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Abstract
For p ∈ [2,∞), we consider the L p → L p boundedness of a Nikodym maximal
function associated to a one-parameter family of tubes in R

d+1 whose directions are
determined by a non-degenerate curve γ inRd . These operators arise in the analysis of
maximal averages over space curves. The main theorem generalises the known results
for d = 2 and d = 3 to general dimensions. The key ingredient is an induction scheme
motivated by recent work of Ko-Lee-Oh.

Keywords Nikodym maximal functions · Induction on degeneracy · Fractional
Sobolev embedding

Mathematics Subject Classification 42B25

1 Introduction

Consider a C∞ non-degenerate curve γ : I := [−1, 1] → R
d . In other words,

det
(
γ (1)(s) · · · γ (d)(s)

) �= 0 for all s ∈ I .

The curve γ defines a one-parameter family of directions in Rd+1. For 0 < δ < 1 and
s ∈ I , consider a δ-tube in Rd+1 in the direction of (γ (s) 1)�, defined as

Tδ(s) := {(y, t) ∈ R
d × I : |y − tγ (s)| ≤ δ}
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and the corresponding averaging operator

Aγ
δ g(x, s) := 1

|Tδ(s)|
∫

Tδ(s)
g(x − y, t)dydt, for x ∈ R

d (1)

whenever g ∈ L1
loc(R

d+1). Our goal is to investigate the L p boundedness properties
of the Nikodym maximal function

N γ
δ g(x) := sup

s∈I
|Aγ

δ g(x, s)|. (2)

The main result is as follows.

Theorem 1 Let γ : I → R
d be a non-degenerate curve. There exists Cd,γ > 0 such

that

‖N γ
δ ‖L2(Rd+1)→L2(Rd ) ≤ Cd,γ (log δ−1)d/2 for all 0 < δ < 1.

By interpolating with the trivial bound at L∞, we estimate the L p operator norm for
the maximal function as O((log δ−1)d/p) for 2 ≤ p ≤ ∞. This is sharp in the sense
that the L p operator norm has polynomial blowup in δ−1 for 1 ≤ p < 2 (see Sect. 5).
The result is new for d ≥ 4. The theorem also slightly strengthens the known estimates
for d = 2 and d = 3 (see [7, Lemma 1.4] and [1, Proposition 5.5], respectively) by
improving the dependence on δ−1.

The operatorN γ
δ is a variant of the classical Nikodymmaximal function considered

in [2]. The main difference lies in the dimensional setup of the problem: by the above
definition, N γ

δ maps functions on R
d+1 to functions on R

d , whereas the classical
operator considered in [2] is a mapping between functions on the same Euclidean
space.

Maximal functions of the form (2) naturally arise in the study of local smoothing
problems for averaging operators associated to γ , as first observed in Mockenhaupt-
Seeger-Sogge [7]. In [7, Lemma 1.4] estimates forN γ

δ were obtained for d = 2. The
d = 3 case was later considered in [1, Propostion 5.5], in relation to the problem of
bounding the helical maximal function. The averages Aγ

δ are also closely related to
the restricted X-ray transforms considered in [4, 5, 8].

The proof scheme is outlined as follows: First, oscillations are introduced into
the problem, followed by a fractional Sobolev embedding to dominate the maximal
functionby aFourier integral operator (seeProposition2). This allowsus to fully access
orthogonality in the subsequent decomposition. While the application of Sobolev
embedding in this context is standard, the use of the fractional variant introduced
here constitutes a novel element compared to the previous works [1, 7].

Next, the desired Fourier integral estimates are established through an induction
scheme based on a parameter N , measuring the degree of non-degeneracy of the
curve. This induction method conceals the intricacies of the root analysis detailed in
[1], marking a significant departure from the previous cases of d = 2 and d = 3.
The motivation for this induction approach stems from [6], where a (more complex)
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induction argument is employed to investigate the local smoothing problem associated
to averages along curves in Rd .

The base case for induction is essentially straightforward. In the induction step, the
operator is divided into two parts: one where the induction hypothesis with parameter
N − 1 can be applied, and the other where the support of the resulting symbol ensures
the existence of precisely one root s = σ(ξ) for themap s 
→ 〈γ (N−1)(s), ξ 〉. This root
generates a degenerate cone �, and now a decomposition is performed with respect
to the distance to �. The most singular component is directly bounded in L2. To
effectively bound the remaining segments, a further decomposition on the curve is
performed, followed by rescaling arguments, and a final verification that the symbols
we end up with are amenable to another application of the induction hypothesis.

Outline of the Paper

This paper is structured as follows:

• In Sect. 3, we reduce the proof of Theorem1 to Proposition 3 via fractional Sobolev
embedding.

• In Sect. 4, we present the inductive proof of Proposition 3.
• In Sect. 5, we discuss the sharpness of Theorem 1.
• In Sect. 6, we state an anisotropic extension of Theorem 1 and briefly discuss its
proof.

2 Notational Conventions

For a set E ⊆ R
n , we denote its characteristic function by χE . Given f ∈ L1(Rn) we

let either f̂ or F( f ) denote its Fourier transform and f̌ or F−1( f ) denote its inverse
Fourier transform, which are normalised as follows:

f̂ (ξ) :=
∫

Rn
e−i x ·ξ f (x) dx, f̌ (ξ) :=

∫

Rn
eix ·ξ f (x) dx .

For m ∈ L∞(Rn), we denote by m( 1i ∂x ) the Fourier multiplier operator defined by
its action on g ∈ S(R) as

F(m( 1i ∂x )g)(ξ) := m(ξ)F(g)(ξ) for ξ ∈ R
n .

Finally, given two non-negative real numbers A, B, and a list of parameters
M1, . . . , Mn , the notation A �M1,...,Mn B or A = OM1,...,Mn (B) signifies that
A ≤ CB for some constant C = CM1,...,Mn > 0 depending only on the parameters
M1, . . . , Mn . In addition, A ∼M1,...,Mn B is used to signify that both A �M1,...,Mn B
and B �M1,...,Mn A hold.
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3 Initial Reductions and Sobolev Embedding

3.1 Initial Reductions

Let I := [−1, 1] and γ : I → R
d be a non-degenerate curve, as in Sect. 1. We begin

by replacing the classical averaging operators by Fourier integral operators. Given
a ∈ L∞(Rd × I × I ), consider

A[a, γ ]g(x, s) :=
∫

I

∫

Rd
ei〈x−tγ (s),ξ〉a(ξ, s, t)Fx (g)(ξ, t)dξdt for g ∈ S(Rd+1),

(3)

whereFx (g)(ξ, t) denotesFx (g( ·, t))(ξ), the Fourier transform of g in x only. Define
the associated maximal operator

N [a, γ ]g(x, s) := sup
s∈I

|A[a, γ ]g(x, s)|.

