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Abstract
In a recent paper, Du and Zhang (Ann Math 189:837–861, 2019) proved a fractal
Fourier restriction estimate and used it to establish the sharp L2 estimate on the
Schrödinger maximal function in R

n , n ≥ 2. In this paper, we show that the Du–
Zhang estimate is the endpoint of a family of fractal restriction estimates such that
each member of the family (other than the original) implies a sharp Kakeya result in
R
n that is closely related to the polynomial Wolff axioms. We also prove that all the

estimates of our family are true in R
2.

Keywords Extension operator · Kakeya conjecture · Weighted restriction estimates

Mathematics Subject Classification 42B10 · 42B20 · 28A75

1 Introduction

Let E f = EP f be the extension operator associated with the unit paraboloid P =
{ξ ∈ R

n : ξn = ξ21 + . . . + ξ2n−1 ≤ 1} in R
n :

E f (x) =
∫
Bn−1

e−2π i x ·(ω,|ω|2) f (ω)dω,

where B
n−1 is the unit ball in R

n−1.
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Our starting point is the following fractal restriction theorem of Du and Zhang
[4]. (Throughout this paper, we denote a cube in R

n of center x and side-length r by
B̃(x, r).)

Theorem 1-A (Du and Zhang [4, Corollary 1.6]) Suppose n ≥ 2, 1 ≤ α ≤ n, R ≥ 1,
X = ∪k B̃k is a union of lattice unit cubes in B̃(0, R) ⊂ R

n, and

γ = sup
#{B̃k : B̃k ⊂ B̃(x ′, r)}

rα
,

where the sup is taken over all pairs (x ′, r) ∈ R
n × [1,∞) satisfying B̃(x ′, r) ⊂

B̃(0, R). Then to every ε > 0 there is a constant Cε such that

∫
X

|E f (x)|2dx ≤ CεR
ε γ 2/n Rα/n‖ f ‖2L2(Bn−1)

(1)

for all f ∈ L2(Bn−1).

In [4], Theorem 1 was used to derive the sharp L2 estimate on the Schrödinger
maximal function (see [4, Theorem 1.3] and the paragraph following the statement of
[4, Corollary 1.6]). The authors of [4] also used Theorem 1 to obtain new results on
the Hausdorff dimension of the sets where Schrödinger solutions diverge (see [11]),
achieve progress on Falconer’s distance set conjecture in geometric measure theory
(see [6]), and improve on the decay estimates of spherical means of Fourier transforms
of measures (see [16]).

The purpose of this paper is threefold:

• Show that Theorem 1 is a borderline sharp Kakeya result in the sense that (1) is the
endpoint of a family of estimates (see (2) in the statement of Conjecture 1.1) such
that each member of the family (other than (1)) implies a certain sharp Kakeya
result that we will formulate in §3 below.

• Show that the sharp Kakeya result is true in certain cases in R
3; see Theorem 4.1.

• Prove Conjecture 1.1 in R
2 (see Theorem 5.1) in the hope that this will shed some

light on whether it would be possible to modify the Du-Zhang argument to also
prove it in higher dimensions and consequently obtain the Kakeya result without
having to pass through the restriction conjecture.

Conjectute 1.1 (when β = 2/n or n = 2, this is a theorem) Suppose n, α, R, X, and
γ are as in the statement of Theorem 1.

Let β be a parameter satisfying 1/n ≤ β ≤ 2/n, and define the exponent p by

p = 2 + n − α

n − 1

(2
n

− β
)
.

Then to every ε > 0 there is a constant Cε such that

∫
X

|E f (x)|pdx ≤ CεR
εγ β Rα/n‖ f ‖p

L p(Bn−1)
(2)
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for all f ∈ L p(Bn−1).

We note that when β = 2/n, (2) becomes (1), so, to prove Conjecture 1.1 we need
to perform the following trade: lower the power of γ in (1) from 2/n to β in return for
raising the Lebesgue space exponent from 2 to p.

We will show below that if (2) holds for any β < 2/n, then we obtain the sharp
Kakeya result of §3.

As noted above, in dimension n = 2, (2) is true for all 1/2 ≤ β ≤ 1 (and hence
Conjecture 1.1 is a theorem in the plane). We will prove this in the last three sections
of the paper by using weighted bilinear restriction estimates and the broad-narrow
strategy of [1].

Before we discuss the implications of Conjecture 1.1 to the Kakeya problem, it will
be convenient to write (2) in an equivalent form, which is, perhaps, more user-friendly.
This is the purpose of the next section.

2 Writing (2) in an Equivalent Form

Suppose n ≥ 1 and 0 < α ≤ n. Following [12] (see also [3] and [13]), for Lebesgue
measurable functions H : R

n → [0, 1], we define

Aα(H) = inf
{
C :

∫
B(x0,R)

H(x)dx ≤ CRα for all x0 ∈ R
n and R ≥ 1

}
,

where B(x0, R) denotes the ball in R
n of center x0 and radius R. We say H is aweight

of fractal dimension α if Aα(H) < ∞. We note that Aβ(H) ≤ Aα(H) if β ≥ α, so
we are not really assigning a dimension to the function H ; the phrase “H is a weight
of dimension α” is merely another way for us to say that Aα(H) < ∞.

Proposition 2.1 Suppose n, α, R, X, γ , β, and p are as in the statement of Conjecture
1.1. Then the estimate (2) holds if and only if to every ε > 0 there is a constant Cε

such that

∫
B(0,R)

|E f (x)|pH(x)dx ≤ CεR
ε Aα(H)β Rα/n‖ f ‖p

L p(Bn−1)
(3)

for all functions f ∈ L p(Bn−1) and weights H of fractal dimension α.

Proof Let H be the characteristic function of X . By the definition of γ , we have

∫
B̃(x0,r)

H(x)dx ≤ γ (r + 2)α ≤ γ (3r)α

for all x0 ∈ R
n and r ≥ 1. Thus H is a weight on R

n of fractal dimension α, and
Aα(H) ≤ 3αγ . This immediately shows that (3) implies (2).

To prove the reverse implication, we follow [4, Proof of Theorem 2.2].
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We consider a covering {B̃} of B(0, R) by unit lattice cubes. Since every unit cube
is contained in a ball of radius

√
n, we have

∫
B̃ H(x)dx ≤ Aα(H)nα/2, so, if we

define v(B̃) = Aα(H)−1
∫
B̃ H(x)dx and Vk = {B̃ : 2k−1 < n−α/2v(B̃) ≤ 2k}, then

B(0, R) ⊂ ∪ B̃ ⊂ ∪0
k=−∞Vk .

We note that

∫
B̃
H(x)dx ≤

( ∫
B̃
H(x)1/βdx

)β ≤
( ∫

B̃
H(x)dx

)β

=
(
Aα(H)v(B̃)

)β ≤ nαβ/2Aα(H)β2kβ (4)

for all B̃ ∈ Vk , where we have used the assumptions β ≤ 2/n ≤ 1 and ‖H‖L∞ ≤ 1.
The vast majority of the sets Vk are negligible for us. In fact, letting k1 be the sup

of the set {k ∈ Z : 2k ≤ R−1000n/β}, we see that
∫

∪k1
k=−∞∪B̃∈Vk

|E f (x)|pH(x)dx ≤ ‖ f ‖p
L1(Bn−1)

k1∑
k=−∞

∑
B̃∈Vk

∫
B̃
H(x)dx

≤ CAα(H)β‖ f ‖p
L1(Bn−1)

k1∑
k=−∞

Rn2kβ

≤ CR−999n Aα(H)β‖ f ‖p
L1(Bn−1)

,

where we used (4) on the line before the last, and the fact that 2k1 ≤ R−1000n/β on the
last line. Therefore, we only need to estimate

∫
∪0
k=k1+1∪B̃∈Vk

|E f (x)|pH(x)dx =
0∑

k=k1+1

∑
B̃∈Vk

∫
B̃

|E f (x)|pH(x)dx .

Letting k0 ∈ {k1 + 1, k1 + 2, . . . , 0} be the integer satisfying
∑
B̃∈Vk0

∫
B̃

|E f (x)|pH(x)dx = max
k1+1≤k≤0

[ ∑
B̃∈Vk

∫
B̃

|E f (x)|pH(x)dx
]
,

we see that

∫
B(0,R)

|E f (x)|pH(x)dx

≤ (−k1)
∑
B̃∈Vk0

∫
B̃

|E f (x)|pH(x)dx + CR−999n Aα(H)β‖ f ‖p
L1(Bn−1)

. (5)
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Since −k1 <∼ log(2R), it follows that we only need to estimate

∑
B̃∈Vk0

∫
B̃

|E f (x)|pH(x)dx .

