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Abstract
Let G be a locally compact unimodular group, let 1 ≤ p < ∞, let φ ∈ L∞(G)

and assume that the Fourier multiplier Mφ associated with φ is bounded on the non-
commutative L p-space L p(V N (G)). Then Mφ : L p(V N (G)) → L p(V N (G)) is
separating (that is, {a∗b = ab∗ = 0} ⇒ {Mφ(a)∗Mφ(b) = Mφ(a)Mφ(b)∗ = 0} for
any a, b ∈ L p(V N (G))) if and only if there exists c ∈ C and a continuous character
ψ : G → C such that φ = cψ locally almost everywhere. This provides a charac-
terization of isometric Fourier multipliers on L p(V N (G)), when p �= 2. Next, let �

be a σ -finite measure space, let φ ∈ L∞(�2) and assume that the Schur multiplier
associated with φ is bounded on the Schatten space S p(L2(�)). We prove that this
multiplier is separating if and only if there exist a constant c ∈ C and two unitaries
α, β ∈ L∞(�) such that φ(s, t) = c α(s)β(t) a.e. on �2. This provides a characteri-
zation of isometric Schur multipliers on S p(L2(�)), when p �= 2.

Keywords Fourier multipliers · Schur multipliers · Noncommutative L p-spaces ·
Isometries

Mathematics Subject Classification Primary 46L51 · secondary 43A15 · 46B04

Communicated by Oscar Blasco.

B Christian Le Merdy
clemerdy@univ-fcomte.fr

Cédric Arhancet
cedric.arhancet@protonmail.com

Christoph Kriegler
christoph.kriegler@uca.fr

Safoura Zadeh
jsafoora@gmail.com

1 Albi, France

2 Université Clermont Auvergne, CNRS, LMBP, 63000 Clermont-Ferrand, France

3 Laboratoire de Mathématiques de Besançon, UMR 6623, CNRS, Université Bourgogne
Franche-Comté, 25030 Besançon Cedex, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-023-10063-x&domain=pdf
http://orcid.org/0000-0002-5179-6972
http://orcid.org/0000-0001-8120-6251
http://orcid.org/0000-0003-0251-4032


5 Page 2 of 27 Journal of Fourier Analysis and Applications (2024) 30 :5

1 Introduction

Let � be a locally compact abelian group, let 1 ≤ p �= 2 < ∞ and let T : L p(�) →
L p(�) be a bounded Fourier multiplier. A classical theorem going back to Parrott [27]
and Strichartz [33] asserts that T is an isometry if and only there exists c ∈ C, with
|c| = 1, and u ∈ � such that T = cτu . Here τu : L p(�) → L p(�) is the translation
operator defined by τu( f ) = f (· − u).

In the last decade, Fourier multipliers on noncommutative L p-spaces associated
with group von Neumann algebras emerged as a major topic in noncommutative anal-
ysis, with applications to approximation properties of operator algebras, to singular
integrals and Calderon-Zygmund operators, as well as to noncommutative probabil-
ity and quantum information. See in particular [2, 9, 16, 17, 20, 25, 26]. It therefore
became a natural issue to understand the structure of isometric Fourier multipliers in
the noncommutative framework. Indeed, the original motivation for this work was to
extend the Parrott-Strichartz theorem to this setting.

To be more specific, let G be a locally compact group, let V N (G) denote its group
von Neumann algebra and let λ : L1(G) → V N (G) be the contractive representation
associated with the left regular representation of G. Assume that G is unimodular.
This ensures that the Plancherel weight τG on V N (G) is actually a normal semifinite
faithful trace. For any 1 ≤ p < ∞, let L p(V N (G)) be the noncommutative L p-space
associated with (V N (G), τG). A Fourier multiplier T : L p(V N (G)) → L p(V N (G))

is an operator of the form

T (λ( f )) = λ(φ f ),

where φ is a fixed element of L∞(G) and f lies in a suitable dense subspace of L1(G).
We set T = Tφ in this case. See the beginning of Sect. 3 for more details.

We generalize the Parrott-Strichartz theorem by showing the following result, in
which V N (G) plays the role of � and T = {z ∈ C : |z| = 1}: If p �= 2, a Fourier
multiplier Tφ : L p(V N (G)) → L p(V N (G)) is an isometry if and only if there exists
c ∈ T and a continuous character ψ : G → T such that φ = cψ locally almost
everywhere.

We actually consider the more general class of separating Fourier multipliers.
Following [22], we say that an operator T : L p(M) → L p(M) acting on some non-
commutative L p-space L p(M) is separating if for any disjoint a, b ∈ L p(M) (that is,
a∗b = ab∗ = 0), the images T (a), T (b) are disjoint as well. It is well-known that if
p �= 2, any isometry on L p(M) → L p(M) is separating. This follows from Yeadon’s
characterization of isometries on noncommutative L p spaces [36] (see also [22]). We
prove that for any 1 ≤ p < ∞ (including the case p = 2), a Fourier multiplier Tφ on
L p(V N (G)) is separating if and only if there exists c ∈ C and a continuous character
ψ : G → T such that φ = cψ locally almost everywhere.

The above two characterizations theorems are established in Sect. 3. Section 4
provides complements on Fourier multipliers.

Section 5 is devoted to Schur multipliers acting on Schatten classes. Let (�,μ)

be a σ -finite measure space, let φ ∈ L∞(�2) and let Tφ denote the associated Schur
multiplier acting on the Hilbert-Schmidt space S2(L2(�)) (see below for details). Let
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1 ≤ p < ∞ and assume that Tφ is bounded on the Schatten space S p(L2(�)). We
show that Tφ : S p(L2(�)) → S p(L2(�)) is separating if and only if there exist a
constant c ∈ C and two unitaries α, β ∈ L∞(�) such that φ(s, t) = c α(s)β(t) a.e.
on �2. In the case when p �= 2, this provides a characterization of isometric Schur
multipliers on S p(L2(�)).

2 Preliminaries on SeparatingMaps

LetM be a semifinite vonNeumann algebra equippedwith a normal semifinite faithful
trace τ . Assume thatM ⊂ B(H) acts on someHilbert space H . Let L0(M) denote the
∗-algebra of all closed, densely defined (possibly unbounded) operators on H , which
are τ -measurable. For any 1 ≤ p < ∞, the noncommutative L p-space L p(M),
associated with (M, τ ), can be defined as

L p(M) := {
x ∈ L0(M) : τ(|x |p) < ∞}

.

Let ‖x‖p := τ(|x |p) 1
p for any x ∈ L p(M). Then L p(M) equipped with ‖ · ‖p is

a Banach space. We let L∞(M) := M for convenience and we let ‖.‖∞ denote the
operator norm. For any 1 ≤ p < ∞, let p′ = p

p−1 be the conjugate index of p. For

any x ∈ L p(M) and y ∈ L p′
(M), the product xy belongs to L1(M) and |τ(xy)| ≤

‖x‖p‖y‖p′ . We further have an isometric identification L p(M)∗ � L p′
(M) for the

duality pairing given by

〈y, x〉 = τ(xy), x ∈ L p(M), y ∈ L p′
(M).

We let L p(M)+ denote the cone of positive elements of L p(M). The reader is referred
to [29] and the references therein for details on the algebraic operations on L0(M),
the construction of L p(M), and for further properties.

We mention that if M = B(H) for some Hilbert space H , then the usual trace
tr : B(H)+ → [0,∞] is a normal semifinite faithful one and the resulting noncom-
mutative L p-spaces associated with (B(H), tr) are the Schatten classes S p(H).

We say that a, b ∈ L0(M) are disjoint if a∗b = ab∗ = 0. We say that a bounded
operator T : L p(M) → L p(M), 1 ≤ p ≤ ∞, is separating if whenever a, b ∈
L p(M) are disjoint then T (a) and T (b) are disjoint as well.

A Jordan ∗-homomorphism on a vonNeumann algebraM is a linearmap J : M →
M that satisfies J (a2) = J (a)2 and J (a∗) = J (a)∗, for every a ∈ M. It is clear
that a Jordan ∗-homomorphism is positive, i.e. if a ∈ M+ then J (a) ∈ M+. We
warn the reader that Jordan ∗-homomorphisms are not always ∗-homomorphisms. For
example, the transposition map on matrices is a Jordan ∗-homomorphism.

However we have the following lemma, in which part (1) follows from the identity
(a + b)2 = a2 + b2 + (ab + ba) and part (2) is given by [18, 10.5.22(iii)].

Lemma 2.1 Let J : M → M be a Jordan ∗-homomorphism.
(1) For all a, b ∈ M, we have J (ab + ba) = J (a)J (b) + J (b)J (a).
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(2) If a, b ∈ M satisfy ab = ba, then we have J (ab) = J (a)J (b).

We also record the following properties for further use. Here a map J : M → M
is called normal if it is weak∗-continuous.

Lemma 2.2 Let J : M → M be a normal Jordan ∗-homomorphism.
(1) The kernel ker(J ) is a w∗-closed ideal of M.
(2) If (ei )i is a bounded net ofM such that ei → 0 and e∗

i → 0 in the strong operator
topology, then J (ei ) → 0 in the strong operator topology.

Proof (1) Let J : M → M be a normal Jordan ∗-homomorphism. A well-known
theorem asserts that there exist two von Neumann algebrasM1,M2, a von Neumann

algebra embedding M1
∞⊕ M2 ⊆ M, a normal ∗-homomorphism π : M → M1

and a normal anti ∗-homomorphism σ : M → M2, such that J (a) = π(a) ⊕ σ(a)

for all a ∈ M. (See [32, Theorem 3.3] or [11, Corollary 7.4.9.] for this result.) Then
ker(J ) = ker(π) ∩ ker(σ ), hence ker(J ) is a weak∗-closed ideal.