Choose a function ψ ∈ C∞
c (R) with supp ψ ⊆ [−1, 1] such that its inverse

Fourier transform ψ̌ is non-negative and ψ̌(y) � 1 whenever |y| ≤ 1. Let χ̃I be a
non-negative smooth function that satisfies χ̃I (x) = 1 for all x ∈ I and χ̃I (x) = 0
when x /∈ [−2, 2]. Define

aδ(ξ, s, t) := ψ(δ|ξ |)χ̃I (s)χ̃I (t). (4)

Let Kδ denote the kernel of the averaging operatorAγ
δ defined in (1). In particular,

Kδ(x, s, t) := 1

|Tδ(s)|χTδ(s)(x, t).

By integral formula for the inverse Fourier transform and a change of variable,

Kδ(x, s, t) �d

∫

Rd
ei〈x−tγ (s),ξ〉aδ(ξ, s, t)dξ.

Thus, the pointwise estimate

|Aγ
δ g(x, s)| �d |A[aδ, γ ]g(x, s)|

holds. It is therefore enough to bound the operator N [aδ, γ ].
We now perform an endpoint Sobolev embedding to replace the L∞

s norm in the
maximal function with an L2

s norm. Here we write

DsA[a, γ ] :=
(
1 +

√
−∂2s

)1/2A[a, γ ],
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where a and γ are as above and
(
1 + √−∂2s

)1/2 is the fractional differential operator
in s with multiplier (1 + |σ |)1/2.
Proposition 2 For a nondegenerate curve γ : I → R

d , 0 < δ < 1 and aδ as defined
in (4), we have

‖N [aδ, γ ]g‖L2(Rd ) � |log δ|1/2‖DsA[aδ, γ ]g‖L2(Rd+1) + ‖g‖L2(Rd+1)

for all g ∈ S(Rd+1).

Proof Let χ̃ : R → [0, 1] satisfy χ̃(σ ) = 1 for all σ ∈ (−Cδ−1,Cδ−1) and χ̃ (σ ) = 0
when σ /∈ (−2Cδ−1, 2Cδ−1). The constant C is chosen large enough to satisfy the
requirements of the forthcoming argument. Defining

Amain[aδ, γ ] := χ̃
( 1
i ∂s

) ◦ A[aδ, γ ] and Aerr[aδ, γ ] := A[aδ, γ ] − Amain[aδ, γ ],

where the multiplier operator χ̃
( 1
i ∂s

)
is defined in Sect. 2, it suffices to prove

‖Amain[aδ, γ ]g‖L2
x L

∞
s (Rd×I ) � |log δ|1/2‖DsA[aδ, γ ]g‖L2(Rd+1), (5)

‖Aerr[aδ, γ ]‖L2
x L

∞
s (Rd×I ) � ‖g‖L2(Rd+1) (6)

for all g ∈ S(Rd+1).
To prove (5), fix g ∈ S(Rd+1) and write

Amain[aδ, γ ]g(x, s) = χ̃1
( 1
i ∂s

) ◦ DsA[aδ, γ ]g(x, s) for (x, s) ∈ R
d × I ,

where χ̃1(σ ) := (1 + |σ |)−1/2χ̃(σ ). Temporarily fix x ∈ R
d . The above expres-

sion can be written as a convolution product in s variable between F−1
s (χ̃1) and

DsA[aδ, γ ]g(x, · ). Using Young’s inequality, Plancherel’s theorem and by noting
that the L2 norm of χ̃1 is O(|log δ|1/2), we obtain

‖Amain[aδ, γ ]g(x, · )‖L∞
s (I ) � |log δ|1/2‖DsA[aδ, γ ]g(x, · )‖L2

s (R).

Combining Fubini’s theorem with the above estimate for each x ∈ R
d , we obtain (5).

To prove (6), write

Aerr[aδ, γ ]g =
(
1 +

√
−∂2s

)−1 ◦
(
1 +

√
−∂2s

)
◦ (1 − χ̃ )

( 1
i ∂s

) ◦ A[aδ, γ ]g
= χ̃2

( 1
i ∂s

) ◦ χ̃3
( 1
i ∂s

) ◦ A[aδ, γ ]g

where

χ̃2(σ ) := (1 + |σ |)−1(1 − χ̃(σ ))1/2 and χ̃3(σ ) := (1 + |σ |)(1 − χ̃ (σ ))1/2
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for σ ∈ R. Note that (1 + |σ |)−1(1 − χ̃ (σ ))1/2 has uniformly bounded L2 norm (in
δ). Thus, an application of Young’s convolution inequality gives

‖Aerr[aδ, γ ]g(x, ·)‖L∞
s (I ) � ‖χ̃3

( 1
i ∂s

) ◦ A[aδ, γ ]g(x, ·)‖L2
s (R) for x ∈ R

d .

Integrating in x using Fubini’s theorem,

‖Aerr[aδ, γ ]g‖L2
x L

∞
s (Rd×I ) � ‖χ̃3

( 1
i ∂s

) ◦ A[aδ, γ ]g‖L2(Rd+1).

By Plancherel’s theorem, the quantity on the right can be estimated from above by L2

norm of the function Berr[aδ, γ, χ̃3]g, where

Berr[aδ, γ, χ̃3]g(ξ, σ ) :=
∫

I
bδ(ξ, σ, t)Fx (g)(ξ, t)dt

for

bδ(ξ, σ, t) := χ̃3(σ )

∫

I
e−i(σ s+t〈γ (s),ξ〉)aδ(ξ, s, t)ds. (7)

ByMinkowski’s integral inequality, Plancherel’s theorem and Cauchy–Schwarz in the
t variable,

‖Berr[aδ, γ, χ̃3]g‖L2(Rd+1) � ‖bδ‖L∞
ξ,t L

2
σ (Rd×I×R)‖g‖L2(Rd×I ).

Thus, the proof of (6) boils down to the estimate ‖bδ(ξ, · , t)‖L2
σ (R) � 1 uniformly in

(ξ, t) ∈ R
d × I . Since |ξ | � δ−1 and C is large,

|σ + t〈γ ′(s), ξ 〉| ∼ |σ | whenever (ξ, s, t) ∈ supp aδ, σ ∈ supp χ̃3.

Noting the easy estimate |∂β
s aδ(ξ, s, t)| �β 1 for all β ∈ N, we apply integration-by-

parts to estimate the oscillatory integral in (7). In particular,

bδ(ξ, σ, t) = ON ,γ ((1 + |σ |)−N ) (ξ, t) ∈ R
d × I and N ≥ 1.

It is evident that the required L2 estimate for bδ follows from this rapid decay, com-
pleting the proof of (6). ��
Proposition 2 reduces the analysis to estimating the operatorDsA[aδ, γ ]. We begin by
dyadically decomposing the frequency space. Suppose η, β ∈ C∞

c (R) are the classical
Littlewood–Paley functions such that

supp η ⊆ {r ∈ R : |r | ≤ 2}, supp β ⊆ {r ∈ R : 1/2 ≤ |r | ≤ 2} (8)
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and

η(r) +
∑

λ∈2N
β(r/λ) = 1 for all r ∈ R.