We start by using the uncertainty principle in the following form. Let dσ be the
pushforward of the (n−1)-dimensional Lebesguemeasure under themap T : B

n−1 →
P given by T (ω) = (ω, |ω|2). Since the measure dσ is compactly supported and
E f = ĝdσ , where g is the function on P defined by the equation f = g ◦ T , it
follows that there is a non-negative rapidly decaying function ψ on R

n such that

sup
B̃

|E f |p <∼ |E f |p ∗ ψ(c(B̃)),

where c(B̃) is the center of B̃. Thus

∫
B̃

|E f (x)|pH(x)dx <∼
( ∫

B̃
H(x)dx

)
|E f |p ∗ ψ(c(B̃)).

From (4) we know that
∫
B̃ H(x)dx <∼ Aα(H)β2k0β for all B̃ ∈ Vk0 . Also,

|E f |p ∗ ψ(c(B̃)) =
∫
B(c(B̃),Rε )

|E f (x)|pψ(c(B̃) − x)dx

+
∫
B(c(B̃),Rε )c

|E f (x)|pψ(c(B̃) − x)dx

<∼
∫
B(c(B̃),Rε )

|E f (x)|pdx + R−1000n‖ f ‖p
L1(Bn−1)

and

∑
B̃∈Vk0

χB(c(B̃),Rε )
<∼ Rnε, (6)

so

∑
B̃∈Vk0

∫
B̃

|E f (x)|pH(x)dx

<∼ Rnε Aα(H)β2k0β
∫
V

|E f (x)|pdx + Aα(H)β R−999n‖ f ‖p
L1(Bn−1)

, (7)

where V = ∪B̃∈Vk0 B(c(B̃), Rε).

Wenow let {B̃∗}be the set of all the unit lattice cubes that intersectV , and X = ∪ B̃∗.
We plan to apply (2) on this set X , but we first need to estimate γ .
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Let Br be a ball in R
n of radius r ≥ Rε (if 1 ≤ r ≤ Rε , then, clearly, #{B̃∗ :

B̃∗ ⊂ Br } <∼ Rnε), and Vr the subset of Vk0 that consists of all unit cubes B̃ such that

B(c(B̃), 2Rε) ∩ Br �= ∅. If Br intersects any of the cubes B̃∗ that make up X , then
Br intersects B(c(B̃), 2Rε) for some B̃ ∈ Vr . Therefore,

#{B̃∗ : B̃∗ ⊂ Br } <∼ Rnε#(Vr ).

Our assumption r ≥ Rε , tells us that

∪B̃∈Vr B(c(B̃), 2Rε) ⊂ B5r ,

so (using (6))

Rnε

∫
B5r

H(x)dx >∼
∑
B̃∈Vr

∫
B(c(B̃),2Rε )

H(x)dx

≥
∑
B̃∈Vr

∫
B̃
H(x)dx =

∑
B̃∈Vr

v(B̃)Aα(H) ≥ #(Vr ) n
α/22k0−1Aα(H).

On the other hand,

∫
B5r

H(x)dx ≤ Aα(H)(5r)α,

so #(Vr ) <∼ Rnε2−k0rα , and so

#{B̃∗ : B̃∗ ⊂ Br } <∼ R2nε2−k0rα.

Therefore, γ <∼ R2nε2−k0 .
Applying (2), we now obtain

∫
V

|E f (x)|pdx ≤
∫
X

|E f (x)|pdx <∼ R5ε2−k0β Rα/n‖ f ‖p
L p(Bn−1)

,

which, combined with (5) and (7), implies that

∫
B(0,R)

|E f (x)|pH(x)dx <∼ R(n+6)ε(2k0)β−β Aα(H)β Rα/n‖ f ‖p
L p(Bn−1)

= R(n+6)ε Aα(H)β Rα/n‖ f ‖p
L p(Bn−1)

,

which is our desired estimate (3).
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3 Conjecture 1.1 Implies a Sharp Kakeya Result

Let� be a subset ofR
n that obeys the following property: there is a number α between

1 and n such that
|� ∩ BR | ≤ CRα (8)

for all balls BR in R
n of radius R ≥ 1. (Given E ⊂ R

n a Lebesgue measurable set,
we let |E | denote its Lebesgue measure.)

For large L , we divide the unit paraboloid P into finitely overlapping caps θ j each
of radius L−1, and we associate with each θ j a family T j of parallel 1× L tubes that
tile R

n and point in the direction normal to θ j at its center. We let N be the cardinality
of the set

J = { j : there is a tube ofT j that lies in� ∩ B(0, 5L)}. (9)

It is easy to see that the Kakeya conjecture (in its maximal operator form) implies
the following bound on N : to every ε > 0 there is a constant Cε such that

N ≤ CεL
εLα−1 (10)

for all L ≥ 1. In fact, [2, Proposition 2.2] presents a proof of the fact that the Kakeya
conjecture implies (10) in the case when � is a neighborhood of an algebraic variety.
This proof easily extends to general sets� satisfying (8). (For the connection between
neighborhoods of algebraic varieties and the condition (8), we refer the reader to [14].)

We note that (10) implies that if � ∩ B(0, 5L) contains at least one tube from each
direction (i.e. at least one tube from each of the ∼ Ln−1 families T j ), then α = n.

In the special case when � is a neighborhood of an algebraic variety, this bound
on N was proved by Guth [7] in R

3, conjectured by Guth [8] to be true in R
n for all

n ≥ 3, and proved by Zahl [17] in R
4; see also [9]. The conjecture of [8] was then

settled in all dimensions by Katz and Rogers in [10].
In this section we prove that Conjecture 1.1 about the extension operator implies

that all sets � ⊂ R
n that satisfy the dimensionality condition (8) will also possess the

Kakeya property (10). Here is the precise statement.

Theorem 3.1 Suppose (3) (or equivalently (2)) holds for some 1/n ≤ β < 2/n. Then
(10) holds for all Lebesgue measurable sets � ⊂ R

n that obey (8).

Proof We first write the set J as { j1, j2, . . . , jN }, and for each 1 ≤ l ≤ N , we let Tl
be a tube from T jl that lies in � ∩ B(0, 5L) = � ∩ B5L . Then

NL =
N∑
l=1

|Tl | =
N∑
l=1

∫
B5L∩�

χTl (x) dx =
∫
B5L∩�

N∑
l=1

χTl (x) dx

= L2(n−1)
∫
B5L∩�

N∑
l=1

( 1

Ln−1 χTl (x)
)2
dx . (11)

Recall that T jl is a family of parallel 1 × L tubes that tile R
n and point in the

direction normal to the L−1-cap θ jl . The projection of θ jl into B
n−1 is an L−1-ball.
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We denote this ball by Bl and let ωl be its center and χl its characteristic function.
Then

|Eχl(x)| =
∣∣∣
∫
Bl
e−2π i x ·(ω,|ω|2)dω

∣∣∣ =
∣∣∣
∫
Bl
e−2π i

(
(x1+2x2ωl )(ω−ωl )+x2|ω−ωl |2

)
dω

∣∣∣

for all x = (x1, x2) ∈ R
n−1 × R. Since |ω − ωl | ≤ L−1 for all ω ∈ Bl , it follows that

|Eχl(x)| >∼ |Bl | ∼ L−(n−1) on the set {x ∈ R
n : |x1 + 2x2ωl | <∼ L and |x2| <∼ L2},

and hence |Eχl(Lx)| >∼ L−(n−1) on the set {x ∈ R
n : |x1+2x2ωl | <∼ 1 and |x2| <∼ L}.

Since |ωl | ≤ 1, this last set contains a 1×L tube T̃l that is parallel to the normal vector
of the cap θ jl at its center (ωl , |ωl |2). Moreover,

|Eχl(Lx)| >∼
1

Ln−1 χT̃l (x)

for all x ∈ R
n .

The tube T̃l is parallel to the tube Tl that we chose at the beginning of the proof and
has the same dimensions, so Tl = v + T̃l for some vector v ∈ R

n , and so

|Eχl(Lx)| >∼
1

Ln−1 χTl (x + v)

for all x ∈ R
n . Defining the function fl on R

n−1 by

fl(ω) = e2π i Lv·(ω,|ω|2)χl(ω),

we see that E fl(x) = Eχl(x − Lv), so that

|E fl(Lx)| = |Eχl(Lx − Lv)| = |Eχl(L(x − v))| >∼
1

Ln−1 χTl (x)

for all x ∈ R
n . Returning to (11) and letting H = χ�, we arrive at

NL <∼ L2(n−1)
∫
B5L

N∑
l=1

|E fl(Lx)|2H(x)dx .