(2) Let (ei )i be a bounded net ofM such that ei → 0 and e∗
i → 0 strongly. Writing

(e∗
i eiζ |η) = (eiζ |eiη), we see that (e∗

i eiζ |η) → 0 for all ζ, η ∈ H. Since (e∗
i ei )i

is bounded, this implies that e∗
i ei → 0 in the weak∗-topology of M. Consequently,

π(e∗
i ei ) → 0 weakly. Writing ‖π(ei )ζ‖2 = (π(e∗

i ei )ζ |ζ ), we deduce that π(ei ) → 0
strongly. Likewise, using ei e∗

i instead of e
∗
i ei , we have that σ(ei ) → 0 strongly. Thus,

J (ei ) → 0 strongly. ��
The next statement plays a fundamental role in the study of separating maps. It was

established independently in [22] and [14].

Proposition 2.3 [22, Remark 3.3 and Proposition 3.11] Let 1 ≤ p < ∞. A bounded
operator T : L p(M) → L p(M) is separating if and only if there exist a normal
Jordan ∗-homomorphism J : M → M, a partial isometry w ∈ M, and a positive
operator B affiliated withM, which verify the following conditions:

(a) T (a) = wBJ (a), for all a ∈ M ∩ L p(M);
(b) w∗w = J (1) = s(B);
(c) every spectral projection of B commutes with J (a), for all a ∈ M.

Here s(B) denotes the support of B. Furthermore, the triple (w, B, J ) is unique.

It was shown by Yeadon [36] that all isometries on L p(M), p �= 2, are separating
and have the above mentioned factorisation. For this reason, for T as above, we refer
to (w, B, J ) as the Yeadon triple of T .

Lemma 2.4 Let T : L p(M) → L p(M) be a separating map and let (w, B, J ) denote
its Yeadon triple. If T has dense range, then J (1) = 1 and w is a unitary.

Proof The proof is an easy modification of [24, Remark 3.2]. ��
Lemma 2.5 Let 1 ≤ p, q < ∞. Let T : L p(M) + Lq(M) → L p(M) + Lq(M)

and assume that T : L p(M) → L p(M) and T : Lq(M) → Lq(M) are bounded. If
T : L p(M) → L p(M) is separating, then T : Lq(M) → Lq(M) is separating as
well.
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Proof Let E := {e ∈ M : e is a projection with τ(e) < ∞}. Suppose that
T : L p(M) → L p(M) is separating. Since, E ⊆ L p(M) ∩ Lq(M), the operator
T : Lq(M) → Lq(M) also preserves disjointness on E . By [22, Remark 3.12 (i)],
T : Lq(M) → Lq(M) is separating. ��

3 A Characterization of Separating Fourier Multipliers

Let G be a locally compact group with left Haar measure μ defined on the σ -algebra
of Borel sets. We will write ds for dμ(s). Denote by λ the left regular representation
of G defined by

λ : G → B(L2(G)); [λ(s) f ](t) = f (s−1t).

The left regular representation λ determines a representation of L1(G) also denoted
by λ and defined by

λ : L1(G) → B(L2(G)), λ(g)η = g ∗ η,

for all g ∈ L1(G) and η ∈ L2(G). Here, the convolution is g ∗ η(t) =∫
G g(s)η(s−1t)ds. We have that λ(g) = ∫

G g(s)λ(s) ds, where the operator integral
is understood in the strong operator sense.

For any function g : G → C, we let

ǧ(t) = g(t−1) and g∗(t) = g(t−1),

for all t ∈ G.
We denote by e the unit element of G. Also for any Borel set A ⊆ G, we let χA

denote the indicator function of A.
Let V N (G) ⊆ B(L2(G)) be the von Neumann algebra generated by {λ(s) : s ∈

G}. This coincides with the von Neumann algebra generated by {λ(g) : g ∈ L1(G)}.
When G is abelian, we have V N (G) � L∞(Ĝ), where Ĝ is the dual group of G.

We let ( ·| ·) denote the inner product on L2(G). The Fourier algebra of the group
G is defined as

A(G) = {(λ( ·)ζ |η) : ζ, η ∈ L2(G)} ⊆ Cb(G).

This is a Banach algebra for the pointwise product and the norm defined, for any
ψ ∈ A(G), by

‖ψ‖A(G) = inf{‖ζ‖2‖η‖2},

where the infimum runs over all ζ, η ∈ L2(G) such that ψ = (λ( ·)ζ |η). We note for
further use that equivalently, we can write A(G) = {ζ ∗ η : ζ, η ∈ L2(G)}.
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We recall that A(G)∗ � V N (G) isometrically for the duality pairing given by

〈λ(s), ψ〉 = ψ(s), ψ ∈ A(G), s ∈ G. (3.1)

Assume that G is unimodular. We will use the so-called Plancherel trace

τG : V N (G)+ −→ [0,+∞],

for whichwe refer to [35, Sect. VII.3] (see also [3]).We note that τG is a normal semifi-
nite faithful trace. This allows to consider the noncommutative L p-spaces L p(V N (G))

associated with τG . We recall that if G is discrete then G is unimodular and τG is nor-
malised. Also, ifG is abelian thenG is unimodular and L p(V N (G)) = L p(Ĝ), where
Ĝ denotes the dual group of G.

It is well-known that for any g ∈ L1(G) ∩ L2(G), λ(g) ∈ L2(V N (G)) with
‖λ(g)‖2 = ‖g‖2 (see e.g. [3, Sect. 6.1]). Consequently, the restriction of λ to L1(G)∩
L2(G) extends to an isometry from L2(G) into L2(V N (G)). It turns out that the latter
is onto, which yields a unitary identification

L2(V N (G)) � L2(G). (3.2)

Using the notation Uλ : L2(G) → L2(V N (G)) for the above unitary mapping, we
have

τG
(
Uλ(ζ )Uλ(η)

) =
∫

G
ζ(t)η̌(t) dt, ζ, η ∈ L2(G). (3.3)

Since L1(V N (G))∗ � V N (G), we have an isometric identification

A(G) � L1(V N (G)).

It is not hard to deduce from (3.1) and (3.3) that this identification is given by the
mapping A(G) → L1(V N (G)) taking ζ ∗ η to Uλ(η̌)Uλ(ζ̌ ), for all ζ, η ∈ L2(G).
Details are left to the reader.

Let Cc(G) denote the space of continuous and compactly supported functions on
G. We let Cc(G) ∗Cc(G) denote the linear span of f1 ∗ f2, where f1, f2 ∈ Cc(G). It
is well-known that

λ
(
Cc(G) ∗ Cc(G)

) ⊆ L1(V N (G)) ∩ V N (G),

and that λ
(
Cc(G) ∗ Cc(G)

)
is dense in L p(V N (G)), for all 1 ≤ p < ∞. For a

proof, we refer to [7, Proposition 3.4] for the case p = 1, and to [5, Proposition
4.7] for the other cases. We also note that since Cc(G) ∗ Cc(G) is dense in L1(G),
λ
(
Cc(G) ∗ Cc(G)

)
is weak∗-dense in V N (G).

Lemma 3.1 Suppose that K ⊆ G is a compact set. There is a function ψ ∈ A(G)

such that ψ(s) = μ(K ), for all s ∈ K.
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Proof For a proof, we refer to [19, Proposition 2.3.2.]. ��
Some of the formulations of the main results in this article are easier when the

groupG is σ -compact, meaning thatG is the countable union of compact subsets. The
following well-known lemma relates this property with other countability properties
that the group G can have. We provide a proof for the sake of completeness.

Lemma 3.2 Let G be a locally compact group. Then the following implications hold:

G is second countable �⇒ G is σ -compact ⇐⇒ the Haar measure of G is σ -finite.

Moreover, the remaining implication is false. That is, there exists a (σ -)compact group
which is not second countable.

Proof If G is second countable, then by definition, its topology admits a countable
basis. Since G is locally compact, this basis can be chosen to consist of relatively
compact sets Ok, k ≥ 1. Thus,

G =
⋃

k∈N
Ok =

⋃

k∈N
Ok,

so G is σ -compact.
Next, we show that for the Haar measure μ, σ -compactness and σ -finiteness are

equivalent. Recall [8, Proposition 2.4] that G admits an open, closed, σ -compact
subgroup G0. Thus, G = ⋃

y∈Y yG0 for some subset Y ⊆ G representing the left
cosets, where the union is disjoint. We claim that Y can be chosen at most countable
if and only if G is σ -compact, if and only if the Haar measure is σ -finite. Indeed,
if Y is at most countable, as yG0 is σ -compact for all y ∈ Y , G is σ -compact. If
G is σ -compact, say G = ⋃

n∈N Kn with compact Kn , then μ(Kn) < ∞ for any
n ∈ N, hence G is σ -finite. Finally, suppose that G is σ -finite, say G = ⋃

n∈N Hn

with μ(Hn) < ∞ for any n ∈ N. According to [8, Proposition 2.22], the fact that
μ(Hn) is finite implies that Yn := {y ∈ Y : Hn ∩ yG0 �= ∅} is at most countable.
Thus, Y ′ := {y ∈ Y : G ∩ yG0 = ⋃

n∈N(Hn ∩ yG0) �= ∅} = ⋃
n∈N Yn is also at

most countable. But clearly, Y ′ = Y .
Finally, for the last statement, it suffices to take the compact non first countable

group G = T
R. ��

In the sequel we use the space L∞(G). Its definition requires some care. When
G is σ -compact, L∞(G) is defined in the usual way. But when G is not σ -compact,
by the above Lemma 3.2, the left Haar measure μ is not σ -finite. In this case, if we
define L∞(G) in the usual way, the duality of L1(G) and L∞(G) may break down.
As it is explained in [8, Sect. 2.3], it is possible to salvage this duality by modifying
the definition of L∞(G) as follows. A set E ⊆ G is called locally Borel if E ∩ F
is Borel whenever F is Borel and μ(F) < ∞. A locally Borel set is locally null if
μ(E ∩ F) = 0 whenever F is Borel and μ(F) < ∞. A function f : G → C is locally
measurable if f −1(A) is locally Borel for every Borel set A ⊆ C. A property is true
locally almost everywhere if it is true except on a locally null set.
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With these definitions in hand, let L∞(G) be the space of all locally measurable
functions φ : G → C that are bounded except on a locally null set, modulo the
functions that are zero locally almost everywhere. Then L∞(G) is a Banach space
with the norm

‖φ‖∞ = inf
{
c : |φ(t)| ≤ c locally almost everywhere

}
.

