)

|y|n f (x − y)dy, (1.3)

with Q(t) = ∑
1≤k≤m aktαk being as in (1.2).

In order to state our result, we first recall some relevant definitions and notation.

Definition 1.1 ( [5]) Suppose that ω(t) ≥ 0 and ω ∈ L1
loc (R+). For 1 < p < ∞, we

say that ω ∈ Ap (R+) if there is a constant C > 0 such that for any interval I ⊂ R+,

(
|I |−1

∫
I
ω(r)dr

)(
|I |−1

∫
I
ω(r)−1/(p−1)dr

)p−1

≤ C < ∞.

If there is a constant C > 0 such that

Mω(r) ≤ Cω(r) for a.e. r ∈ R+,

where Mω denotes the standard Hardy-Littlewoodmaximal function ofω onR+, then
we say ω ∈ A1 (R+).

Definition 1.2 ( [6]) If ω(x) = v1(|x |)v2(|x |)1−p, where either vi ∈ A1 (R+)is
decreasing or v2i ∈ A1 (R+) , i = 1, 2, then we say ω ∈ Ã p (R+).

Definition 1.3 ( [5]) For 1 < p < ∞, we denote

Ā p(R+) =
{
ω(x) = ω(|x |) : ω(t) > 0, ω(t) ∈ L loc(R+)and ω2(t) ∈ Ap(R+)

}
.

Let AI
p(R

n) be the weight class defined by using all n-dimensional cubes with sides
parallel to coordinate axes. In what follows, for p ∈ (1,∞), any measurable function
f and any weight ω, we define

‖ f ‖L p(ω) ≡
(∫

Rn
| f (x)|pω(x)dx

)1/p

.

Thus the weighted L p spaces associate to the weight ω is defined by

L p (
R
n, ω(x)dx

) = {
f : ‖ f ‖L p(ω) < ∞}

.
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It follows from [5] that Ā p (R+) ⊆ Ã p (R+). Also, if ω(t) ∈ Ã p (R+), then
we know from [6] that the Hardy-Littlewood maximal function M is bounded on
L p (Rn, ω(|x |)dx). Thus, if ω(t) ∈ Ã p (R+), then ω(|x |) ∈ Ap (Rn), where Ap (Rn)

is the Muckenhoupt weight (see [10] for the definition). Let ÃI
p = Ã p ∩ AI

p and

ĀI
p = Ā p ∩ AI

p.
Next, we recall the definition of the Hardy space H1

(
Sn−1

)
.

Definition 1.4

H1(Sn−1) =
{
� ∈ L1(Sn−1) : ‖�‖H1(Sn−1) < ∞

}
,

where

‖�‖H1(Sn−1) =
∥∥∥∥ sup
0<r<1

∣∣∣∣
∫
Sn−1

�(y′)Pr(·)(y′)dσ(y′)
∣∣∣∣
∥∥∥∥
L1(Sn−1)

.

Here Prx ′
(
y′) denotes the Poisson kernel on Sn−1 defined by

Prx ′
(
y′) = 1 − r2

|r x ′ − y′|n , 0 ≤ r < 1 and x ′, y′ ∈ Sn−1.

See [3, 7] or [11] for the properties of H1
(
Sn−1

)
.

Now we can formulate our main result as follows.

Theorem 1.5 Let m ∈ N, TQ be given as in (1.3). Suppose that � ∈ H1(Sn−1) and
satisfies (1.1). Then for 1 < p < ∞ and ω ∈ ÃI

p(R+), TQ is bounded on L p(ω).
Moreover, there is a constant Cm,ω > 0, which depends only on m, the number of
monomials in Q, and the weightω, not on the degree of Q, such that for all f ∈ L p(ω)

∥∥TQ f
∥∥
L p(ω)

≤ Cm,ω ‖�‖H1(Sn−1) ‖ f ‖L p(ω) . (1.4)

Remark 1.6 We remark that the bounds in previous results depended on the degree of
the polynomial phases and one of our result depends only on the number of monomials
in the polynomial phase, which is more precise and is new even for ω ≡ 1. Moreover,
comparing with the result of [12], our result presents three novelties: (i) extend to the
higher dimension cases; (ii) relax the range of p from p = 2 to 1 < p < ∞; (iii) give
a weighted version.