Next, we let εl = ±1 be random signs, define the function f : B
n−1 → C by

f = ∑N
l=1 εl fl , and use Khintchin’s inequality to get

NL <∼ L2(n−1)
E

( ∫
B5L

|E f (Lx)|2H(x)dx
)
,
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where E is the expectation sign. Since p ≥ 2, we can apply Hölder’s inequality in the
inner integral to get

NL <∼ L2(n−1)
( ∫

B5L
H(x)dx

)1−(2/p)
E

( ∫
B5L

|E f (Lx)|pH(x)dx
)2/p

<∼ L2(n−1)Lα(1−(2/p))
E

( ∫
B5L

|E f (Lx)|pH(x)dx
)2/p

.

Applying the change of variables u = Lx and defining the weight H∗ by H∗(u) =
H(x) = H(u/L), this becomes

NL <∼ L2(n−1)Lα(1−(2/p))L−2n/p
E

( ∫
B5L2

|E f (u)|pH∗(u)du
)2/p

,

so that

NL3−n <∼ L(n+α)(1−(2/p))
E

( ∫
B5L2

|E f (u)|pH∗(u)du
)2/p

. (12)

We note that

∫
B(u0,R)

H∗(u)du = Ln
∫
B(u0/L,R/L)

H(x)dx

≤ Ln Aα(H)
( R
L

)α = Ln−αAα(H)Rα

if R ≥ L . On the other hand, if R ≤ L , then

∫
B(u0,R)

H∗(u)du <∼ Rn = Rn−αRα ≤ Ln−αRα.

Therefore,

Aα(H∗) <∼ Ln−α.

We are now in a good shape to apply (3), which tells us that

∫
B5L2

|E f (u)|pH∗(u)du <∼ (L2)ε Aα(H∗)β(L2)α/n‖ f ‖p
L p(Bn−1)

<∼ L2εL(n−α)βL2α/n N

Ln−1 .

Inserting this back in (12), we get

NL3−n <∼ L2εL(n+α)(1−(2/p))
(
L(n−α)βL2α/nL1−nN

)2/p
,
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so that

N 1−(2/p)L3−n <∼ L2εL(n+α)(1−(2/p))
(
L(n−α)(β− 2

n )+2− 2α
n L

2α
n

L−2

Ln−3

)2/p
,

so that
N 1−(2/p) <∼ L2εL(n−3)(1−(2/p))L(n+α)(1−(2/p))L(n−α)(β− 2

n )( 2
p )

. (13)

Therefore,

N <∼ LO(ε)Ln−3LαLnL

(n−α)(β− 2
n )( 2p )

1− 2
p = LO(ε)L2n−3+αL

(n−α)(β− 2
n )

p
2 −1 .

But

(n − α)(β − 2
n )

p
2 − 1

= (n − α)

(
β − 2

n

)
2(n − 1)

(n − α)( 2n − β)
= −2(n − 1) = 2 − 2n,

so

N <∼ LO(ε)L2n−3+α+2−2n = LO(ε)Lα−1.

At this point, it might be helpful for the reader to observe how the above argument
breaks down in the p = 2 case: recalling that

p = 2 + n − α

n − 1

(2
n

− β
)
,

we see that β = 2/n and (13) becomes 1 <∼ L2ε , which tells us nothing.

4 Proof of (10) in the Regime 1 ≤ ˛ ≤ 2 in R
3

The fact that the Kakeya conjecture is true in R
2 tells us that (10) is also true there. In

this section, we use Wolff’s hairbrush argument from [15], as adapted by Guth in [7],
to prove the following bound on N .

Theorem 4.1 In R
3, we have

N <∼
{

(log L)2Lα−1 if 1 ≤ α ≤ 2,
(log L)2L2α−3 if 2 ≤ α ≤ 3.

Proof Let � be a subset of R
3 that obeys (8). As we did in the previous section, for

large L , we consider a decomposition {θ j } of P into finitely overlapping caps each of
radius L−1, and we associate with each θ j a family T j of parallel 1 × L tubes that
tile R

3 and point in the direction of the normal vector v j of P at the center of θ j . The
quantity N that we need to estimate is the cardinality of the set J as defined in (9).
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For each j ∈ J , we let Tj be a member of T j that lies in � ∩ B(0, 5L), and
S = {Tj }. Of course, N = #(S).

We tile � ∩ B(0, 5L) by unit lattice cubes B̃. Then (8) tells us that

#({B̃}) <∼ Lα. (14)

Also, each tube Tj intersects ∼ L of the cubes B̃.
We now define the function f : {B̃} → Z by

f (B̃) = #{Tj ∈ S : Tj ∩ B̃ �= ∅}.

Then

∑
B̃

f (B̃) ∼ NL.

So, by Cauchy–Schwarz and (14),

NL <∼
( ∑

B̃

f (B̃)2
)1/2(

#({B̃})
)1/2

<∼
( ∑

B̃

f (B̃)2
)1/2

Lα/2,

and so

∑
B̃

f (B̃)2 >∼ N 2L2−α,

which means that the set

{(B̃, Ti , Tj ) : Ti , Tj ∈ S, Ti ∩ B̃ �= ∅, and Tj ∩ B̃ �= ∅}

has cardinality >∼ N 2L2−α . Therefore, the set

X = {(B̃, Ti , Tj ) : Ti , Tj ∈ S, Ti ∩ B̃ �= ∅, Tj ∩ B̃ �= ∅ and i �= j}

has cardinality

≥ C1N
2L2−α −

∑
B̃

f (B̃) ≥ C1N
2L2−α − C2NL.

If C1N 2L2−α ≤ 5C2NL , then N ≤ (5C2/C1)Lα−1 and the theorem will be proved.
So, we may assume that N ≥ C3Lα−1 for some large constant C3. Therefore,
#(X) >∼ N 2L2−α .

For l ∈ N, we define Xl to be the subset of X for which

2l−1

L
≤ Angle(vi , v j ) ≤ 2l

L
.



8 Page 12 of 33 Journal of Fourier Analysis and Applications (2024) 30 :8

Since the angle between any two tubes in our set S ranges between L−1 and 1, it follows
by the pigeonhole principle that #(X) <∼ (log L)#(Xl0) for some l0 ∈ N. Denoting

2l0L−1 by θ , and Xl0 by X ′, we have L−1 ≤ θ ≤ 1 and #(X ′) >∼ N 2L2−α(log L)−1.
There are N tubes in S. By the pigeonhole principle, one of the tubes must appear

in >∼ N 2L2−α(log L)−1/N = NL2−α(log L)−1 of the elements of X ′. We call this
tube T , and we define

H = {Tj ∈ S : (B̃, T , Tj ) ∈ X ′}.

Let v be the direction of the tube T . Since the angle between v and v j is∼ θ , it follows
that |T ∩ Tj | <∼ θ−1. So, the set {B̃ : (B̃, T , Tj ) ∈ X ′} has cardinality <∼ θ−1, and so

#(H) >∼
NL2−α(log L)−1

θ−1 = θNL2−α(log L)−1.

To finish the proof, we need to also have an upper bound on #(H). We first observe
that

⋃
Tj∈H

Tj ⊂ � ∩ B,

where B is a box in R
3 of dimensions L × θL × θL . Since B can be covered by

∼ L/(θL) balls of radius θL , and since θL ≥ 1, the dimensionality property (8) tells
us that

∣∣∣ ⋃
Tj∈H

Tj

∣∣∣ <∼ θ−1(θL)α.

Next, we use the (by now) standard fact that the tubes Tj in H are morally disjoint
(see [7, Lemma 4.9] for a very nice explanation of this idea) to see that

∣∣∣ ⋃
Tj∈H

Tj

∣∣∣ >∼
#(H) |Tj |
log L

= #(H) L

log L
.

Therefore,

#(H) <∼ (log L)θ−1L−1(θL)α = (log L)(θL)α−1.

Comparing the lower and upper bounds we now have on the cardinality of H, we
conclude that

θNL2−α(log L)−1 <∼ (log L)(θL)α−1.

Therefore,

N <∼ (log L)2θα−2L2α−3.
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If α ≥ 2, then the fact that θ ≤ 1 tells us that

N ≤ (log L)2L2α−3.

If 1 ≤ α < 2, then the fact that θ ≥ 1/L tells us that

N <∼ (log L)2L2−αL2α−3 = (log L)2Lα−1.

It might be interesting for the reader to observe that the sharp result that we get in
the case 1 ≤ α < 2 is due to the fact that we are using ‘substantial’ information about
θ (namely, θ ≥ 1/L), whereas in the case 2 ≤ α ≤ 3 we only can use the relatively
‘unsubstantial’ information that θ ≤ 1.