We note that for any 1 ≤ p < ∞, any f ∈ L p(G) has a σ -finite support hence for
all φ ∈ L∞(G), φ f is a well-defined element of L p(G).

One may therefore define
∫
G φ f for all φ ∈ L∞(G) and all f ∈ L1(G) and

this duality pairing yields an isometric identification L∞(G) � L1(G)∗. When G is
σ -compact, L∞(G) defined as above coincides with the usual one.

Definition 3.3 For anyφ ∈ L∞(G), letMφ : λ(Cc(G)∗Cc(G)) → V N (G) be defined
by

Mφ(λ( f )) := λ(φ f ), f ∈ Cc(G) ∗ Cc(G).

For any 1 ≤ p < ∞, we say thatMφ is a bounded Fouriermultiplier on L p(V N (G)) if
the above map extends to a bounded operator (still denoted by) Mφ : L p(V N (G)) →
L p(V N (G)). In the sequel we abbreviate this by saying that “Mφ : L p(V N (G)) →
L p(V N (G)) is a bounded Fourier multiplier".

Likewise, if p = ∞, we say that Mφ is a bounded Fourier multiplier on V N (G)

if the above map extends to a bounded weak∗-continuous operator Mφ : V N (G) →
V N (G).

Let 1 ≤ p < ∞. We recall from [3, Sect. 6.1] that if Mφ : L p(V N (G)) →
L p(V N (G)) is a boundedFouriermultiplier, thenMφ : L p′

(V N (G)) → L p′
(V N (G))

is a bounded Fourier multiplier as well, where p′ is the conjugate index of p. More-
over, M

φ̌
: L p′

(V N (G)) → L p′
(V N (G)) is a bounded Fourier multiplier, and this

operator is actually the adjoint of Mφ : L p(V N (G)) → L p(V N (G)).
Thanks to (3.2), we have that for any φ ∈ L∞(G), Mφ : L2(V N (G)) →

L2(V N (G)) is a bounded Fourier multiplier, with

‖Mφ : L2(V N (G)) −→ L2(V N (G))‖ = ‖φ‖L∞(G). (3.4)

Indeed, let us denote as before by Uλ : L2(G) → L2(V N (G)) the unitary mapping
taking any f ∈ L1(G) ∩ L2(G) to λ( f ), see (3.2). Let π : L∞(G) → B(L2(G))

be defined by [π(φ)]( f ) = φ f , for all φ ∈ L∞(G) and all f ∈ L2(G). Then
π is an isometry. Since for any φ ∈ L∞(G), Uλπ(φ)U∗

λ coincides with Mφ on
Cc(G)∗Cc(G), we obtain thatMφ is a bounded Fourier multiplier on L2(V N (G)) and
that Mφ : L2(V N (G)) → L2(V N (G)) coincides with Uλπ(φ)U∗

λ . Since Uλπ( ·)U∗
λ

is an isometry, the equality (3.4) follows. (See also [3, Lemma 6.5].) It follows from
above that a Fourier multiplier Mφ : L2(V N (G)) → L2(V N (G)) satisfies

Mφ(Uλ( f )) = Uλ(φ f ), f ∈ L2(G).
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Remark 3.4 If φ1, φ2 ∈ L∞(G) are such that Mφ1 and Mφ2 coincide on λ(Cc(G) ∗
Cc(G)), then by (3.4), the operator Mφ1−φ2 = Mφ1 − Mφ2 : L2(V N (G)) →
L2(V N (G)) is equal to 0, hence φ1 = φ2 locally almost everywhere.

For the rest of this section, we fix a net ( fi )i∈I in Cc(G) ∗Cc(G) such that fi ≥ 0
and

∫
G fi (s) ds = 1 for all i ∈ I , the supports of fi ’s are contained in some compact

neighborhood Vi of e where the net (Vi )i∈I , is decreasing, and
⋂

i∈I Vi = {e}. We set
ei := λ( fi ). Then for all i ∈ I , we have

ei ∈ L1(V N (G)) ∩ V N (G) and ‖ei‖V N (G) ≤ 1.

Lemma 3.5 We both have ei → 1 and e∗
i → 1 in the strong operator topology.

Proof Let ζ ∈ L2(G). Since each fi is non-negative and L1-normalized, we have

‖ei (ζ ) − ζ‖L2(G) =
∥∥∥

∫

G
fi (t) (λ(t)ζ − ζ ) dt

∥∥∥
L2(G)

≤
∫

G
fi (t) ‖λ(t)ζ − ζ‖

L2(G)
dt .

Since λ(t) → 1 as t → e in the strong operator topology, the assumptions on ( fi )i∈I
ensure that the right hand-side tends to 0, when i → ∞. Hence ‖ei (ζ )−ζ‖L2(G) → 0.

This shows that ei → 1 strongly. Since e∗
i = λ( f ∗

i ) and the f ∗
i have the same

features as the fi , we also have that e∗
i → 1 strongly. ��

We let Cb(G) be the space of bounded and continuous functions on G.
The following lemma shows that the definition of bounded Fourier multipliers

V N (G) → V N (G) considered in this paper coincide with the one in [6].

Lemma 3.6 Let φ ∈ L∞(G) and assume that Mφ is a bounded Fourier multiplier on
V N (G). Then there exists ψ ∈ Cb(G) such that φ = ψ locally almost everywhere,
and

Mψ(λ(s)) = ψ(s)λ(s), s ∈ G.

Proof Assume that Mφ : V N (G) → V N (G) is a bounded Fourier multiplier. Let us
show that for any s ∈ G,

Mφ(λ(s)) ∈ Span{λ(s)}. (3.5)

Fix s ∈ G. For all i ∈ I , λ(s)ei = ∫
G fi (t)λ(st)dt , hence Mφ(λ(s)ei ) =∫

G φ(st) fi (t)λ(st) dt , where these integrals are defined in the strong operator topol-
ogy. Therefore, for all ϕ ∈ A(G), we have

〈Mφ(λ(s)ei ), ϕ〉 =
∫

G
φ(st) fi (t)〈λ(st), ϕ〉 dt =

∫

G
φ(st) fi (t)ϕ(st) dt .

Let ϕ ∈ A(G) such that ϕ(s) = 0. From the above, we have

|〈Mφ(λ(s)ei ), ϕ〉| ≤ ‖φ‖∞
∫

G
fi (t)|ϕ(st) − ϕ(s)| dt .



5 Page 10 of 27 Journal of Fourier Analysis and Applications (2024) 30 :5

Since ϕ is continuous, the right hand-side of the above inequality tends to zero
when i → ∞. Moreover by Lemma 3.5, λ(s)ei → λ(s) in the strong opera-
tor topology. Since (ei )i∈I is bounded, this implies that λ(s)ei → λ(s) in the
weak∗-topology. Therefore, Mφ(λ(s)ei ) → Mφ(λ(s)) in the weak∗-topology. Hence,
〈Mφ(λ(s)ei ), ϕ〉 → 〈Mφ(λ(s)), ϕ〉. We obtain that 〈Mφ(λ(s)), ϕ〉 = 0. Hence,
Mφ(λ(s)) ∈ {ϕ : ϕ(s) = 0}⊥ in the duality A(G)∗ � V N (G). Since Span{λ(s)}⊥ =
{ϕ : ϕ(s) = 0}, we deduce (3.5).

Let ψ : G → C be the unique function such that for all s ∈ G, Mφ(λ(s)) =
ψ(s)λ(s). The pre-adjoint A(G) → A(G) of Mφ is the pointwise multiplication by
ψ . According to the comment following [6, 1.1. Definition], the functionψ is therefore
continuous.

Next, we show that φ = ψ locally almost everywhere. For any f ∈ Cc(G) ∗
Cc(G), we have λ( f ) = ∫

G f (t)λ(t) dt . This SOT-integral is absolutely convergent
in V N (G), hence

Mφ(λ( f )) =
∫

G
f (t)Mφ(λ(t)) dt

=
∫

G
f (t)ψ(t)λ(t) dt

= Mψ(λ( f )).

This implies that Mφ = Mψ on Cc(G)∗Cc(G), and the result follows by Remark 3.4.
For the regularity of G needed in the proof of [6, 1.1. Definition], we refer to [19,

Theorem 2.3.8 p. 53]. See also the discussion following [3, Definition 6.3]. ��
LetT denote the unit circle ofC. A homomorphism ϕ : G → T is called a character.

We let Hom(G,T) denote the collection of all characters on G. There is a natural
isomorphism between Hom(G,T) and Hom( G

[G,G] ,T), where [G,G] denotes the
commutator subgroup of G [13, (23.8) Theorem p. 358-359]. When G is a perfect
group, i.e. [G,G] = G, the only character onG is the trivial one, that is, Hom(G,T) =
{1}. Examples of perfect groups include non-abelian simple groups and the special
linear groups SLn(K), for a fixed field K.

The following is the main result of this section. In view of this theorem and the
observation above, we see that there are groups with relatively few separating Fourier
multipliers.

Theorem 3.7 Assume that G is a locally compact unimodular σ -compact group, let
1 ≤ p < ∞ and let φ ∈ L∞(G). The following are equivalent.

