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Abstract

In a recent paper, Du and Zhang (Ann Math 189:837-861, 2019) proved a fractal
Fourier restriction estimate and used it to establish the sharp L? estimate on the
Schrodinger maximal function in R”?, n > 2. In this paper, we show that the Du—
Zhang estimate is the endpoint of a family of fractal restriction estimates such that
each member of the family (other than the original) implies a sharp Kakeya result in
R”" that is closely related to the polynomial Wolff axioms. We also prove that all the
estimates of our family are true in R?.
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1 Introduction

Let Ef = Ep f be the extension operator associated with the unit paraboloid P =
[EeR & =E+...+& | <1}inR"

Ef(x) = /B el fw)do,

where B"~! is the unit ball in R"~ !,
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Our starting point is the following fractal restriction theorem of Du and Zhang
[4]. (Throughout this paper, we denote a cube in R" of center x and side-length r by
B(x,r).)

Theorem 1-A (Du and Zhang [4, Corollary 1.6]) Supposen > 2,1 <a <n, R > 1,
X =U; Bk is a union of lattice unit cubes in B(O R) C R", and

#{Bk Bk - B(x r)}

ro

y = sup

vAv'here the sup is taken over all pairs (x',r) € R" x [1, 00) satisfying E(x’, r) C
B(0, R). Then to every € > O there is a constant C¢ such that

/ |Ef (0)Pdx < CeR y*" RN 17200, (1)
X

forall f e L>(B"1).

In [4], Theorem 1 was used to derive the sharp L? estimate on the Schrodinger
maximal function (see [4, Theorem 1.3] and the paragraph following the statement of
[4, Corollary 1.6]). The authors of [4] also used Theorem 1 to obtain new results on
the Hausdorff dimension of the sets where Schrodinger solutions diverge (see [11]),
achieve progress on Falconer’s distance set conjecture in geometric measure theory
(see [6]), and improve on the decay estimates of spherical means of Fourier transforms
of measures (see [16]).

The purpose of this paper is threefold:

e Show that Theorem 1 is a borderline sharp Kakeya result in the sense that (1) is the
endpoint of a family of estimates (see (2) in the statement of Conjecture 1.1) such
that each member of the family (other than (1)) implies a certain sharp Kakeya
result that we will formulate in §3 below.

e Show that the sharp Kakeya result is true in certain cases in R3; see Theorem 4.1.

e Prove Conjecture 1.1 in R? (see Theorem 5.1) in the hope that this will shed some
light on whether it would be possible to modify the Du-Zhang argument to also
prove it in higher dimensions and consequently obtain the Kakeya result without
having to pass through the restriction conjecture.

Conjectute 1.1 (when 8 = 2/n or n = 2, this is a theorem) Suppose n, a, R, X, and
y are as in the statement of Theorem 1.
Let B be a parameter satisfying 1/n < B < 2/n, and define the exponent p by

)

Then to every € > 0 there is a constant C, such that

[ EF s < CRY RIF 0 @
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forall f e LP(B"1).

We note that when 8 = 2/n, (2) becomes (1), so, to prove Conjecture 1.1 we need
to perform the following trade: lower the power of y in (1) from 2/n to g in return for
raising the Lebesgue space exponent from 2 to p.

We will show below that if (2) holds for any 8 < 2/n, then we obtain the sharp
Kakeya result of §3.

As noted above, in dimension n = 2, (2) is true for all 1/2 < g < 1 (and hence
Conjecture 1.1 is a theorem in the plane). We will prove this in the last three sections
of the paper by using weighted bilinear restriction estimates and the broad-narrow
strategy of [1].

Before we discuss the implications of Conjecture 1.1 to the Kakeya problem, it will
be convenient to write (2) in an equivalent form, which is, perhaps, more user-friendly.
This is the purpose of the next section.

2 Writing (2) in an Equivalent Form

Suppose n > 1 and 0 < o < n. Following [12] (see also [3] and [13]), for Lebesgue
measurable functions H : R" — [0, 1], we define

Aa(H)zinf{C:/

H(x)dx < CR® forall xo € R" and R > 1},
B(x0,R)

where B(xg, R) denotes the ball in R" of center xo and radius R. We say H is a weight
of fractal dimension a if A, (H) < oo. We note that Ag(H) < Aq(H) if B > o, s0
we are not really assigning a dimension to the function H; the phrase “H is a weight
of dimension «” is merely another way for us to say that A, (H) < oo.

Proposition 2.1 Suppose n, a, R, X, y, B, and p are as in the statement of Conjecture

1.1. Then the estimate (2) holds if and only if to every € > 0 there is a constant C,
such that

|Ef (x)|PH(x)dx < CcREAg(H)PRY™ | FI7, ., A3)
B(0,R) Lr@® )

for all functions f € L?(B"~") and weights H of fractal dimension a.

Proof Let H be the characteristic function of X. By the definition of y, we have
/~ H(x)dx <y (r+2)* <y (@3r)*
B(xo,r)

for all xo € R" and r > 1. Thus H is a weight on R" of fractal dimension «, and
Ay (H) < 3%y. This immediately shows that (3) implies (2).
To prove the reverse implication, we follow [4, Proof of Theorem 2.2].
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We consider a covering {§ } of B(0, R) by unit lattice cubes. Since every unit cube
is contained in a ball of radius /n, we have f§ H(x)dx < Aq(H)n%2, so, if we
define v(B) = Aq(H) ™! [3 H(x)dx and Vi = {B : 27! < n=%/2y(B) < 2}, then

B(O,R) CUB cU)___V;.

‘We note that

/H(x)dx< /H(x)l/ﬂdx /H(x)dx

= (Autto(B))” < 0P g (1127 @

forall B € Vi, where we have used the assumptions 8 <2/n <l and ||H||p~ < 1.
The vast majority of the sets Vj are negligible for us. In fact, letting k; be the sup
of theset{k € Z : 2k < R—1000n/ﬂ}, we see that

/U . [EfFOIPH®x < 11FI7) e, Z > f H (x)dx

k:—ooUEEVk k=—oc0 B BeVy

ki
< CAa(H)ﬁHfHZI(anl) Z Rn2kﬁ

k=—o00

< CR™" Aa(E I F 1] e

where we used (4) on the line before the last, and the fact that 2k < R=1000n/B o the
last line. Therefore, we only need to estimate

0
/U . Ef@)IPHxdx = Y Y /JEf(x)I”H(X)dx-

k=t +1YBev, k=ki+1 Bev, B

Letting kg € {k1 + 1, k1 4+ 2, ..., 0} be the integer satisfying

/|Ef(x)|pH(x)dx— max /|Ef(x)|pH(x)dx]