The rest of this paper is organized as follows. In Sect. 2 wewill recall some auxiliary
lemmas, which will be used in our arguments. The proof of our main result will be
given in Sect. 3. We remark that the main ideas in our arguments are taken from [12,
15].
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2 Preliminaries

In this section, we recall some auxiliary facts and lemmas, which will be used in our
arguments.

Lemma 2.1 (van der Corput [20]) Suppose that φ is real-valued and smooth in (a, b),
and that

∣∣φ(k)(t)
∣∣ ≥ 1 for all t ∈ (a, b). Then the inequality

∣∣∣∣
∫ b

a
e−iλφ(t)dt

∣∣∣∣ ≤ Ck |λ|− 1
k

holds when
(i) k ≥ 2, or
(ii) k = 1 and φ′ is monotonic.
The bound Ck is a constant that depends only on k, but not on any a, b, φ, and λ.

We define the singular integral operator T� by

T� f (x) = p.v.
∫
Rn

�(y)

|y|n f (x − y)dy,

and the corresponding maximal operator by

T ∗
� f (x) = sup

ε>0

∣∣T ε
� f (x)

∣∣ ,

where

T ε
� f (x) =

∫
|y|>ε

�(y)

|y|n f (x − y)dy, ε > 0.

Lemma 2.2 ( [8]) Let 1 < p < ∞, � satisfies (1.1). Suppose that � ∈ H1
(
Sn−1

)
and ω ∈ ÃI

p (R+). Then both T� and T ∗
� are bounded on L p(ω). Moreover, there is

the constant Cω > 0, which depends only on the weight ω, such that

‖T� f ‖L p(ω), ‖T ∗
� f ‖L p(ω) ≤ Cω‖�‖H1(Sn−1)‖ f ‖L p(ω).

Lemma 2.3 ( [6]) For y′ ∈ Sn−1, define the direction Hardy-Littlewood maximal
operator by

My′ f (x) := sup
r>0

1

rn

∫ r

0

∣∣ f (
x − t y′)∣∣ dt .

Then for 1 < p < ∞ and ω ∈ Ã p (R+),

‖My′ f ‖L p(ω) ≤ Cω‖ f ‖L p(ω), ∀ f ∈ L p(ω)

with Cω independent of y′.



10 Page 6 of 12 Journal of Fourier Analysis and Applications (2024) 30 :10

3 Proof of Theorem 1.5

Using polar coordinates, we write the integral in (1.3) as

TQ f (x) =
∫
Sn−1

�(y′)
∫ ∞

0

f (x − t y′)
t

ei Q(t)dtdσ(y′). (3.1)

Employing the ideas in [12], we will split R
+ = (0,∞) into different intervals and

show that for all but finitely many of these intervals, there always exists a monomial
which “dominates” the polynomial Q. Hence we assume that 1 < α1 < · · · < αm .
Denote by d the degree of the polynomial Q, that is, d = αm . Let λ = 21/d . Define
bk ∈ Z such that

λbk ≤ |ak | < λbk+1.

We define a few bad scales. For 1 ≤ k1 < k2 ≤ m, define

L(0)
bad (k1, k2) :=

{
l ∈ Z : 2−C0

∣∣∣ak2λαk2 l
∣∣∣ ≤

∣∣∣ak1λαk1 l
∣∣∣ ≤ 2C0

∣∣∣ak2λαk2 l
∣∣∣
}

. (3.2)

Here C0 := 210m!. Notice that l satisfies

−2 − dC0 + bk2 − bk1 ≤ (
αk1 − αk2

)
l ≤ dC0 + bk2 − bk1 + 2.

HenceL(0)
bad (k1, k2) is a connected set whose cardinality is smaller than 4dC0. Define

L(0)
good :=

⎛
⎝ ⋃

k1 �=k2

L(0)
bad (k1, k2)

⎞
⎠

c

.

Then, the set L(0)
good has at most m2 connected components, each of which has a

monomial “dominated” Q. Similarly, we define

L(1)
bad (k1, k2) :=

{
l ∈ Z : 2−C0

∣∣∣αk2

(
αk2 − 1

)
ak2λ

αk2 l
∣∣∣ ≤

∣∣∣αk1

(
αk1 − 1

)
ak1λ

αk1 l
∣∣∣

≤ 2C0

∣∣∣αk2

(
αk2 − 1

)
ak2λ

αk2 l
∣∣∣
}

.