We note that if � ⊂ R
3 obeys (8) and �∩ B(0, 5L) contains at least one tube from

each direction (i.e. at least one tube from each of the∼ L2 familiesT j ), then Theorem
4.1 implies that α ≥ 5/2 (cf. [15]).

5 Proof of Conjecture 1.1 in the Plane

The rest of the paper is concerned in proving that Conjecture 2.1 is true in R
2. In view

of Proposition 2.1, this task will be accomplished as soon as we prove Theorem 5.1
below.

We alert the reader that the extension operator in Theorem 5.1 is the one associated
with the unit circle S

1 ⊂ R
2 and is given by

E f (x) =
∫
S1
e−2π i x ·ξ f (ξ)dσ(ξ)

for f ∈ L1(σ ), where σ is induced Lebesgue measure on S
1. The proof for the

extension operator associated with the unit parabola is similar (and a little easier).

Theorem 5.1 Suppose 1 ≤ α ≤ 2 and R ≥ 1. Let β be a parameter satisfying
1/2 ≤ β ≤ 1, and define the exponent p by

p = 2 + (2 − α)(1 − β).

Then to every ε > 0 there is a constant Cε such that

∫
B(0,R)

|E f (x)|pH(x)dx ≤ CεR
ε Aα(H)β Rα/2‖ f ‖p

L p(σ ) (15)

for all functions f ∈ L p(σ ) and weights H of fractal dimension α.

The proof of Theorem 5.1 will use ideas from [16], [5], [12], and [4]. The overar-
ching idea, however, is the broad-narrow strategy of [1]. Implementing this strategy
involves
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• proving a bilinear estimate (see (22) in Subsection 7.1 below) that will be used to
control E f on the broad set

• proving a linear estimate (see (28) in Subsection 7.2 below) that will be used
to establish (15) when the function f is supported on an arc of small size (i.e.
σ -measure), which will provide the base of a recursive process

• carrying out a recursive process on the size of the function’s support that will
establish (15) for general f .

The main new idea in the proof of Theorem 5.1 is a localization of the weight
argument that will help us in deriving the bilinear estimate (22). We use this argument
to take advantage of the locally constant property of the Fourier transform, and we
will end this section by formulating the intuition that lies behind it in a lemma.

Given a function f : R
n → C and a number K > 0, we say that f is essentially

constant at scale K if there is a constant C such that

sup
QK

| f | ≤ C inf
QK

| f | (16)

for all cubes QK ⊂ R
n of side-length K .

Lemma 5.1 Suppose 1 ≤ α ≤ 2, 1/2 ≤ β ≤ 1, R > K 2 ≥ 1, and Q is a box in R
2 of

dimensions1 R/K × R. Also, suppose that f is a non-negative function on R
2 that is

essentially constant at scale K , and H is a weight on R
2 of fractal dimension α. Then

∫
Q

f (x)H(x)dx <∼ K−m Aα(H)β Rα/2‖ f ‖L2(Q̃)

for some m ≥ 0 (in fact, m = β − (1/2) + (1 − β)(α − 1)), where Q̃ is a box of
dimensions 2R/K × 2R that has the same center as Q, and the implicit constant
depends only on α and β and the constant C from (16).

Proof We tile R
2 by cubes B̃l of side-length K . If B̃l ∩ Q �= ∅, we let cl be the center

of B̃l and write

∫
Q

f (x)H(x)dx =
∑
l

∫
B̃l∩Q

f (x)H(x)dx <∼
∑
l

f (cl)
∫
B̃l
H(x)dx

=
∑
l

K−2
∫
B̃l

f (cl)H
′(y)dy <∼ K−2

∫
Q̃

f (y)H ′(y)dy,

where H ′ : R
2 → [0,∞) is given by

H ′(y) =
∫
B̃l
H(x)dx for y ∈ B̃l .

1 Boxes of such dimensions are a common feature in this context; see [4, Subsection 3.2] and Subsection
6.2 below.
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For y ∈ B̃l , we have

H ′(y) =
( ∫

B̃l
H(x)dx

)1−θ( ∫
B̃l
H(x)dx

)θ

≤ K 2(1−θ)Aα(H)θ (
√
2K )αθ ,

where 0 ≤ θ ≤ 1 is a parameter that will be determined later in the argument.
Next, we define the function H : R

2 → [0, 1] by

H(y) = 2−αθ/2Aα(H)−θK−2(1−θ)−αθ H ′(y)

and observe that

∫
B(x0,r)

H(y)dy ≤ K 2Aα(H)−θK−2(1−θ)−αθ

∫
B(x0,3r)

H(y)dy

≤ K 2Aα(H)−θK−2(1−θ)−αθ Aα(H)(3r)α = 3αAα(H)1−θK θ(2−α)rα

for all x0 ∈ R
2 and r ≥ K . On the other hand, when 1 ≤ r ≤ K we use the fact that

H(y) ≤ Aα(H)−θK−2(1−θ)−αθ H ′(y) ≤ Aα(H)−θK−2(1−θ)−αθ sup
l

∫
B̃l
H(x)dx

<∼ Aα(H)−θK−2(1−θ)−αθ Aα(H)K α = Aα(H)1−θK θ(2−α)K α−2

for all y ∈ R
2 to see that

∫
B(x0,r)

H(y)dy <∼ Aα(H)1−θK θ(2−α)K α−2r2 ≤ Aα(H)1−θK θ(2−α)rα

(because K α−2 ≤ rα−2). Therefore,H is a weight on R
2 of fractal dimension α with

Aα(H) <∼ Aα(H)1−θK θ(2−α).

Going back to our integral, we now have

∫
Q

f (x)H(x)dx <∼ Aα(H)θK θ(α−2)
∫
Q̃

f (y)H(y)dy.

Bounding the integral on the right-hand side by Cauchy–Schwarz, this becomes

∫
Q

f (x)H(x)dx <∼ Aα(H)θK θ(α−2)
( ∫

Q̃
H(y)dy

)1/2‖ f ‖L2(Q̃).
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But Q̃ can be covered by ∼ K balls of radius R/K , so

∫
Q̃
H(y)dy <∼ K Aα(H)(K−1R)α

<∼ K Aα(H)1−θK θ(2−α)(K−1R)α, (17)

and so

∫
Q

f (x)H(x)dx <∼ K 1/2Aα(H)(1+θ)/2K θ(α−2)/2(K−1R)α/2‖ f ‖L2(Q̃).

We now determine θ by solving the equation (1+ θ)/2 = β, which gives θ = 2β −1,
and we arrive at

∫
Q

f (x)H(x)dx <∼ K−m Aα(H)β Rα/2‖ f ‖L2(Q̃)

with m = β − (1/2) + (1 − β)(α − 1).

6 Preliminaries for the Proof of Theorem 5.1

This section contains basic facts that we need to prove Theorem 5.1 that we include
to make the paper as self-contained as possible.

6.1 The L1 Norm of a Rapidly Decaying Function over a Box

In the rigorous version of the localization argument that we described in the previous
section, instead of integrating over a proper R/K × R box, we will be integrating
against a Schwartz function that is essentially supported on such a box. It is easy to
see that (17) continues to be true in this case. Here are the details.

Lemma 6.1 Suppose 0 < α ≤ n, R ≥ K 2 ≥ 1, and � is a non-negative Schwartz
function on R

n. Then

∫
�

( x1 − ν1

RK−1 , . . . ,
xn−1 − νn−1

RK−1

xn − νn

R

)
H(x)dx <∼ K Aα(H)(K−1R)α (18)

for all weights H on R
n of fractal dimension α.

Proof Suppose R1, . . . , Rn > 0 and � is a non-negative Schwartz function. For
l = 0, 1, 2, . . ., we let χl be the characteristic function of the box in R

n of center 0
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and dimensions 2l+1R1 × . . . × 2l+1Rn , and Bl = B(0, 2l). Then

�
( x1 − ν1

R1
, . . . ,

xn − νn

Rn

)

≤
(
sup
B0

�
)
χB0

( x1 − ν1

R1
, . . . ,

xn − νn

Rn

)

+
∞∑
l=1

(
sup

Bl\Bl−1

�
)
χBl\Bl−1

( x1 − ν1

R1
, . . . ,

xn − νn

Rn

)

<∼
∞∑
l=0

2−Nlχl(x − ν)

for all x, ν ∈ R
n and N ∈ N, so that

∫
�

( x1 − ν1

R1
, . . . ,

xn − νn

Rn

)
H(x)dx <∼

∞∑
l=0

2−Nl
∫
Pl
H(x)dx,

where Pl is the box in R
n of center ν and dimensions 2l+1R1 × . . . × 2l+1Rn .