+1<k<0
BEVkO

we see that
| iErwr e
B(0,R)

<k Y /IEf(x)I”H(x)dx+CR AP g (5)
BGVkO
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Since —k; =< log(2R), it follows that we only need to estimate
> /N |Ef (0)|” H (x)dx.
gEVkO B
We start by using the uncertainty principle in the following form. Let do be the
pushforward of the (n — 1)-dimensional Lebesgue measure under the map 7' : B*~! —
P given by T(w) = (w, |w|?). Since the measure do is compactly supported and

Ef = gdo, where g is the function on P defined by the equation f = go T, it
follows that there is a non-negative rapidly decaying function ¥ on R" such that

sup |Ef|P < |EfIP % Y (c(B)),
B
where C(E) is the center of B. Thus
/NlEf(X)I”H(x)dx S (/ H@)dx ) |EfIP 5 (e(B)).
B B

From (4) we know that [z H (x)dx < Aq(H)P2%0P for all B € Vj,. Also,

|EfIP % ¥ (c(B)) =/

|Ef ()P ¥ (c(B) — x)dx
B(c(B),R¢)

+ / _|Ef@IPy(c(B) — x)dx
B(c(B),R¢)¢
< / _AEf@IPdx + RTOMILIT g
B(c(B),R¢)

and

D Xsed g S R (©)
EEVkO
SO
> /NIEf(x)I”H(x)dx
B

§EVk0

< R Ag(H)P2P [ |Ef 017 dx + Aa ()P R FIT sy (D
Vv

where V = Ugy, B(c(B), R).
We now let {E*} be the set of all the unit lattice cubes that intersect V,and X = U B*.

We plan to apply (2) on this set X, but we first need to estimate y.
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_ Let B, be a ball in R” of radius » > R€ (if 1 < r < R, then, cleagy, #{§* :
B* C B} < R"€), and V, the subset of Vj, that consists of all unit cubes B such that

B(c(B),2R%) N B, # . If B, intersects any of the cubes B* that make up X, then
B, intersects B(c(B) 2R¢) for some Be V. Therefore,

#{(B* : B* C B,} < R"#(V,).
Our assumption r > R€, tells us that
Ugey, B(c(B),2R) C Bs,,

so (using (6))

R | Hdxz Y /  H(x)dx
Bs, Bev, B(c(B),2R¢)

=3 / H(x)dx = Y v(B)Ay(H) = #(V;) n“?27 Ay (H).
BeV BeV

On the other hand,

H(x)dx < Aq(H)(5r)%,
Bsy

so #(V,) < R" 27k, and so
#{(B* : B* C B,} < R 2 ko,

Therefore, y < R>*€2 %0,
Applying (2), we now obtain

/ |Ef (x)|Pdx </ |Ef(x)|Pdx < R27RP R 1|7 By’

which, combined with (5) and (7), implies that

~

|Ef (x)|PH(x)dx < RO"TOQRN=BA (HYERY™|FIV,
B(0,R) Lr @5

_ R(n+6)€A (H)ﬂRa/n”f”LP(B" 1y

which is our desired estimate (3).
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3 Conjecture 1.1 Implies a Sharp Kakeya Result

Let 2 be a subset of R” that obeys the following property: there is a number o between
1 and n such that
|2 N Br| < CR® (@)

for all balls Bg in R” of radius R > 1. (Given £ C R”" a Lebesgue measurable set,
we let | E| denote its Lebesgue measure.)

For large L, we divide the unit paraboloid P into finitely overlapping caps ¢; each
of radius L~!, and we associate with each 6 ; afamily T; of parallel 1 x L tubes that
tile R"” and point in the direction normal to 6; at its center. We let N be the cardinality
of the set

J ={j : there is a tube of T; that lies in 2 N B(0, 5L)}. )

It is easy to see that the Kakeya conjecture (in its maximal operator form) implies
the following bound on N: to every € > O there is a constant C, such that

N < C.L¢LY! (10

for all L > 1. In fact, [2, Proposition 2.2] presents a proof of the fact that the Kakeya
conjecture implies (10) in the case when 2 is a neighborhood of an algebraic variety.
This proof easily extends to general sets €2 satisfying (8). (For the connection between
neighborhoods of algebraic varieties and the condition (8), we refer the reader to [14].)

We note that (10) implies that if 2N B(0, SL) contains at least one tube from each
direction (i.e. at least one tube from each of the ~ L"~! families T,), then a = n.

In the special case when €2 is a neighborhood of an algebraic variety, this bound
on N was proved by Guth [7] in R3, conjectured by Guth [8] to be true in R” for all
n > 3, and proved by Zahl [17] in R*: see also [9]. The conjecture of [8] was then
settled in all dimensions by Katz and Rogers in [10].

In this section we prove that Conjecture 1.1 about the extension operator implies
that all sets 2 C R” that satisfy the dimensionality condition (8) will also possess the
Kakeya property (10). Here is the precise statement.

Theorem 3.1 Suppose (3) (or equivalently (2)) holds for some 1/n < B < 2/n. Then
(10) holds for all Lebesgue measurable sets Q@ C R”" that obey (8).

Proof We first write the set J as {Jji, j2,..., v}, and foreach 1 <1 < N, we let T;
be a tube from T';; that lies in 2 N B(0, 5SL) = N Bsz. Then

N N
NL=Z|T1|=Z/ Xn () dx = me)dx
I=1 1=1YBsLNQ

Bs;NQ

1 2
_ 20— 1)/35 B Ln_l XT,(x)) dx. (11)
L 1=

Recall that T, is a family of parallel 1 x L tubes that tile R” and point in the
direction normal to the L™ '-cap 6 ;- The projection of 6, into B"~!is an L~!-ball.
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We denote this ball by B; and let w; be its center and x; its characteristic function.
Then

\Eyi(x)] = ‘/ e—2nix-(w,|a)|2)dw‘ _ ‘/ e—2ni((x1+2x2w1)(a)—w1)+xz|w—w1\z)da)‘
By B;

forall x = (x1, x2) € R" ! x R. Since | — ;| < L~! for all w € By, it follows that
|Exi(x)| = |Bj| ~ L~ on the set {x € R" : |x| + 2x2ay| < L and |xp| < L?},
and hence | E y;(Lx)| = L~"~D ontheset {x € R" : |x;4+2x2a7| < 1 and |x2| < L}.
Since |w;| < 1, this last set contains a 1 x L tube T} that is parallel to the normal vector
of the cap 6, at its center (wy, |@; 12). Moreover,