For λ ∈ {0} ∪ 2N, introduce the dyadic symbols

aλ
δ (ξ, s, t) :=

{
aδ(ξ, s, t)η(|ξ |) if λ = 0,

aδ(ξ, s, t)β(|ξ |/λ) if λ ∈ 2N.

Theorem 1 is a consequence of the following result.

Proposition 3 Let λ ∈ {0} ∪ 2N and 0 < δ < 1. Then,

‖DsA[aλ
δ , γ ]‖L2(Rd+1)→L2(Rd+1) �d,γ (log(2 + λ))(d−1)/2.

Proof (Proposition 3 �⇒ Theorem 1) Let η̃, β̃ ∈ C∞
c (R) be two non-negative

functions such that η̃(r) = 1 for r ∈ supp η, β̃(r) = 1 for r ∈ supp β and

η̃(r) +
∑

λ∈2N
β̃(r/λ) � 1 for all r ∈ R.

For g ∈ S(Rd+1), define

gλ :=
{

η̃
(| 1i ∂x |

)
g if λ = 0,

β̃
(| 1i ∂x/λ|) g if λ ≥ 1.

It is clear from the definitions that DsA[aλ
δ , γ ]g = DsA[aλ

δ , γ ]gλ. By Plancherel’s
theorem and the support properties of the aλ

δ , we have

‖DsA[aδ, γ ]g‖2L2(Rd+1)
�d

∑

λ∈{0}∪2N

∥∥DsA[aλ
δ , γ ]gλ

∥∥2
L2(Rd+1)

.

Applying Proposition 3 for each λ and observing that aλ
δ = 0 when δ−1 �d λ, we

obtain

‖DsA[aδ, γ ]g‖2L2(Rd+1)
�d,γ

∑

λ∈{0}∪2N: λ�δ−1

(log(2 + λ))d−1‖gλ‖2L2(Rd+1)

�d,γ (log δ−1)d−1‖g‖2L2(Rd+1)
.

Combining the above inequality with Proposition 2, we deduce Theorem 1. ��
The multiplier associated toDsA[a0δ , γ ] is a bounded function and so the λ = 0 case
of Proposition 3 is immediate. More interesting cases arise when λ ∈ 2N.
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4 The Proof of Proposition 3

4.1 Setting Up the Induction Scheme

Fix λ ∈ 2N. We begin with few basic definitions.

Definition 4 Let 1 ≤ L ≤ d. Define S(B, L) to be the collection of all curves
γ : I → R

d such that for all s ∈ I , we have

‖γ ‖C2d (I ) ≤ B and |[|]det (γ (1)(s) · · · γ (L)(s)
) ≥ B−1, (9)

where the determinant is interpreted as the square root of the sum of squares of its
L × L minors.

Definition 5 Let 1 ≤ L ≤ d and γ ∈ S(B, L). A symbol a ∈ C3d(Rd × I × I ) is
said to be of type (λ, A, L) with respect to γ if the following hold:

1. There exists a constant C = C(A, B) > 1, independent of λ, such that

suppξ a ⊆ {ξ ∈ R
d : Cλ ≤ |ξ | ≤ 2Cλ}.

2. |∂β
s a(ξ, s, t)| �β,A 1 for 0 ≤ β ≤ 3d and (ξ, s, t) ∈ supp a.

3. The inner product estimate

A−1|ξ | ≤
L∑

i=1

|〈γ (i)(s), ξ 〉| ≤ A|ξ | holds for all (ξ, s) ∈ suppξ,s a. (10)

Proposition 3 is consequence of the following result.

Proposition 6 Fix 1 ≤ L ≤ d, γ ∈ S(B, L) and let a be a symbol of type (λ, A, L)

with respect to γ . Then,

‖DsA[a, γ ]‖L2(Rd+1)→L2(Rd+1) �A,B,d (log λ)(L−1)/2.

In view of (10), it is clear that Proposition 3 corresponds to the case L = d of
Proposition 6.

Proposition 6 is proved by inducting on L . Given an arbitrary symbol a ∈ C3d(Rd×
I × I ) and a smooth curve γ , we present here a general argument which will be used
repeatedly through the induction process in order to obtain favourable norm bounds
for the Fourier integral operator DsA[a, γ ]. For g ∈ S(Rd), we aim for the estimate

‖DsA[a, γ ]g‖L2(Rd+1) �A,B,d ‖g‖L2(Rd+1). (11)
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By applying Plancherel’s theorem and the Cauchy–Schwarz inequality,

‖DsA[a, γ ]g‖2L2(Rd+1)
=

∫

R

(1 + |σ |)|Fx,s(A[a, γ ]g)|2(σ, ξ)dξdσ

� ‖A[a, γ ]g‖L2(Rd+1)

∥∥∥∥
(
1 +

√
−∂2s

)A[a, γ ]g
∥∥∥∥
L2(Rd+1)

≤ ‖A[a, γ ]g‖2L2(Rd+1)

+
∥∥∥∥

√
−∂2sA[a, γ ]g

∥∥∥∥
L2(Rd+1)

‖A[a, γ ]g‖L2(Rd+1).

Since the Hilbert transform is bounded on L2,

∥∥
∥∥

√
−∂2sA[a, γ ]g

∥∥
∥∥
L2(Rd+1)

� ‖∂sA[a, γ ]g‖L2(Rd+1).

Thus, to prove (11), it suffices to show that there exists  > 1 such that

‖∂ι
sA[a, γ ]‖L2(Rd+1)→L2(Rd+1) �A,B,d (2ι−1)/2 for ι = 0, 1.

Applying Plancherel’s theorem and the Cauchy–Schwarz inequality,

‖A[a, γ ]g‖2L2(Rd+1)
∼d

∫

I

∫

Rd
B[a]Fx (g)(ξ, t)Fx (g)(ξ, t)dξdt

≤
∫

Rd
‖B[a]Fx (g)(ξ, ·)‖L2(R)‖Fx (g)(ξ, ·)‖L2(R)dξ,

where B[a] is the operator that integrates (in t ′ variable) functions against the kernel

K [a](ξ, t ′, t) :=
∫

I
ei〈(t−t ′)γ (s),ξ〉a(ξ, s, t ′)a(ξ, s, t)ds. (12)

At this point, note that ∂sA[a, γ ]g can be expressed as A[dsa, γ ]g, with a symbol

dsa(ξ, s, t) := t〈γ ′(s), ξ 〉a(ξ, s, t) + ∂sa(ξ, s, t) for (ξ, s, t) ∈ R
d × I × I .

Applying Schur’s test, we see that (11) is a consequence of the estimates

sup
(ξ,t ′)∈suppξ a×I

‖K [dι
sa](ξ, t ′, ·)‖L1

t (I )
�A,B,d 2ι−1 for ι = 0, 1, (13)

completing the discussion.
The first application of this reduction is the following lemma.