In the special case R1 = . . . = Rn−1 = R/K and Rn = R with R ≥ K 2 ≥ 1 (as
in (17)), this gives

∫
�

( x1 − ν1

RK−1 , . . . ,
xn−1 − νn−1

RK−1

xn − νn

R

)
H(x)dx <∼ K Aα(H)(K−1R)α (19)

for all weights H on R
n of fractal dimension α.

6.2 A Property of R/K × · · · × R/K × R Boxes

Suppose R ≥ K 2 ≥ 1, Q is an R/K × · · ·× R/K × R box in R
n . A box Q∗ ⊂ R

n of
dimensions (R/K )−1 × · · · × (R/K )−1 × R−1 and with the same axes as Q is called
a dual box of Q. This subsection is about the following observation.

Lemma 6.2 Suppose Q∗ is a dual box of Q whose (R/K )−1 × · · · × (R/K )−1-face
is tangent to the unit sphere S

n−1 ⊂ R
n at some point e. Then Q∗ lies in the R−1-

neighborhood of S
n−1.

Proof Let δ = K−1. Then Q∗ has dimensions (Rδ)−1 × . . . × (Rδ)−1 × R−1 and its
(Rδ)−1 × . . . × (Rδ)−1-face is tangent to S

n−1 at e.
Without any loss of generality, we may assume that e = (0, . . . , 0, 1).
Suppose y ∈ Q∗. Then

|y|2 = y21 + . . . + y2n−1 + (yn − 1 + 1)2 = y21 + . . . + y2n−1 + (yn − 1)2

+2(yn − 1) + 1
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so that

∣∣|y|2 − 1
∣∣ ≤ y21 + . . . + y2n−1 + |yn − 1|2 + 2|yn − 1|

so that

∣∣|y| − 1
∣∣ ∣∣|y| + 1

∣∣ ≤ y21 + . . . + y2n−1 + 3|yn − 1|

so that

∣∣|y| − 1
∣∣ ≤ y21 + . . . + y2n−1 + 3|yn − 1| ≤ n − 1

(Rδ)2
+ 3

R
<∼

1

R
,

where we have used the fact that

1

(Rδ)2
= 1

R

K 2

R
≤ 1

R
.

6.3 The Kakeya Information Underlying the Bilinear Estimate

Suppose δ > 0, R ≥ δ−1, and J1 and J2 are subsets of the circular arc {eiθ : π/4 ≤
θ ≤ 3π/4} such that Dist(J1, J2) ≥ 3δ.

Let N1 and N2 be the R−1-neighborhoods of J1 and J2, respectively. In this sub-
section, we derive the following well-known bound on the Lebesgue measure of the
set (x + N1) ∩ N2 for x ∈ R

2.

Lemma 6.3 We have
|(x + N1) ∩ N2| ≤ π

2R2δ
(20)

for a.e. x ∈ R
2.

Proof Since we are interested in the L∞-norm of the function

x �−→
∫

χx+N1(y)χN2(y)dy,

we let h ∈ L1(R2) be a non-negative function and consider the integral

I =
∫ ∫

χx+N1(y)χN2(y)dyh(x)dx .

Writing

I =
∫ ∫

χN1(y − x)χN2(y)h(x)dydx =
∫

χN2(y)
∫

χN1(y − x)h(x)dxdy,
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and applying the change of variables u = y − x in the inner integral, we see that

I =
∫

χN2(y)
∫

χN1(u)h(y − u)dudy =
∫
N2

∫
N1

h(y − u)dudy.

Changing into polar coordinates, this becomes

I =
∫ 1+R−1

1−R−1

∫ 1+R−1

1−R−1

∫
J̃1

∫
J̃2
h(reiθ − seiϕ)rsdθdϕdrds,

where J̃1 = N1 ∩ S
1 and J̃2 = N2 ∩ S

1.
We define

T (θ, ϕ) = reiθ − seiϕ = (r cos θ − s cosϕ, r sin θ − s sin ϕ).

The Jacobian of this transformation is

JT (θ, ϕ) =
∣∣∣∣−r sin θ s sin ϕ

r cos θ −s cosϕ

∣∣∣∣ = rs sin(θ − ϕ).

So

∫
J̃1

∫
J̃2
rsh(reiθ − seiϕ)dθdϕ =

∫
J̃1× J̃2

h(T (θ, ϕ))|JT |
| sin(θ − ϕ)| d(θ, ϕ).

But |θ − ϕ| ≤ π/2, so

| sin(θ − ϕ)| ≥ 2

π
|θ − ϕ| ≥ 2

π
Dist( J̃1, J̃2) ≥ 2δ

π
,

and so

∫
J̃1

∫
J̃2
rsh(reiθ − seiϕ)dθdϕ ≤ π

2δ

∫
J̃1× J̃2

h ◦ T (θ, ϕ)|JT (θ, ϕ)|d(θ, ϕ)

= π

2δ

∫
X
h(x, y)d(x, y) ≤ π

2δ
‖h‖L1 .

Thus

I ≤
∫ 1+R−1

1−R−1

∫ 1+R−1

1−R−1

π

2δ
‖h‖L1drds = π

2δR2 ‖h‖L1 ,

and (20) follows by duality.
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7 Proof of Theorem 5.1

As the paragraph following the statement of Theorem 5.1 says, our proof of this
theorem relies on ideas from [16], [5], [1], [12], and [4].

7.1 The Bilinear Estimate

Following [1, pp. 1281–1283], wewrite the ball B(0, R) as a disjoint union of two sets,
one broad, the other narrow (see Subsection 7.3 below for the definition of these two
sets). To estimate the L p(Hdx)-norm of E f on the broad set, we consider a bilinear
estimate.

For the rest of the paper, we will use the following notation. If φ is a function on
R
2 and ρ > 0, then φρ is the function given by φρ(·) = ρ−2φ(ρ−1·).

Lemma 7.1 Suppose f is supported in an arc I and g is supported in an arc J with
σ(I ) ∼ σ(J ) ∼ δ and δ ≤ Dist(I , J ) ≤ Rεδ. Also, suppose that

(10)Rε ≤ 1

δ
≤ Rδ

10
. (21)

Then
∫
B(0,R)

|E f (x)Eg(x)|p/2H(x)dx ≤ RεCB Aα(H)β Rα/2‖ f ‖p/2
L p(σ )‖g‖p/2

L p(σ ). (22)

Proof Let η be a C∞
0 function on R

2 satisfying |̂η| ≥ 1 on B(0, 1). Then

∫
B(0,R)

|E f (x)Eg(x)|H(x)dx =
∫
B(0,R)

| f̂ dσ(x)ĝdσ(x)|H(x)dx

≤
∫
B(0,R)

| f̂ dσ(x)ĝdσ(x)| |̂η(x/R)|2H(x)dx

=
∫
B(0,R)

|(ηR−1 ∗ f dσ )̂ (x)(ηR−1 ∗ gdσ )̂ (x)|H(x)dx

=
∫
B(0,R)

|F̂(x)Ĝ(x)|H(x)dx,

where F = ηR−1 ∗ f dσ and G = ηR−1 ∗ gdσ .
Applying the Cauchy-Schwarz inequality in the convolution integral with respect

to the measure |ηR−1(ξ − ·)|dσ , we see that

‖F‖2L2 ≤
∫ ( ∫

| f (θ)|2 |ηR−1(ξ − θ)|dσ(θ)
)( ∫

|ηR−1(ξ − θ)|dσ(θ)
)
dξ

<∼ R
∫ ∫

| f (θ)|2 |ηR−1(ξ − θ)|dσ(θ)dξ

= R
∫

| f (θ)|2
∫

|ηR−1(ξ − θ)|dξdσ(θ) = R ‖η‖L1 ‖ f ‖2L2(σ )
,
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where in the second inequality we used the fact that

∫
|ηR−1(ξ − θ)|dσ(θ) <∼ R2σ(B(ξ, R−1) <∼ R.

Therefore,

‖F‖L2 <∼ R1/2‖ f ‖L2(σ ) and ‖G‖L2 <∼ R1/2‖g‖L2(σ ). (23)

Since F is supported in the R−1-neighborhood of I and G is supported in the
R−1-neighborhood of J , we see (via (21)) that F is supported in a ball of radius
(δ/2)+ (δ/10) = (3δ/5) and similarly for G. So F ∗G is supported in a ball of radius
(6δ/5), say B(ξ0, (6δ/5)). Via the locally constant property of the Fourier transform,
this fact tells us that the Fourier transform of F ∗ G is essentially constant at scale
K = δ−1, and hence allows us to implement the localization of the weight argument
that we described in Section 5 at the intuitive level, and which we now carry out
rigorously.