1
|Exi (LX) Z 75 X3 ()

n—1

forall x € R".
The tube 7} is parallel to the tube 7; that we chose at the beginning of the proof and
has the same dimensions, so 7; = v + T; for some vector v € R”, and so

1
|Exi(LO) 2 T xn (& +v)
for all x € R”. Defining the function f; on R*~! by

filw) = 2LV @10y (),

we see that Efj(x) = E x;(x — Lv), so that

1
|EAilLx)l = |Exi(Lx — Lv)| = [Exi(L(x = v))| T 5= X1 (%)

for all x € R”. Returning to (11) and letting H = yxq, we arrive at

N
NL < L*n=D Z |Ef;(Lx)|> H (x)dx.
BSL I=1

Next, we let ¢, = =£1 be random signs, define the function f : B"~! — C by
f= ZlNzl €1 f1, and use Khintchin’s inequality to get

NL < 20D IE(/

Bsp

|Ef (L) H (x)dx).
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where E is the expectation sign. Since p > 2, we can apply Holder’s inequality in the
inner integral to get

2(n—1) 1-@2/p) 2/p
NL < L ( H(x)dx) ]E( |Ef(Lx)|”H(x)dx>
Bsp, Bsp,
< L2(n—l)La(l—(2/p))E</ |Ef(Lx)|pH(x)dx>2/P
Bsp,

Applying the change of variables u = Lx and defining the weight H* by H*(u) =
H(x) = H(u/L), this becomes

NL < 120D a0-C/p)  ~21/p E(/

Ef ) wde)
B

512
so that

NLI" < 00l /

* 2/p
| Ef@IPH @A) a2)

512

‘We note that

f H*(u)du = L"/ H(x)dx
B(uo,R) B(uo/L,R/L)

< L"Aa(H)(g)a =L""%A,(H)R*

if R > L. On the other hand, if R < L, then

/ H*(u)du < R" = R""“R% < L""*R“.
B(uo,R)

Therefore,
Ag(H*) < L%,

We are now in a good shape to apply (3), which tells us that

[ BP0 S @ A
Bs;2

< L2€L(”*°‘):3L2°l/”i'

Ln—1
Inserting this back in (12), we get

NL3" < 1.2€ [ () (1=2/p)) (L(ﬂ—d)ﬁLM/"Ll—nN)z/P’

Birkhauser
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so that

-2
N1=Q/P) 30 < 2 k) (1-2/p)) (L(n—a)(ﬁ—%)+2—27‘”L27“ L )2/”’

L3
so that
N1=C/p) < [ 261 =3)(1=2/p) [ (n+a)(1=2/p)) | (1=)B=2)(F) (13)
Therefore,
("*05)(/3*%)(%) (nfoc)(ﬂ—%)
N <[O0@pn=3parny -3 — [0@©m=3+a;  Ei
But
2
n—a)p—y 2 2(n—1
00D gy (5-2) 20D 2o
71 n) (n—a)g—p)
SO

N 5 LO(E)LZH—3+(¥+2—2}’1 — LO(G)LO[—I'

At this point, it might be helpful for the reader to observe how the above argument
breaks down in the p = 2 case: recalling that

P25 =50

we see that 8 = 2/n and (13) becomes 1 < L?¢, which tells us nothing.

4 Proof of (10) in the Regime 1 < @ < 2in R3

The fact that the Kakeya conjecture is true in R? tells us that (10) is also true there. In
this section, we use Wolff’s hairbrush argument from [15], as adapted by Guth in [7],
to prove the following bound on N.

Theorem 4.1 In R3, we have

v < | (og Lol jfl <a <2,
~ | og L)2L%73 if2 <a < 3.

Proof Let 2 be a subset of R3 that obeys (8). As we did in the previous section, for
large L, we consider a decomposition {6} of P into finitely overlapping caps each of
radius L~!, and we associate with each 6; a family T of parallel 1 x L tubes that
tile R? and point in the direction of the normal vector v; of P at the center of §;. The
quantity N that we need to estimate is the cardinality of the set J as defined in (9).
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For each j € J, we let T; be a member of T that lies in & N B(0, 5L), and
= {T;}. Of course, N = #(S)
We tile 2 N B(0, 5L) by unit lattice cubes B. Then (8) tells us that
#({B)) < L*. (14)

Also, each tube T intersects ~ L of the cubes B.
We now deﬁne the function f : {B } — Z by

f(B) =#{T; € S: T; N B # ¥).

Then
Y S(B)~NL
B
So, by Cauchy—Schwarz and (14),
vz (X rd?) " (raBp) < (Zrd 2y pan,
B

and so

> F(BY? z NPLPE,
B

which means that the set
{((B,T;,T;): T;,T; €S, ;NB #W, and T; N B # ¥}
has cardinality > N2L>~%. Therefore, the set
X={(B,T;,T) :T;,T; €S, TNB#Y, TjNB #Pandi # j}
has cardinality

> CIN’L** =) f(B) = C\N*L*** —= C,NL.
B
If CyN?L>* < 5C,NL, then N < (5C;/C1)L*"" and the theorem will be proved.
So, we may assume that N > C3L2! for some large constant C3z. Therefore,
#(X) = N2L>.
For [ € N, we define X; to be the subset of X for which

-1 1
T < Angle(vi, Uj) < f

Birkhauser
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Since the angle between any two tubes in our set S ranges between L~ and 1, it follows
by the pigeonhole principle that #(X) < (log L)#(X},) for some /y € N. Denoting
2l =1 by 6, and X;, by X', we have L~! <6 < 1 and #(X') > N2L>~*(log L)~

There are N tubes in S. By the pigeonhole principle, one of the tubes must appear
in > N2L?> “(logL)"'/N = NL?>~%(log L)~! of the elements of X’. We call this
tube 7', and we define

H={TjeS:(B,T,T;) € X').

Let v be the direction of the tube T~ Sin~ce the angle between v and v is ~ 6, it follows
that [TNT;| < 01, So, the set {B:(B,T,T)) € X'} has cardinality < 0! and so

NL>**(logL)~!

oo =ONL>“(logL)~".