Lemma 7 (Base case) Proposition 6 holds when L = 1.
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Proof Choose a curve γ and a symbol a that satisfies the assumptions of Proposition 6
with L = 1. In particular, a is of type (λ, A, 1)with respect to γ and as a consequence,

|〈γ ′(s), ξ 〉| ∼A λ holds for (ξ, s) ∈ suppξ,s a.

Following the previous discussion, we wish to obtain good decay estimates for the
function K [dι

sa] with ι = 0, 1. Integrating-by-parts in (12) and using Definition 5 ii),
we have

|K [dι
sa](ξ, t ′, t)| �A,B,N λ2ι(1 + |t − t ′|λ)−N for ι = 0, 1 and N ≥ 1.

Clearly, these decay estimates imply the required bounds (13) with  = λ. Conse-
quently, we obtain (11) with the implicit constant depending only on A, B and d.

��

Lemma 7 addresses the base case of Proposition 6. It remains to establish the inductive
step.

Proposition 8 Suppose the statement of Proposition 6 is true for L = N − 1. Then it
is also true for L = N.

Proposition 6, and therefore Theorem 1, follow from Proposition 8 and Lemma 7. For
the remainder of the section we present the proof of Proposition 8, which is broken
into steps.

4.2 Initial Decomposition

To begin the proof of Proposition 8, let γ and a be chosen to satisfy the assumptions
of the Proposition 6 with L = N . We apply a natural division of the symbol a. Let
H : Rd+1 → R be defined as the product

H(ξ, s) :=
N−1∏

i=1

η(A′λ−1〈γ (i)(s), ξ 〉)

where A′ is large constant which will be chosen depending only on A, B and N . Here
η is as defined in (8). Note that

|∂β
s H(ξ, s)| �β,A,B 1 for (ξ, s) ∈ suppξ,s a and β ∈ N ∪ {0}.

Furthermore, (10) holds for the pair (γ, a(1 − H)) with A replaced with A′ and
L = N − 1. Thus, a(1 − H) is a symbol of type (λ, A′, N − 1) with respect to γ .
Applying the induction hypothesis, we deduce the desired estimate for the part of the
operator corresponding to the symbol a(1 − H).
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Since (10) holds with L = N in supp a by assumption, the inequalities

(10A)−1|ξ | ≤ |〈γ (N )(s), ξ 〉| ≤ A|ξ |, (14)
N−1∑

i=1

|〈γ (i)(s), ξ 〉| ≤ 10−10A−1|ξ | (15)

also hold for all (ξ, s) ∈ suppξ,s aH , provided A′ is chosen large enough depending
on N and A. Henceforth, for simplicity, we write a in place of aH and therefore work
with the stronger assumptions (14) and (15) on the support of a. An application of the
implicit function theorem now shows that for any ξ ∈ suppξ a, there exists σ(ξ) ∈ I
with

〈γ (N−1) ◦ σ(ξ), ξ 〉 = 0. (16)

The strategy now involves a decomposition of the symbol away from the most
degenerate regions in Rd+1. Set

G(ξ, s) :=
N−1∑

i=1

|ε−1
0 λ−1〈γ (i) ◦ σ(ξ), ξ 〉|2/(N−i) + ε−2

0 |s − σ(ξ)|2,

where the constant ε0 = ε0(A, B)will be chosen small enough to satisfy the forthcom-
ing requirements of the proof. The function G should be interpreted as the function
measuring the distance of (ξ, s) from the co-dimension N surface

� := {(ξ, s) ∈ R
d × I : 〈γ (i) ◦ σ(ξ), ξ 〉 = 0 for 1 ≤ i ≤ N − 1 and |s − σ(ξ)| = 0}.

We now decompose the (ξ, s)-space dyadically away from �. Suppose η1, β1 ∈
C∞
c (R) are chosen such that

supp η1 ⊆ {r ∈ R : |r | ≤ 4}, supp β1 ⊆ {r ∈ R : 1/4 ≤ |r | ≤ 4} (17)

and

η1(r) +
∑

n∈N
β1(2

−2nr) = 1 for all r ∈ R.

Set

an(ξ, s, t) := a(ξ, s, t) ·
{

η1(ε
2
1λ

2/NG(ξ, s)) if n = 0,

β1(ε
2
12

−2nλ2/NG(ξ, s)) if n ≥ 1,
(18)

where ε1 will be chosen small enough (depending on ε0) to satisfy the forthcoming
requirements of the proof. Observe that a = a0 + ∑

n∈N an and this automatically
induces a similar decomposition for the Fourier integral operator DsA[a, γ ].
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Since

|G(ξ, s)| = OB,d(ε
−2
0 ) for all (ξ, s) ∈ suppξ,s a, (19)

the symbols an are trivially zero except for OA,B(log λ) many values of n. Thus, by
Plancherel’s theorem,

∥
∥∥∥∥∥
DsA[

∑

n≥0

an, γ ]g
∥
∥∥∥∥∥

2

L2(Rd+1)

=
∑

n≥0

‖DsA[an, γ ]g‖2L2(Rd+1)

�A,B |log λ|max
n≥0

‖DsA[an, γ ]g‖2L2(Rd+1)
. (20)

In light of the above, it remains to bound the fractional operator DsA[an, γ ] for
different values of n. The case of n = 0 is dealt with by the following lemma.

Lemma 9
∥∥∥DsA[a0, γ ]

∥∥∥
L2(Rd+1)→L2(Rd+1)

�A,B,d 1. (21)

Next lemma addresses the case of all other values of n.

Lemma 10 For any n ≥ 1, we have

‖DsA[an, γ ]‖L2(Rd+1)→L2(Rd+1) �A,B,d (log λ)(N−2)/2. (22)

Assuming Lemmas 9 and 10 for now, we plug (21), (22) into (20) and obtain

‖DsA[a, γ ]g‖L2(Rd+1) �A,B,d (log λ)(N−1)/2‖g‖L2(Rd+1).

This concludes the proof of Proposition 8.
Rest of the section is dedicated to the proofs of the two key lemmas (Lemmas 9

and 10).

4.3 Proof of Lemma 9

To prove Lemma 9, we do not appeal to the induction hypothesis but directly estimate
the operator.

Proof of Lemma 9 In view of discussions around (11) and (13), it suffices to show

|K [dι
sa

0](ξ, t ′, t)| �A,B,d λ(2ι−1)/N for ι = 0, 1 and (ξ, t ′, t) ∈ R
d × I × I .

(23)

Indeed, (23) implies (13) with a = a0 and  = λ1/N , which in turn gives (21) as
discussed above.
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The estimate (23) for ι = 0 is immediate from (12) as the supps a0(ξ, ·, ·) is
contained in an interval of length OA,B(λ−1/N ) for any fixed ξ ∈ R

d . By (12) again,
the case ι = 1 becomes evident once we verify the estimates

|〈γ ′(s), ξ 〉| + |∂s(a0)(ξ, s, t)| �A,B,d λ1/N for (ξ, s, t) ∈ supp a0.