Let φ be a Schwartz function which is equal to 1 on B(0, 6/5). Then φδ(ξ − ξ0) =
δ−2 on B(ξ0,

6δ
5 ), so that

F ∗ G = δ2φδ(· − ξ0)
(
F ∗ G

)

and

F̂(x)Ĝ(x) = δ2
(
φδ(· − ξ0)

(
F ∗ G

)̂)
(x) = δ2

(
φδ(· − ξ0)̂

) ∗ F̂ ∗ G(x).

Since
(
φδ(· − ξ0)̂

)
(x) = e−2π i x ·ξ0 φ̂(δx), it follows that

F̂(x)Ĝ(x) = δ2
∫ (

φδ(· − ξ0)̂
)
(x − y)F̂ ∗ G(y)dy

= δ2
∫

e−2π i(x−y)·ξ0 φ̂(δ(x − y))F̂ ∗ G(y)dy,

so that

|F̂(x)Ĝ(x)| ≤ δ2
∫

|φ̂(δ(x − y))| |F̂ ∗ G(y)|dy.

Therefore,

∫
B(0,R)

|E f (x)Eg(x)|H(x)dx ≤ δ2
∫

|F̂ ∗ G(y)|
∫

|φ̂(δ(x − y))|H(x)dxdy.

(24)
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For l = 0, 1, 2, . . ., we let Bl = B(y, 2lδ−1) and write

∫
|φ̂(δ(x − y))|H(x)dx

=
∫
B0

|φ̂(δ(x − y))|H(x)dx +
∞∑
l=1

∫
Bl\Bl−1

|φ̂(δ(x − y))|H(x)dx

≤
∫
B0

CN H(x)

(1 + δ|x − y|)N dx +
∞∑
l=1

∫
Bl\Bl−1

CN H(x)

(1 + δ|x − y|)N dx

≤ CN

∫
B0

H(x)dx +
∞∑
l=1

CN(
1 + δ 2l−1

δ

)N
∫
Bl
H(x)dx .

We now let 0 ≤ θ ≤ 1 be a parameter that will be determined later and write

∫
Bl
H(x)dx =

( ∫
Bl
H(x)dx

)1−θ( ∫
Bl
H(x)dx

)θ

≤ |Bl |1−θ
(
Aα(H)

(2l
δ

)α)θ

≤ Cθ

(2l
δ

)2(1−θ)+αθ

Aα(H)θ ,

where we have used the fact that 1/δ ≥ 1, and we obtain

∫
|φ̂(δ(x − y))|H(x)dx

≤ CN ,θ

(1
δ

)n(1−θ)+αθ

Aα(H)θ +
∞∑
l=1

CN

(1 + 2l−1)N

(2l
δ

)2(1−θ)+αθ

Aα(H)θ

≤ CN ,θ Aα(H)θ
(1

δ

)2(1−θ)+αθ

.

Also,

∫
B(x0,r)

∫
|φ̂(δ(x − y))|H(x)dxdy =

∫ ∫
χB(x0,r)(y)|φ̂(δ(x − y))|dyH(x)dx .

Applying the change of variables z = δ(x − y) in the inner integral, we get

∫
B(x0,r)

∫
|φ̂(δ(x − y))|H(x)dxdy = 1

δ2

∫ ∫
χB(x0,r)

(
x − z

δ

)|φ̂(z)|dzH(x)dx

= 1

δ2

∫
|φ̂(z)|

∫
χB(x0,r)

(
x − z

δ

)
H(x)dxdz.
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But
∫

χB(x0,r)
(
x − z

δ

)
H(x)dx =

∫
B(x0+ z

δ
,r)

H(x)dx ≤ Aα(H)rα

for all x0 ∈ R
n and r ≥ 1, so

∫
B(x0,r)

∫
|φ̂(δ(x − y))|H(x)dxdy ≤ 1

δ2
‖φ̂‖L1 Aα(H) rα

for all x0 ∈ R
2 and r ≥ 1.

For y ∈ R
2, define

H(y) = δ2(1−θ)+αθ

CN ,θ Aα(H)θ

∫
|φ̂(δ(x − y))|H(x)dx .

In view of the above discussion, we have

‖H‖L∞ ≤ 1 and
∫
B(x0,r)

H(y)dy ≤ CA1−θ
α δ(α−2)θrα

for all x0 ∈ R
2 and r ≥ 1. Thus H is a weight on R

2 of fractal dimension α with

Aα(H) ≤ CAα(H)1−θ δ(α−2)θ .

Going back to (24), we now have

∫
B(0,R)

|E f (x)Eg(x)|H(x)dx ≤ δ2
CN ,θ Aα(H)θ

δ2(1−θ)+αθ

∫
|F̂ ∗ G(y)|H(y)dy

= CN ,θ δ(2−α)θ Aα(H)θ
∫

|F̂ ∗ G(y)|H(y)dy.

(25)

Next, we let Q∗ be the box in frequency space (where the circle is located) of
dimensions (Rδ)−1 × R−1, centered at the origin, and with the (Rδ)−1-side (i.e. the
long side) parallel to the line segment that connects the midpoint of I to that of J .
We also let {Ql} be a tiling of R

2 by boxes dual to Q∗ (i.e. each Ql is an Rδ × R
box whose Rδ-side is parallel to the (Rδ)−1-side of Q∗) with centers {νl}, ψ be a C∞

0
function on R

2, and we define

ψl(ξ) = (Rδ)R ψ(Rδξ1, Rξ2) e
2π iνl ·ξ .

In the definition of ψl , we are assuming that the line joining the midpoint of I to that
of J is horizontal (i.e. parallel to the ξ1-axis). This assumption makes the presentation
a little smoother and, of course, does not cost us any loss of generality.



8 Page 24 of 33 Journal of Fourier Analysis and Applications (2024) 30 :8

We assume further that the Fourier transform of ψ is non-negative and satisfies
ψ̂ ≥ 1/2 on [−1/2, 1/2] × [−1/2, 1/2]. Then

ψ̂l(x) = ψ̂
( x1 − νl,1

Rδ
,
x2 − νl,2

R

)
≥ 1

2
if x ∈ Ql .

By the Schwartz decay of ψ̂ , we have
∑

m∈Z2 ψ̂(· − m)k <∼ 1 for any k ∈ N. Also,
{νl} is basically RδZ × RZ, so

∞∑
l=1

ψ̂l(Rδx1, Rx2)
k =

∞∑
l=1

ψ̂
( Rδx1 − νl,1

Rδ
,
Rx2 − νl,2

R

)k =
∑
m∈Z2

ψ̂(x − m)k <∼ 1,

and so ∞∑
l=1

ψ̂l(x)
k <∼ 1 (26)

for all x ∈ R
2.

Going back to (25), we can now write

∫
B(0,R)

|E f (x)Eg(x)|H(x)dx <∼ δ(2−α)θ Aα(H)θ
∞∑
l=1

∫
|F̂(x)Ĝ(x)|ψ̂l(x)

3H(x)dx .

Letting Fl = ψl ∗ F and Gl = ψl ∗ G, this becomes

∫
B(0,R)

|E f (x)Eg(x)|H(x)dx <∼ δ(2−α)θ Aα(H)θ
∞∑
l=1

∫
|F̂l(x)Ĝl(x)|ψ̂l(x)H(x)dx .

By Cauchy–Schwarz,

∫
|F̂l(x)Ĝl(x)|ψ̂l(x)H(x)dx ≤ ‖F̂l Ĝl‖L2‖ψ̂l(x)H‖L2 .

Applying (19) from Subsection 6.1 with n = 2 and K = δ−1, we have

∫
ψ̂l(x)

2H(x)2dx <∼
∫

ψ̂l(x)H(x)dx <∼ Aα(H)
R

Rδ
(Rδ)α

<∼ Aα(H)1−θ δ(α−2)θ Rαδα−1 = Aα(H)1−θ δ(α−2)θ+α−1Rα,

so that

‖ψ̂l(x)H‖L2 <∼ Aα(H)(1−θ)/2δ((α−2)θ+α−1)/2Rα/2.
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Therefore,

∫
B(0,R)

|E f (x)Eg(x)|H(x)dx <∼ Aα(H)(1+θ)/2δ((2−α)θ+α−1)/2Rα/2
∞∑
l=1

‖F̂l Ĝl‖L2 .