#(H) 2

To finish the proof, we need to also have an upper bound on #(IH). We first observe
that

U T, CcQNB,
TjEH

where B is a box in R of dimensions L x 6L x #L. Since B can be covered by
~ L/(6L) balls of radius L, and since L > 1, the dimensionality property (8) tells
us that

U 7| <e'eny
TjEH

Next, we use the (by now) standard fact that the tubes T; in H are morally disjoint
(see [7, Lemma 4.9] for a very nice explanation of this idea) to see that

#(H) |T;|  #(H) L
‘UTJ‘z (1)|LJ|: 1( )L'
et og og

Therefore,
#(H) < (log L)0~'L™1(OL)* = (log L)(6L)* .

Comparing the lower and upper bounds we now have on the cardinality of H, we
conclude that

ONL>“(log L)™' < (log L)(0L)*~".
Therefore,
N < (log L)?6%~2L%3,
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If o« > 2, then the fact that & < 1 tells us that
N < (log L)>L>3,
If 1 <« < 2, then the fact that & > 1/L tells us that
N < (log L)>L*>~%L%~3 = (log L)?L*"!.

It might be interesting for the reader to observe that the sharp result that we get in
the case 1 < o < 2 is due to the fact that we are using ‘substantial” information about
6 (namely, 6 > 1/L), whereas in the case 2 < o < 3 we only can use the relatively
‘unsubstantial’ information that 6 < 1.

We note that if 2 ¢ R3 obeys (8) and 2N B(0, 5L) contains at least one tube from
each direction (i.e. at least one tube from each of the ~ L families T 7), then Theorem
4.1 implies that « > 5/2 (cf. [15]).

5 Proof of Conjecture 1.1 in the Plane

The rest of the paper is concerned in proving that Conjecture 2.1 is true in R?. In view
of Proposition 2.1, this task will be accomplished as soon as we prove Theorem 5.1
below.

We alert the reader that the extension operator in Theorem 5.1 is the one associated
with the unit circle S' ¢ R? and is given by

Ef(x) = /S TR f(E)do (€)

for f € L'(0), where o is induced Lebesgue measure on S'. The proof for the
extension operator associated with the unit parabola is similar (and a little easier).

Theorem 5.1 Suppose 1 < a < 2 and R > 1. Let B be a parameter satisfying
1/2 < B < 1, and define the exponent p by

p=2+Q2—-a)l—-5).
Then to every € > 0 there is a constant C. such that

/B o |Ef (0)|PH(x)dx < CcRAq(H)P R*PZ|| f1I], (15)

for all functions f € LP (o) and weights H of fractal dimension «.

The proof of Theorem 5.1 will use ideas from [16], [5], [12], and [4]. The overar-
ching idea, however, is the broad-narrow strategy of [1]. Implementing this strategy
involves
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e proving a bilinear estimate (see (22) in Subsection 7.1 below) that will be used to
control Ef on the broad set

e proving a linear estimate (see (28) in Subsection 7.2 below) that will be used
to establish (15) when the function f is supported on an arc of small size (i.e.
o -measure), which will provide the base of a recursive process

e carrying out a recursive process on the size of the function’s support that will
establish (15) for general f.

The main new idea in the proof of Theorem 5.1 is a localization of the weight
argument that will help us in deriving the bilinear estimate (22). We use this argument
to take advantage of the locally constant property of the Fourier transform, and we
will end this section by formulating the intuition that lies behind it in a lemma.

Given a function f : R* — C and a number K > 0, we say that f is essentially
constant at scale K if there is a constant C such that

sup | f| < Cinf | f] (16)
0k Ok

for all cubes Qg C R” of side-length K.
Lemma 5.1 Supposel <o <2,1/2<pB <1, R > K2>1,and Q is a box in R2 of

dimensions' R/K x R. Also, suppose that f is a non-negative function on R?* that is
essentially constant at scale K, and H is a weight on R? of fractal dimension «. Then

/Qf(x)H(x)dx S KA R £l 25

for some m > 0 (in fact, m = g — (1/2) + (1 — B)(a — 1)), where é is a box of
dimensions 2R/K x 2R that has the same center as Q, and the implicit constant
depends only on a and B and the constant C from (16).

Progf We tile R? by cubes EI of side-length K. If EI N Q # ¥, we let ¢; be the center
of B; and write

FOH () dx = /~ FHWdx < Y Fe /~ H(x)dx
/Q ; BiNQ ; l By
=) K7 /N flenH' (Ndy £ K72 / FOVH () dy,
! Bl Q
where H' : R — [0, c0) is given by

H'(y) = . H(x)dx for y € B,
1

1 Boxes of such dimensions are a common feature in this context; see [4, Subsection 3.2] and Subsection
6.2 below.
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Fory e E;, we have

H'(y) = ( i H(x)dx)l_e( ) H(x)dx)g
1

B;
< K204, (H) (V2K)*,

where 0 < 0 < 1 is a parameter that will be determined later in the argument.
Next, we define the function H : R — [0, 1] by

H(y) — Z_QH/ZAQ(H)_QK_Z(I_O)_QQH/(y)

and observe that

/ H(y)dy < K*Aq(H) 0 K 2170706 / H(y)dy
B(xo,r) B(xo,3r)

S KZAD[ (H)—9K—2(1—9)—0t9Aa(H)(3r)Ot — 3aAa(H)l—9K9(2—C()rO{

for all x¢ € R2 and r > K. On the other hand, when 1 < r < K we use the fact that

H(y) < Ag(H) O K 20020 g/ (yy < A (H) P K ~20=0=0 qup | H(x)dx
1 B

< Aot (H)—QK—2(1—9)—0[0AC{(H)KO[ — Aa(H)l—Q K@(Z—a) KQ{—Z

forall y € R to see that
/ H(y)dy ,f, Aa(H)l—GKG(Z—Ol)KOl—ZrZ S Aa(H)l—QKQ(Z—Ol)rC{
B(xo.r)
(because K a2 < ro‘_z). Therefore, H is a weight on R? of fractal dimension « with
Aa(M) < Ag(H)' K7,
Going back to our integral, we now have
[ ronwdx < aum & [ fomoady,
0 0
Bounding the integral on the right-hand side by Cauchy—Schwarz, this becomes
0 6(@—2) 172
FOH@Ax < AdH K2 (| Hmdy) 12,
0 0
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But Q can be covered by ~ K balls of radius R/K, so

/ﬁ(y)dy < KAJH)(K 'R
0

< KA (H)'79KOC—(Kk~1R)®, (17)
and so

/ FOH@)dx < K'Y2A (H)HOREOCD2 KR 2| £l 5 5.
o

We now determine 6 by solving the equation (1 +6)/2 = B, which gives 0 =28 — 1,
and we arrive at

/Qf(x)H(x)dx S K" AGHYP R 1l 25,
withm = B — (1/2) + (1 — B)(a — 1).