(i) Themapping Mφ is a boundedFouriermultiplier on L p(V N (G)), and the operator
Mφ : L p(V N (G)) → L p(V N (G)) is separating.

(ii) There exist a constant c ∈ C and a continuous character ψ : G → T such that
φ = cψ almost everywhere.

The proof will be given after a series of intermediate results.

Lemma 3.8 Let M be a semifinite von Neumann algebra. Let (x j ) j be a net in M ∩
L2(M) with sup ‖x j‖∞ < ∞. If ‖x j‖2 → 0, then x j → 0 in the weak∗-topology of
M.
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Proof Take y ∈ L1(M) ∩ L2(M). We have that

|〈y, x j 〉| ≤ ‖y‖2‖x j‖2 → 0,

and therefore 〈y, x j 〉 → 0. Since L1(M) ∩ L2(M) is dense in L1(M) and (x j ) j is
bounded in M, this implies that 〈y, x j 〉 → 0, for all y ∈ L1(M). That is, x j → 0 in
the weak∗-topology of M. ��

In the following lemma, G is not necessarily σ -compact.

Lemma 3.9 Letφ ∈ L∞(G). Assume that the Fourier multiplier Mφ : L2(V N (G)) →
L2(V N (G)) is separating and non-zero.

(1) For any compact K ⊆ G, the restriction φ|K is non-zero almost everywhere on
K .

(2) The operator Mφ : L2(V N (G)) → L2(V N (G)) has dense range.
(3) For any compact K ⊆ G, there exists a continuous function � : K → C such that

φ|K = � almost everywhere on K .

Proof (1) Let K be a compact subset of G. Set NK (φ) := {s ∈ K : φ(s) = 0}. We
show that NK (φ) has measure zero. Assume on the contrary that NK (φ) has positive
measure. We show that there exists a0 ∈ K such that for any open neighbourhood V
of a0, μ(NK (φ) ∩ V ) > 0. Assume on the contrary that for any a ∈ K there is an
open neighbourhood of a, Va , such that μ(NK (φ)∩Va) = 0. Since K is compact and
{Va}a∈K covers K , there is a finite subcover {Va j }nj=1 that covers K as well. Now,
note that

μ(NK (φ)) = μ(NK (φ) ∩ (∪n
j=1Va j )) = μ(∪n

j=1(NK (φ) ∩ Va j ))

≤
n∑

j=1

μ(NK (φ) ∩ Va j ) = 0,

which contradicts the fact that μ(NK (φ)) > 0.
Let (Ui )i∈I be a net of neighbourhoods of e, the unit element of G, directed by

inclusion, with ∩i∈IUi = {e}. Then for all i ∈ I , we have μ(a0Ui ∩ NK (φ)) > 0 and
we may define

hi := 1

μ(a0Ui ∩ NK (φ))
χUi χNK (φ)(a0 ·).

For any i ∈ I , we have that hi ≥ 0,
∫
hi = 1, and hi ∈ L1(G) ∩ L2(G). Moreover,

supp(hi ) = Ui ∩ a−1
0 NK (φ) and therefore,

⋂
i∈I supp(hi ) = {e} and φhi (a

−1
0 ·) = 0,

for all i ∈ I .
Let (w, B, J ) be the Yeadon triple of Mφ : L2(V N (G)) → L2(V N (G)). For

any i ∈ I , let εi := λ(hi (a
−1
0 ·)). We have that εi ∈ L2(V N (G)) ∩ V N (G)

and ‖εi‖V N (G) ≤ 1. By Proposition 2.3(a), Mφ(εi ) = wBJ (εi ). Also, Mφ(εi ) =
λ(φhi (a

−1
0 ·)) = λ(0) = 0. Therefore, wBJ (εi ) = 0. We now apply Proposition
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2.3(b). Since w∗w = s(B), we have BJ (εi ) = w∗wBJ (εi ), hence BJ (εi ) = 0.
Further 0 ≤ J (εi ) ≤ J (1) = s(B), hence J (εi ) is valued in ker(B)⊥. Hence the
equality BJ (εi ) = 0 implies that J (εi ) = 0, that is εi ∈ ker(J ). By Lemma 2.2(1),
this implies that for any g ∈ L1(G) and any i ∈ I , we have λ(g)εi ∈ ker(J ).

Now, for any f ∈ L1(G) ∩ L2(G), let g = f (·a0). We have

λ(g)εi = λ(g ∗ hi (a
−1
0 ·)) = λ(g(·a−1

0 ) ∗ hi ) = λ( f ∗ hi ).

Since ‖ f ∗hi − f ‖2 → 0, we have ‖λ( f ∗hi )−λ( f )‖L2(V N (G)) → 0, by (3.2). Note
that,

‖λ( f ∗ hi )‖∞ ≤ ‖ f ∗ hi‖1 ≤ ‖ f ‖1‖hi‖1 = ‖ f ‖1.

Hence by Lemma 3.8, λ( f ∗ hi ) → λ( f ), in the weak∗-topology of V N (G). Since
ker(J ) is weak∗-closed, by Lemma 2.2(1), we obtain that λ( f ) belongs to ker(J ).
Finally since the space {λ( f ) : f ∈ L1(G) ∩ L2(G)} is weak∗-dense in V N (G), we
deduce that ker(J ) = V N (G). Hence Mφ = 0, which is a contradiction.

(2) Consider any F ∈ Cc(G) ∗ Cc(G). This function has compact support, say
K ⊆ G. Set Nδ = {s ∈ K : |φ(s)| < δ}, for all δ > 0. By part (1), φ �= 0
almost everywhere on K , hence we have limδ→0 μ(Nδ) = 0. For any δ > 0, set
gδ := φ−1χNc

δ
F . Since φ−1χ

Nc
δ

∈ L∞(G), we have gδ ∈ L1(G) ∩ L2(G). Hence,

λ(gδ) is well-defined, λ(gδ) ∈ L2(V N (G)) ∩ V N (G) and

Mφ(λ(gδ)) =
∫

φ(t)gδ(t)λ(t)dt = λ(χNc
δ
F).

Therefore, λ(F) − Mφ(λ(gδ)) = λ(χNδ F), and we have that

‖λ(F) − Mφ(λ(gδ))‖2 = ‖λ(χNδ F)‖2 = ‖χNδ F‖2,

by (3.2). Since μ(Nδ) → 0, when δ → 0, this implies that limδ→0 ‖λ(F) −
Mφ(λ(gδ))‖2 = 0. Hence, λ(F) ∈ ran(Mφ). By density of λ(Cc(G) ∗ Cc(G)) in
L2(V N (G)), this implies that the range of Mφ is dense in L2(V N (G)).

(3) Letw∗Mφ be the operator taking any a ∈ L2(V N (G)) tow∗Mφ(a). According
to [23, Remark 4.2], w∗Mφ is positive, that is, it maps L2(V N (G))+ into itself.
We use a modification of the argument in [3, Lemma 6.10]. For all g ∈ Cc(G),
λ(g∗∗g) ∈ L2(V N (G))+. Hence,w∗Mφ(λ(g∗∗g)) ∈ L2(V N (G))+. Consequently,

(
Mφ(λ(g∗ ∗ g))ζ |w(ζ )

) ≥ 0,

for all ζ ∈ L2(G). The calculation in the proof of [3, Lemma 6.10] shows that

(
Mφ(λ(g∗ ∗ g))ζ |w(ζ )

) =
∫

G

∫

G
g(t)g(s)φ(t−1s)

(
λ(t−1s)ζ |w(ζ )

)
dsdt .
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This implies that for all ζ ∈ L2(G), the function s �→ φ(s) (λ(s)ζ |w(ζ )) is positive
definite in the sense of [35, Definition VII.3.20].

By polarization, this implies that for all ζ, ζ ′ ∈ L2(G), s �→ φ(s)
(
λ(s)ζ |w(ζ ′)

)
is

a linear combination of positive definite functions. By part (2) and Lemma 2.4, w is a
unitary. Hence the above actually shows that for all ζ, η ∈ L2(G), s �→ φ(s) (λ(s)ζ |η)

is a linear combination of positive definite functions. By the definition of A(G), this
means that for allψ ∈ A(G), φψ is a linear combination of positive definite functions.
By [35, Corollary 3.22] and its proof, this implies that for allψ ∈ A(G), φψ is locally
almost everywhere equal to a continuous function.

Let K ⊆ G be a compact set with μ(K ) > 0. By Lemma 3.1, there is ψ ∈ A(G)

such thatψ |K > 0.Now, (φψ) |K is almost everywhere equal to a continuous function.
Hence, φ|K is almost everywhere equal to a continuous function. ��
Remark 3.10 Note that ifG is σ -compact, the above lemma implies that if φ ∈ L∞(G)

is such that Mφ : L2(V N (G)) → L2(V N (G)) is separating, then φ is almost every-
where equal to a continuous function.

In the next statement, we use the net (ei )i∈I defined before Lemma 3.5.

Lemma 3.11 Letφ ∈ Cb(G)andconsider theFouriermultiplier Mφ : L2(V N (G)) →
L2(V N (G)). We have the following convergences in the strong operator topology of
V N (G).

(1) For all s ∈ G, Mφ(λ(s)ei ) −−−→
i→∞ φ(s)λ(s).

(2) For all s ∈ G, Mφ(λ(s)e2i ) −−−→
i→∞ φ(s)λ(s).

(3) For all s ∈ G, Mφ(eiλ(s)ei ) −−−→
i→∞ φ(s)λ(s).