It is easy to see that |∂s(a0)(ξ, s, t)| �A,B λ1/N . To estimate the remaining term, note
that for any 1 ≤ i ≤ N , we have

|〈γ (i) ◦ σ(ξ), ξ 〉| �A,B,N λλ(i−N )/N and |s − σ(ξ)| �A,B λ−1/N

for (ξ, s) ∈ suppξ,s a
0. Using Taylor’s theorem,

|〈γ (1)(s), ξ 〉| ≤
N−1∑

j=1

|〈γ ( j) ◦ σ(ξ), ξ 〉| |s − σ(ξ)| j−1

( j − 1)! + B|ξ | |s − σ(ξ)|N−1

(N − 1)!
�A,B,d λ1/N

for (ξ, s) ∈ suppξ,s a
0, as required. Thus, we obtain (23) and consequently (21). ��

4.4 Further Decomposition

In order to prove Lemma 10 wemust introduce a further decomposition of the symbol.
Let ζ ∈ C∞

c (R) be chosen such that supp ζ ⊆ [−1, 1] and ∑
ν∈Z ζ( · − ν) = 1. For

n ∈ N and ν ∈ Z, consider the symbol

an,ν(ξ, s, t) := an(ξ, s, t)ζ(2−nλ1/N (s − sn,ν)) (24)

where sn,ν := 2nλ−1/Nν. Observe that the original symbol is recovered as the sum

a =
C log(λ)∑

n=0

an = a0 +
C log(λ)∑

n=1

∑

ν∈Z
an,ν , (25)

whereC is a constant that depends only on A, B. The following lemma records a basic
property of the localised symbols, which is useful later in the proof.

Lemma 11 Let n ≥ 1, ν ∈ Z and ρ := 2nλ−1/N . For any (ξ, s) ∈ suppξ,s a
n,ν , we

have

N−1∑

i=1

ρi−N |〈γ (i)(s), ξ 〉| ∼A,B,d |ξ | ∼ λ. (26)

Proof The upper bound in (26) is easier to prove than the lower bound and follows
from a similar argument. Consequently, we will focus only on the lower bound.



4 Page 14 of 25 Journal of Fourier Analysis and Applications (2024) 30 :4

Fix n ≥ 1 and ν ∈ Z. Recall from the definitions that

ε−2
1 /4 ≤

N−1∑

i=1

|ε−1
0 λ−1ρi−N 〈γ (i) ◦ σ(ξ), ξ 〉|2/(N−i) + |ε−1

0 ρ−1(s − σ(ξ))|2 ≤ 4ε−2
1

(27)

for all (ξ, s) ∈ suppξ,s a
n,ν . Fixing ξ , we now consider two cases depending on which

terms of the above sum dominate.
Case 1 Suppose (ε0ε

−1
1 ρ)/4 ≤ |s − σ(ξ)|. By the Mean Value Theorem, there exists

s∗ ∈ I between s and σ(ξ) such that

〈γ (N−1)(s), ξ 〉 − 〈γ (N−1) ◦ σ(ξ), ξ 〉 = 〈γ (N )(s∗), ξ 〉(s − σ(ξ)).

Combining this with (14) and (16), we deduce that |〈γ (N−1)(s), ξ 〉| �A λ(ε0ε
−1
1 ρ).

This gives the lower bound in (26).
Case 2 Suppose Case 1 fails. Using (27), we can find 1 ≤ i0 ≤ N − 2 such that

cN ε0λ(ε−1
1 ρ)N−i0 ≤ |〈γ (i0) ◦ σ(ξ), ξ 〉| ≤ 2N ε0λ(ε−1

1 ρ)N−i0 , (28)

with cN := (4N )−N , whilst |s − σ(ξ)| ≤ ε0ε
−1
1 ρ and

|〈γ (i) ◦ σ(ξ), ξ 〉| ≤ 2N ε0λ(ε−1
1 ρ)N−i for all i0 < i ≤ N − 1.

By Taylor’s theorem,

|〈γ (i0)(s), ξ 〉−〈γ (i0) ◦ σ(ξ), ξ 〉|

≤
N−1∑

i=i0+1

2N ε
1+i−i0
0 λ(ε−1

1 ρ)N−i (ε−1
1 ρ)i−i0 + Bλ(ε0ε

−1
1 ρ)N−i0

≤ (cN ε0/2)λ(ε−1
1 ρ)N−i0 , (29)

provided the constant ε0 is chosen small enough depending on B and N . Combining
(28) and (29), we deduce that

|〈γ (i0)(s), ξ 〉| ∼ε0 λ(ε−1
1 ρ)N−i0 for all s ∈ supps a

n,ν ,

which implies the lower bound in (26). ��
In view of (25), we restrict our attention to DsA[an,ν, γ ] for fixed n ∈ N and ν ∈ Z.
Before proceeding to its analysis, wemake the following elementary observation about
the size of ρ := 2nλ−1/N . From the definition (17) of β1, note that

ε−2
1 /4 ≤ ρ−2G(ξ, s) for (ξ, s) ∈ suppξ,s a

n .
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Combining this with (19), we deduce that ρ = OB,d(ε1ε
−1
0 ). Thus, by choosing ε1

small enough (depending on ε0, B, d), we can assume that

ρ ≤ B−2d . (30)

In the following subsections, the norm bounds for the operator DsA[an,ν , γ ] are
obtained using the induction hypothesis via a method of rescaling.

4.5 Rescaling for the Curve

In this subsection, we introduce the rescaling map in a generic setup and describe its
basic properties which will play a crucial role in the proof of Lemma 10.

For γ ∈ S(B, N ) and s◦ ∈ I , let

V N
s◦ := span{γ (1)(s◦), . . . , γ (N )(s◦)}.

Using (9), note that dim V N
s◦ = N . For 0 < ρ < 1, define a linear operator T N

s◦,ρ such
that

T N
s◦,ρ

(
γ (i)(s◦)

)
:= ρiγ (i)(s◦) for 1 ≤ i ≤ N (31)

and

T N
s◦,ρv = ρNv for v ∈ (V N

s◦ )⊥.

It is clear that T N
s◦,ρ is a well-defined map such that

‖(T N
s◦,ρ)−1‖ �B ρ−N . (32)

Supposing [s◦ − ρ, s◦ + ρ] ⊆ I , we define the rescaled curve

γ N
s0,ρ(s) := (

T N
s◦,ρ

)−1
(γ (s◦ + ρs) − γ (s◦)).

For simplicity, we introduce the notation

T := T N
s0,ρ, T ∗ := (

T N
s0,ρ

)−� and γ̃ := γ N
s0,ρ . (33)

The following lemma verifies nondegeneracy assumptions for the rescaled curve.

Lemma 12 For 0 < ρ ≤ B−2d and γ ∈ S(B, N ), the rescaled curve γ̃ as in (33) lies
in S(B1, N − 1) where B1 depends only on B and N.