6 Preliminaries for the Proof of Theorem 5.1

This section contains basic facts that we need to prove Theorem 5.1 that we include
to make the paper as self-contained as possible.

6.1 The L' Norm of a Rapidly Decaying Function over a Box

In the rigorous version of the localization argument that we described in the previous
section, instead of integrating over a proper R/K X R box, we will be integrating
against a Schwartz function that is essentially supported on such a box. It is easy to
see that (17) continues to be true in this case. Here are the details.

Lemma 6.1 Suppose 0 < o < n, R > K? > 1, and V is a non-negative Schwartz
function on R". Then

X1 — V1 Xn—1 — Vn—1Xp — Vp -1
/\y( e — )H(x)dx < KAL(H)YK™'R)® (18)

Sfor all weights H on R" of fractal dimension «.

Proof Suppose Ri,..., R, > 0 and W is a non-negative Schwartz function. For
1 =0,1,2,..., we let x; be the characteristic function of the box in R” of center 0
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and dimensions 2T Ry x ... x 2/*1R,,, and B; = B(0, 2). Then

\I/(x] —Vl,”"xn_‘)n)
Ry R,
X1 — Vi Xp — Uy
< (sap @ (B T
By ! Rl Rn
> X1 — V1 Xn — V),
+ ( sup \IJ)XB]\BH( Lo ")
; B\B;_ Rl Rn

27Ny (x —v)

M

<
~

1

Il
=}

forall x,v € R" and N € N, so that

o0
X1 — V1 Xn — Vn —NI
w( )H(x)dx <¥2 H(x)dx,
/ Ry R, ; P

where P, is the box in R” of center v and dimensions 2/t Ry x ... x 2/TIR,,.
In the special case R = ... = R,_; = R/K and R, = R with R > K? > 1 (as
in (17)), this gives

X1 — V1 Xn—1 — Vn—1Xp — Vp -1
/\v( e - )H(x)dx < KA(H)K™'R)®  (19)

for all weights H on R” of fractal dimension «.

6.2 A Property of R/K x - -+ x R/K x R Boxes

Suppose R > K2 > 1, Qisan R/K x --- x R/K x R box in R”. A box Q* C R" of
dimensions (R/K)™! x --- x (R/K)™! x R~! and with the same axes as Q is called
a dual box of Q. This subsection is about the following observation.

Lemma 6.2 Suppose Q* is a dual box of Q whose (R/K)™' x --- x (R/K)™-face
is tangent to the unit sphere S"~' C R" at some point e. Then Q* lies in the R™1-
neighborhood of S" .

Proof Let§ = K~!. Then Q* has dimensions (R8)™! x ... x (R8)~! x R~! and its
(R8)™! x ... x (R8)™'-face is tangent to S" ! at e.

Without any loss of generality, we may assume thate = (0, ..., 0, 1).

Suppose y € O*. Then

P =44y A = T+ D2 =3 4432+ G — 1)?
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so that
P =1 <yf+ .o yi i+ — 1P +20y — 1
so that
[yl =1 Iyl + 1] < y3 4.+ y2; + 31y — 1
so that
Il = 1] < 2o 3 - = e 2 5
ot el " T (R TRTR

where we have used the fact that

1 _1K2<
(R§)2 R R —

| —

6.3 The Kakeya Information Underlying the Bilinear Estimate

Suppose § > 0, R > 5~1 and J; and J, are subsets of the circular arc {e‘p 1m/4 <
6 < 3m/4} such that Dist(Jy, Jp) > 36.

Let Ny and N> be the R~!-neighborhoods of J; and J», respectively. In this sub-
section, we derive the following well-known bound on the Lebesgue measure of the
set (x + N1) N N, for x € R

Lemma 6.3 We have

T
N NN <
G+ ND) N V| < 5

(20)
fora.e. x € R,

Proof Since we are interested in the L°°-norm of the function
x> / XNy (D) XN, (V) y,
we let i € L' (R?) be a non-negative function and consider the integral
I = / / XNy (D) XN, (V) yh(x)dx.
Writing

1 Z//XM Oy =) xn, (Wh(x)dydx =/X1vz(y)/x1v1 (y —x)h(x)dxdy,
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and applying the change of variables u = y — x in the inner integral, we see that

1= / X () / 2 (h(y — wydudy = / / h(y — wdudy.
Ny J Ny

Changing into polar coordinates, this becomes

1+R™! p1+R™
I_/ / /fh(re — se'¥)rsdOdedrds,
1 Ji1J D

where fl = N;NS! and fz =N, NS
We define

T, ) =re'? —se' = (rcos —scosg, rsind — s sin ).
The Jacobian of this transformation is

—rsinf ssing

1@, ¢) = rcosf —scose

' =rssin(@ — @).
So
) . h(T (0, J
/ f rsh(re'® — se'?)dody =/ Md(&(ﬁ)‘
.i] iz .i] ><i2 | SIH(9 - (P)|
But |60 — ¢| < 7/2,s0

. 2 2 . ~ o~ 26
T T T

and so

/ / rsh(re’® — sel®)dody < - hoT®,9)|Jr©,)d®, @)

.il jz 28 JIXJZ

T
=% h(x ydx,y) < —IIhllLl
Thus
1+R~ 1+R~! T
I< k|l drds = h
/ /1 T Whllidrds = i,

and (20) follows by duality.
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7 Proof of Theorem 5.1

As the paragraph following the statement of Theorem 5.1 says, our proof of this
theorem relies on ideas from [16], [5], [1], [12], and [4].

7.1 The Bilinear Estimate

Following [1, pp. 1281-1283], we write the ball B(0, R) as a disjoint union of two sets,
one broad, the other narrow (see Subsection 7.3 below for the definition of these two
sets). To estimate the L” (Hdx)-norm of E f on the broad set, we consider a bilinear
estimate.

For the rest of the paper, we will use the following notation. If ¢ is a function on
R? and p > 0, then ¢,, is the function given by ¢,(-) = p2¢(p~'-).