Proof (1) By Lemma 3.5, it is enough to show that for all s ∈ G, Mφ(λ(s)ei ) −
φ(s)λ(s)ei converges to 0 in V N (G). Using the assumptions on ( fi )i∈I , and the fact
that φ is continuous, we have that

∥∥Mφ(λ(s)ei ) − φ(s)λ(s)ei
∥∥∞ =

∥∥∥
∫

G
(φ(st) fi (t)λ(st) − φ(s) fi (t)λ(st)) dt

∥∥∥∞

≤
∫

G
|φ(st) − φ(s)| fi (t) dt −−−→

i→∞ 0.

This proves the result.
(2) For all i ∈ I , we have e2i = λ( fi ∗ fi ), fi ∗ fi ≥ 0,

∫
G( fi ∗ fi )(s) d(s) = 1, and

supp( fi ∗ fi ) ⊆ supp( fi ) ·supp( fi ). Hence using fi ∗ fi instead of fi , the convergence
in (2) can be shown exactly in the same way as in (1).

(3) We argue as in (1). Let s ∈ G. Since ei → 1 in the strong operator topology
and (ei )i∈I is bounded, eiλ(s)ei → λ(s) in the strong operator topology. Hence we
only need to show that Mφ(eiλ(s)ei ) − φ(s)eiλ(s)ei converges to 0 in V N (G). We
have that

∥∥Mφ(eiλ(s)ei ) − φ(s)eiλ(s)ei
∥∥∞
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=
∥∥∥
∫

G

∫

G
φ(rst) fi (r) fi (t)λ(rst) drdt −

∫

G

∫

G
φ(s) fi (r) fi (t)λ(rst) drdt

∥∥∥∞

≤
∫

G

∫

G
|φ(rst) − φ(s)| fi (r) fi (t)drdt −−−→

i→∞ 0,

again using the assumptions on ( fi )i∈I , and the fact that φ is continuous. ��
Proof (i i) ⇒ (i): We may assume that c = 1 and that φ = ψ , i.e. φ is a continuous
character. Any character is positive definite and maps e to 1. Hence according to [6,
Proposition 4.2] and [28, Proposition 3.6], Mφ is a bounded Fourier multiplier on
V N (G), with ‖Mφ : V N (G) → V N (G)‖ = ‖Mφ(1)‖∞ = |φ(e)| = 1. According
to [3, Lemma 6.4 and Lemma 6.6], Mφ is therefore a bounded Fourier multiplier on
L p(V N (G)) and

‖Mφ : L p(V N (G)) −→ L p(V N (G))‖ ≤ ‖Mφ : V N (G) −→ V N (G)‖.

Thus,

‖Mφ : L p(V N (G)) −→ L p(V N (G))‖ ≤ 1. (3.6)

Since φ−1 is also a continuous character, the above argument shows as well that

‖Mφ−1 : L p(V N (G)) −→ L p(V N (G))‖ ≤ 1. (3.7)

For any f ∈ Cc(G) ∗ Cc(G), we have

Mφ−1Mφ(λ( f )) = Mφ−1(λ(φ f )) = λ(φ−1φ f ) = λ( f ).

Similarly, MφMφ−1(λ( f )) = λ( f ). Hence Mφ and Mφ−1 are inverse to each other. It
therefore follows from (3.6) and (3.7) that Mφ : L p(V N (G)) → L p(V N (G)) is an
isometry.

If p �= 2, it follows from [36] (see also [22]) that Mφ : L p(V N (G)) →
L p(V N (G)) is separating. If p = 2, consider any 1 < q �= 2 < ∞. The above rea-
soning shows that Mφ : Lq(V N (G)) → Lq(V N (G)) is separating. Applying Lemma
2.5, we deduce that the operator Mφ : L2(V N (G)) → L2(V N (G)) is separating.
(i) ⇒ (i i): We assume that Mφ : L p(V N (G)) → L p(V N (G)) is separating. By
Lemma 2.5, Mφ : L2(V N (G)) → L2(V N (G)) is separating as well. Let (w, B, J )

be its Yeadon triple. We may assume that Mφ is non-zero. Then by Lemma 3.9(2),
Mφ : L2(V N (G)) → L2(V N (G)) has dense range. It then follows from Lemma 2.4
that w is a unitary and J (1) = 1. According to Remark 3.10, φ is almost everywhere
equal to a continuous function. Replacing φ by this function, we may now assume that
φ ∈ Cb(G).

For any s ∈ G we have, by Lemma 3.11 and Lemma 2.1(1),

φ(s) (λ(s) + λ(s)) = lim
j→∞ Mφ

(
e jλ(s)e j + λ(s)e2j

)
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= lim
j→∞ wBJ

(
e jλ(s)e j + λ(s)e2j

)

= lim
j→∞ wB

(
J (e j )J (λ(s)e j ) + J (λ(s)e j )J (e j )

)

= lim
j→∞

(
Mφ(e j )J (λ(s)e j ) + Mφ(λ(s)e j )J (e j )

)
,

where the limit is taken in the strong operator topology.
By Lemma 3.5, λ(s)e j → λ(s) and (λ(s)e j )∗ → λ(s)∗ strongly. Hence by Lemma

2.2(2), J (λ(s)e j ) → J (λ(s)) strongly. By Lemma 3.11(1), Mφ(e j ) → φ(e) strongly.
Since (Mφ(e j )) j∈I is bounded, we deduce that Mφ(e j )J (λ(s)e j ) → φ(e)J (λ(s))
strongly. Similarly,Mφ(λ(s)e j )J (e j ) → φ(s)λ(s)J (1) = φ(s)λ(s) strongly. It there-
fore follows from the previous calculation that φ(s) (λ(s) + λ(s)) = φ(e)J (λ(s)) +
φ(s)λ(s), that is, φ(s)λ(s) = φ(e)J (λ(s)).

Since φ is non-zero, this implies that φ(e) �= 0. Set ψ := φ(e)−1φ. It follows from
the above that

J (λ(s)) = ψ(s)λ(s), s ∈ G. (3.8)

We now show that ψ is a character. Let s, t ∈ G and recall that λ(st) = λ(s)λ(t). On
the one hand, we have that J (λ(st)) = ψ(st)λ(st). On the other hand, we have that
J (λ(s))J (λ(t)) = ψ(s)ψ(t)λ(st).

If st = ts, then λ(s)λ(t) = λ(t)λ(s), hence by Lemma 2.1(2), we have that
J (λ(st)) = J (λ(s)λ(t)) = J (λ(s))J (λ(t)). Hence, ψ(st) = ψ(s)ψ(t). Assume now
that st �= ts. By Lemma 2.1(1), we have

J (λ(s)λ(t) + λ(t)λ(s)) = J (λ(s))J (λ(t)) + J (λ(t))J (λ(s)).

Therefore,

ψ(st)λ(st) + ψ(ts)λ(ts) = ψ(s)ψ(t)λ(st) + ψ(t)ψ(s)λ(ts).

Since λ(st) and λ(ts) are linearly independent, the above identity implies thatψ(st) =
ψ(s)ψ(t). This proves that ψ is a character and therefore, φ = φ(e)ψ is a scalar
multiple of a character, as requested. ��

Let us now give a variant of Theorem 3.7 in the general case whenG is not assumed
to be σ -compact (see also Remark 3.16). We need the following lemma.

Lemma 3.12 Let h1, h2 : G → C be two locally measurable functions. The functions
h1 and h2 are locally almost everywhere equal if and only if for any compact set
K ⊆ G, h1|K = h2|K , almost everywhere.
Proof It is enough to show that if E ⊂ G is locally Borel, then E is locally null if (and
only if) E ∩ K has measure 0 for any compact set K ⊆ G. Assume this property. By
[8, Proposition 2.4], G has an open, closed and σ -compact subgroup, G0. Let Y be
a subset of G that contains exactly one element of each of the left cosets of G0. Set
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Ey := E ∩ yG0 for any y ∈ Y . Since G0 is σ -compact, yG0 is σ -compact as well. It
then follows that μ(Ey) = 0, for all y ∈ Y . Recall from the end of [8, Sect. 2.3] that
E is locally null if and only if μ(Ey) = 0, for every y ∈ Y . Hence, E is locally null.

��
Corollary 3.13 Let G be locally compact unimodular. Let 1 ≤ p < ∞ and let φ ∈
L∞(G). The following are equivalent.

(i) Themapping Mφ is a boundedFouriermultiplier on L p(V N (G)), and the operator
Mφ : L p(V N (G)) → L p(V N (G)) is separating.

(ii) There exist a constant c0 ∈ C and a continuous character ψ : G → T such that
φ = c0ψ locally almost everywhere.

Proof The proof of the implication “(i i) ⇒ (i)" in Theorem 3.7 applies to the non
σ -compact case, so we only need to prove that (i) implies (ii).

Assume that Mφ : L p(V N (G)) → L p(V N (G)) is separating. As in the proof of
Theorem 3.7, we may assume that p = 2 and that Mφ is non-zero. We claim that

∃ϕ ∈ Cb(G) such that ϕ = φ, locally almost everywhere. (3.9)

To prove this, first note that wemay assume that the net ( fi )i∈I defined prior to Lemma
3.5 has the following property: there exists a compact neighbourhood K0 of the unit
e such that for all i , supp( fi ) ⊆ K0. Let L ⊆ G be compact. Let

K = K0LK0K0 = {strq : (s, t, r , q) ∈ K0 × L × K0 × K0}.

This is a compact set hencebyLemma3.9(3) there is a continuous function� : K → C

such that � = φ|K almost everywhere. The proof of Lemma 3.11 shows that for all
s ∈ L , we have the following convergences in the strong operator topology:

Mφ(λ(s)ei ) → �(s)λ(s), Mφ(λ(s)e2i ) → �(s)λ(s), and Mφ(eiλ(s)ei ) → �(s)λ(s).