Letting β = (1 + θ)/2 (since 0 ≤ θ ≤ 1, we have 1/2 ≤ β ≤ 1), this becomes

∫
B(0,R)

|E f (x)Eg(x)|H(x)dx <∼ Aα(H)βδ(2−α)β+α−(3/2)Rα/2
∞∑
l=1

‖F̂l Ĝl‖L2 .

We now let Al be the support of Fl , Bl be the support of Gl , and define the function
λl : R

2 → [0,∞) byλl(ξ) = |(ξ−Al)∩Bl |. Applying Plancherel’s theorem followed
by Cauchy–Schwarz, we see that

‖F̂l Ĝl‖2L2 =
∫

|Fl ∗ Gl(ξ)|2dξ ≤ ‖λl‖L∞
∫

|Fl |2 ∗ |Gl |2(ξ)dξ.

By Young’s inequality,

∫
|Fl |2 ∗ |Gl |2(ξ)dξ ≤ ‖|Fl |2‖L1‖|Gl |2‖L1 = ‖Fl‖2L2‖Gl‖2L2 ,

so the only problem is to estimate ‖λl‖L∞ . We will do this by using the Kakeya bound
(20) of Subsection 6.3.

Our assumptions on the arcs I and J imply that the angle between any two points
in I ∪ J is<∼ Rεδ. Also, for each l, the function ψl is supported in the (Rδ)−1 × R−1

box Q∗ of center (0, 0) and with the long side parallel to the line joining the midpoints
of I and J . So, if e ∈ I ∪ J , then the translate Q∗ + e of Q∗ is contained in an
(Rδ)−1 × Rε−1 box with the (Rδ)−1-side tangent to S

1 at e. Therefore, the property
of boxes of this form that was presented in Subsection 6.2 tells us that Q∗ + e is
contained in the Rε−1-neighborhood of S

1. Therefore, the sets Al and Bl satisfy the
requirements needed for us to apply (20) and conclude

‖λl‖L∞ <∼
Rε

R2δ
.

Putting together what we have proved in the previous two paragraphs, we obtain

‖F̂l Ĝl‖2L2
<∼

Rε

R2δ
‖Fl‖2L2‖Gl‖2L2 ,
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and hence
∫
B(0,R)

|E f (x)Eg(x)|H(x)dx

<∼ Rε Aα(H)βδ(2−α)β+α−(3/2) Rα/2

(R2δ)1/2

∞∑
l=1

‖Fl‖L2‖Gl‖L2

= Rε Aα(H)βδ(2−α)(β−1) R
α/2

R

∞∑
l=1

‖Fl‖L2‖Gl‖L2 .

By Cauchy–Schwarz and Plancherel,

∞∑
l=1

‖Fl‖L2‖Gl‖L2 ≤
( ∞∑

l=1

‖F̂l‖2L2

)1/2( ∞∑
l=1

‖Ĝl‖2L2

)1/2
.

Also, by (26),

∞∑
l=1

‖F̂l‖2L2 =
∫

|F̂(x)|2
∞∑
l=1

ψ̂l(x)
2dx <∼ ‖F̂‖2L2 = ‖F‖2L2

and similarly for
∑∞

l=1 ‖Ĝl‖2L2 , so

∫
B(0,R)

|E f (x)Eg(x)|H(x)dx <∼ Rε Aα(H)βδ(2−α)(β−1) R
α/2

R
‖F‖L2‖G‖L2 .

Recalling (23), our bilinear estimate becomes

∫
B(0,R)

|E f (x)Eg(x)|H(x)dx <∼ Rε Aα(H)βδ(2−α)(β−1)Rα/2‖ f ‖L2(σ )‖g‖L2(σ ).

Writing

∫
B(0,R)

|E f (x)Eg(x)|p/2H(x)dx

=
∫
B(0,R)

|E f (x)Eg(x)|(p/2)−1|E f (x)Eg(x)|H(x)dx

≤ ‖ f ‖(p/2)−1
L1(S)

‖g‖(p/2)−1
L1(S)

∫
B(0,R)

|E f (x)Eg(x)|H(x)dx

≤ CB R
ε Aα(H)β Rα/2δ(2−α)(β−1)‖ f ‖(p/2)−1

L1(σ )
‖ f ‖L2(σ )‖g‖(p/2)−1

L1(σ )
‖g‖L2(σ )

and applying (33) (see the appendix), we arrive at our desired bilinear estimate

∫
B(0,R)

|E f (x)Eg(x)|p/2H(x)dx ≤ RεCB Aα(H)β Rα/2‖ f ‖p/2
L p(σ )‖g‖p/2

L p(σ ).
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7.2 The Linear Estimate

In this subsection, we work in R
n with n ≥ 2.

Lemma 7.2 Suppose f is supported in a cap of radius δ/2. Also, suppose that

(10)Rε ≤ 1

δ
≤ R

10
. (27)

Then ∫
B(0,R)

|E f (x)|pH(x)dx ≤ CL Aα(H)βδ−2α/n(δ2R)‖ f ‖p
L p(σ ). (28)

Proof Let η be a C∞
0 function on R

n satisfying |̂η| ≥ 1 on B(0, 1), and F = ηR−1 ∗
f dσ . Then

∫
B(0,R)

|E f (x)|2H(x)dx ≤
∫
B(0,R)

|F̂(x)|2H(x)dx .

Also, let ψ be a C∞
0 function on R

n , and {Bl} be a finitely overlapping cover of R
n

by balls dual to B(0, δ) (i.e. δ−1-balls) with centers {νl}, and set

ψl(ξ) = δ−nψ(δ−1ξ) e2π iνl ·ξ .

We assume further that ψ̂ is non-negative and ≥ 1/2 on the unit ball. Then

ψ̂l(x) = ψ̂(δ(x − τl)) ≥ 1

2

if |δ(x − τl)| ≤ 1, i.e. if x ∈ Bl . Thus

∫
B(0,R)

|E f (x)|2H(x)dx <∼
∞∑
l=1

∫
|F̂(x)ψ̂l(x)|2ψ̂l(x)H(x)dx .

Since 1/n ≤ β ≤ 2/n, we can apply Hölder’s inequality with the dual exponents
1/(1 − β) and 1/β to get

∫
B(0,R)

|E f (x)|2H(x)dx <∼
∞∑
l=1

‖F̂ ∗ ψl‖2L2/(1−β)‖ψ̂l H‖L1/β .

Since ‖H‖L∞ ≤ 1, we have

‖ψ̂l H‖1/β
L1/β ≤

∫
ψ̂l(x)

1/βH(x)dx,
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and hence (by the proof of (19))

‖ψ̂l H‖1/β
L1/β

<∼ Aα(H)
(1

δ

)α

.

Also, by Hausdorff–Young,

‖F̂ ∗ ψl‖L2/(1−β) ≤ ‖F ∗ ψl‖L2/(1+β) .

Therefore,

∫
B(0,R)

|E f (x)|2H(x)dx <∼ Aα(H)βδ−αβ
∞∑
l=1

‖F ∗ ψl‖2L2/(1+β) .

Since (27) tells us 1/R ≤ δ/10, it follows that F is supported in a ball of radius
(δ/2)+(δ/10) = (3/5)δ, say B(ξ0, 3δ/5). Moreover, sinceψl is supported in B(0, δ),
it follows by Hölder’s inequality and Plancherel’s theorem that

‖F ∗ ψl‖2L2/(1+β)
<∼ δnβ‖F ∗ ψl‖2L2 = δnβ‖F̂ψ̂l‖2L2 .

Thus

∫
B(0,R)

|E f (x)|2H(x)dx <∼ Aα(H)βδ−αβδnβ
∞∑
l=1

∫
|F̂(ξ)ψ̂l(ξ)|2dξ

= Aα(H)βδ(n−α)β

∫
|F̂(ξ)|2

∞∑
l=1

|ψ̂l(ξ)|2dξ

<∼ Aα(H)βδ(n−α)(β−(2/n))δ2−(2α/n)‖F‖2L2 .

But we know from (23) (whose proof shows that it is true in R
n for all n ≥ 2) that

‖F‖L2 <∼
√
R ‖ f ‖L2(σ ), so

∫
B(0,R)

|E f (x)|2H(x)dx <∼ Aα(H)βδ−2α/n(δ2R)δ(n−α)(β−(2/n))‖ f ‖2L2(σ )
.

Writing

|E f (x)|p = |E f (x)|p−2|E f (x)|2 ≤ ‖ f ‖p−2
L1(σ )

|E f (x)|2

and using (32) (see the appendix), we now see that

∫
B(0,R)

|E f (x)|pH(x)dx

<∼ Aα(H)βδ−2α/n(δ2R)δ(n−α)(β−(2/n))‖ f ‖p−2
L1(σ )

‖ f ‖2L2(σ )

<∼ Aα(H)βδ−2α/n(δ2R)‖ f ‖p
L p(σ ),
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which proves (28).