Lemma 7.1 Suppose f is supported in an arc I and g is supported in an arc J with
o(l)y~ao(J)~8and$ < Dist(I,J) < R¢S. Also, suppose that

Ré
(IR < - < 1o 2L

| =

Then

2 2
/; o |Ef (x) Eg()|P2H(x)dx < RECpAa ()P R £1707 181705, (22)

Proof Let n be a Cj° function on R2 satisfying 7] > 1 on B(0, 1). Then
/ |Ef () Eg(0)|H(x)dx = / | Fdo (x)gdo (x)| H (x)dx
B(0,R) B(O,R)
< f (Fdo (x)gdo (0)] [/ R)PH (x)dx
B(0,R)
:/ |(ng-1 * fdo ) (x)(ng-1 * gdo ) (x)|H (x)dx
B(0,R)
- / PG )| H (0,
B(O,R)

where FF = ng-1 * fdo and G = ng-1 * gdo.
Applying the Cauchy-Schwarz inequality in the convolution integral with respect
to the measure |nz-1(§ — -)|do, we see that

1513 = [ ([15@P g1 = 01ido@)( [ ing-1€ = 0)1do0))az
iR//If(G)IZInR—l(é—9)|d0(9)d5
=& [17OF [ 1n1(& = 0)ldedr®) = Rl 1£1s,,
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where in the second inequality we used the fact that

/ Ing-1(& —0)ldo(0) < R*0(B(E, R™') S R.
Therefore,
IFl2 SR fll2ey  and  [1Gll2 < RV21gl 20 (23)

Since F is supported in the R~!-neighborhood of I and G is supported in the
R’l—neighborhood of J, we see (via (21)) that F is supported in a ball of radius
(6/2)+ (6/10) = (38/5) and similarly for G. So F * G is supported in a ball of radius
(65/5), say B(&p, (65/5)). Via the locally constant property of the Fourier transform,
this fact tells us that the Fourier transform of F % G is essentially constant at scale
K = 671, and hence allows us to implement the localization of the weight argument
that we described in Section 5 at the intuitive level, and which we now carry out
rigorously.

Let ¢ be a Schwartz function which is equal to 1 on B(0, 6/5). Then ¢s(§ — &) =
8§ 2Zon B (&, %), so that

F+G = 8¢5(- — &) (F * G)

and

o~

FnG ) = 82(¢5( — &0)(F % G) ) () = 6 (¢s(- — &0)) % F + G (x).
Since (¢ (- — £0)) (x) = e~ 270 (5x), it follows that
FoGw =8 [ (95— &0)r - F* Gy
_ 2 / e 2HERG(S(x — y)F % G(y)dy,
so that
F@Gw) =8 [ 1§66 - I F<G0)ldy.
Therefore,

/B o EFOES@IH G =57 / F+ G| / B0 — ) H(x)dxdy.
(24)

Birkhauser



8 Page220f33 Journal of Fourier Analysis and Applications (2024) 30:8

Forl =0,1,2,...,welet B, = B(y, 218’1) and write

f 1$(8(x — y)|H (x)dx

/ |¢(8(x — y)|H (x)dx + Z / |¢(8(x — y))|H (x)dx

B\B;-1

o0

CyH(x) / CvH(x)
VT ax VAW
S/BO A+ ol — v " Z s (L 8lx — DV~
<CN/ H(x)dx+2 2“ / H(x)dx.

We now let 0 < 6 < 1 be a parameter that will be determined later and write

H(x)dx)e

H(x)dx = ( H(x)dx)l_e(

B B;

- (i )Y

21\ 2(1-6)+ab p
=a(5) A,

B;

where we have used the fact that 1/§ > 1, and we obtain
/ (S (x — y))|H (x)dx

S CN,@(%YO_Q)MG ALHY + Z m(2[>

1N\ 2(1—-6)+ab
G

2(1-0)+ab )
Aq(H)

< CnoAo(H)’ (<
Also,
/ / (8 (x — y))| H(x)dxdy = f f XBo.n NP — ) |dyH (x)dx.
B(xo,r)
Applying the change of variables z = §(x — y) in the inner integral, we get
~ 1 Zy -~
/ / [p(8(x — y)IH (x)dxdy = — / / XB(xo.r) (¥ = 3)16(2)|dzH (x)dx
B(xo.r) 8 g

1 N Z
= 8_2/|¢(Z)|/X3(x0,r)(x— E)H(x)dxdz
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But

Z
/ Xton (v = ) HEdx = /  H)dx < Ag(H)r®
B(xo+5%,r)

forall xo € R" and r > 1, so
~ 1~ "
lp(S(x — yDIH (x)dxdy < = |$llp1 Aa(H) 1
B(xo,r) 8

for all xg € R2andr > 1.
Fory e R2, define

s2(1-0)+ab

O = AL ()Y

f B3 (x — y) | H(x)dx.
In view of the above discussion, we have

IHllpe <1 and / H(y)dy < CAL-05@=20,@
B(xo,r)

for all xo € R? and > 1. Thus H is a weight on R? of fractal dimension « with
Aa(H) < CAq(H)! 70521,
Going back to (24), we now have

CnoA(H)! [ ——
/B(O " |Ef(x)Eg(x)|H (x)dx < 32;/2’(91_—0)5_&9) / |F « G(y)|H(y)dy

= Cn 8@ Ay (H)’ / |F % G(y)H()dy.
(25)

Next, we let O* be the box in frequency space (where the circle is located) of
dimensions (R8)~' x R~!, centered at the origin, and with the (R8)~!-side (i.e. the
long side) parallel to the line segment that connects the midpoint of / to that of J.
We also let {Q;} be a tiling of R? by boxes dual to Q* (i.e. each Q; is an R§ x R
box whose R$-side is parallel to the (R8)~!-side of Q*) with centers {v;}, ¥ be a Cye
function on R2, and we define

Vi(€) = (R$R Y (RSE1, REy) 7%
In the definition of y;, we are assuming that the line joining the midpoint of / to that
of J is horizontal (i.e. parallel to the £;-axis). This assumption makes the presentation

a little smoother and, of course, does not cost us any loss of generality.
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We assume further that the Fourier transform of v is non-negative and satisfies
v >1/20on[—1/2,1/2] x [—1/2,1/2]. Then

if xeQ.

~ ~(X] — V1 X2— V2 1

= ’ =) > =
vix) ‘p( RS R ) )
By the Schwartz decay of {h\, we have ), o f/?(~ — m)* <1 forany k € N. Also,
{v} is basically R6§Z x RZ, so

N OOARS)Cl—wl Rxy —v2\k 5
Pi(Rox1, Rap)t = Y (Fe et ) = Y G- m)f S

1 =1 meZ?