A key feature of Lemma 12 is that the parameter B1 is independent of ρ.
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Proof of Lemma 12 We begin by verifying the first part of (9) for the curve γ̃ . From
the definition, we see that γ̃ (i)(s) = ρi T−1γ (i)(s0 + ρs) for any i ∈ N. Combining
this identity with (9) and (32), we deduce that

∥∥∥γ̃ (i)
∥∥∥
L∞(I )

= OB(ρ) whenever N + 1 ≤ i ≤ 2d. (34)

Let 1 ≤ i ≤ N . By Taylor’s theorem, (31) and (32), we have

γ̃ (i)(s) = ρi
N∑

j=i

T−1γ ( j)(s0)
(ρs) j−i

( j − i)! + OB(‖T−1‖ρN+1)

=
N∑

j=i

γ ( j)(s0)
s j−i

( j − i)! + OB(ρ) (35)

Combining (35) with (9), we obtain uniform size estimates for γ̃ (i)(s) when 1 ≤ i ≤
N . Together with (34), this implies

‖γ̃ ‖C2d (I ) �B 1. (36)

It remains to verify the second part in (9) for the curve γ̃ and L = N − 1. In view
of (36), it suffices to obtain a lower bound for the determinant of the d × N matrix
whose columns vectors are formed by (γ̃ (i)(s))1≤i≤N for s ∈ I . Observe that using
the multilinearity of the determinant and elementary column operations, (35) gives

∣∣det
(
γ̃ (1)(s) · · · γ̃ (N )(s)

)∣∣ = ∣∣det
(
γ (1)(s0) · · · γ (N )(s0)

)∣∣ + OB(ρ).

By the hypothesis of the lemma, ρ is small enough so that the above identity combined
with (9) gives the estimate

∣∣det
(
γ̃ (1)(s) · · · γ̃ (N )(s)

)∣∣ ≥ (2B)−1.

Now, an application of (36) (in particular, |γ̃ (N )(s)| �B 1) completes the proof of (9)
for γ = γ̃ , L = N − 1 and B replaced with a new constant B1. ��

The rescaling map T N
s◦,ρ can be used to introduce a rescaling for the operators we

are interested in. This is done in the next subsection.

4.6 Rescaling for the Operator

To introduce the operator rescaling, we begin by considering a Schwartz function
u : R → R. Let s◦ ∈ I and 0 < ρ < 1. Direct computations give

[(
1 +

√
−∂2s

)1/2
u
]
(s◦ + ρs) = ρ−1/2

[(
ρ +

√
−∂2s

)1/2
ũ
]
(s),
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where ũ(s) := u(s◦ + ρs). Thus,

∥∥
∥∥
(
1 +

√
−∂2s

)1/2
u

∥∥
∥∥

2

L2(R)

∼
∫

R

|(ρ + |σ |)1/2Fs(ũ)(σ )|2dσ

≤
∫

R

|(1 + |σ |)1/2Fs(ũ)(σ )|2dσ

=
∥∥∥∥
(
1 +

√
−∂2s

)1/2
ũ

∥∥∥∥

2

L2(R)

. (37)

For an arbitrary symbol a ∈ C2d(Rd× I× I ) and γ ∈ S(B, N ), recall the definition
of A[a, γ ] from (3). Temporarily fixing x ∈ R

d , set

u(s) = A[a, γ ]g(x, s) and Ã[a, γ ]g(x, s) := A[a, γ ]g(x, s◦ + ρs). (38)

By combining (37) for each x ∈ R
d with Fubini’s theorem,

‖DsA[a, γ ]g‖L2(Rd+1) �
∥
∥∥∥
(
1 +

√
−∂2s

)1/2Ã[a, γ ]g
∥
∥∥∥
L2(Rd+1)

. (39)

We claim that for (x, s) ∈ R
d+1, the identity

Ã[a, γ ]g(x, s) = |det T ∗|1/2A[ã, γ̃ ]g̃(T−1x, s) (40)

holds with T , γ̃ as in (33), symbol

ã(ξ, s, t) := a(T ∗ξ, t, s0 + ρs)

and input function g̃ defined by

Fx (g̃)(ξ, t) := |det T ∗|1/2eit〈T−1γ (s0),ξ〉Fx (g)(T
∗ξ, t).

Verifying (40) is just a matter of unwinding the definitions. First, we expand
Ã[a, γ ]g(x, s) using (38) as the oscillatory integral

∫

Rd×I
ei〈x−t(γ (s0+ρs)−γ (s0)),ξ 〉a(ξ, s0 + ρs, t)eit〈γ (s0),ξ〉Fx (g)(ξ, t)dξdt .

Applying change of variables ξ → T ∗ξ , the above expression can be written as

|det T ∗|1/2
∫

Rd×R

ei〈(T−1x−t γ̃ (s),ξ〉a(T ∗ξ, s0 + ρs, t)Fx (g̃)(T
∗ξ, t)dξdt

= |det T ∗|1/2(A[ã, γ̃ ]g̃)(T−1x, s), (41)

proving the claim (40).
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Fix n ∈ N, ν ∈ Z and recall the definitions of an,ν and sn,ν from Sect. 4.4. Consider
the rescaling map T as defined in Sect. 4.5 for

s◦ = sn,ν and ρ = 2nλ−1/N .

Furthermore, consider the operator rescaling as in (40) for a = an,ν . In this setup, we
record some of the basic properties of how T ∗ (as defined in (33)) interacts with ã.

Lemma 13 The rescaling map T ∗ satisfies the estimate

ρ−N |ξ | �A,B |T ∗ ξ | �B ρ−N |ξ | for all ξ ∈ suppξ ã. (42)

Proof Fix 1 ≤ i ≤ N . From the definition of T , we have

〈γ (i)(sn,ν), ξ 〉 = ρi 〈T−1γ (i)(sn,ν), ξ 〉 = ρi 〈γ (i)(sn,ν), T
∗ξ 〉. (43)

Fix ξ ∈ suppξ ã so that, by the definition of the rescaled symbol, T ∗ ξ ∈ suppξ an,ν .
Using Lemma 11 when i ≤ N −1 and the Cauchy–Schwarz inequality (or (14)) when
i = N , we obtain

|〈γ (i)(sn,ν), T
∗ξ 〉| �A,B ρN−i |∗|T ∗ξ for 1 ≤ i ≤ N .

Combining this with (43), we deduce that

|〈γ (i)(sn,ν), ξ 〉| �A,B ρN |T ∗ ξ |. (44)

On the other hand, if v ∈ (V N
sn,ν

)⊥ is a unit vector, one can argue as in (43) to have

|〈v, ξ 〉| = |ρN 〈v, T ∗ξ 〉| ≤ |T ∗ξ | (45)

where the fact ρ < 1 has been used. Combining (44), (45) and (9), we obtain the lower
bound in (42). The upper bound follows from (32). ��
The following lemma now verifies how rescaling improves the type condition of the
symbol.