(3.3)
Moreover,

L(1)
bad :=

⋃
k1 �=k2

L(1)
bad (k1, k2) , and Lgood := L(0)

good \ L(1)
bad .

Analogously, Lgood has at most m4 connected components, in each of which both
Q and Q′′ are “dominated” by a monomial.

Case 1. Bad scales: For bad scales, suppose that we are working on the collection
of bad scales L(0)

bad (k1, k2) for some k1 and k2, since the arguments can be given
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similarly for L(1)
bad (k1, k2) with the same bound. Let ψ0 be a nonnegative smooth

bump function supported on
[
λ−1, λ2

]
such that

∑
l∈Z

ψl(t) :=
∑
l∈Z

ψ0

(
t

λl

)
= 1, ∀ t �= 0.

Thus, we may define

T l
Q f (x) =

∫
Sn−1

�(y′)
∫ ∞

0

f (x − t y′)
t

ei Q(t)ψl(t)dtdσ(y′).

Recall that the cardinality of L(0)
bad (k1, k2) is at most 4dC0. Now we divide the

set L(0)
bad (k1, k2) into subsets of continuous elements such that each subset contains

exactly d elements and there may be an exception which can be treated in the same
way. Therefore, we obtain

∣∣∣∣∣∣∣
∑

l∈L(0)
bad (k1,k2)

T l
Q f (x)

∣∣∣∣∣∣∣
≤

∑
l∈L(0)

bad (k1,k2)

∫
Sn−1

∣∣� (
y′)∣∣ ∫ ∞

0

∣∣ f (
x − t y′)∣∣ψ0

(
t

λl

)
dt

|t |dσ(y′)

≤ 4C0

l0+d∑
l=l0

∫
Sn−1

∣∣� (
y′)∣∣

∫ ∞

0

∣∣ f (
x − t y′)∣∣ψ0

(
t

λl

)
dt

|t |dσ(y′)

≤ 4C0

∫
Sn−1

∣∣� (
y′)∣∣

∫ ∞

0

∣∣ f (
x − t y′)∣∣ l0+d∑

l=l0

ψ0

(
t

λl

)
dt

|t |dy

≤ 4C0

∫
Sn−1

∣∣� (
y′)∣∣

∫ λl0+d+2

λl0−1

∣∣ f (
x − t y′)∣∣ dt

|t |dσ(y′)

≤ 4C0 λd+3
∫
Sn−1

∣∣� (
y′)∣∣ My′ f (x)dσ(y′)

≤ 64C0

∫
Sn−1

∣∣� (
y′)∣∣ My′ f (x)dσ(y′).

By Lemma 2.3, we get

∥∥∥∥∥∥∥
∑

l∈L(0)
bad (k1,k2)

T l
Q f

∥∥∥∥∥∥∥
L p(ω)

≤ 64C0

∫
Sn−1

∣∣�(y′)
∣∣ ∥∥My′ f

∥∥
L p(ω)

dσ(y′)

≤ Cm,ω‖�‖L1(Sn−1)‖ f ‖L p(ω),

(3.4)
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where Cm,ω only depends on m and ω.
Case 2. Good scales: For the good scales, suppose we are working on one con-

nected component of Lgood, and for each integer l in such a component, we assume
that ak1 t

αk1 dominates Q(t) in the sense of (3.2), that is,

∣∣∣ak1λαk1 l
∣∣∣ ≥ 2C0

∣∣∣ak′
1
λ

αk′1 l
∣∣∣ for every k′

1 �= k1,

and ak2αk2

(
αk2 − 1

)
tαk2−2 dominates Q′′(t) in the sense of (3.3), that is,

∣∣∣ak2αk2

(
αk2 − 1

)
λαk2 l

∣∣∣ ≥ 2C0

∣∣∣ak′
2
αk′

2

(
αk′

2
− 1

)
λ

αk′2 l
∣∣∣ for every k′

2 �= k2.

Let us call such a set Lgood (k1, k2). Under this assumption, we have the estimates

|Q(t)| ≤ 2
∣∣ak1 tαk1

∣∣ and
∣∣Q′′(t)

∣∣ ≥
∣∣∣ak1 tαk1−2

∣∣∣ (3.5)

for every t ∈ [
λl−2, λl+1

]
with l ∈ Lgood (k1, k2). Recall that λ = 21/d is the smallest

scale that we will work with. This scale is only visible when adtd dominates. When
some other monomial dominates, at such a small scale, our polynomial will not have
enough room to see the oscillation. Define λk1 := 21/αk1 .We choose this scale because
the monomial ak1 t

αk1 dominates. Let

�k1,k2(t) =
∑

l∈Lgood (k1,k2)

ψl(t).