7.3 The Recursive Process

We let 0 < ε < 10−2 and R ≥ 1 be two numbers satisfying R ≥ (1000)1/(1−4ε). We
also let δ be as in Lemma 7.1 (so that δ obeys (21)). We’re going to prove our estimate
by implementing a recursive process over δ.

Base of the recursion: Here δ = R−1/2. Plugging this value of δ into (28) in dimen-
sion n = 2, we get

∫
B(0,R)

|E f (x)|pH(x)dx ≤ CL Aα(H)β Rα/2‖ f ‖p
L p(σ ).

The recursive step: We state this in the following lemma.

Lemma 7.3 Suppose that the estimate

∫
B(0,R)

|E f (x)|pH(x)dx ≤ CRε Aα(H)β Rα/2‖ f ‖p
L p(σ ) (29)

holds for every function f ∈ L1(σ ) that is supported in an arc of σ -measure ≤ δ, and
δ obeys (21). Then the estimate

∫
B(0,R)

|Eg(x)|pH(x)dx ≤ C ′Rε Aα(H)β Rα/2‖g‖p
L p(σ ) (30)

holds for every function g ∈ L1(σ ) that is supported in an arc of σ -measure ≤ Rεδ,
where

C ′ = 3pC + (10)p R(p+2)εCB .

Proof Suppose δ satisfies the condition (21):

(10)Rε ≤ 1

δ
≤ Rδ

10
,

and (29) is truewhenever f ∈ L1(σ ), f is supported on an arc Iδ ⊂ S
1, and σ(Iδ) ≤ δ.

We need to show that (30) is true whenever g ∈ L1(σ ), g is supported on an arc
IRεδ ⊂ S

1, and σ(IRεδ) ≤ Rεδ, where

C ′ = 3pC + (10)p R(p+2)εCB .

We let K = Rε and cover the support of g by K arcs τ each of measure δ. We then
write g = ∑

τ fτ with each function fτ supported in the arc τ .
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Following [1] and [7], for x ∈ R
2, we define the significant set of x by

S(x) = {τ : |E fτ (x)| ≥ 1

10K
|Eg(x)|}.

Then

|Eg(x)| ≤
∣∣∣ ∑
τ∈S(x)

E fτ (x)
∣∣∣ + 1

10
|Eg(x)|,

so that

|Eg(x)| ≤ 10

9

∣∣∣ ∑
τ∈S(x)

E fτ (x)
∣∣∣. (31)

The narrow set N and the broad set B are now defined as

N = B(0, R) ∩ {x ∈ R
2 : #S(x) ≤ 2} and B = B(0, R) \ N .

Wewill estimate
∫
N |Eg(x)|pH(x)dx by induction and

∫
B |Eg(x)|pH(x)dx by using

the bilinear estimate.
By (29) and (31),

∫
N

|Eg(x)|pH(x)dx ≤ 2p−1
(10
9

)p
∫
N

∑
τ∈S(x)

|E fτ (x)|pH(x)dx

≤
(20
9

)p
∫
N

∑
τ

|E fτ (x)|pH(x)dx

≤ 3p
∑
τ

CRε Aα(H)β Rα/2‖ fτ‖p
L p(σ )

= 3pCRε Aα(H)β Rα/2‖g‖p
L p(σ ).

To every x ∈ B there are two caps τx , τ
′
x ∈ S(x) so that Dist(τx , τ ′

x ) ≥ δ. Writing

|Eg(x)|p = |Eg(x)|p/2|Eg(x)|p/2 ≤ (10K |E fτx (x)|)p/2(10K |E fτ ′
x
(x)|)p/2,

we see that

|Eg(x)|p ≤ (10K )p
∑

τ,τ ′: Dist(τ,τ ′)≥δ

|E fτ (x)|p/2|E fτ ′(x)|p/2.
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Using the bilinear estimate (22), it follows that

∫
B

|Eg(x)|pH(x)dx

≤ (10K )p
∑

τ,τ ′: Dist(τ,τ ′)≥δ

∫
B

|E fτ (x)|p/2|E fτ ′(x)|p/2H(x)dx

≤ (10K )pCB R
ε Aα(H)β Rα/2

∑
τ,τ ′: Dist(τ,τ ′)≥δ

‖ fτ‖p/2
L p(σ )‖ fτ ′ ‖p/2

L p(σ )

≤ (10)pK pCB R
ε Aα(H)β Rα/2

∑
τ,τ ′: Dist(τ,τ ′)≥δ

‖g‖p/2
L p(σ )‖g‖p/2

L p(σ ).

Therefore,

∫
B

|Eg(x)|pH(x)dx ≤ (10)pK p+2CB Aα(H)β Rα/2‖g‖p
L p(σ ).

Combining the narrow and broad estimates, we arrive at (30).

The recursion: Starting with the base of the induction, where δ = R−1/2 and C =
CL , and applying Lemma 7.3 k times, we arrive at an estimate that holds for every
function f ∈ L1(σ ) that is supported on an arc of σ -measure ≤ δk = Rkεδ =
Rkε/

√
R, with constant

Ck = 3kpCL + (10)p R(p+2)εCB

k−1∑
l=0

3lp = 3kpCL + (10)p R(p+2)εCB
1 − 3kp

1 − 3p
.

At the step before the last, k = (1/(2ε)) − 2 and δk = R[(1/(2ε))−2]ε/
√
R = R−2ε ,

which is a valid value of δ (i.e. δk = R−2ε obeys (28), because 10Rε ≤ 1/R−2ε ≤
R1−2ε/10). Applying Lemma 7.3 one last time, we get the estimate

∫
B(0,R)

|E f (x)|pH(x)dx ≤ CRε Aα(H)β Rα/2‖ f ‖p
L p(σ )

for every function f ∈ L1(σ ) that is supported on an arc of σ -measure ≤ R−ε , where
the constant C satisfies

C ≤ 3p/(2ε)
(
CL + (10)p R(p+2)ε

3p − 1
CB

)
.

Since the circle S
1 can be covered by ∼ Rε such arcs, (15) follows and Theorem

5.1 is proved.
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Appendix: Calculation Giving the Right Exponent for the Restriction
estimate

Suppose 0 < δ ≤ 1, 1 ≤ α ≤ n, 1/n ≤ β ≤ 2/n, σ is induced Lebesgue mea-
sure on the unit sphere S

n−1 ⊂ R
n , and f , g ∈ L1(σ ) are functions satisfying

σ(supp f ), σ (supp g) ≤ δn−1. We are looking for an exponent p ≥ 2 so that

‖ f ‖p−2
L1(σ )

‖ f ‖2L2(σ )
≤ δ(n−α)((2/n)−β)‖ f ‖p

L p(σ ) (32)

and

‖ f ‖(p/2)−1
L1(σ )

‖ f ‖L2(σ )‖g‖(p/2)−1
L1(σ )

‖g‖L2(σ ) ≤ δ(n−α)((2/n)−β)‖ f ‖p/2
L p(σ )‖g‖p/2

L2(σ )
. (33)

We have

‖ f ‖L1(σ ) ≤ σ(supp f )1−(1/p)‖ f ‖L p(σ ) ≤ δ(n−1)(p−1)/p‖ f ‖L p(σ )

and

‖ f ‖2L2(σ )
≤ σ(supp f )1−(2/p)

( ∫
| f |2(p/2)dσ

)2/p ≤ δ(n−1)(p−2)/p‖ f ‖2L p(σ ),

so

‖ f ‖p−2
L1(σ )

‖ f ‖2L2(σ )
≤ δ(n−1)(p−2)(p−1)/p)‖ f ‖p−2

L p(σ )δ
(n−1)(p−2)/p‖ f ‖2L p(σ )

= δ(n−1)(p−2)‖ f ‖p
L p(σ ),

so (n − 1)(p − 2) = (n − α)((2/n) − β), and so

p = 2 + n − α

n − 1

(2
n

− β
)
.

Therefore, (32) holds with the above value of p. Using (32), we now have

‖ f ‖(p−2)/2
L1(σ )

‖ f ‖L2(σ )‖g‖(p−2)/2
L1(σ )

‖g‖L2(σ )

≤
(
δ(n−α)((2/n)−β)‖ f ‖p

L p(σ )

)1/2(
δ(n−α)((2/n)−β)‖g‖p

L p(σ )

)1/2
,

which is the inequality in (33).
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