Lemma 14 The rescaled symbol ã is of type (ρNλ, A1, N−1)with respect to γ̃ , where
A1 depends only on A, B and N.

Proof By Lemma 13, it is clear that

suppξ ã ⊆ {ξ ∈ R
d : |ξ | ∼A,B ρNλ}.

Since 0 < ρ < 1 by (30), the estimates |∂β
s ã(ξ, s, t)| �β 1 for (ξ, s, t) ∈ supp ã

follows from similar derivative estimates for a. Thus, it remains to verify that (10)
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holds for the rescaled setup for L = N − 1, γ = γ̃ and a = ã. Explicitly, we wish to
show

N−1∑

i=1

|〈γ̃ (i)(s), ξ 〉| ∼A,B |ξ | for all (ξ, s) ∈ suppξ,s ã.

To this end, we recall from Lemma 11 that

N−1∑

i=1

ρi−N |〈γ (i)(s), ξ 〉| ∼A,B λ for all (ξ, s) ∈ suppξ,s a
n,ν . (46)

However, by unwinding the definition,

〈γ̃ (i)(s), ξ 〉 = ρi 〈T−1γ (i)(sn,ν + ρs), ξ 〉 = ρi 〈γ (i)(sn,ν + ρs), T ∗ ξ 〉.

Thus, by (46) and Lemma 13,

N−1∑

i=1

|〈γ̃ (i)(s), ξ 〉| ∼A,B ρN |T ∗ ξ | ∼ |ξ | for all (ξ, s) ∈ suppξ,s ã,

which is the required estimate. ��

4.7 Proof of Lemma 10

With all the available tools, the operatorDsA[an, γ ] can be estimated easily for n ≥ 1.

Proof of Lemma 10 Fix n ≥ 1. Temporarily fix ν ∈ Z. In view of (39) and (40) for
a = an,ν , we have

‖DsA[an,ν , γ ]g‖L2(Rd+1) � ‖DsA[ã, γ̃ ]g̃‖L2(Rd+1). (47)

Suppose ζ̃ ∈ C∞
c (R) is chosen such that supp ζ̃ ⊆ [−4, 4], ζ̃ (r) = 1 when |r | ≤ 3

and
∑

ν∈Z
ζ̃ ( · − ν) � 1.

In view of the support properties of an,ν (in particular, (18) and (24)), we have

ζ̃ (ε−1
0 ε1ρ

−1(σ (T ∗ξ) − sn,ν)) = 1 for ξ ∈ suppξ ã.

Consequently, recalling the integral expression (41), it is clear that one can replace g̃
with g̃n,ν in (47) where

g̃n,ν := ζ̃
(
ε−1
0 ε1ρ

−1(σ ◦ T ∗( 1i ∂x ) − sn,ν)
)
g̃.
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Now, Lemmas 12 and 14 ensure that the rescaled pair (ã, γ̃ ) satisfy the assumptions
of Proposition 6 with L = N − 1 (note that (30) ensures that ρ is of the right size, so
Lemma 12 applies). Thus, the statement of the proposition applies and we obtain

‖DsA[ã, γ̃ ]g̃n,ν‖L2(Rd+1) �A,B,d (log ρNλ)(N−2)/2‖g̃n,ν‖L2(Rd+1)

�A,B,d (log λ)(N−2)/2‖g̃n,ν‖L2(Rd+1). (48)

Thus, the proof of Lemma 10 reduces to summing the above estimates in ν without fur-
ther loss in λ. Using (25), Plancherel’s theorem and the support properties of symbols
an,ν , we combine (48) for different values of ν to deduce that

‖DsA[an, γ ]g‖2L2(Rd+1)
�d

∑

ν∈Z
‖DsA[an,ν , γ ]g‖2L2(Rd+1)

�A,B,d (log λ)N−2
∑

ν∈Z
‖g̃n,ν‖L2(Rd+1)

2.

After a change of variable, it is evident that ‖g̃n,ν‖L2(Rd+1) = ‖gn,ν‖L2(Rd+1), where

gn,ν := ζ̃
(
ε−1
0 ε1ρ

−1(σ ( 1i ∂x ) − sn,ν)
)
g.

Thus, by another application of the Plancharel’s theorem,

‖DsA[an, γ ]g‖2L2(Rd+1)
�A,B,d (log λ)N−2

∑

ν∈Z
‖gn,ν‖2L2(Rd+1)

�A,B,d (log λ)N−2‖g‖2L2(Rd+1)

concluding the proof. ��

In the next section, we discuss the sharpness of the main theorem.

5 Sharpness of the Theorem 1

By acting the maximal function on standard test functions, here we discuss the sharp-
ness of Theorem 1 in two directions: sharpness of the range of p and the operator
norm dependence on log δ−1.

5.1 Sharpness of the Range of p

Fix p ∈ [1,∞) and assume that given any ε > 0, we have

‖N γ
δ ‖L p(Rd+1)→L p(Rd ) �ε δ−ε for all 0 < δ < 1. (49)



Journal of Fourier Analysis and Applications (2024) 30 :4 Page 21 of 25 4

Temporarily fix ε and δ. Set gδ := χB(0,δ). It is easy to show that the δ-neighbourhood
of the curve −γ is a subset of the super-level set

{x ∈ R
d : |N γ

δ gδ(x)| � δ}.

Applying Chebyshev’s inequality and using (49), we have

δδ(d−1)/p �ε δ(d+1)/p−ε .

Letting δ → 0, we see that p ≥ 2− ε. Letting ε → 0, we conclude that p ≥ 2. Thus,
L p operator norm of N γ

δ has polynomial blowup in δ−1 for p ∈ [1, 2).

5.2 Sharpness of the Operator Norm

Fix 0 < δ < 1. Consider two vectors w := (x, 0), z := (y, 0) ∈ R
d+1. It follows

from the definition that

w + Tδ(r) ∩ z + Tδ(s) �= ∅

if and only if there exists a t ∈ [−1, 1] such that

(x − y) + t(γ (r) − γ (s)) = O(δ). (50)

Assuming |γ (s)| ∼ 1 for all s ∈ [−1, 1], it is also not hard to see that

VolRd+1(w + T10δ(r) ∩ z + Tδ(s)) ∼ δd+1

δ + |γ (r) − γ (s)| (51)

whenever (50) holds.
Fixing (x, r) ∈ R

d × I , set fδ := χw+T10δ(r) and note that ‖ fδ‖L2(Rd+1) ∼ δd/2.
Fix 0 ≤ k ≤ �log(δ−1)�, define

Ak := {y ∈ R
d : |N γ

δ fδ(y)| ∼ 2−k}.

We claim that

|Ak | � 22kδd .