Notice that here we join all the small scales from Lgood (k1, k2) to form a larger
scale. Next we will apply a new partition of unity to the function �k1,k2 .

Now let ψ
(k1)
0 be a nonnegative smooth bump function supported on

[
λ−1
k1

, λ2k1

]
such that

∑
l ′∈Z

ψ
(k1)
l ′ (t) = 1 for every t > 0, with ψ

(k1)
l ′ (t) := ψ

(k1)
0

(
t

λl
′
k1

)
.

Take Bk1 ∈ Z such that λ
−Bk1
k1

≤ ∣∣ak1
∣∣ < λ

−Bk1+1
k1

, we let γk1 = Bk1/αk1 . Define

T (k1)
l ′ f (x) =

∫
Sn−1

�(y′)
∫ ∞

0
f (x − t y′)eiQ(t)ψ

(k1)
l ′ (t)�k1,k2(t)

dt

t
dσ(y′).

We split the sum in l ′ into two cases.

∑
l ′∈Z

T (k1)
l ′ f =

∑
l ′≤γk1

T (k1)
l ′ f +

∑
l ′>γk1

T (k1)
l ′ f . (3.6)
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By comparing each term in the first summand, we obtain

∣∣∣∣∣∣
∑
l ′≤γk1

T (k1)
l ′ f (x)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑
l ′≤γk1

∫
Sn−1

�(y′)
∫ ∞

0
f (x − t y′))ψ(k1)

l ′ (t)�k1,k2 (t)
dt

t
dσ(y′)

∣∣∣∣∣∣
+

∑
l ′≤γk1

∣∣∣∣
∫
Sn−1

�(y′)
∫ ∞

0
f (x − t y′)

(
eiQ(t) − 1

)
ψ

(k1)
l ′ (t)�k1,k2 (t)

dt

t

∣∣∣∣ .
(3.7)

It is easy to see that the second term on the right side of (3.7) is controlled by

∑
l ′≤γ j1

∫
Sn−1

∣∣� (
y′)∣∣

∫ λl
′+2
k1

λl
′−1
k1

∣∣ f (
x − t y′)∣∣ ∣∣ak1 tαk1

∣∣ dt
t
dσ(y′)

≤
∑
l∈N

∫
Sn−1

∣∣� (
y′)∣∣

∫ λ
γk1

−l+1

k1

λ
γk1

−l−2

k1

∣∣ f (
x − t y′)∣∣ ∣∣a j1

∣∣ |t |αk1−1dtdσ(y′)

≤
∑
l∈N

λ

(
γk1−l+1

)(
αk1−1

)
k1

∫
Sn−1

∣∣� (
y′)∣∣

∫ λ
γk1

−l+1

k1

λ
γk1

−l−2

k1

∣∣ f (
x − t y′)∣∣ ∣∣ak1

∣∣ dtdσ(y′)

≤ 8
∫
Sn−1

∣∣� (
y′)∣∣ My′ f (x)dσ(y′).

Denote z(t) = ∑
l ′≤γk1

ψ
(k1)
l ′ (t)�k1,k2(t). Thus, the first term on the right side of (3.7)

can be dominated by

∣∣∣∣
∫
Sn−1

�
(
y′) ∫

{t∈R+:z(t)=1}
f
(
x − t y′) dt

t
dσ(y′)

∣∣∣∣
+

∫
Sn−1

∣∣� (
y′)∣∣

∫
{t∈R+:z(t) �=1}

∣∣ f (
x − t y′)∣∣ dt

t
dσ(y′)

≤
∣∣∣∣p.v.

∫
Rn

�(y)

|y|n f (x − y)dy

∣∣∣∣ + sup
ε>0

∣∣∣∣
∫

|y|≥ε

�(y)

|y|n f (x − y)dy

∣∣∣∣
+ C

∫
Sn−1

∣∣� (
y′)∣∣

∫
λ

γk1
−2

k1
≤t≤λ

γk1
+1

k1

∣∣ f (
x − t y′)∣∣ dt

|t |dσ(y′)

≤ |T� f (x)| + T ∗
� f (x) + C

∫
Sn−1

∣∣� (
y′)∣∣ My′ f (x)dσ(y′).