(3.10)

In particular, (take L = {e}) we obtain the existence of c0 ∈ C such that

Mφ(ei ) → c0,

in the strong operator topology.
Let (w, B, J ) be the Yeadon triple of Mφ . The argument in the proof of Theorem

3.7 and the convergence properties (3.10) show that for any L, K ,� as above we have

c0 J (λ(s)) = �(s)λ(s), for all s ∈ L. (3.11)

By Lemma 3.9(1), this implies that c0 �= 0.
It follows from the above that for all s ∈ G, J (λ(s)) is proportional to λ(s). We

therefore have a necessarily unique

F : G → C; J (λ(s)) = F(s)λ(s), for all s ∈ G.
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Moreover, for any L, K ,� as above, we have

F |L = c−1
0 �|L .

This implies that F is continuous. To prove this, fix s0 ∈ G and apply the above with
a compact neighbourhood L of s0. Then the continuity of � : K → C implies the
continuity of F |L , and hence the continuity of F at s0.

Set ϕ := c0F . Again for L, K ,� as above we obtain that ϕ|K = φ|K , almost
everywhere. By Lemma 3.9, this implies that ϕ = φ, locally almost everywhere.
Hence (3.9) is proved.

Since Mϕ = Mφ , the argument at the end of the proof of Theorem 3.7 shows that
ψ := c−1

0 ϕ is a character. ��
Remark 3.14 It follows from the proof of the implication “(i i) ⇒ (i)" in Theorem
3.7 that for any continuous character ψ : G → T and any 1 ≤ p < ∞, the Fourier
multiplierMψ : L p(V N (G)) → L p(V N (G)) is an onto isometry. It therefore follows
from Corollary 3.13 that if φ ∈ L∞(G) \ {0} is such that Mφ : L p(V N (G)) →
L p(V N (G)) is bounded and separating, then ‖Mφ‖−1Mφ is an onto isometry.

Corollary 3.15 Let 1 ≤ p �= 2 < ∞ and letφ ∈ L∞(G). The following are equivalent.

(i) Themapping Mφ is a boundedFouriermultiplier on L p(V N (G)), and the operator
Mφ : L p(V N (G)) → L p(V N (G)) is an isometry.

(ii) There exists δ ∈ T such that δφ is locally almost everywhere equal to a continuous
character.

Proof It follows from the proof of the implication “(i i) ⇒ (i)" in Theorem 3.7 that
for any continuous character ψ : G → T, Mψ : L p(V N (G)) → L p(V N (G)) is an
isometry. Thus, (ii) implies (i). Conversely, assume (i). Since p �= 2, any isometry
on L p(V N (G)) is separating, by [36] (see also [22]). Hence by Corollary 3.13, there
exist c ∈ C and a continuous character ψ : G → T such that φ = cψ locally almost
everywhere. Then Mφ = cMψ , hence ‖Mφ‖ = |c|‖Mψ‖, hence |c| = 1. This yields
(ii), with δ = c−1. ��

Note that Corollary 3.15 is not true in the case p = 2. Indeed, let φ ∈ L∞(G). It
follows from the discussion following (3.2) that Mφ : L2(V N (G)) → L2(V N (G))

is an isometry if and only if |φ| = 1 locally almost everywhere. Yet in general, plenty
of these isometric Fourier multipliers are not separating. See Sect. 4 for more on this.

Remark 3.16 Corollary 3.13maybewrong if one replaces “locally almost everywhere"
by “almost everywhere" in (ii). Indeed as in [8, Sect. 2.3], take G = R×Rdisc, where
the second factor is equipped with the discrete topology. Consider Y = {0} × Rdisc
which is a closed subset of G, hence Borel, and set φ = χY . For any compact set
K ⊆ G, we have μ(K ∩ Y ) = 0, by [8, Proposition 2.22]. Hence φ|K = 0 almost
everywhere. By Lemma 3.12, this implies that φ = 0 locally almost everywhere. Thus
φ satisfies the properties of Corollary 3.13, with Mφ = 0.

However by [8, Proposition 2.22] again, {s ∈ G : φ(s) �= 0} = Y has infinite
Haar measure, hence φ is not almost everywhere equal to 0. Consequently, φ cannot
be almost everywhere equal to a constant times a continuous character.
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Remark 3.17 In the case when G is discrete, continuity on G is automatic and two
locally almost everywhere equal functions are equal. Therefore, in the statement of
Corollary 3.13, we can replace part (i i) by the following slightly simpler statement:
there exist c ∈ C and a character ψ : G → C such that φ = cψ .

Remark 3.18 De Cannière and Haagerup [6] defined Fourier multipliers on V N (G),
including the case when G is not unimodular. Let φ ∈ Cb(G) and assume that φ

induces a Fourier multiplier Mφ : V N (G) → V N (G) in the sense of [6, Proposition
1.2]. Assume that Mφ is separating. If G is unimodular, then Mφ : L2(V N (G)) →
L2(V N (G)) is separating by [22, Lemma 3.9]. Hence, by Corollary 3.13, φ is a
multiple of a character.

However, in the general case of a non-unimodular locally compact group, the
description of separating Fourier multipliers on V N (G) is open.

Remark 3.19 Let � be a locally compact abelian group. Let G = �̂ be its dual group
and recall that L∞(�) = V N (G). Let 1 ≤ p < ∞. For any u ∈ �, let τu : L p(�) →
L p(�) be the translation operator defined by τu( f ) = f (· − u), for all f ∈ L p(�).
Note that if we regard u ∈ � as a character u : G → T, then the associated Fourier
multiplier Mu : L p(�) → L p(�) coincides with τu .

Let T : L p(�) → L p(�) be a bounded operator. Then T commutes with transla-
tions, that is, T ◦ τu = τu ◦ T for all u ∈ �, if and only if T is a Fourier multiplier
(see e.g. [21, Chapter 4]). Hence Corollary 3.15 implies the following:

(*) If p �= 2, an isometry T : L p(�) → L p(�) commutes with translations if and
only if there exists c ∈ T and u ∈ � such that T = cτu .

This statement is a classical result due to Parrott [27] and Strichartz [33] and Corollary
3.15 should be regarded as a generalization of the latter.

We note that the two papers [27, 33] show (∗) in the case when � is not necessarily
abelian. If � is non-abelian, the statement (∗) is not related to Corollary 3.15.

4 Completely Positive and Completely Isometric Fourier Multipliers

In this section, we complement the characterizations of separating and isometric L p-
Fourier multipliers from Sect. 3 with further information. Throughout this section, we
assume that G is a unimodular locally compact group.

Let M be a semifinite von Neumann algebra equipped with a normal semifinite
faithful trace τ . For any n ≥ 1, we equip Mn(M) with trn ⊗ τ , where trn is the
usual trace on Mn . For any 1 ≤ p ≤ ∞, the resulting noncommutative L p-space
L p(Mn(M)) can be naturally identified (at the algebraic level) with the space of all
n × n matrices [xi j ]1≤i, j≤n with entries xi j belonging to L p(M).

Let T : L p(M) → L p(M) be a bounded operator. For any n ≥ 1, let
Tn : L p(Mn(M)) → L p(Mn(M)) be defined by Tn

([xi j ]
) = [T (xi j )], for all

[xi j ]1≤i, j≤n in L p(Mn(M)). Following usual terminology, we say that T is com-
pletely positive if Tn is positive for all n ≥ 1. Likewise, we say that T is a complete
contraction if ‖Tn‖ ≤ 1 for all n ≥ 1 and that T is a complete isometry if Tn is an
isometry for all n ≥ 1.
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Let ψ : G → T be a continuous character. Then ψ is positive definite hence by
[6, Proposition 4.2], the Fourier multiplier Mφ : V N (G) → V N (G) is completely
positive. The proof of the implication “(i i) ⇒ (i)" in Theorem 3.7 actually shows
that Mψ : L p(V N (G)) → L p(V N (G)) is a complete contraction for all 1 ≤ p <

∞, and then that Mψ : L p(V N (G)) → L p(V N (G)) is a complete isometry for all
1 ≤ p < ∞. As a consequence of Corollary 3.13, we therefore obtain the following
complement to Remark 3.14.

Corollary 4.1 Let 1 ≤ p < ∞ and let φ ∈ L∞(G) \ {0}. Assume that
Mφ : L p(V N (G)) → L p(V N (G)) is bounded and separating. Then ‖Mφ‖−1Mφ

is a complete isometry.

Remark 4.2 Let 1 ≤ p < ∞ and let φ ∈ L∞(G)\ {0} such that Mφ : L p(V N (G)) →
L p(V N (G)) is bounded and separating. Let (w, B, J ) be theYeadon triple of the latter
operator. According to Corollary 4.1 and [15, Theorem 3.2], J is a ∗-homomorphism.

We can make this statement more precise, as follows. Applying Corollary 3.13, let
c ∈ C let ψ : G → T be the continuous character such that φ = cψ locally almost
everywhere. Then J : V N (G) → V N (G) is the L∞-Fourier multiplier associated
with ψ , c = ‖Mφ‖, B = |c| · 1 and w = c|c|−1 · 1. The easy verification is left to the
reader.

Lemma 4.3 Let1 ≤ p < ∞and letφ ∈ L∞(G). If Mφ is a boundedFouriermultiplier
on L p(V N (G)) and Mφ : L p(V N (G)) → L p(V N (G)) is an isometry, then |φ| = 1
locally almost everywhere.

Proof The case p = 2 follows from the paragraph preceding Remark 3.16. Assume
that 1 ≤ p �= 2 < ∞. By Corollary 3.13, there exist a constant c ∈ C and a
continuous character ψ : G → T such that φ = cψ locally almost everywhere. We
noticed before Corollary 4.1 that Mψ is a complete isometry. Since cMψ = Mφ is also
an isometry, we must have that |c| = 1. Hence, |φ| = |cψ | = |ψ | = 1 locally almost
everywhere. ��

We have the following partial converse of Lemma 4.3.