M2

~

and so

> o <1 (26)
=1

for all x € R2.
Going back to (25), we can now write

/ |Ef (x)Eg(x)|H(x)dx < 8% %A, (H)’ Z/ \F )G )19 (0 H(x)dx.
B(0,R) -
Letting F; = ¥ * F and G; = ¥ * G, this becomes
/B(O R |Ef(x)E8(x)|H(X)dx ,f 8(270()9AQ(H)9 Z/ Ifl(x)a(xﬂ@(x)’}—[(x)dx
’ =1

By Cauchy-Schwarz,
/ IFL)GI0) () Hdx < G 2 1 (Ml 2.
Applying (19) from Subsection 6.1 with n = 2 and K = §~!, we have

U -~ R
fl”l(X)2H(x)2dx f, /W[()C)H(x)dx ,f AQ(H)E(RS)Q
< Aa(H)lfe(S(a*z)gR“S“*] — Aa(H)1798(0(72)9+a71Ra,

so that

II@(x)HHLz < Ay (H)1=0/25((@=26+a=1)/2 pa/2,
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Therefore,

o
/ |Ef(x)Eg(x)|H(x)dx < Ag(H)! 02600t D2 RN B G|l 2.
B(0,R) =1

Letting 8 = (1 +60)/2 (since 0 <0 < 1, we have 1/2 < < 1), this becomes

o
/ |Ef (x)Eg(x)|H (x)dx < Ag(H)P8@0FTe=CIDRIZN G| 2.
B(0,R) =1

We now let A; be the support of F;, B; be the support of G;, and define the function
A i R? = [0, 00) by A;(£) = |(€—A;)NB;|. Applying Plancherel’s theorem followed
by Cauchy—Schwarz, we see that

IBGH2, =/|F,*G1<s>|2ds < ||Az||Loo/|Fz|2*|Gz|2<s>ds.

By Young’s inequality,

/|Fz|2 #1Gi1*@E)de < IF PGP I = 1 F 5. 1Gil7s.

so the only problem is to estimate ||A;]| Loo. We will do this by using the Kakeya bound
(20) of Subsection 6.3.

Our assumptions on the arcs / and J imply that the angle between any two points
in I U J is < R¢8. Also, for each [, the function v; is supported in the (R8) ™! x R~!
box Q* of center (0, 0) and with the long side parallel to the line joining the midpoints
of I and J. So, if e € I U J, then the translate O* + ¢ of Q* is contained in an
(R8)™! x R~! box with the (R8)~!-side tangent to S' at e. Therefore, the property
of boxes of this form that was presented in Subsection 6.2 tells us that Q* + e is
contained in the R€~!-neighborhood of S'. Therefore, the sets A; and B; satisfy the
requirements needed for us to apply (20) and conclude

€

Mg < ——.
Al < 25

Putting together what we have proved in the previous two paragraphs, we obtain

-2 R¢ 2 2
1EiGill}2 < 25 | I3 1Gil
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and hence
/ |Ef(x)Eg(x)|H (x)dx
B(O,R)

B B RY/2 o
< R AL (H)P @b+ (3/2>WZ||FI||L2||G1IIL2

= R AL (P50 BT Z”FIHL?”GIHLZ
=1

By Cauchy—Schwarz and Plancherel,

° > 5 \1/2 > 5 \1/2
S IFINGH . = (Y IRE) T (X 1Gi2.)
=1 =1 =1

Also, by (26),
o0 o0
IR, = f IF@P Y dnx)dx <|IF|7. = IF|7.
=1 =1

and similarly for > ;2 G/ ||L2,

f |Ef (x)Eg(x)|H (x)dx < R*Aq(H)P§Z )~ DEi ||F||Lz||G||Lz
B(0,
Recalling (23), our bilinear estimate becomes
/ |Ef(0)Eg(o)| H(x)dx < R Ag(HYSEOEDRZ| £l s el o).
B(0,R)
Writing
/ |Ef (x)Eg(x)|"/?H (x)dx
B(0,R)
= / |Ef (x)Eg(0)|PP~Ef(x)Eg(x)|H (x)dx
B(0,R)
(p/2)—1 (p/2)-1
<I£l gl / |Ef (x)Eg(x)|H (x)dx
L(S) L(S) BO.R)

— — 2)—1 /2)—1
< CpR A (Y R8O F0 £ £y gl 2 gl 2o

and applying (33) (see the appendix), we arrive at our desired bilinear estimate
f Ef(0)Eg(0)|PPH()dx < RECpAa (PR £1100 lglTim, .
B(O,R)
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7.2 The Linear Estimate
In this subsection, we work in R"” with n > 2.

Lemma 7.2 Suppose f is supported in a cap of radius 5/2. Also, suppose that

10)R < : < R 27
(DR = = < . 27)
Then

|Ef()IPHx)dx < CLAG(HP 8" R FI] ) (28)

B(0,R)

Proof Let n be a Cgo function on R” satisfying [77] > 1 on B(0, 1), and F = ngx-1 *
fdo. Then

/ |Ef ()7 H (x)dx < / |F(x))>H (x)dx.
B(O.R) B(O.R)

Also, let ¢ be a C° function on R", and {B;} be a finitely overlapping cover of R”"
by balls dual to B(0, §) (i.e. 5~ L balls) with centers {v1}, and set

Yi(§) = 87"y (37 1E) 2T,

We assume further that 1//; is non-negative and > 1/2 on the unit ball. Then

| =

vi(x) = ¥ (6(x — 1)) >

if |6(x — 17)| < 1,1.e.if x € B;. Thus
/ |Ef )PH(x)dx <) / |F ()P () P9 (x) H (x)dx.
B(0,R) -1

Since 1/n < B < 2/n, we can apply Holder’s inequality with the dual exponents
1/(1 — B) and 1/B to get

o0
/ |Ef(x)|2H(x)dx = Z | F * V””iy(l—ﬁ) ||WZH||L1/B-
B(O,R) =

Since | H ||z~ < 1, we have

Wi}, < [P Heoar,
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and hence (by the proof of (19))
~ 1\«
19 H 1 < AaE)(5)
Also, by Hausdorff—Young,

IF s Yl 2ra-p < |F * Yl 20+

Therefore,
o0
fB on |Ef ()P H (x)dx < Aa(H)P87P > | F 591113 2045 -
, =1

Since (27) tells us 1/R < §/10, it follows that F is supported in a ball of radius
(6/2)+(6/10) = (3/5)4, say B(&p, 35/5). Moreover, since ; is supported in B(0, §),
it follows by Holder’s inequality and Plancherel’s theorem that

I Y17 o0 < 8"PIF % ill7, = 8" | Fll7s.