In fact,
∑

l ′≤γk1
ψ

(k1)
l ′ (t) and �k1,k2(t) are finite term intersections, the interval end-

point of z(t) = 1 is very close to the cutoff point of
∑

l ′≤γk1
ψ

(k1)
l ′ (t). The part of

z(t) �= 1 only contains a finite number of bump functions, then it can be controlled by
the direction Hardy-Littlewood maximal operator My′ .
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Using the weighted L p boundedness of T�, T ∗
� and My′ (see Lemma 2.2 and

Lemma 2.3), we know that, under the conditions of Theorem 1.5,

∥∥∥∥∥∥
∑
l ′≤γk1

T (k1)
l ′ f

∥∥∥∥∥∥
L p(ω)

≤ Cm,ω‖�‖H1(Sn−1) ‖ f ‖L p(ω) , 1 < p < ∞, ω ∈ ÃI
p(R+).

(3.8)
The next part we need to bound

∥∥∥∥∥∥
∑
l ′>γk1

T (k1)
l ′ f

∥∥∥∥∥∥
L p(ω)

≤
∞∑
l=1

‖T (k1)
γk1+l‖L p(ω).

In order to do it, we notice the pointwise bound

∣∣∣T (k1)
γk1+l f (x)

∣∣∣ ≤ 8
∫
Sn−1

∣∣� (
y′)∣∣ My′ f (x)dσ(y′), (3.9)

which, together with Lemma 2.3, leads to that for 1 < p < ∞, ω ∈ Ã p(R+),

‖T (k1)
γk1+l f ‖L p(ω) ≤ Cω‖�‖L1(Sn−1)‖ f ‖L p(ω). (3.10)

Nowwe need to obtain exponential decay for the L2 bounds of T (k1)
γk1+l . By Plancherel’s

theorem, we just need to estimate

∣∣∣∣
∫ ∞

0
eiQ(t)+i t y′ ·ξψ(k1)

γk1+l (t)�k1,k2 (t)
dt

t

∣∣∣∣ =
∣∣∣∣∣∣
∫ ∞

0
e
iQ

(
λ

γk1
+l

k1
t

)
+iλ

γk1
+l

k1
t y′ ·ξ

ψ
(k1)
0 (t)�k1,k2 (λ

γk1+l
k1

t)
dt

t

∣∣∣∣∣∣ .

We calculate the second order derivative of the phase function:

λ
2γk1+2l
k1

∣∣∣Q′′ (λ
γk1+l
k1

t
)∣∣∣ ≥ 1

2

∣∣ak1
∣∣ λBk1+αk1 l

k1
≥ 2l−2.

Thus, by van der Corput’s lemma (Lemma 2.1), we obtain

∣∣∣∣∣∣
∫ ∞

0
e
iQ

(
λ

γk1
+l

k1
t

)
+iλ

γk1
+l

k1
t y′·ξ

ψ
(k1)
0 (t)�k1,k2(λ

γk1+l
k1

t)
dt

t

∣∣∣∣∣∣ ≤ C2− l
2 .

Therefore, we have

‖T (k1)
γk1+l( f )‖L2 ≤ C‖�‖L1(Sn−1)2

− l
2 ‖ f ‖L2 . (3.11)
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Interpolating between (3.10) with ω ≡ 1 and (3.11), we obtain that for some θ > 0,

‖T (k1)
γk1+l( f )‖L p ≤ C‖�‖L1(Sn−1)2

−θl‖ f ‖L p for 1 < p < ∞. (3.12)

Also, note that for ω ∈ ÃI
p(R+), there is an ε > 0 such that ω1+ε ∈ ÃI

p(R+). Thus
by (3.10), we have

‖T (k1)
γk1+l( f )‖L p(ω1+ε) ≤ Cω‖�‖L1(Sn−1)‖ f ‖L p(ω1+ε). (3.13)

Applying the Stein-Weiss interpolation theorem with change of measure (see [21])
between (3.12) and (3.13), we obtain that for 1 < p < ∞, ω ∈ ÃI

p(R+) and some
σ > 0,

‖T (k1)
γk1+l( f )‖L p(ω) ≤ Cω‖�‖L1(Sn−1)2

−σ l‖ f ‖L p(ω). (3.14)

This, together with (3.4), (3.6) and(3.8), leads to (1.4) and completes the proof of
Theorem 1.5.
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