Indeed, in view of (51), Ak contains all points y ∈ R
d for which there exist s, r ∈

[−1, 1] such that (50) holds and |γ (s) − γ (r)| ∼ 2kδ. The latter condition ensures
that the admissible directions γ (s) belong to a portion of the curve which is contained
inside a ball of radius ∼ 2kδ. Moreover, for a fixed direction γ (s), any y ∈ R

d that
lies in the δ-neighbourhood of the tube x + {t(γ (r) − γ (s)) : t ∈ [−1, 1]} satisfies
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(50). Therefore, Ak contains the δ-neighbourhood of a two-dimensional cone in R
d

of diameter ∼ 2kδ, justifying our claim. Thus,

(log δ−1)δd �
�log(δ−1)�∑

k=0

2−2k |Ak | ≤ ‖N γ
δ ‖2L2(Rd+1)→L2(Rd )

‖ fδ‖2L2(Rd+1)
.

Consequently, we see that

‖N γ
δ ‖L2(Rd+1)→L2(Rd ) � (log δ−1)1/2.

In view of the above, we may conjecture that (log δ−1)1/2 is the sharp L2 operator
norm of N γ

δ . In other words, it is possible that Theorem 1 gives only a partial result
in this direction.

In the next section, we discuss a generalisation of Theorem 1.

6 Further Extensions

As observed in [1], a stronger version of Theorem 1 which deals with families of
anisotropic tubes is used in actual applications to the proofs of certain geometric
maximal estimates (such as that of the helical maximal function). In this section,
we state the anisotropic extension of Theorem 1 with a brief discussion on how the
argument presented in the article can be adapted for the more general setup.

We begin by introducing the anisotropic tubes using the Frenet frame co-ordinate
system. For s ∈ I , let {e1(s), . . . , ed(s)} denote the collection of Frenet frame basis
vectors, formed by applying Gram–Schmidt process to the set {γ (1)(s), . . . , γ (d)(s)}.
For r = (r1, . . . , rd) ∈ (0, 1)d , we consider a tube in R

d+1 in the direction of γ (s),
defined as

Tr(s) := {
(y, t) ∈ R

d × I : |〈y − tγ (s), e j (s)〉| ≤ r j for 1 ≤ j ≤ d
}
. (52)

As before, we can introduce the corresponding averaging and maximal operator as

Aγ
r g(x, s) := 1

|Tr(s)|
∫

Tr(s)
g(x − y, t)dydt for (x, s) ∈ R

d × I

and

N γ
r g(x) := sup

s∈I
|Aγ

r g(x, s)| for x ∈ R
d

whenever g ∈ L1
loc(R

d+1).
By modifying the argument presented in Sects. 3 and 4, the L p boundedness prob-

lem for N γ
r can be resolved under mild hypothesis on r. Our result [3] is as follows.
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Theorem 15 Let r := (r1, . . . , rd) ∈ (0, 1)d be chosen such that

rd ≤ · · · ≤ r1 ≤ r1/22 and r j ≤ r (k− j)/(k−i)
i r ( j−i)/(k−i)

k (53)

for any 1 ≤ i ≤ j ≤ k ≤ d hold. Then, there exists Cd,γ > 1 such that

‖N γ
r ‖L2(Rd+1)→L2(Rd ) ≤ Cd,γ (log r−1

d )d/2.

There are two most interesting cases where Theorem 15 can be applied. These are
when r = riso := (δ, . . . , δ) and r = (δ, δ2, . . . , δd) for 0 < δ < 1. In both cases,
it is clear that r satisfies (53). By applying Theorem 15 in the first case, we recover
Theorem 1 as a consequence.

Discussion on the proof of Theorem 15 In the following discussion, we highlight the
major changes from the arguments presented in this article. A detailed proof can be
found in [3].

From (4), we recall the definition

aδ(ξ, s, t) := ψ(δ|ξ |)χ̃I (s)χ̃I (t) for (ξ, s, t) ∈ R
d × I × I .

In view of (52), the anisotropic version of aδ is defined by the formula

ar(ξ, s, t) :=
d∏

j=1

ψ(〈ξ, e j (s)〉r j )χ̃I (s)χ̃I (t) for (ξ, s, t) ∈ R
d × I × I ,

whenever r ∈ (0, 1)d .
By arguing along the lines of Sect. 3, we can reduce the proof of Theorem 15 to

establishing operator norm estimates for the Fourier integral operatorDsA[ar, γ ]. In
particular, it suffices to show that

‖DsA[ar, γ ]‖L2(Rd+1)→L2(Rd+1) �d,γ (log r−1
d )d−1. (54)

In Sect. 3, we obtained an equivalent version of (54) for r = riso by first dyadically
decomposing the operator and then applying Proposition 3 to each part. The proposi-
tion, in turn, was proved using an induction argument (in particular, via Proposition 6).
In the same way, we can reduce the proof of (54) to a variant of Proposition 6. The
modifications reuired in the proposition to adapt to the anisotropic setup do not alter
the core argument of the proof. Key steps involving the decomposition as described in
Sects. 4.2 and 4.4, and the rescaling as described in Sects. 4.5 and 4.6 remain intact. The
differences mainly come from the description of the class of symbols of our interest.

Recall how the derivative bounds

|∂β
s aδ(ξ, s, t)| �β,γ,d 1 for β ∈ N and (ξ, s, t) ∈ supp aδ (55)
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were explicitly used for directly estimating parts of the operator in L2 at many stages
in the proof of Proposition 6 (in particular, see the proofs of Lemmas 7 and 9). Con-
sequently, the operator norm of DsA[aδ, γ ] depends on the upper bound in (55).
Since rescaling of symbols preserves (55), one was able to carry these estimates
unchanged throughout the induction process (see Definition 5). The situation differs
in the anisotropic setup because of two reasons.

Firstly, in contrast to (55), the best attainable L∞ bounds for the derivatives of the
anisotropic symbol are

∥∥∂β
s ar

∥∥
L∞(Rd×I×I ) �β,γ,d max

1≤ j1,..., jβ ,k1,...,kβ≤d

β∏

i=1

r ji r
−1
ki

for β ∈ N.

Note that the expression on the right depends on r and can be extremely large.However,
after applying the decomposition as described in Sects. 4.2 and 4.4, improved L∞
bounds can be attained for the derivatives of each part of the symbol. In view of
this, rather than assuming a uniform control over the C3d norm of the symbol, the
anisotropic variant of Proposition 6 includes pointwise bounds for the derivatives of
the symbol expressed in a form that is sensitive to the many decomposition in the
argument.

Secondly, the action of the rescaling map on the symbol ar significantly alters
its derivative estimates. Thus, the properties listed in Definition 5 to describe the
rescaling-invariant class of symbols that contain aδ must be modified to accommodate
all symbols you encounter at various stages in the argument in the anisotropic setup.

Apart from the modifications in the symbol class as mentioned above, we also
require additional control over the coefficients ri for the purpose of establishing
acceptable bounds at stages of direct L2 estimation. The mild conditions (53) are
introduced for this purpose. The author does not know if these conditions are nec-
essary for obtaining the maximal estimate, but they seem to fit well in the induction
argument. By Combining (53) with the modified description of symbols, we prove the
anisotropic variant of Proposition 6, completing the proof of Theorem 15. ��
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