Thus

| iEreorH@d £ adfs ity [FeTie P
B(O.R) P

o0
= A58 [P Y o) P
=1
Agy (H)ﬁg(”—ol)(ﬁ—@/n))82—(206/71) ”F”i2

LA

But we know from (23) (whose proof shows that it is true in R” for all n > 2) that
IFl2 £ VRIfl2), 50

/ [Ef ()P H(x)dx < Aa(H)P 572 (82 R)sU= =@y p12, .
B(0,R)

Writing

-2

[Ef NP = [Ef P 2IEf 0P < 1170 | Ef GO

and using (32) (see the appendix), we now see that

/ |Ef(x)|”H(x)dx
B(0,R)

_ — — -2
< Ag(H)P872M 82 RSO PRI £ 7 f 11 o

< Aa(HYPS2 SR 5 o)
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which proves (28).

7.3 The Recursive Process

Welet0 < € < 1072 and R > 1 be two numbers satisfying R > (1000)1/(1_46). We
also let § be as in Lemma 7.1 (so that § obeys (21)). We’re going to prove our estimate
by implementing a recursive process over §.

Base of the recursion: Here § = R~!/2. Plugging this value of 8 into (28) in dimen-
sionn = 2, we get

/B o |Ef ()P H(x)dx < CLAc(H) RN 1],

The recursive step: We state this in the following lemma.

Lemma 7.3 Suppose that the estimate
| B HOdr < CROALH R 1] 29)
B(O,R)

holds for every function f € L' (o) that is supported in an arc of o-measure < 8, and
8 obeys (21). Then the estimate

/B o |Eg(x)|P H(x)dx < C'R*Ag ()R], (30)

holds for every function g € L' (o) that is supported in an arc of o -measure < R€8,
where

C' =37C + (10)P RPT2<Cy.

Proof Suppose § satisfies the condition (21):

=

8

)

()R < <
) 1

(=)

and (29) is true whenever f € L(o), f is supported on an arc I5 C S!,and o (I5) < 8.
We need to show that (30) is true whenever g € L'(o), g is supported on an arc
Ires C SY, and o (Iges) < R€S, where

C' =37C + (10)PRPT<Cp.

We let K = R€ and cover the support of g by K arcs 7 each of measure §. We then
write g = Y. fr with each function f; supported in the arc 7.
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Following [1] and [7], for x € R2, we define the significant set of x by

1

S = {22 [Efr (0] = 5= | Eg@))

Then
1
Eg@l <| Y. Efe(o|+ 15lEs@
TeS(x)
so that 10
Egwl < 35| Y Efw). (D)

TeS(x)

The narrow set A/ and the broad set BB are now defined as
N=BO,RN{xeR>:#Sx) <2} and B=BO,R\N.

We will estimate f/\f |Eg(x)|? H(x)dx by induction and fB |Eg(x)|? H(x)dx byusing
the bilinear estimate.
By (29) and (31),

_1/10N\P
/N|Eg<x)|"H<x>dxszf’ (5) /N > IEf I Hx)dx

TesS(x)
20\ r
< (= E P H(x)d
= (%) /NZ| Fo O H(x)dx
<37 Y CRAEH RIS} 0,
T

= 3PCR Au(H)P R*I|gI|] -
To every x € B there are two caps Ty, T, € S(x) so that Dist(zy, ;) > §. Writing
|Eg(x)|P = |Eg(x)|P?|Eg(x)|P* < (10K |Efr, (x))?/*(10K | Efy; (x))P/2,
we see that

|Eg0)I” < (10K)? >~ |Efe)IPPIEfo (0P,
7,v/: Dist(z,7/)>$
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Using the bilinear estimate (22), it follows that

/ |Eg(x)|” H (x)dx
B

NS |Efr ()P Efrr(x)|P/ H (x)dx
7,7/: Dist(z,7/)>6

2 2
< (10K)PCpREAG(HP R S" 0 e,

7,7/: Dist(z,7/)>$

2 2

< (107K CpRAHP R 3 glfhi) Il -
7,7/: Dist(z,7/)>6

Therefore,
/B |Eg(0)|PH(x)dx < (10)7 KP*2Cp Ao (H)P R21IgN ] o -

Combining the narrow and broad estimates, we arrive at (30).

The recursion: Starting with the base of the induction, where § = R V2and C =
Cr, and applying Lemma 7.3 k times, we arrive at an estimate that holds for every
function f € L'(o) that is supported on an arc of o-measure < & = R*§ =
Rke / /R, with constant

k—1 k
1 — 3k
Cr =3Cp + (10)? RPTVeCy § 3P =3k Cy + (10)P RPTVeCy -
=0

At the step before the last, k = (1/(2¢)) — 2 and §; = RI/@e)=2le ) /R = R—2€,
which is a valid value of § (i.e. §; = R~ 2 obeys (28), because 10R¢ < l/R’26 <
R'72¢/10). Applying Lemma 7.3 one last time, we get the estimate

fB o |Ef (0)|PH(x)dx < CR Ao (H)P RPN f11]

for every function f € L' (o) that is supported on an arc of o-measure < R~¢, where
the constant C satisfies

(1())pR(p+2)6
S Ca).

p/(2€)
Cc<3 (CL +

Since the circle S' can be covered by ~ R¢ such arcs, (15) follows and Theorem
5.1 1is proved.
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Appendix: Calculation Giving the Right Exponent for the Restriction
estimate

Suppose 0 < 6§ < 1,1 <o <n,1/n < B < 2/n, o is induced Lebesgue mea-
sure on the unit sphere S"~! C R”, and f,g € L'(o) are functions satisfying
o (supp f), o (supp g) < 8"~ 1. We are looking for an exponent p > 2 so that

LA 1132y < 8@ Cm =P £, ) (32)
and
11y 1 2o I8 Ngllz) < 8 =P £I 750 gl ey, (33)
We have
121y < o (supp )™ VPU flloey < 8PPV £ll1p )
and

_ 2/p —D(p—
/1172, < o (supp /)’ W( / |f|2<f’/2>do) <8V £12, 0
SO

2
<8(n D(p—2)(p— l)/p)”f”P 8(11 D(p— 2)/p||f”L1’

=8V -

il Vi )

so(n—1)(p—2)=m—a)((2/n) — B), and so

p:2+n:j{(——ﬂ)

Therefore, (32) holds with the above value of p. Using (32), we now have

-2)/2 (p=2)/
[ el W VN e Gl P P

) B 2, - 1/2
< (3(11 ) (@/m) ﬂ)”f”ip(g)) (3<n 0 (@/n) ﬂ)llgllipw)) ,

which is the inequality in (33).
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