Proposition 4.4 Let φ ∈ L∞(G) such that |φ| = 1 locally almost everywhere, let
1 ≤ p < ∞ and assume that Mφ : L p(V N (G)) → L p(V N (G)) is a boundedFourier
multiplier. If Mφ is completely positive, then φ coincides locally almost everywhere
with a continuous character ψ : G → T.

Proof Since Mφ is completely positive, it follows from [3, Proposition 6.11] that φ is
locally almost everywhere equal to a continuous positive definite function. Hence, we
may assume that φ is continuous (and positive definite). By [35, Proposition VII.3.21],
there exist a unitary representation π : G → B(H) on a Hilbert space H and a vector
ξ ∈ H such that

φ(s) = 〈π(s)ξ, ξ 〉, s ∈ G. (4.1)
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Since |φ| = 1, we have φ(e) = 1. Hence it follows from (4.1) that 1 = φ(e) =
〈π(e)ξ, ξ 〉 = ‖ξ‖2H . Given s ∈ G, applying the Cauchy-Schwarz inequality we obtain

1 = |φ(s)| = |〈π(s)ξ, ξ 〉| ≤ ‖π(s)ξ‖H‖ξ‖H = ‖ξ‖2H = 1.

It follows from the equality condition in the Cauchy-Schwarz inequality that there is
ψ(s) ∈ C such that π(s)ξ = ψ(s)ξ .

Now, for any s, t ∈ G, on the one hand

π(st)ξ = ψ(st)ξ,

and on the other hand,

π(s)π(t)ξ = π(s)ψ(t)ξ = ψ(s)ψ(t)ξ.

Hence, ψ(st) = ψ(s)ψ(t). Finally, φ(s) = 〈π(s)ξ, ξ 〉 = ψ(s)‖ξ‖2H = ψ(s) for all
s ∈ G. Therefore, φ = ψ is a character. ��

When p = 1 and G is assumed to be amenable we can change the assumption of
complete positivity in Proposition 4.4 into mere contractivity.

Proposition 4.5 Let G be an amenable unimodular locally compact group. Let φ ∈
L∞(G) and assume that Mφ : L1(V N (G)) → L1(V N (G)) is a contractive Fourier
multiplier. The following are equivalent.

(i) Mφ is an isometry.
(ii) |φ| = 1 locally almost everywhere.
(iii) There exist c ∈ T and a continuous character ψ : G → T such that φ = cψ

locally almost everywhere.

Proof The implication “(i) ⇒ (i i)" is established in Lemma 4.3. The implication
“(i i i) ⇒ (i)" was already discussed several times (see, for example, Remark 3.14).
We now show that “(i i) ⇒ (i i i)". Since Mφ is a bounded Fourier multiplier on
L1(V N (G)), we may assume that φ is continuous, by Lemma 3.6. Further since G
is amenable, symbols of Fourier multipliers on V N (G) coincide with the Fourier-
Stieltjes algebra of G. This classical result is mentioned in [6, p. 456], see also [12,
Theorem 1]. Hence by [7, Lemma 2.14], there exist a unitary representation π : G →
B(H) on a Hilbert space H and vectors ξ, η in H such that

φ(s) = 〈π(s)ξ, η〉, s ∈ G, and ‖ξ‖H = ‖η‖H = 1.

Assume (i i). Multiplying φ by φ(e), we may assume that φ(e) = 1. This implies that
1 = 〈π(e)ξ, η〉 = 〈ξ, η〉. Since ‖ξ‖H = ‖η‖H = 1, we deduce that η = ξ . Thus, φ
satisfies (4.1). The proof of Proposition 4.4 therefore shows that φ is a character. ��
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5 A Characterization of Separating Schur Multipliers

Let (�,�,μ) be a σ -finite measure space. For any f ∈ L2(�2), let S f : L2(�) →
L2(�) be the bounded operator defined by

[S f (h)](s) =
∫

�

f (s, t)h(t) dt, h ∈ L2(�).

We recall that S f ∈ S2(L2(�)) and that the mapping f �→ S f is a unitary operator
from L2(�2) onto S2(L2(�)), see e.g. [30, Theorem VI. 23].

Let φ ∈ L∞(�2). According to the above identification L2(�2) � S2(L2(�)),
one may define a bounded operator Tφ : S2(L2(�)) → S2(L2(�)) by

Tφ(S f ) = Sφ f , f ∈ L2(�2). (5.1)

Moreover the norm of this operator is equal to ‖φ‖∞. The operator Tφ is called a Schur
multiplier.

Let 1 ≤ p < ∞.We say that Tφ is a bounded Schurmultiplier on the Schatten space
S p(L2(�)) if the restriction of Tφ to S p(L2(�)) ∩ S2(L2(�)) extends to a bounded
operator from S p(L2(�)) into itself. Schur multipliers as defined in this section go
back at least to Haagerup [10] and Spronk [31].

For any α ∈ L∞(�), we let Multα ∈ B(L2(�)) be the multiplication operator
taking h to αh for all h ∈ L2(�). Then we let

D(�) = {
Multα : α ∈ L∞(�)

}
.

This is von Neumann sub-algebra of B(L2(�)), which is isomorphic (as a von Neu-
mann algebra) to L∞(�). We will use the classical fact that

D(�)′ = D(�), (5.2)

where D(�)′ stands for the commutant of D(�). In other words, a bounded operator
V : L2(�) → L2(�) belongs to D(�) if and only if V ◦ Multα = Multα ◦ V for all
α ∈ L∞(�).

We note that for any α ∈ L∞(�), the mapping x �→ Multα ◦x is a Schur multiplier.
Indeed it coincideswith Tφ , where the symbolφ ∈ L∞(�2) is given byφ(s, t) = α(s).
Likewise, for any β ∈ L∞(�), the mapping x �→ x ◦ Multβ is a Schur multiplier,
with symbol φ given by φ(s, t) = β(t).

Theorem 5.1 Let φ ∈ L∞(�2) and let 1 ≤ p < ∞. The following are equivalent.

(i) The mapping Tφ is a bounded Schur multiplier on S p(L2(�)), and the resulting
operator Tφ : S p(L2(�)) → S p(L2(�)) is separating.

(ii) There exist a constant c ∈ C and two unitaries α, β ∈ L∞(�) such that

φ(s, t) = c α(s)β(t) for almost every (s, t) ∈ �2.
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(iii) There exist a constant c ∈ C and two unitaries α, β ∈ L∞(�) such that

Tφ(x) = cMultα ◦ x ◦ Multβ, x ∈ S2(L2(�)). (5.3)

Proof (i i) ⇒ (i i i): Let c, α, β as in (ii) and let x ∈ S2(L2(�)). Let f ∈ L2(�2)

such that x = S f . Then for all h ∈ L2(�), we have

[x ◦ Multβ(h)](s) =
∫

�

f (s, t)β(t)h(t) dμ(t),

hence

[cMultα ◦ x ◦ Multβ(h)](s) = cα(s)
∫

�

f (s, t)β(t)h(t) dμ(t)

=
∫

�

φ(s, t) f (s, t)h(t) dμ(t),

for a.e. s ∈ �. This shows (5.3).
(i i i) ⇒ (i): Assume (5.3) for some unitaries α, β ∈ L∞(�). It is plain that Tφ

extends to a bounded operator on S p(L2(�)) and that the identity (5.3) holds true on
S p(L2(�)).

Let x, y ∈ S p(L2(�)) such that x∗y = xy∗ = 0. Then

(
Multα ◦ x ◦ Multβ

)∗(Multα ◦ y ◦ Multβ
) = Mult∗β ◦ x∗ ◦ Mult∗αMultα ◦ y ◦ Multβ.

Since α is a unitary of L∞(�), the operator Multα is a unitary of B(L2(�)), hence the
right hand-side of the above equality is equal to Mult∗β ◦ x∗y ◦Multβ , hence to 0. Thus

Tφ(x)∗Tφ(y) = 0. Likewise, Tφ(x)Tφ(y)∗ = 0. This shows that Tφ : S p(L2(�)) →
S p(L2(�)) is separating.
(i) ⇒ (i i): For convenience we let H = L2(�) throughout this proof. Owing to
Lemma 2.5, we may suppose that p = 2. We let (w, B, J ) denote the Yeadon triple
of the separating map Tφ : S2(H) → S2(H).

We may assume that Tφ is non-zero. Since B(H) is a factor, it follows from [24,
Lemma 4.3] that Tφ is 1-1. Applying the definition of Tφ , see (5.1), this implies that
φ �= 0 almost everywhere. Applying this definition again, we obtain that Tφ has dense
range. By Lemma 2.4, we deduce that w is a unitary and that J (1) = 1.

Letw∗Tφ denote the operator on S2(H) taking any x ∈ S2(H) tow∗Tφ(x). Accord-
ing to [32, Theorem 3.3] (see also [11, Corollary 7.4.9.]), there exists a projection
q ∈ B(H) such that x �→ q J (x) is a ∗-homomorphism and x �→ (1 − q)J (x) is an
anti-∗-homomorphism. As explained in [23, Remark 4.3], this implies that w∗Tφ is
valued in

L2(qB(H)q
) 2⊕ L2((1 − q)B(H)(1 − q)

) ⊂ S2(H).
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Since Tφ has dense range andw is a unitary,w∗Tφ has dense range as well. This forces
q to be equal either to 0 or 1. Thus J : B(H) → B(H) is either a ∗-homomorphism
or an anti-∗-homomorphism.

Assume first that J is a ∗-homomorphism. Recall that J is normal. According to
the description of normal ∗-homomorphisms (see e.g. [34, Theorem IV.5.5]), there

exist a Hilbert space E and a unitary u : H → H
2⊗ E such that

J (a) = u∗(a ⊗ IE )u, a ∈ B(H).

Here H
2⊗ E stands for the Hilbertian tensor product of H and E and we regard

B(H) ⊗ B(E) ⊂ B
(
H

2⊗ E
)

in the usual way. For all x ∈ S2(H), we have Tφ(x) = wBJ (x) hence w∗Tφ(x) =
BJ (x). This implies that

u(w∗Tφ(x))u∗ = uBu∗(x ⊗ IE ), x ∈ S2(H). (5.4)

Since B commutes with the range of J , the operator uBu∗ commutes with x ⊗ IE for
all x ∈ S2(H). Consequently, uBu∗ = IH ⊗ c for some positive operator c acting on
E . Then it follows from (5.4) that c ∈ S2(E) and that

w∗Tφ(x) = u∗(x ⊗ c)u, x ∈ S2(H).

Now recall that w∗Tφ has dense range. The above identity therefore implies that
E = C. Thus c ∈ C \ {0}, u is a unitary of B(H) and w∗Tφ(x) = c u∗xu for all
x ∈ S2(H). Let v = wu∗. This is a unitary of B(H) and we obtain that

Tφ(x) = c vxu, x ∈ S2(H).

Let ( ·| ·) denote the inner product on H . For any g, h ∈ H , let g⊗h ∈ B(H) denote
the rank one operator taking any ξ ∈ H to (ξ |h) g. Then v(g ⊗ h)u = v(g) ⊗ u∗(h).

Schur multipliers commute with each other, hence for any δ ∈ D(�), we have

Tφ

(
δx

) = δTφ(x), x ∈ S2(H).

Thus vδxu = δvxu for all δ ∈ D(�) and all x ∈ S2(H). Applying this with x = g⊗h
and using the identities δ(g ⊗ h) = δ(g) ⊗ h and v(g ⊗ h) = v(g) ⊗ h, we deduce
that v(δ(g) ⊗ h)u = δ(v(g) ⊗ h)u and hence

vδ(g) ⊗ u∗(h) = δv(g) ⊗ u∗(h), g, h ∈ H , δ ∈ D(�).

Since u∗ �= 0, this implies that vδ = δv for all δ ∈ D(�). Thus v commutes with
D(�). According to (5.2), this implies that v ∈ D(�). Thus there exists a unitary



5 Page 24 of 27 Journal of Fourier Analysis and Applications (2024) 30 :5

α ∈ L∞(�) such that v = Multα . Likewise there exists a unitary β ∈ L∞(�) such
that u = Multβ . We therefore obtain the identity (5.3), fromwhich (ii) follows at once.

Assume now that J is an anti ∗-homomorphism. For any f ∈ L2(�2), let f̃ ∈
L2(�2) be defined by f̃ (s, t) = f (t, s), for a.e. (s, t) ∈ �2. Next, if x = S f , set
tx = S f̃ . It is clear that the mapping x �→ tx on S2(L2(�)) extends to a normal anti
∗-homomorphism

ρ : B(H) −→ B(H).

This mapping is an analog of the transposition map on matrices. Obviously, the com-
position map J ◦ ρ : B(H) → B(H) is a normal ∗-homomorphism. Now arguing as
in the ∗-homomorphism case, we obtain the existence of a constant c ∈ C \ {0} and
of two unitaries α, β ∈ L∞(�) such that

Tφ(x) = cMultα ◦ tx ◦ Multβ, x ∈ S2(L2(�)).

Since α, β are unitaries, Multα andMultβ are unitaries as well and we have Mult−1
α =

Multα and Mult−1
β = Multβ . Writing tx = c−1Multα ◦ Tφ(x) ◦ Multβ , we therefore

deduce that x �→ tx is a Schur multiplier.
Let us show that this is impossible, except if L2(�) has dimension 1. If x �→ tx is

a Schur multiplier, then there exists φ0 ∈ L∞(�2) such that

φ0(s, t)g(s)h(t) = h(s)g(t) a.e.-(s, t) ∈ �2, (5.5)

for all g, h ∈ L2(�). If L2(�) has dimension ≥ 2, then there exist F1, F2 ∈ �

such that 0 < μ(F1) < ∞, 0 < μ(F2) < ∞ and F1 ∩ F2 = ∅. The indicator
functions g = χF1 and h = χF2 belong to L2(�). Applying (5.5) to these functions,
we obtain that h(s)g(t) = 0 for almost every (s, t) ∈ F2 × F1. Since h(s)g(t) = 1
for (s, t) ∈ F2 × F1 and

(μ ⊗ μ)(F2 × F1) = μ(F2)μ(F1) > 0,

we get a contradiction.
Now if we are in the trivial case when L2(�) has dimension 1, then (ii) holds true.

��
Remark 5.2 Let φ ∈ L∞(�2), let 1 ≤ p �= 2 < ∞ and assume that Tφ is a bounded
Schur multiplier on S p(L2(�)). It follows from Theorem 5.1 and [36] that if T is an
isometry, then there exist two unitaries α, β ∈ L∞(�) such that φ(s, t) = α(s)β(t)
for a.e. (s, t) ∈ �2. It is clear that the converse is true. For the discrete case (see the
following remark), this has been proved in [1].

Remark 5.3 Let I be an index set and let (ei )i∈I be the standard basis of �2I . Any
x ∈ B(�2I ) can be represented by a matrix [xi j ]i, j∈I defined by xi j = (x(e j )|ei ) for
all i, j ∈ I . Of course any finitely supported matrix [xi j ]i, j∈I represents an element
of B(H) (actually a finite rank one), and we let ‖[xi j ]‖p denote the S p(�2I )-norm of
this element.
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Let m = {mi j }(i, j)∈I 2 be a bounded family of complex numbers. If we apply the
definitions of this section to � = I equipped with the counting measure, the Schur
multiplier Tm is defined on finitely supported matrices by

Tm
([xi j ]

) = [mi j xi j ].

It therefore follows from Remark 5.2 that the following are equivalent:

(i) There exists 1 ≤ p �= 2 < ∞ such that

‖[mi j xi j ]‖p = ‖[xi j ]‖p

for all finitely supported matrices [xi j ]i, j∈I .
(ii) There exist two families (αi )i∈I and (β j ) j∈I in T such that

mi j = αiβ j , for all (i, j) ∈ I 2.

We conclude with a characterisation of a particular class of Schur multipliers, the
separating Herz-Schur multipliers. Let G be a locally compact σ -compact group (see
Lemma 3.2). Suppose 1 ≤ p < ∞. Let ϕ ∈ L∞(G) and define φ ∈ L∞(G2) by
φ(s, t) = ϕ(s−1t). The Schur multiplier T HS

ϕ := Tφ is called a Herz-Schur multiplier
(with symbol ϕ).

In [4, Proposition 4.5], it is shown that a Herz-Schurmultiplier T HS
ϕ : B(L2(G)) →

B(L2(G)) with positive definite ϕ such that ϕ(e) = 1, is a conjugation with a unitary
if and only if ϕ is a character.

Corollary 5.4 Let 1 ≤ p < ∞. Let G be a locally compact σ -compact group. Let T HS
ϕ

be a bounded Herz-Schur multiplier on S p(L2(G)). Then T HS
ϕ is separating if and

only if there exists a continuous character ψ : G → T and c ∈ C such that ϕ = cψ
almost everywhere.

Proof If ϕ(s) = cψ(s) a.e. s ∈ G for some continuous character ψ , then the symbol
φ of the Schur multiplier satisfies φ(s, t) = ϕ(s−1t) = cψ(s−1t) = cψ−1(s)ψ(t) for
a.e. (s, t) ∈ G2. Since ψ−1 and ψ are clearly unitaries of L∞(G), by Theorem 5.1,
T HS

ϕ = Tφ is separating.
Conversely, assume T HS

ϕ separating. Then by Theorem 5.1, there are unitaries
α, β ∈ L∞(G) and some c ∈ C such that ϕ(s−1t) = cα(s)β(t) for a.e. (s, t) ∈ G2.
Let r ∈ G. Then cα(s)β(t) = ϕ(s−1t) = ϕ((rs)−1(r t)) = cα(rs)β(r t) for a.e.
(s, t) ∈ G2. Leaving the trivial case c = 0 aside, we deduce that

β(r t)

β(t)
= α(s)

α(rs)
(5.6)

for a.e. (s, t) ∈ G2. Thus there is some s ∈ G such that (5.6) holds for a.e. t ∈ G.
Defining ψ(r) as the right hand side of (5.6), we then obtain β(r t)

β(t) = ψ(r) for a.e.
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t ∈ G. The function ψ : G → C with this property is necessarily unique. From
ψ(e) = 1 and

ψ(r1r2) = β(r1r2t)

β(t)
= β(r1(r2t))

β(r2t)

β(r2t)

β(t)
= ψ(r1)ψ(r2) (a.e. t ∈ G)

we infer that ψ is a character. Since ψ is measurable, by [13, Corollary 22.19 p. 346],
it is automatically continuous. From β(r t) = β(t)ψ(r) for a.e. t ∈ G, we infer by
a Fubini argument that there exists some t ∈ G such that this equality holds for a.e.
r ∈ G. Thus, β coincides a.e. with a continuous function. Choosing this continuous
representative for β, we obtain that for every r in G, β(r t) = β(t)ψ(r) for a.e.
t ∈ G. Since β is continuous, this implies β(r t) = β(t)ψ(r) for all r , t in G. In
particular, we have that β(r) = β(e)ψ(r) for all r ∈ G. Using (5.6), the same
argument as above shows that α(s) = α(e)ψ(s−1) for all s in G. Hence we deduce
that ϕ(s−1t) = cα(e)β(e)ψ(s−1t) for a.e. (s, t) ∈ G2. Therefore, ϕ coincides a.e.
with a multiple of a continuous character. ��
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